
VIII 

Point of View is Worth 80 IQ Points 

A.Kay 



= 

VIII.1 

TRANSCRIPT OF TALK BY ALAN KAY 

Today I wish to talk about some directions I think the field of object-oriented 

programming is going in. In fact it's very hard for me to think solely in terms of 

object-oriented programming, because my focus has always been on the idea 

that there is a person in the loop and that what the person has on their mind and 

what they want to do is the most important thing . That is not true for all types 

of computing, but it is for the type of computing I'm interested in. 

A characteristic of computing in the 60s and 70s which, I gather from discussions 

with a number of chief information officers in the largest companies in the US 

still applies in many large organisations, is that most of the MIPS are still central, 

and central time-sharing, shared operating systems, etc, are used, with 

interaction still being mostly by keyboard - you have to remember and type in 

order to do things. But a lot of the country has shifted over to the PARClMac 

paradigm, which has the MIPS at the users desk. This is a big change. And what I 

think is even more interesting is that in a few more years we are going to have 

another, as startling, change I believe, and characterised partly by the MIPS 

going to be wherever - in California of course we'll weave the MIPS into our tee­

shirts. That will be part of the metaphor and instead of "what you see is what 

you get", it's going to be "what you need is what you get" . Instead of "see and 

point" its going to be "ask and tell". 

Larry Tesler and I came up with the view that what users do now is largely 

editing, which is sort of layout, but we think it is going to be something more 

like orchestration in the future. From mechanical printing to laser printing to no 

printing - that's when you can carry your computing resources around with you. 

(Incidentallt, the only definition of portability that I accept is that something is 

portable if you can carry something else too. In other words, 0 .5 herniations per 

block is not portability!). A large change I think that we're going to have, is the 

move from the professional programmers first to having a lot of programming 

done by experienced users and then to end-user programming. End-user 

programming is something that those of us at PARC in our group were most 

interested in . This was because we thought that if there's any analogy at all 

between learning about computers and print literacy, then the analogy would 

be that reading (something that I call access literacy), is having a skill to be able 

to access material made up by other people, and in a sense that's what this 



VIII. 2 

attempt at the mouse and icons and windows interface attempted to do. So 

when you learn how to use that interface you're learning the equivalent of 

reading. And the result was, on the PARC systems and Macintosh, that if you've 

learnt the interface to one system you've learnt 70 or 80 percent of the interface 

to any system. This was an attempt to have the user interface universal across 

applications - but that's only one face of the three faces of literacy. 

Another face of literacy is creative literacy - the equivalent of writing. We just 

didn 't believe that computing would be a way of life for people unless they 

could actually create things for themselves on their computers. That is what 

Adele and I and the other people in our group at PARC spent most of our effort 

on - wondering what you had to do to the user interface and the language in 

order to let people create significant tools, without having to become 

professional computer scientists. We were not completely successful; this is an 

on-going question that we've looked at for twenty years now. 

However we now have the Hypercard system, which some of you are familiar 

with, that now has more than 750,000 users - it is given away with every 

Macintosh that is sold . By the end of next year there'll be more Hypercard 

programmers than there are programmers for all other systems combined, and 

that is an interesting change in what it actually means. (The statistics we have 

now indicate that of the 750,000 Hypercard users 70 per cent of them, about 

500,000, write programs in Hypertalk.) So that adds an enormous amount of 

programmers, just in the one year. So very shortly a lot of the programming that 

people do is going to be done by the end-users. However, it's going to be done 

in a framework of design systems that are produced by professional designers. 

So we think that the applications programming industry is going to go from 

making turnkey applications, which they do now, to scripted applications; so 

that you'll be able to get an application out of the box, use it and after a couple 

of weeks, when you start getting ideas about how you wish to change it, you 

will be able to do easily. 

