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Object-Oriented Computer Architecture

Two lectures for the Intemational Seminar on Object-Oriented Computing Systems
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To be presented by :

David M Harland

Technical Director, Linn Smart Computing Ltd, Glasgow G45
and Professor of Computer Architecture, Strathclyde University.

(1. Object-Oriented Computer Architecture: Concepts and Issues

This lecture will introduce the relevant concepts and set out the architectural issues
which arose during the design of the hardware developed by Linn for the object-oriented
programiming paradigm.

Issues covered will include:

Stores :
Object persistence
Object swapping
Object security (unique identifiers, range checking, symbolic activation)

Processors :

High level instructions (no semantic gap, even higher ordered and recursive)
The MIPS rate (clock rates, caches, pipelines and prefetch units)

Technology :
Software?
Off the shelf?
Semi-custom?
Full-custom?

(2)  The REKURSIV Object-Oriented Computer Architeclure
This lecrure will concentrate on the practicalities of configuring the REKURSIV 1o a
variety of different application domains and will discuss topics such as
Microcoding an object-based instruction set,
Language integration,
Process communication,
Garbage collection, .
The future (e.g. distributed object stores).
Various examples will be given.

Demonstrations :

A simulator for the microcoded architecture to run on a Sun using X-windows will be
available, as will a REKURSIYV accelerator board for a Sun.

Reference :

REKURSIV Object-Oriented Computer Archirecture, by D M Harland, published by Ellis
Horwood Ltd, August 1988,

REKURSIV Slides

OOPS Issues

kS fypes

*  polymorphism
. expressivity

. parallelism

" verifiabili

. technology
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REKURSIV Slides

Storage Issues

. von Neumann storage
. semi inferent retention

. object representation

. object swapping
. high level instructions

Linn Smart Computing - Tel (44) 41 631 1483
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REKURSIV Technology

. 40 bit tagged architecture

. totally object oriented

. 32 bit word

. compact representations for 32 bit objects

. three microcodable ASICs

¢ 1.5 micron CMOS
* seaof gates
+ 10MHz
+  Logik
¢ sequencer for high level instruction sets
= 299 pins
* 60 bit control word
* 18 fields
+  Objekt
+ object oriented memory management
* 299 pins
e 32 bit control word
* 11 fields
*  Numerk
* 32 bit alu, barrel shifter, multiplier and register file
« 223 pins
* 70 bit control word

* 17 fields

Linn Smart Computing: Tel (44) 41 631 1483 September '88
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REKURSIV Slides

EXAMPLE - CONSing

Stack has CAR above CDR; replaced with CONS.

CONS:  page_allocator NOFETCH ldidx d=brch (2) ldidx
d=idx ldsb grabspace& setaddré&ldabd&initflags&idnb NOFETCH \
cjbr @GC MEMOFLO
d=bron (CONS_TYPE) Idtb decsp newesp idx2 loadaddr
d=estk idxput idx1 loadaddr
d=estk idxput ldrb
d=ref ldestk

Linn Smarr Computing: Tel (44) 41 631 1483

September '88

REKURSIV Slides

EXAMPLE - CDRing

Stack has a CONS, replace with head of third link.

(DEF CADDDR (x) (CAR (CDR (CDR (CDR x) ) )))

CADDDR:d=estk pagebus
d=vrr pagebus
d=viT pagebus
d=vir pagebus
idx2 loadaddr
idxget
d=memout ldestk

Linn Smart Computing: Tel (44) 41 631 1483

September '88
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REKURSIV Slides

EXAMPLE - TREECOPYing

Stack has a tree, replaced with copied tree.

