XI

A Survey of Object-Oriented Languages
Problems in Object-Oriented Language Design

C. Schaffert

Rapporteur: L. Mancini

A Suever or

ORr1ecT - ORIENTED

[anGuaGes

ro. Sd—w ert
C \ W

DEC
Cam\-'nht Researdh Lab

XL 2

OBJ‘;&\' - Or\'cn\ti goqftmm:a‘

'€ relF & Atw 1dea

EVQ\V\;A\ S\;-\et \G\N- 60'3'

COM ‘AeLS 8 ?uf‘.\gcs L‘.\‘ "i.r-u\
sz\-;e,t

LANGMQGG CHAG.'GY'.Q.\QT!GS

® Smﬂnr* ?w- dalbe G'o!“ﬂsekon

- Nnew Hpu appees builk. ia
- " s ?“‘."*‘&

O Su\.#-‘p'\nx
- or%un.\“t\“"‘ “r‘; nwmktﬂ‘ 0? 'l'\-”

- %en LIS e \\ 1

® ‘\n»\ tf.\\'ﬁﬂ ce

- '\mp\;mznkkoa \'u.\nn:\\sb

o= co at S\\ PO \

® exeenhmon owhone ~~

- 'Hmruués o: f-o«\-fo‘

XI.4

Mazea LANGMG(
[wres

Vecalles & Valwes
varialele = 'Lﬂ’ L

V&\u.t. © \‘s*s

ﬂ.ﬂ{xn ment keasic

.B\uc\‘ Bex O‘oSulrs

e,vwst\'m-\ " anm ok"ur\-

o‘oSQg‘fS 05\3 Mkv\:fb\\.\'t‘

Vi, oetro.’n'oa s

(S"'orou‘!. m&ﬂt\tm*)

XI.5

EX Ptf:ﬂ\‘ﬁ\“\ (Pf.".*'h’p‘\n\)

‘ewﬁ k\s fﬂ\fsmm.un-\

ruu\h}u‘ preqren~ s SOeonéw-)

Preducken

preqramm " Fhe %oo..\

\ oa3 l'\ 9;

w

—

c.oé"m. spLed 2 @l.;.\\.:.\:l..\
vs.
Uv\im‘\o\)‘\:\:H 2 eV el when

XI.6

Alqo\

v

N.
Y
Y
»

~

"o ¢
Simuleg === Clwn
ﬂ

""-.., 7 g
. O~ o_
Poscel ——h'c'— Ade
.,

. Y B
C

XI.7

Goo.\s

m\'& A‘OS MG"\‘GG
= U\n'\?ofmikl

- én ?o-rf. evaeny
- N?vﬂ.& tv\"'o.ken ‘ﬂ.\ &:’53

= S"('\funx \'\‘ p:nt\

- S\'um‘s w\unq.\tm‘r

H\.lfﬁ l'f.\a 3
- SFLL’\.Q \Ca hyn
- :m P\tm en"k"'l'cﬂ

XI.8

ABS\‘VQGRM\\‘ lm.,..\é ADT.

- "'L\ttu Y

- eggcr‘:\ont
- ofc.n.koas o .\ciuh

- %Cv\tf.ttl

Eﬂ\l\.(.#\ m\'

Lieroey

XL.9

ADRA

Aok ru»\\-): o'ciu-\' srtnted

SM (1 ol 'urpos @

k;\\n | le'g.rmmtt

Conuenkivnal ()ﬂ\r&mmin\ S‘-s,lc.

XT,10

Puckaye

{'\“A aolbriviahem
OFtru\-\'oﬂ ach\ RNems

DATA

—

Eﬂ%ﬁts alottrachom
Streng '\"‘)f““\

Wee '\ rsfre&m\-k'ea \.‘\L'n‘

- &Q‘\\nmwx

Ex Pls’c\\- S‘\-oes\t Mns\cm\'

XI.11

No ll\'\trmfb\'\j
OVQf\ehé"ﬁ'\ (stahe)

Absthe beyond _@.2'.‘7'

Tosks
Euev?\"‘““

N° QM\';JH O‘O"Q""‘

Wesk gen cees

q{m veol
vap eS¢

k\.‘\\h - ?tFme
T Y B

Da
Do te Alos brehe

gﬁ 'l"*’? F O '-91
Pwm\‘- L 0 mh a

8 .
En F,Vtts o.\o s\-ru \'\. .