A context for this talk concerns two of the ways that human beings have 

extended themselves over the last several hundred thousand years : one of them 

is by building tools that amplify. Some of these tools have been physical tools 

like the lever and the wheel, and other tools have been figurative tools such as 

language and mathematics. But I think of all these amplifying tools as being 



. I 

VIn . 3 

extensions of the gesture. They all help us to manipulate. Even mathematics is a 

way of taking stuff that is too abstract to even think about, and making it into 

something more concrete so that we can manipulate the symbols as though they 

were real things. So the end-word for amplifying tools is "manipulation". 

The second way that we have extended ourselves over the years is by what I call 

"goal-cloning", which is simply being able to convince other people to work on 

our projects. Lewis Mumford calls this making mega-machines. He wrote a book 

called called "Techniques and Civilization" which was about how most of the 

machinery of mankind has involved human beings as its basic parts and how our 

nervous systems are set up to allow ourselves to be persuaded and to be 

interested in persuading. And the end-word for that kind of extension for me is 

"management" . 

When computer interfaces started being thought about in the late fifties both of 

these ways of doing things were considered . McCarthy wrote a paper called 

"The Advice Taker" and the premise behind The Advice Taker was that it wasn't 

going to be too many years, McCarthy said, before we had information utilities 

that were the equivalent of power and lighting utilities and the amount of 

information we could get through these utilities would be so vast that we 

couldn't do it through a conventional browsing tool. No such tool would enable 

us to use this amount of information effectively. What we would need is a thing 

that he called the Advice Taker, which today we would call an" Agent" . 

The Advice Taker was a semi -intelligent computer process that could learn 

incrementally; and you could give it more and more advice and part of its duties 

would be to go off and do things. About 1965 Selfridge called these kinds of 

semi -intelligent computer processors agents. It has only been in the last decade 

or so that there has been a big pressure to start thinking about what agents 

might be, because it is only in the last decade or so that we have had pervasive 

networking to the extent where the tool approach, for example as provided by 

the Mac, is starting to become unwieldly. We noticed it at PARC, both when we 

hooked up to the Ethernet for the first time, and when Smalltalk started getting 

large. Smalltalk provided a Browser, which is a very nice way of locating relevant 

code, and was wonderful in its day. But when Smalltalk got larger and larger the 

Browser got less and less useful. 



VIII. 4 

I realised this firsst when I went away on a trip for a month and came back and 

they had redone the system and nothing was where it was, and thus for the first 

time I got a chance to use the Browser as an uninitiated user would use it. I 

realised that the Browser was mainly useful if you already knew where things 

were - and then you could find them very quickly. This is true of Engelbart's 

system as well - if you knew were the stuff was you could get to it very rapidly; if 

you didn't know where it was it wasn't of much help. 

When we start including the humans in the loop we have to start asking 

ourselves questions about how do human mentalities function, and what are 

they are made up of. The most important result with regard to user interfaces is 

a formulation which has been made by several people, but our God in the 70s 

was an American psychologist by the name of Jerome Brunner, who said that 

another way of looking at Piaget's theories is that instead of there being stages 

of development, we actually have multiple mentalities, and we have a change in 

dominance between one mentality and another. He came up with a three­

mentality theory, which he didn't claim was all the mentalities we had, but that 

there are three major ones. One was basically muscular, one was an iconic one 

(visual and figurative) and one was a symbolic one. 

When we started thinking about the user interface, in the beginning we started 

thinking a lot about what could we do with images. Gradually we realised that 

what we wanted to achieve was some kind of synergy between the three 

Brunner mentalities. The user interface that we're familiar with today has a 

kinesthetic component that involves you tactilely - that's the "doing" mentality 

(what Brunner called the "enactive mentality"). It is interesting that pointing is 

useful - of course there are things on the street to point at, but from a 

psychological point of view pointing is even more important because it is the 

kinesthetic mentality that places you in the world . There's a British 

neurophysiologist by the name of Oliver Sachse that writes books like "The man 

who mistook his wife for a hat". I don't know if any of you have read it, but 

basically that book is about what happens to people when they have damage to 

their brain and parts of the internal world that they live in are removed from 

them . 

