
XII

Formal Aspects of Object-Oriented Systems

M. Wolczko

+

+

•

Semantics of

Object-Oriented

Languages

Mario Wolczko

Dept. of Computer Science

Manchester University

marioGuk.ac.man.cs.ux

+ + +

What is object-oriented programming?

Is it a language feature or a methodology?

x
What are the key concepts? Inheritance ::::

(what sort)? Dynamic binding? Persistence?

How does it differ from programming with

ADTs?

+

~

+

, ~

Aims of Investigation

• Comparative study

• Clarification of concepts

• Classification of essential/important /

other features.

+

Hoped-for results

+

• Deeper understanding of object-oriented

programming

• Useful suggestions for language designers

+

Approach

Denotational definition(s) of Smalltalk-like

languages. using VDM

Excluded : "unusual" systems (Actors).

concurrency

+

+

X
H
H

IV

1

+ +

What's an Object?

More usefully, What properties do objects

have?

+

• Semantic, rather than syntactic concept

• Each object has its own identity, distinct

from its contents

• Has a private "inside" - only the inside

of one object is in scope at any place in

the program

+

Principal Semantic Domain

Store or object memory:

ObjecLmemory = map Oop to Object

Objects have internal structure, e.g.:

Object = map InstVarID to Oop

Contrast with conventional store:

Env = map Id to Loc

Store = map Loc to Value

Is this difference significant?

+

+

:><
H
H

W

l

+

Language Development (1)

Simplest store

Store = map Id to Val

MStat = Stat - (Store - Store)

All identifiers are global - no abstraction

mechanism.

+

+ +

Language Development (2)

Nesting (via blocks), and procedures

var x, y,

begin

var x,

end

No change to underlying store model

required, even if we add call-by-value

procedures, but need an environment to

describe which identifiers are in scope.

+

Only way to create multiple "instances" of a

block is to "name" them (Le., make them

procedures) and use recursion - lifetimes

are LIFO.

+

X
H
H

.,..

+ +

Language Development (3)

Aliasing, Shared variables, call-by- reference

var x •...

proc p(var y) . .. x ... y

p(x);

Need to introduce locations.

Store = map Loc to Val

Env = map Id to Loc

MStat: Stat -+ (Env -+ (Store -+ Store))

+

+

Language Development (4)

Heaps, Pointers, Modules, .. .

Still have global variables and LIFO

allocation, therefore introduce a heap and

pointers.

Val = Locu ...

Still not modular, so add modules and

packages (at the syntactic level).

Is there a simpler way?

+

+

X
H
H

V>

+

The Object-Oriented Way

Objects are similar to the simple store:

Object = map Id to Oop

No shared variables and aliasing allowed.

Make each object an independent entity

(created on demand, destroyed when

inaccessible).

Each object has an identity (Oop) that

distinguishes it from others.

All objects are in a one-level store:

ObjecLmemory = map Oop to Object

+

+ + +

Objects as Environments

Each method is a store-transformer:

MMethod: Args x ObjecLmemory -+

Result x Object_memory

Within a method only the inside of one

object is in scope:

MStat : Oop x ObjecLmemory -+

x Object _ memory

MStat(rcvr, mem) can only alter mem(rcvr)

(without sending a message).

+

X
H
H

a-

+ +

Benefits

• Modularity

• Separation of control and data

• Data abstraction

• Security

• Simplicity

+

+ +

Conjecture

Objects are the only essential feature of an

object-oriented language

Any object-oriented language will have an

underlying structure like ObjecLmemory.

Pure object-oriented languages have no

other storage structure.

By simulating the object memory we can

practice OOP in almost any language.

+

:><
H
H

'"

+

Principle of Object Identity

Every object has a unique identity, which

cannot change without the object's

cooperation

Principle of Object Encapsulation

The internal state of an object can only be

accessed or modified by the execution of a

method associated with the object, in

response to a message sent to that object.

+

+ + +

Important Features

Dynamic binding

If you can't see the internal state of other

objects, why not let different sorts of objects

be used for similar purposes?

Object = map Id to Oop

var x;

x.printO;

Leads to a form of polymorphism /

overloading / generic functions.

+ ..

X
H
H

00

+

Persistence and Incrementality

Once we have dynamic binding, long-lived

(persistent) data makes sense - its

behaviour can alter as required. Need not

anticipate all operations on an object when

defining it.

+

+ +

Classes

An implementation of a behaviour defines a

class of objects.

Inheritance

+

One class can inherit part of another's

implementation. Dynamic bind ing (via self) S
allows incomplete or abstract classes. '"

Classes can define syntactic modules.

Delegation

Dynamic inheritance

+ ,

.. I

. I
I
I

. I

I

