
x 

Object-Oriented Techniques in AI 

P. Ross 

Rapporteur: Maciej Koutny 



X. l 

Object-oriented techniques in AI 

Peter Ross' 
University of Edinburgh 

Department of AI 
80 South Bridge 

Edinburgh EH1 1HN 

September 1988 

This brief paper summarises my views about object-oriented techniques in AI, 
and how this affects my views about the teaching of AI. Please bear in mind that 
at Edinburgh University there a::e separate departments for computer science and 
for AI, even if they do have many common interests. 

The context: about AI 

First, there are some points to be made about the teaching of AI generally. There 
are perhaps three kinds of answer to the question "What is AI?": 

• (the commercial answer, widespread) a new way to make more money faster 
than ever before; an interesting sub-culture in software engineering. 

• (the cognitive psychological view, rare in its pure form) an approach to 
the study of human cognitive capacities, by trying to model them in some 
executable form. Clearly this depends on a good understanding of cognitive 
psychology. This answer is dogged by the possibility that there are no 
general cognitive principles underlying the functioning of human cognition, 
that the human brain is merely a monumental evolutionary hack-up. It is, 
however, unconstructive to adopt this possibility as a working premise. 

• (the control theory answer, also rare) an investigation into the construction 
of artificial intelligence, perhaps with little or no direct parallels in terms 
of human intelligence. A good grounding in cognitive psychology is not 
required, but is still useful. This view treats AI as essentially an enormous 

• e-mail: peter@uk.ac.edinburgh.aiva 



. 1 

X. 2 

problem of control theory, in the broadest sense: how to make a system 
which is adaptive to a very wide range of circumstances, and which exhibits 
many desirable characteristics such as a sizeable but not infinite resistance 
to performance changes. 

It seems important to try to keep all three in mind when teaching AI. However, 
it is very hard to train students in computer science, cognitive psychology and 
mathematics, and several other disciplines, and still expect them to be able to 
bring it all together as AI; therefore some blurring of the distinctions is inevitable. 

The main paradigm used in AI is still that of symbol processing, although 
connectionism is attracting a lot of attention now too. The symbol processing 
approach rests on assumptions that are rarely discussed. One is that (in cognitive 
psychological terms) the amount of information which comes in through a person's 
senses is so vast that it seems self-evident that it is digested somehow into a 
very much more compact form, with massive loss of detail, before any of the 
mechanisms of consciousness get to work on it. If this is so then presumably we 
can work at the fairly abstract level of the digested data, trying to model it by 
data structures built using a meaningless vocabulary of symbols . It is easy to 
disagree with this, naturally; for example, can we safely assume that the basic 
vocabulary is 'meaningless', and is it reasonable to assume that the condensation 
of sensory data happens 'first of all'? (No). Object-oriented techniques in AI are 
still seen as part of this symbol processing paradigm, although they needn't be. 

Because AI brings together many disparate subjects, it also seems useful to 
emphasise at least three different levels from which one can view any piece of 
work in AI (loosely based on the original categorisation in [Newell 81]): 

• the knowledge level, concerned with what knowledge - as an abstract quan
tity - is represented within a system. 

• the symbol level, concerned with implementational issues such as data struc
tures and algorithms. 

• the engineering level, concerned with design issues and bridging the gap 
between the other two levels. 

It is all too easy to become engrossed in the last two of these and to hope that the 
first is taking care of itself. By custom, object-oriented techniques are presented 
as issues to do with the symbol and engineering levels. A short and very informal 
survey I made suggested that object-oriented techniques were not widely regarded 
as being central to AI's current research concerns. 

The main theoretical bases of AI are knowledge representation, search and 
inference. Knowledge representation is not just a matter of databases, the larger 



= 

X.3 

questions concern the nature, consistency and completeness of the represented 
information, and currently rest mainly on inference techniques. To hint at this 
distinction, the typical database approach to answering a question such as "how 
many students take Maths 301, Geology 429 and are mature students?" is some 
well-optimised enumeration technique. However, such technology is of no use at 
all in the following well-known scenario: 

A number of people in a room shake hands. Maybe some people 
don't shake hands with some others, and maybe some people are so 
antisocial that they don't shake hands at all. Nothing is known about 
the number of people in the room, or about who does or does not 
shake hands with whom. 