One of the most striking things is that it is far preferable, according to the 

reports, to be blinded than it is to retain your sight and have part of your body 

image removed from your mentality. For instance, people who have had an 



VIII . 5 

injury to their brain that removes their leg, not physically from them but 

mentally, report waking up in the middle of the night with someone else's leg in 

bed with them, because it isn't part of their body. (We can touch our nose 

because our body knows where our different parts are· it's something that we 

aren't even aware of.) Although this thing that's in bed with them looks like a 

leg, they can hardly see that their leg is attached to them. We don't see what is 

on our retina, we see what we are able to interpret through our knowledge of 

the world. For them there's a kind of hazy place where this thing joins onto the 

body they know is theirs. So part of the reason why pointing is so important is 

not just to indicate things on the screen, but because it is a tactile way of 

involving a person in the world and, of course, the windows and the icons are 

there because of the two main features of the iconic system. 

One is that the iconic system is incredibly good at remembering images. The 

primary experiment on this was done by Haber in the late sixties; Haber showed 

2500 images to people spaced about ten seconds apart. It took four or five hours 

to show these images to people and in fact for some of the people he spaced it 

out over several days because he thought it would be boring . It turned out that 

it wasn't boring at all. The people who sat for four or five hours just seeing 

different slides were quite happy. (This is an explanation as to why American 

television is so popular!) And he discovered that, even after a month, all of his 

subjects had better than 90 percent recall of these random images, even to the 

extent of being able to tell what was in an occluded part of an image. 

This is an experiment you can do yourself if you have cable television. Get a 

friend to dial in a movie at random and see within how many frames of the 

picture you recognise whether you have seen that movie before. Most people 

can say within a few seconds "Yes, I've seen that movie before· I know what is 

going to happen next." It can be a movie you haven't seen for 18 years and 

you've seen just sixty or seventy frames out of the middle of it, and yet your 

visual memory is so incredibly good at retrieving that it will be able to let you 

know what will happen next. The other thing is that it is about four times as 

efficient to find one of a hundred images randomly scattered on a bulletin board 

than it is to find a word in a list of a hundred items· it is done by a different part 

ofthe brain. 

So all these things argued for having a panorama. The other thing is that the 

iconic system is modeless in the sense that it is always flitting about from one 



VIII . 6 

thing to another. That mode of thinking tends to be fairly creative, but 

somewhat unconstructive, in that because there is lots of visual material for you 

to look at and you're not fixating on any of it for a given time, you don't get 

blocked on a particular area. In fact there were studies by Covington and 

Crutchfield at Berkeley in the sixties which showed that if people were doing 

problem solving and you seeded the room by putting visual metaphors and hints 

to the solution on the wall they would do much better, just because they would 

be glancing around and taking in more from the environment. 

The other thing a visual system likes to do is to compare things and of course 

that's why we have multiple windows. Not just to have separate applications in 

different windows, but so that you can have several views of the same 

application . 

And then , finally, you'd like all this to have a symbolic thing to be translated into 

- so you go from the concrete to the abstract. It is this jump from the concrete to 

the abstract that we've been the least successful at, though Smalltalk was one of 

the first attempts to find a way of symbolically representing the kind of things 

you can indicate concretely on the screen. 

So all these things led most successfully to the first two issues of dealing with 

images and we wound up with an interface that was rather universal in its 

appeal. Here is an example of how universal it actually has proven to be. This 

film is of a 22-month old young girl who has never lived in a world not densely 

populated by Maclntoshs. Her mother is my accountant and both her mother 

and father work at home and each has their own Macintosh. So she grew up in 

the middle of Maclntoshs. (When I found out she was interested in computers I 

gave her an Apple II - which she rejected!) This is a good example of this idea 

that technology is all that stuff that wasn't around when you were born . We 

didn't grow up to think of the pencil and crayon and our language and clothes 

and stuff as being technology because it was just part of the environment, so she 

doesn't think of the Macintosh as technology . 