%\'rﬂﬂs
T Prime
eu\\‘ ALQQ..»L&&

Betke
] fth".Sl-\"-
whe Ry
~ lridv
tﬂ\

Ex * ‘
| :

XI.13

S\'no\\t nlhenteaace (f\\'tmok-s

ngrlomé\'«\\ (3enzm't. calls)

A\os\f b::_o:c\ ADT

e

No 'Hmru.és
Excephions (soon ?)
OPtm\'\'cn o‘.)'!.c.-’rl'

GMW'\-&S (5000\ ?)

Pﬂnj. Ehvn 13 nonm ¢

L\‘Of&f'\tl % wnder Asu'.“uu'.ﬂ

XI.14

T2a2". 9,

S\f.\'\w\&\\.gﬁ

%u\m\ éwr.pq_

PLreruact \t!t '|Mpt(ka“'

Date Abclrgabion
uv\'\?ic.l 4"0'; 8 .fv'ﬂ's“t—\ | ét?y
Engwcu a‘ot‘vm“'ﬂ |
S'\"\'oﬁ\ "")P:""S

Goed reprsenralon hidia \
- o.\ \ ?O‘\ A\'GPS

Ah\". ghfh\t vanaqt M e Y

XI.15

g\.n\\l '\ﬂ\NCO‘L*&ﬂG' L\\wab\\\s
Ovu-\u.éfm\ (3“\0':&. calls)

Abs\e beyens ADT

COPO&\H;\GI
NG E\tt.cp\"'u\!
No .pw‘.‘n'-n e\eitJf;r

Ne T.nzr'\ es

Pfﬂu. Eﬂ\lh o nene

L‘\‘ovu(h.s : Senall ?

XI.16
SM ®mLL.TALY

e;;tpef'\m;ok‘ ?(.\ﬂfﬂm:a\

Pt.f'-?u'munc!- \G‘% \ o 'Crkﬁ\'

-D_ﬂ-_u Aot hnchon

un.\ ?‘ ¢ J éo& s Rong
Does NOT engﬂt aerlvachem
NO um'.s\l. ""‘\.ﬂ\\- {’\1?'\«\

Excelland rtrrcunk'e'h. hidim 9

A‘*“ 3""‘-1'- MM\lm"

XL.17

S\‘ﬂ\\ﬁ '\aku'*\-tnct h.\thbLa
= recenr teleatiomn b maldg

OUW\G&A -'n\

Ab%\-’ oA ADT

COA\-ﬁ\ g“‘fwc.\we. ALS\'«»G\\&
- \oloeks

CON wx\‘ﬂt&‘

No Q.xt.'.fn\'\‘enl
O?wakcn o\g"u.l'-t °

Ne weed gn 3“\%’.‘-‘3

p(o\f- Eavea: excellent

Lf‘oturlu 5 exlentive

XI.18

FLavenas & CLOS

(.omPo.’n.\u'\ \.!H wi bk LI.QP

'DO\\'& : A\oi \Ya&" ‘U

SQ,PW.-\'Q. \-v)pe 8\ o‘:oc.n.\-c'on éo.gc
Deoes NOT e.ng;wu asthruehoms
No Cme;\t. - e \-'v‘p:n\

EXGQ“!A"’ V'-Q.F"GQ tn&"b"s'oﬁ L\.\é\.a\

Av-."o S"w.u\!. mﬁ&qt MU\.\'

V.vf" Q\ﬁ\..fsk XIVl'QA\A\¥| -\hkh‘sknoc
L\\:tfesos‘hs

A

\ pre-q posl--cs

/\
/

D

Pﬂ'-3 > § ¢ ?bt"-\

XI.20

Absle begens ADT

Neo Fheeads (gc‘ntm)
No e.xr.c‘:a\'\'oar

Ofd.n.\\u\ o‘oSu\'S‘
No need 9" ﬂmwlu

CQ'\ YQ.*-éLg\'nt \;\L\Cf‘.\\'hﬂtt f'm\g{.

Pro-‘ Envn t exc.c."cn‘l'

\
W\oracies ¢ Sene

X1,.21

-\—Riuus /Ou.u.