Nevertheless, despite this minimal level of information, it is possible to say that 
the number of people who shook the hand of an odd number of people is even. 
Enumeration methods could offer empirical confirmation, but the general result is 
only available by some kind of deduction. The result is somehow 'knowable', given 
the scenario and common knowledge of arithmetic, even if the average man on 
the Clapham omnibus doesn't actually know it. The distinction between database 
technology and knowledge representation is further elaborated in [Levesque and 
Brachman 85]. That paper also points out some of the very serious limitations of 
the current technology. 

All the philosophical difficulties surrounding knowledge and knowing still re
main; a university course on 'knowledge representation' is, of necessity, a mixture 
of practical techniques for constructing certain limited kinds of system and an 
abstract charting of how little can be done with those techniques. Currently at 
the research frontier there is a strong emphasis on logics, starting with traditional 
first-order predicate logic but now embracing many kinds of modal logics and non
monotonic logics as well. There is still argument about the merits of logics as a 
basis for representing knowledge; see, for example, Computational Intelligence vol 
3 no.4, 1987, for a recanting by Drew McDermott of his 'strong logicist' stance 
and commentary on it by many others. Although the use of many kinds of logic 
for representation raise the problem of logical omniscience - that such an agent 
would be compelled to believe all the consequences of what he knows - there are 
some logics which manage to avoid this and preserve a plausible semantics. See, 
for instance, [Hadley 88] for a brief account. Such work is heavily formalised, 
contrary to the popular view of AI as a hacker's paradise. 

The practical expression of AI has tended to be much more informal, even 
though there are now a number of expensive commercial tools on the market such 
as ART, KEE and KnowledgeCraft. These offer a mixed bag of representational 
methods within a sophisticated programming environment, but tend to offer no 



X.4 

guidance about how to blend the methods to capture what you want to express. 
The mainstay of the declarative data structuring in these commercial systems, 
as in many research systems, has been the 'frame'. The notion of 'frames' was 
introduced by Minsky in [Minsky 75), and has been considerably modified since 
then. The basic notion is of a named collection of named fields ('slots ' ), each field 
having several sub fields ('facets') with system-dependent contents and interpre
tations, arranged in an inheritance hierarchy of some kind. Typically, some facets 
will contain procedures to be run in predefined circumstances. The whole notion 
is, alas, drastically underspecified so that, for instance, some commercial systems 
will allow arbitrary over-riding in some frame deep in the hierarchy of anything 
inherited from above. This makes it impossible to distinguish between properties 
of a thing which are part of its defining characteristics and properties which are 
distinguishing ones. Thus, in such a system, there would be no way to express a 
proposition such as "All green vegetables are vegetables and not something else 
such as meat" and it would be possible for a programmer to express a proposition 
such as "a table is a kind of small, dead, fiat-topped elephant without a trunk, 
ears, tailor tusks" , possibly even unintentionally! 

There is no consensus about what is and is not desirable in a frame system, in
deed it is arguable and intuitively natural that no consensus would be universally 
adequate. At least, one can say that inheritance matters since the taxonomic 
aspects of knowledge representation are so prominent. Moreover, multiple inher
itance is important; for example, in a software company there are times when it 
is important to regard an instance of 'project manager' as a human being and 
times when it is important to regard that same instance as a company resource 
instead. Also, in constructing a system, inheritance cannot all be resolved away 
at compile time. One might, for example, find a use for a learning system capa
ble of discovering new links in an inheritance network, perhaps by abduction or 
induction rather than deduction. 