As with Adele Goldberg's children, she literally sat on her mother's lap while her 

mother was working and she started learning to manipulate the Macintosh and 

here she is, two months before her second birthday, using this interface. In fact 

it is not too unusual, even though she is better at the mouse than most people 

think, for her to use visible menu commands, for example in MacPaint here. 



VIII. 7 

When I saw this I was intrigued, but I wasn't amazed until I saw what happened 

next. As she needs a fresh sheet of paper she goes up to the "close" box on the 

window, saves her old drawing with the pop-up menu, and goes to the pull­

down menu to get a "new" page, and there she is, off and rolling again . To our 

amazement when we tested her out (this is an old movie of her father's; we then 

took about nine hours of video tape of her using things on the Macintosh) we 

discovered that she was about 70 percent literate in the Mac user interface -

which meant that she could start up any of the applications, including a 

complicated one like PageMaker. She could make marks of some kind, she could 

print those marks out, she could save those marks and get them back, and so she 

could manoeuvre around pretty well. Of course she knew what she was going 

after "new" . She knew that those blotches in the top of that pull-down menu 

were called" new", but she read it the way she would read Chinese. She doesn't 

yet read English, but she knew that that particular combination of things meant 

"new" and that was something she could get. So this is an interesting example 

of something that goes beyond simply being a tool - it actually starts looking like 

a "medium". 

That was one of the things we were interested in - what was the computer if it 

were media? Part of it is that media has to have some access forms and ways to 

manipulate things - and we think that in order for it to be completely literate it 

has to have a way of symbolically translating. 

Now what I would like to do is to talk to you a little bit about some of the 

projects that we are doing . I'm going to say a few words about a new language 

that we have been involved in called Playground, which is an object-oriented 

language, but has a different object orientation from the memory-based 

orientation of earlier languages This was the sort of way we thought when we 

did Smalltalk - it had cells, or conceptual computers, on a network, sending 

messages to each other, and objects were known by their behaviour. What I 

would like do is change that, and make it even more modular, because there is a 

small problem with this way of thinking about things and that is that the 

abstraction that we find in object-oriented languages like Simula and Smalltalk is 

basically a data abstraction. The state becomes modular and hidden, so that you 

cannot tell when you are looking at an object whether there is actual state there, 

or whether it is a fake (or virtual) state. But the thing that is not hidden very well 

is control. (This is true in Prolog as well, since Prolog has this fake modularity 

which was like magic until you actually have to understand it. Then it just throws 



.' 

VIn . 8 

you off a cliff, where all of a sudden you have to understand much, much more, 

and there is no gradual transition of having to have some notion in your mind as 

to how control is going to be passed around.} 

So I started wondering just how much code we were actually writing in Smalltalk 

to deal with the control not being modular. The Hypercard system is an example 

of making control a little bit more modular but it doesn't quite answer it 

enough. So a few years ago I started thinking about what if we had a language 

where the objects do not send messages; what they are able to do is indicate 

that they are interested in noticing things, i.e. the various types of event going 

on around them. 

Part of the effort in designing a language like this is to avoid getting into some 

of the traps that event-driven systems get you into. One of the most annoying 

traps is that event-driven systems tend to require you to use modes. Very often a 

particular event you are interested in will trigger more than one action . For 

instance, a simple example would be if you have an object whose job it is to 

move a corner or something. You can imagine two kinds of actions which you 

may want to do with it. One action is where it is part of the corner of a window 

and when the mouse is in it a movement of the mouse causes the corner of the 

window to move. So the basic implicit loop that's going on there is the one that 

we call the" apple-mouse-still-down" loop. You can imagine the other possibility 

of where the corner mover object is like a button that you are trying to move 

around . Hypercard has a mode for that. There is a mode for moving buttons as 

buttons, and there's a mode for using buttons as something that gives you 

control. The reason Hypercard has a mode for that is because if you tried to 

write this as a script, you would find you needed two different scripts, both of 

which are driven by the mouse-still-down event. The only difference between 

those two scripts is what started you off. 