(DEF COPYTREE (x)
(COND ((ATOM x) x)
(T (CONS (TREECOPY (CDR x))
(TREECOPY (CAR x))

)

TREECOPY: d=estk pagebus
d=bron (CONS_TYPE) ldsym
cjupcor 'IS_SYM d=vir
incsp newesp inccsp
jbr @ TREECOPY ldestk d=vrr pushupcor
u=sp (1) usubbrch newesp
readestk
d=estk
idx2 loadaddr
idxget incsp newesp
jbor @TREECOPY d=memout Idestk
jbr @CONS

Linn Smart Computing: Tel (44) 41 631 1483

September '88

REKURSIV Slides

(DEF COPYTREE (ITEM)
(COND ((ATOM ITEM) ITEM)

Xerox 1186

TI Explorer
Tektronix 4406
Symbolics 3675
MIPS R/2000 (RISC)
REKURSIV 10MHz

Copytree Benchmark

(T (CONS (COPYTREE (CDR ITEM)) (COPYTREE (CAR ITEM))))))

RATIO

171
57
28
18
1.2
1.0

Linn Smart Compuring: Tel (44) 41 631 1483
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REKURSIV Slides REKURSIV Slides

EXAMPLE - Creating An Object Creating An Object

Stack has size, above type, above initial values for components; replace with object.
Assuming that the stack has been loaded with the size, type and ininalising values for
cach component:
CREATE: page_allocator decsp newesp NOFETCH
d=estk ldsb grabspace&setaddré&ldab&initflags&ldnb Ididx decsp newesp \
Uingail ggg%ﬂ%ﬂ;ﬁo L . allocate new object identifier and check for exhaustion
. page the new identifier to align pager wables, test for a clash at

newmark d=estk decsp newesp idxput cldrb that slot and if necessary squeeze that object out to backing
cjm IDXOK decidx loadaddr readestk store

incsp newesp . at that set of table slots, and their output registers,

d=ref Idestk

e put the identifier into the object number table
= put the object’s size into the size table
empty: incsp newesp d=brch (NIL) Idrb « put the object pointer into the address table

d=ref ldestk + put the address of the first component into the memory
address register

« setthe NEW flag
+ clear the MOD flag and tag flag
+ put the type into the type table

» step up the object pointer to the end of the object and
check that the object pointer has not advanced off the
end of memory; call the garbage collector if necessary

. initialise each component from the stack

. replace the size, type and initialising values on the stack by the

On the REKURSIV this sequence takes 5+2*N cycles, for N components. and it runs at
10MHz (later 16MHz).

Linn Smart Computing: Tel (44) 41 631 1483 Seprember '88 Linn Smart Computing: Tel (44) 41 631 1483 September ' 88
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REKURSIV Slides

EXAMPLE - Linear Scanning

Stack has object above symbol, replace with value or nil.

LSCAN: decsp newesp
d=estk pagebus readestk
d=estk ldsym idx1 loadaddr

b §: cjbr @*2 IDXOK idxget
cjbr @*1 'NILSYM d=memout idxup2 loadaddr
cjbr @*2 IS_NIL decidx loadaddr d=memout

idxget
d=memout Idestk

*2: d=brch (NIL) ldestk /* not found */

Linn Smart Compusing: Tel (44) 41 631 1483

September ' 88

REKURSIV Slides

*2:

EXAMPLE - Hashed Scanning

Stack has object, above symbol, above initial hashed index; replace with value or nil.

HSCAN: decsp newesp

d=estk pagebus readestk decsp newesp
d=estk ldsym readestk
d=estk Ididx loadaddr Idreg

newmark idxget

cjbr @*1 NILSYM d=memout incidx loadaddr
jrp @*2 IDXDONE idxnext loadaddr

cjbr @*2 IS_NIL d=memout idxget
d=memout Idestk

d=brch (NIL) ldestk /* not found */

Linn Smart Compuring: Tel (44) 41 631 1483

September 88
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REKURSIV Slides

Sending a Message

. Stack has message, above arguments, above receiver
. get receiver's class
. if selector/class pair not cached, search for message following

superchain  and cache resulting  selector/class/method
relationship.