From frame systems it is obviously a very short step to object-oriented systems, 
and so object-oriented programming has a natural place in an AI syllabus. But 
it is not the last word in AI programming, nothing is. For example, propositions 
involving quantification or negation are easily handled by some logic program
ming methods, and not so well handled by many object-oriented systems. Some 
systems try to blend these. LOOPS [Bobrow and Stefik 83), for example, is a syn
thesis of object-oriented, procedure-oriented and data-oriented programming, in 
and on top of a LISP system. The earliest release of LOOPS included rule-based 
programming too, but this feature was dropped because it never integrated well 
with the other styles. There are also logic-based languages which are based on 
object-oriented ideas, such as the Japanese MANDALA language and program
ming environment [Furukawa et al 84). Some information about each of these is 



X.S 

given below. 

About object-oriented techniques in AI 

A scan through the proceedings of the main AI conferences will show you that 
object-oriented techniques are very popular in AI. Why? The commonest reason 
is that object-oriented techniques help to solve some of the incidental software en
gineering problems, such as type overloading and the management of late binding. 
I don't need to repeat the arguments in favour of this; object-oriented techniques 
clearly help to take a considerable load off the programmer, and specific concepts 
such as active values make execution monitoring and debugging much easier. The 
term 'active value' perhaps needs explaining: it refers to an arrangement whereby 
some chosen procedures are run before and/ or after every occasion on which some 
data item is accessed or modified. The procedures can be specific to a single data 
item. For example, a procedure might modify some graphic representation of the 
item's value, so that there appears to be some kind of meter attached to the item. 
However, it is clear that this kind of provision is rudimentary when it comes to 
trying to debug a really complicated system; not much real progress seems to have 
been made yet in building usable debugging aids for object-oriented systems. 

Perhaps the second most popular reason is that many of the systems which one 
might wish to model in AI include some form of hierarchic or lattice structuring, 
and object-oriented systems provide a very neat way to represent this explicitly. 
Also, the ability to model a collection of entities, each with some local state and 
having a local program, is very useful. There is a growing community researching 
multi-agent architectures, in which each of the agents has some information about 
itself and can acquire some about the others, and the agents need to achieve 
co-operation without the intervention of some overall controller. For a good 
introduction to this area, with a formal basis, see [Rosenchein 851. Object-oriented 
techniques are obviously useful here for creating simulations for experimental 
purposes. 

There is also interest in the use of object-oriented languages for creating ex
pert systems. This area has been dominated by rule-based systems, but there 
are considerable problems attached to using rules alone. For example, they suffer 
from the same kind of inadequacy ascribed to crude frame systems above: some 
of the preconditions in a rule exist to set a context, others exist to discriminate 
within that context, and there is no clear division between these (as well as con
siderable redundancy). Clearly such discriminating information is a necessity if 
good explanations are to be constructed of how the system reaches its conclu
sions. See [Buchanan and Shortliffe 841 for the definitive analysis. The notion of 
objects is useful here, because an object can represent a context, thus avoiding 



= 

X.6 

the redundancy of respecifying the choice of context in each rule of a rule-based 
system. The general idea would be something like this (in a medical diagnostic 
system): 

Send a message to the Patient object. requesting symptoms. 
Send the list to a Diagnostic object. requesting a 

priority ordering of symptoms 
Send messages to Symptom objects. requesting possible 

causes in the form of names of disease objects 
Ask the disease objects for likely symptom patterns 
Send these to another diagnostic object. asking for 

goodness-of-fit data 

This is of course a very crude model, suffering from the same flaws as many of 
the early medical systems - for instance, there is no notion of a disease as a time
dependent process in this . However, it conveys the basic idea. It also suggests 
that such a use of object-oriented programming is likely to involve unusually large 
objects by the standards of today's applications. A small illustrative prototype 
system, strictly frarne- rather than object-based, existed as early as 1980 [Aikins 
80]. 