The problem is that event-driven systems don't handle contexts very well. Event 

sensors, things like "on conditions", etc., tend to be on or off, and tend not to be 

conditioned by things that have happened before. So one of the difficulties that 

we have to solve is finding a way of dealing with that problem - and that is one 

of the things we try to do in the Playground design . {The other thing about 

Playground is that, like the original Smalltalk system, it is mainly aimed at very 

young children - in fact in the context of a project called the Vivarium, that I'm 

going to talk about in a minute.} 



, 

VIII .9 

The second issue I want to deal with is the question of what it means to use this 

iconic mentality of trying to explain things. This was something which was a kind 

of siren song for many years in the seventies and it is still not clear exactly what 

the place of iconic description actually is beyond the recognition of images. I 

want to explore a couple of those issues before I talk further about Playground . 

So here are some symbolic representations and some iconic representations - the 

idea is that when iconic representations are really working well, they not only 

indicate a relationship, they often show why the relationship holds. So for 

instance when we say 14 + 18 = 32, we are indicating a relationship, but when 

we take two rulers of different lengths and show they can be concatenated 

together to make one of a third length, we are showing why that is true . The 

same thing with 11 x 5. We do multiplication as areas and the distributed law 

as the concatenation of areas. We can even do the things like proportion, and 

more complicated things. 

So here is an example of multiplying X + Y which is equivalent to taking a 

square that has X + Yon the side and the result of it is 2XY + y 2. This result 

becomes particularly apparent, even if you grab the square with the mouse and 

drag it out, because no matter how you drag this thing, no matter what size it is, 

the inherent relationship always stays the same. 

So iconic representations are very powerful; there is even a branch of geometry 

done by the Indians that only admitted proofs that were obvious by 

construction . You weren't allowed to argue in the proofs; you had to 

demonstrate and the only word you were allowed to use was" Behold" . Manyof 

the original Greek proofs before Euclid, the Pythagorian proofs, were basically 

iconic proofs. Here's this iconic bubblesort that I talked about yesterday. When 

you start to try indicating a program this way, what happened to all that clarity. 

By combining icons, icons start acting a lot more like symbols than like pictures. 

All of a sudden this program starts to become something that you have to start 

figuring out like anything else. The reason for this is a peculiar property of icons, 

and that is that when you start trying to indicate meaning by combining icons 

the icons start acting a lot like more like symbols than like pictures. Whatever 

meaning they might have individually, as soon as you start wanting a person to 

deduce a meaning from a combination of them much of the clarity goes away, 

because all of a sudden the part of the brain that understands images is not able 

to come out with very strong inferences as to what the combinations of images 



VIIL10 

actually mean . The iconic mentality seems to be good at dealing with 

configurations as things, but not with configurations that have much analysis to 

them. So a program like this can be understood by looking at it for a bit but it is 

nonetheless a little bit more obscure than you would really like it to be. 

Here is an iconic programming system done by David Smith, one of our graduate 

students at PARC, who later went on to become one of the designers of the 

STAR. The idea behind it was that instead of trying to represent meaning 

iconically what he tried to do is to allow it to be much easier to understand 

whether your program was giving you the right result . So the idea of this system 

was that you constructed a result that you wanted - so that this programming 

was sometimes called concrete programming . You constructed for yourself - just 

as you can construct a document with a word-processor. And if its a WYSIWIG. 

system then it is rare to make a mistake. People don't usually make a lot of typos 

on a Macintosh because you can see exactly on the screen what it is going to be, 

what the result of each edit is. This system was called Pygmalion and had many 

interesting features. 

Another graduate student of ours, Alan Borning, did a system called Thinglab, 

which again allowed you to program things by direct connstruction; what it 

assembled as the knowledge base was a concatenation of constraints, so if you 

had separate constraints on things, and put them together, the system was 

supposed to give you the entailment of all the different constraints. 