30'\ eral PwP.g‘

3“‘ P"Q"msab{.
Mo gm\um\k x Cl\w

Dabe Abchmehin
UFu g'u) é‘rg almums
En er. ey m\ov\\'ut.*"oa

Shrang e
E%tt“m“ ftff“tw’fhktﬂ \uzf)-'n\

Aw\-o) ‘0(51 e muv\s‘tmm"‘

XI.22

QSimple mulki-inhinbace hicradhy

- Speo ‘oo-tc&
- Svg‘-\-v,po. Gomfo-\'o-‘o:\\'\-‘

- wie\d H con el

Abche bave~d ADT

"Lteraters
A;.\\V\\-&es
E\ tCFktﬂf
O rtﬁ‘\‘\'on o‘n."tu.\'l

Glnc-f'\c'

- “s“\ “6(\'5\.6¥3 8
cond e Aol s\-‘yk\'in\

pﬁc‘r E(\Vn\ VCf-‘ 500‘
Lilsrneies ¢ exlntive

XI.23

DISCUSSION

Dr. Kay stressed that the significance of Simula INNER and VIRTUAL
constructs is often underestimated. He said it had been very hard to leave out
from Smalltalk such powerful ideas, but that this had been dictated by the design
goal of simplicity.

Dr. Schaffert concurred, and added that INNER can be seen as a precursor to
Flavors' MIXIN.

Professor Nygaard observed that a major feature of an object-oriented
programming language is whether it is endowed with metaclasses, as Smalltalk
and CLOS are.

In answer Dr. Schaffert recalled from his lecture that there are two language
communities, one that wants maximum flexibility within a system so as to
essentially develop new languages within that system, the other which maintains
that thle1 purpose of types is to provide a program structure that can be dealt with
statically.

Dr. Kay said that he happened to dislike blocks in Smalltalk-80. Blocks were not
in the previous versions and were basically introduced under the influence of
LISP people, to achieve generality and flexibility. However, blocks violate a lot of
safety features: an internal block may be used as a value and this can give access
to the interior of an object, which contradicts one of the reasons for using objects
in the first place.

Dr. Schaffert said that indeed an essential part of language design is the balance
between values and structure, i.e. between the flexibility to create new styles,
and the provision of a pattern which programmers can think in terms of and then
rely on.

Professor Atkinson enquired whether also the older object-oriented languages
have a top of the class hierarchy. Dr. Schaffert answered that this was the case,
with the exception that some limguages, like Lisp-Flavors or C+ +, have an
object-oriented part and a conventional built-in part which does not fit in entirely
with the former.

Mr. Kerr observed that serious implications stem from the view that an object-
oriented style can be pursued even in a non object-oriented language. In
articular, in such an attempt, one is bound to find a point where, for lack of
anguage support, he has to compromise the structure that is inherent in the
object-oriented style. As a result, the object-oriented structure of the software
fails to come out explicitly and there is a blurring of the boundaries between the
structural components of the model. For instance, it turns out that generic types
cannot actually be implemented as generic code. Moreover, the protection and
security given by strong typing have to be jeopardized in order to achieve
generality. In summary, the resulting code is not a suitable candidate for
reusable software.

Dr. Haynes went back to the dichotomy between experimental programming and
strong typing, to ask whether these approaches could be combined into a single
system.

Answering, Dr. Schaffert recalled that typing essentially allows the prcg[grammer
to state an intention whose violations can be detected by the system. Thus, if a
programming environment allows intentions to be changed and rechecked
quickly, it will be adequate for experimental programming: what is needed for
experimental programming is fast change. '

XI.24

Professor Randell commented on the fact that, as stated in the lecture, type
checking can be regarded as a sort of microverification. He thought that some of
the relevant problems could be ascribed to the passage of time between when
programs are verified and when they exist and run.

Doctor Schaffert thought this distinction between various states of a program to
be very productive.

Professor Lee said he found the issues raised about inheritance and multiple
inheritance to be very interesting, but expressed concern about the danger of
ending up with two kinds of programmers: the programmer who constructs the
type hierarchy, and that who is just a user of instances of types in the hierarchy.

In answer, Dr. Schaffert said he thought it productive to consider those two
programmers to be different people even though all of them were the same person.
Actually, when taking up the other role, the programmer ought to forget about
the previous one, to avoid introducing too much coupling in the program because
of the information he remembers. This can be summarized with the phrase
“compartmentalization of knowledge”.

Professor McDermid noted that the many problems with multiple inheritance
may arise from an attempt to achieve too many goals with the same mechanism.
Dr. Schaffert said this was possible.

With reference to the issues raised in the talk, Professor Nygaard discussed the
clauses EXCLUDING and EXCLUDED IN in the Beta language.

Dr. Schaffert aptly concluded that much had been said about the problems of the
object-oriented approach, but these were largely outnumbered by the benefits.