Object-oriented systems also relate naturally to blackboard systems in AI. 
These provide a model for co-operating small and specialised expert systems, 
communicating through a large global data structure (or perhaps several such 
structures) called 'the blackboard'. In this paradigm a component specialist sys
tem is termed a 'knowledge source'; these can access and modify entries on the 
blackboard, and a great deal of dependency information about which entries were 
used to support the inclusion of other entries is also maintained on the black
board. Activation of the knowledge sources is under the control of a scheduler, 
and in recent systems the scheduler is itself implemented as a group of knowledge 
sources with scheduling queues being maintained on a part of the blackboard. 
Blackboard systems are useful for solving problems akin to a jigsaw, in which 
islands of an answer start to emerge and give clues as to how to proceed. In 
the more elaborate systems the analogue is of a box of jigsaw parts from several 
complete pictures, each with parts missing! The connection with object-oriented 
systems here is that the entries which instances of knowledge sources make on the 
blackboard are essentially anonymous messages (junk mail?) to any of the other 
knowledge sources which want to compete to make use of it. An introduction to 
blackboard systems can be found in [Engelmore and Morgan 88] . 



-. 

X. 7 

About the 0-0 languages used in AI 

Perhaps the best-known object-oriented programming system in AI is still the Fla
vors package, available as an extension to many kinds of LISP but best developed 
for Symbolics' ZetaLISP. Distinguishing features include: 

• an impure approach: you can, should you wish, poke about inside objects 
using raw LISP. Objects are represented using a specially-added data type, 
dtp-instance. The first word of this points to a defstruct attached as 
a property of the flavor (that is, class) name which contains information 
such as a method dispatch table; other words of a dtp-instance contain 
the instance variable values. 

• no meta-classes. Meta-classes in other 0-0 languages are useful if you find 
a need to send messages to a class as an object, or if you need to have a 
single variable shared amongst several classes. There are, of course, always 
other ways to achieve this effect in an unsafe manner. 

• multiple inheritance, with a large number of options and even ways to define 
your own. For example, there are ways to gather the results of all the 
methods which could handle a message, not just the first. There are ways 
to add default methods which will be invoked if nothing else locatable in 
the flavor lattice will handle a message. There are ways to force the system 
to try several possible methods, looking for some 'desirable' result (such as 
non-nil). 

• the 'daemon' style of method modification. In this style, you add before
and/ or after-daemon methods nearer in the lattice than the basic method, 
and these do any necessary further work. This further reduces code redun
dancy. Sometimes this is inadequate, for instance if an object needs to run 
a method in some special environment; for this, Flavors provides a facility 
called 'whoppers' which can be used to wrap up the sending of a message 
in whatever environmental modifications you like. 

The possibilities for making exciting mistakes are widespread. Probably the best 
introduction to Flavors is [Bromley and Lamson 87]. For an excellent introduction 
to using the Common LISP Object System (CLOS) see [Keene 88]. 

PARLOG [Gregory 87] and other parallel logic programming languages pro
vide, through perpetual processes and streams, an object-oriented viewpoint as 
well as much of the representational power of logic programming. P ARLOG pro
vides and- and or-parallelism, with control by two means: first, a predicate has 
an associated mode declaration for its arguments, and a called predicate with 
a more general argument set suspends until its arguments become instantiated 



x. s 

by the running of some other goals; and second, the clauses for a predicate can 
have guards, a set of PARLOG goals which should be free of side effects. The 
clause whose guard succeeds first wins, the competitors die. Streams, in the form 
of partially instantiated lists, provide the communication channels. In such a 
paradigm, an object is represented by a perpetual process created by running a 
suitably recursive predicate. There are no inheritance mechanisms provided as 
base-level features, but a variety can be implemented in a trivial and natural 
way. MANDALA [Furukawa et al 84) also uses streams for message-passing, but 
is more explicitly object-oriented and does provide inheritance mechanisms as 
explicit base-level features. It has an accompanying window-based programming 
environment. Flavors, PARLOG and MANDALA are conceptually closer to the 
actor family of languages in which objects can only co=unicate with known 
friends, than they are to the traditional hierarchically-based languages such as 
SmallTalk. 