This is the famous Sketchpad bridge problem which was done simply by 

construction. The act of constructing the bridge and having a simple rule on one 

of the I beams is enough for it to calculate the stresses and strains on all the other 

members of the bridge. The same thing with this electric circuit . The 

components have completely linear descriptions, so on a resistor the constraint is 

simply Ohm's law. The system doesn't know about electricity. Similarly, a 

battery has a simple constraint and so forth. The entailment of connecting the 

things together is enough to force the system into satisfying the constraints, to 

essentially invent an electro-motive force . So it actually invents something like 

voltage. That sounds fancier than it actually is, but that's the effect of it, so that 

in order to satisfy everything the meters will sense messages that are equivalent 

to volts and amps, and will show what is wrong with the system. This is another 

way of doing iconic programming. 



VIIL ll 

A simple way of doing iconic programming is in this music system we did, in 

which time flows across from left to right and you simply draw in what you want 

to have happen at each instance of time and the system goes along with it. As 

Adele Goldberg pointed out yesterday, this is right on the borderline of 

programming, because essentially you are just parameterising something that is 

already there, you are not doing much of a construction. Another system that 

people have tried involves using something like neural nets. This is basically a 

data flow diagram, where you are basically hooking up components and 

showing in which direction is the flow. Again, these have the problem that they 

are fairly easy to think about when you are making them but are rather complex 

when you are actually going back and look at something you did a couple of 

weeks ago or somebody else's thing - they are almost incomprehensible. 

This is another interesting notation . How many people have seen this notation 

before? Let's see exactly how obvious this notations is. (Response from floor.) 

No, but you are close. It is a dance notation called Benesh notation . It is actually 

more direct and analytic than Laban notation is. When you see the little 

horizontal strokes, those are where the hands and the feet are, and so each beat 

actually indicates a body position and a head position and so forth. So I would 

call this not an iconic notation but a symbolic notation, even though it uses icons. 

So again it is in that class where even though it uses images to convey you have 

to take a symbolic view on it. 

This is one of my favourite iconic programs. This is Konrad Lorenz's model for 

emotion in animals. The idea is that as the animal gets more and more stressed 

the gate opens a little bit more and there is a point where the water starts 

pouring through into the reservoir down below into the pan that has a weight 

on it that really opens the gate, and discharges all the water. When the water is 

all gone you have this long refractory period because the water pouring in from 

the top and comes in very slowly. This indicates a very complex system very 

nicely, although it is not very generalisable. 

Now in order to study this stuff at Apple we set up a project called Vivarium, 

which is modelled in many ways on the project that Adele and I ran at PARe. 

Here instead of asking the question, as we did at PARe; "What would it be like if 

everybody had their own Dynabook, their own personal computer; would they 

be able to use it, what would they build on it?" , this project assumes that that 



VIII . 12 

has already happened, that everybody is going to have their own Dynabook, and 

that they will be able to do a substantial amount with it. What we are interested 

in is another question, which is what would it be like for people to make their 

own artificial intelligences. As before, we find that question impossible to 

answer in the adult world. We didn't know what it would be like. We had no 

sense from the state of AI that there is anything extrapolatable from the current 

state of AI to be able to do even semi-intelligent things. AI has drifted seriously 

and badly since 1970 when the government quit being interested in basic 

research and got more interested in results. The results of course gave us expert 

systems, which can do things, but which have a very uninteresting model, not a 

model from which you can get much . So as we did at Xerox, we said well what 

would it be like if we try to translate this notion of making an artificial 

intelligence into the world of a child. 

We asked ourselves, what is a thing that is semi-intelligent, not as intelligent as a 

human, resourceful, able to survive in a hostile environment, that can learn and 

all those things - and we came up with animals. Children like animals so the 

project got turned into saying what would it be like to make a user interface and 

a programming language in which children could create animals - so that they 

could study animals and then sit down, as people use a desk top publishing 

system today to make drawings or documents, but instead what they would do is 

desk-top animal construction - desk-top Frankensteins, if you will. In particular 

we were interested in what it would be like for children to be able to program 

animal mentalities. 

We have 50 adults working on it, and an entire school with three hundred 

children in classrooms ages about five to eleven, and have this project that 

stretches out over about six years, starting its third year now. I thought I'd like to 

show you some things that we've done, and maybe the best way is to first give 

you a glimpse of what the Playground system looks like. 

This is an early version that shows one of the features, which is that everything 

you do in Playground is shareable by everybody else that is on the network. So 

here are some people who are supposed to be in different geographic locations 

working on a collaborative project. In this system what we decided to do is that, 

regardless of what else it could do or we wanted it to have, you could chose to 

share anything . Anything you do on any system can be shared in real -time with 

anybody else, regardless of what is done. The other thing that the system 



VIILl3 

contracts to do is to animate any object regardless of whether the object is even 

something as small as a letter 'a'. So, in this system, as in Smalltalk . everything 

really is an object. Unlike Smalitalk, one of the things we contract to do with an 

object is to deal with it in real-time and to share it over the network. The other 

thing we want to be able to do is to build very complicated things with it. 

I am going to give you two examples of the use of it. First is a system done by 

one of our graduate students at MIT which was a precursor to Playground but 

which is very similar, so we've used a lot of ideas from it . It is called Agar, and the 

graduate students at MIT had it making animals that had been well described, 

such as Tinberger's sticklebacks and herring gulls, and Ed Wilson's ants. There 

are approximately 25 kinds of animals whose behaviours have been worked out 

in great detail and the apparent modularity of whose behaviour has been 

separated out. But nobody has ever built any computer models of this 

behaviour. So .one of the things we were interested in is could we build models 

of such animals. 

Here is an example of that with some ants . The ant has about twenty 

behavioural modules, according to the ethologists. When you deal with control, 

as I mentioned previously, the amount of actual information you have to write 

down to do a decent ant was about two pages of code, because each of the 

modules is quite independent. So what we see here is an attempt to go from 

making smart modules to having modules which are not so smart and try to get 

an architecture that combines the modules to produce the "smarts" . It's an 

architectural attempt at doing mentalities. I'll just show you one other example 

of one of the ways in which we program in this system. Note that with the 

system that he had, although the code looks different from Simula and 

Smalltalk, it is attached to the separate little agent objects in a way that it is 

similar to Smalltalk and Simula. 

One of the things we are experimenting with is a way of being able to specify a 

larger view of what we are interested in having happen. This is an example from 

doing a MacWrite-style paragraph editor. We are actually specifying situations 

that we want the individual objects to take notice of. So for instance in this 

situation what we are saying is here are two objects which are next to each other 

and what we want them to notice is that, if the mouse has this particular cursor 

and the button goes down in this area, then we want them to put an insertion 



= 

VIn . 14 

bar between the two of them. Here we are saying "If you happen to be the last 

character (that is what this bracket means) and you see the I beam next to you 

and a character is typed on the keyboard, then whatever that character was, it 

should go after you and it should become the last character." 

But these are not actions imposed from the outside, this is the way the 

programmer is thinking - the programmer is saying: "This is the panorama that I 

am dealing with and what I am doing is showing these objects what situations I 

want them to be interested in" and they internalise that information and then 

do it. The program for doing this text editor is about ten lines of code, for doing 

both the editing of the characters themselves and the justification of the text. 

What we don't know is whether this is actually a good idea or not, because we 

have just started testing out the system on real people. We tried it out on a 

bunch of children in May and all of the teachers this summer. It has worked out 

on small problems very well, but it will be another nine months or so before we 

have any idea whether it is a good idea. 

The problem with programming languages is they always work extremely well 

on a few problems. A programming language really is 50,000 solutions to 50,000 

problems for 50,000 people you never met. That is one of the reasons why 

Prolog, for example, turned out for me at least to be quite disappointing . This is 

because it was an extremely promising approach, but was actually a fairly weak 

model ; so you wind up with code that goes from the Baroque to the Byzantine 

very rapidly in order to do some of the simplest things. 