LOOPS [Bobrow and Stefik 83) is an add-on to Xerox' InterLISP running on 
Xerox workstations. Distinguishing features include: 

• meta-classes 

• the more widespread 'send-super' style of method combination. A 'send
super' call within a method definition causes the same message which in
voked the method, or even a modified version of it, to be sent to the same 
receiving object, but causes that method definition to be bypassed in the 
search for a method to answer it. The 'send-super' style necessitates run
t ime look up of methods, unlike the 'daemon' style of Flavors provided that 
the inheritance lattice is not modified at run-time; however, 'send-super' is 
probably the more generally useful mechanism of the two. 

• a method cache for fast method access, done in the same kind of way as 
is used for working set management in a paged memory operating system. 
Xerox claim a hit rate of around 90% typically, and a cost of less than twice 
a typical InterLISP fuction call for methods which are in the cache. 

• composite objects. These are defined by a grouping of classes, so that when 
an instance of the group is created all the necessary objects and constraints 
between them are created (or, if you wish, the parts are created when needed 
rather than when an instance of the composite itself is created). Thus, for 
example, you might define a car as a composite object consisting of a body 
object, door objects and so on, with the doors constrained to be the same 
colour as the body and vice-versa. 

There are a large number of other, experimental object-oriented languages 
in AI, but very few have wide acceptance outside the lab (or room) where they 



X.9 

were created. Experiments continue with newer features such as multi-methods, 
in which a method is identified not only by the message selector but also by the 
types of the message's arguments. This is still slightly awkward in LISP, because 
the Common LISP type system is not a true hierarchy - nil, for example, is a 
subtype of all others. 

Teaching issues 

It is very important to introduce object-oriented techniques into the teaching of 
AI, although it is equally important to retain a sense of balance about it . Dis
cussions about the utility of the concept of metaclasses, of multi-methods, of 
multiple inheritance and so on are really peripheral to the main threads of a good 
AI course. Multiple inheritance is of course very important in knowledge repre
sentation terms, but no one system-provided implementation is usually adequate 
for all purposes. 

Any programming technique or methodology, including the object-oriented 
approach, suits some kinds of task and not others. To take a trivial example: the 
'missionaries and cannibals' puzzle can be solved in an object-oriented system by 
having instances to represent the missionaries, the cannibals, the boat and the 
banks. There is no special virtue in this, however; this does not take advantage 
of what an object-oriented system is offering. On the other hand, one could solve 
the puzzle by having an object-oriented system generate all the instances of the 
puzzle's state initially, and then getting them to send messages to each other to 
organise themselves into chains of successor states. This provides a good way to 
map out the problem space completely, but it is a less natural way, and in more 
complex problems is computationally intractable - so it doesn't provide even a 
good line of attack on questions of search management. 

There are practical problems. At present, it is expensive to equip a laboratory 
with good facilities for object-oriented work in AI, and this limits the throughput 
of students. For example, to run LOOPS you need a Xerox workstation. The 
learning time is quite long too, so the ratio of students to workstations must be 
low. For students who have already paid the price of learning LISP, there are 
a variety of Flavors packages available, but running these in an adequate LISP 
environment also necessitates the use of individual workstations, or of a small 
number of students per VAX-like machine. The same applies to running systems 
such as PARLOG or Concurrent Prolog on SUNs or VAXes. Good and cheap 
implementations of simpler object-oriented systems such as C++ and Actor are 
now appearing, but these still don 't cater too well for symbol processing tasks and 
so are not the ideal solution. Personally I am also reluctant to commit students 
to using a single large system (such as LOOPS), because to do so would tend to 



f 

X. IO 

obscure issues of representation and efficiency; students would only be seeing one 
provider's decisions in the trade-off between them. Therefore I still tend towards 
the 'low technology' route, using the public domain systems such as XLlSP, which 
has only two predefined objects yet offers a lot of flexibility, and Little SmallTalk 
which offers over 2000 predefined objects but suffers from the expressive short
comings of early Small Talk such as having only hierarchical inheritance and no 
layered database. Such systems are adequate for simple explorations of the issues, 
and are not too difficult to learn in a reasonable time, they are cheap and they 
run on a wide variety of hardware. It is also easy to move on from such toys to 
serious object-oriented languages and environments. 