The second area which we've been interested in is real-time computation, 

because children, we've noticed, are real -time devices. You can't just generate 

an answer and take hours to do so because that is not the world they live in. So 

we also got interested in what it would be like to take some of these mental 

models that we had been working on and translate them into a simulated 

physical world. Again we use object-oriented techniques. Here is an example of 

that using a flight simulator, the most advanced flight simulator in the world, 

called the Evans and Sutherland CT6. There are only about four of these in the 

world and fortunately Dave Evans was my thesis advisor, so I was able to call him 

up on the 'phone and ask him if we could use the machine at night that he had in 

Salt Lake City . This machine has a computational power of about eight Cray 



VIII. I S 

XMp·48s. (The problem is that God made the Universe with many protons so 

that if you try to do real·time computer graphics you have to compute them and 

it takes a long time.) 

This is an example of a California kelp bed ecology that we did that has hundreds 

of animals in it and the animals' mentalities are constructed in the way that I 

showed you . So here's what this looks like. This is all real·time, it has been 

computed at the rate of sixty frames per second as you sit in front of it. Well it 

was extremely painful for us to construct that. It took quite a number of adult 

experts quite a number of weeks to construct that world, to program it and to 

get it working . Our aim is in a couple of years to have the children (fifth and sixth 

graders) be able to produce an environment like that, constructing all the 

animals in it, not in lots of weeks but in a few days· because when you actually 

write it down and try to understand what the actual entropy of the code is, if 

that's a reasonable word, it comes out to be something that is rather simple. The 

trouble is that it is just extremely difficult to do using today's techniques. So I 

think this is a good place to quit and to get some questions. 

Question : My daughter doesn't like playing chess with computer because it 

never lets her win . We understand our children well enough to know they need 

to win sometimes. Do you think it is possible to put that level of understanding 

of motivation into a program? 

Alan Kay : No I don't think so and I don't think that's even my problem at all. 

Everything I have said and everything we have ever done with a computer is to 

use it as a medium of construction . I would not even presume in the first place to 

have a child play chess with a computer, but that is a different problem than 

being able to use it as construction material for building things. I believe that 

children learn things by building them . 

Question : That's an interesting point, where do you think the difference lies? 

Alan Kay : The difference lies in that when children build for themselves a 

drawing or build for themselves a tool or build forthemselves anything else, they 

are learning the same way as they do when they build something with blocks or 

they build something from languages, because they are learning by constructing. 



VIn . 16 

There is a whole other way of using computers, which is as a surrogate parent or 

as a surrogate person, which I don't think is as nearly as fruitful a way of dealing 

with a child. There is no curriculum that we use at the school which is computer­

directed, but every child at the school has a Macintosh which is used as another 

piece of paper or as another kind of crayon that is used as material for the 

children. I think having a computer-based curriculum is a bad idea, not a good 

idea. 

But I think that the computer is one of the best construction materials we have 

ever come up with. So for instance in this project we built this environment to 

see what it was like to build one, but we are not giving this environment to the 

children, because that takes all the fun out of it. The children have interactive 

video disks in the school, but they do the interacting system . The system is 

Hypercard and they take the video disk and do tracks for themselves, rather than 

have the teacher do tracks beforehand when they are simply not involved . This is 

a very different way of looking at things. 

We don't think of the computer as very important in the educational process 

itself except. Musicians know that the music is not in the piano. The musical 

impulse is inside the person and the piano is there as an amplifier, at best, and in 

fact most musicians who play keyboard instruments know that keyboard 

instruments are the least musical of all musical instruments. They have to 

pretend fiercely that they actually have powers of expression that they don't 

have. Much of the task of playing the piano in front of an audience is merely a 

kind of conjuring trick, to convince them that the piano is actually musical. 