References 

[Aikins 80] J.Aikins, "Prototypes and production rules: an approach to knowl
edge representation for hypothesis formation", Stanford University Dept of 
Computer Science Tech. Report CS-80-814 (PhD thesis), 1980 (see also 
"Prototypical knowledge for expert systems" Artificial Intelligence, 20(2), 
pp.163-21O, 1983) 

[Bobrow and Stefik 83J D.Bobrow and M.Stefik, The LOOPS Manual, Xerox 
Corporation, Xerox PARC, 123pp., 1983 

[Bromley and Lamson 87J H.Bromley and R.Lamson, LISP Lore: A Guide 
To Programming The LISP Machine, 337pp., Kluwer Academic Publishers, 
New York, 1987 

[Buchanan and Shortliffe 84J B.Buchanan and E.Shortliee, Rule-based Ex
pert Systems, 748pp., Addison-Wesley: Reading, Massachusetts, 1984 

[Engelmore and Morgan 88] R.Engeimore and T .Morgan, Blackboard Systems, 
600pp, Addison-Wesley, Reading, Massachusetts, 1988 

[Furukawa et al 84] K.Furukawa, A.Takeuchi, S.Kunifuji, H.Yasukawa, M.Ohki 
and K.Ueda, "MANDALA: A logic based knowledge programming sys
tern", in proceedings of the International Conference on Fifth Generation 
Computer Systems (lCOT, Japan), pp.613-622, North-Holland, Amster
dam, 1984 

[Gregory 87] S.Gregory, Parallel Logic Programming in PARLOG: the language 
and its implementation, 228pp., Addison-Wesley, Reading, Massachusetts, 
1987 



.-

X. ll 

[Hadley 88J R.F.Hadley, "Logical omniscience, semantics, and models of be
lief" , Computational Intelligence, 4(1), pp.17-30, 1988 

[Keene 88J S.Keene, Object-oriented programming in Common LISP: A pro
grammer's guide to CLOS, Addison-Wesley, Reading, Massachusetts, 1988 

[Levesque and Brachman 85J H.Levesque and R.Brachman, "A fundamental 
tradeoff in knowledge representation and reasoning" , in (eds) Brachman and 
Levesque, Readings in Knowledge Representation, 571pp., Morgan Kauf
mann, Los Altos, California, 1985 

[Minsky 85J M.Minsky, "A framework for representing knowledge', in (ed) P.Winston, 
The Psychology Of Computer Vision, McGraw-Hili, New York, 1975 

[Newell 81J A.Newell, "The knowledge level", AI Magazine, 2(2), pp.1-20, 1981 

[Rosenschein 85J J.S.Rosenschein, "Rational Interaction: Cooperation Among 
Intgelligent Agents", Stanford University Dept of Computer Science Tech. 
Report CS-85-1081 (PhD thesis), 133pp., 1985 



. 1 

X.12 

DISCUSSION 

Professor Nygaard asked about the extent to which different debugging 
methodologies are used in the kind of problems covered by the talk. Dr. Ross 
replied that although there are some interesting developments in the area of 
debugging methodologies, they are in general not extensively applied. 

Referring to possible definitions of Artificial Intelligence mentioned by Dr. 
Ross, Professor Nygaard said that one characteristics of AI is that it is a field which 
comprises a number of interesting problems, and a number of interesting 
problem solving techniques, but has not yet developed a unified framework for 
dealing with such problems and techniques. A possible contribut ion of object· 
oriented methodolo\lY to the AI research might be such concepts as inheritance, 
locality, etc., facilitating the introduction of a disciplined way of the design of 
complex AI systems. 

Prof. Bayer asked what are possible applications of metaclasses in AI. Dr. Ross 
replied that the concept of a metaclass turns out to be useful if, for example, one 
wants to send a message to some collection of classes . 