.. 30 have method in object store

. if primitive, execute microcode body and continue with next
; ;

. if not primitive or primitive fails :
. if method not in instruction cache, cache it

. establish new context and invoks its first instruction.

... 30 have new instruction in execution.

Linn Smart Computing: Tel (44) 41 631 1483 September '88

REKURSIV Smalltalk Instruction Ser

REKURSIV SMALLTALK INSTRUCTIONS

Linn Smart Computing Ltd
267 Drakemire Drive
Glasgow G485 98N

Tel: (44) 41 631 1483
Tix : 77301 LINN G
Fax: (44) 41 631 1488
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REKURSIV Smailtalk Instruction Set

Contents

The REKURSIV Smalltalk Instructions fall into several categories, mainly conwol flow
and variable manipulation, and these will be generated by the compiler during interactive
sessions. In addition, there are low level instructions for manipulating the stack and
interfacing to the object store, but these and various high-level instructions for building
the class structures, method and dictionaries of the kemnel classes, are used during
system startup (before messages can be sent).

Control Flow

Send Send a message

Exit Exit a method, retumn to sender’s context

BlkExit Exit a block, retumn to home context
Variables

Liv Load instance/ class variable

Siv Store instance/ class variable

Lv Load method/ block varisble

Sv Store method/ biock variable
Basic Object Creation

Integer Load an integer

Character Load a character

Pseudo Load a pseudo variable

String Load a string
Low Level Object Creation

Alloc Allocate an empty object of a given type and size
Low Level Stack Manipuiation

Push Load binary quantity, untyped

Low Level Object Manipulation

Get Load component of an object
Put Store component of an object

Building Class Structures

Dictionary

REKURSIV Smalltalk Instruction Set

Linn Smart Compuring: Tel (44) 41 631 1483 Augusr 1988

SEND <nargs> <selector>

SEND

This instruction takes arguments on the stack, and looks up the method with the selector
specified by the operand on the class of the receiver. The receiver is the first argument,
so SEND always has at least one argument. If necessary, Send will follow the single-
inheritance superchain off the receiver’s class in order to find the method. If no method is
found nil is rerurned.

The method will be either primitive, or abstract. In the case of a primutive, the
appropriate microcode will be executed immediately, and the number of arguments and
their rypes checked as appropriate to each operation. For an abstract method. it will be
verified that there is the comect number of arguments, and that method will then be
invoked.

If a primitive method fails, the stack will be reset, with the method for that selector on the
stack above the arguments, and then the corresponding abstract method will be invoked.
Usually such a ‘failure’ will merely report an error, but this mechanism can also be
employed to cater for unusual cases for which the microcoded primitive form has no option.

When an abstract method is invoked all temporary variables are initialised to nil.

Notes :
(1). Argument one is the receiver
(2). There are less than sixty four arguments allowed

(3). Selectors are sixteen-bit binary codes (these may well be converted into
compact objects of type Selector within the machine).

Linn Smart Compunng: Tel (44) 41 631 1483

August 1988
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RE} JRSIV Smalltalk Instrucrion Set
=

'SEND

®»p — argument.a

argument.1

argptr ——=]

”—b

sender’s comtext

local temperaries

Linn Smart Compuring: Tel (44) 41 631 1483

Augusr [988

REKURSIV Smalltalk Instruction Ser

ALLOC

This instruction takes <size> above <type> on the stack and replaces them with an
object of that rype and size whose components are initialised to nil.

If the size is zero, a valid empty object is created. No provision is made to ensure that
all empty objects of a given type are, in fact, unique instances of that rype of object.
Notes :

(1).  This instruction is used during the bootstrap, for example to create the Arrays
for class variables of metaclasses.

Linn Smarr Computing: Tel (44) 41 631 1483 Augusr 1988
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REKURSIV Smalltalk Instruction Ser

ALLOC
P —e s
anObject
type
d
dize
type
=1
=4
L S anObject
=il
®
i

Linn Smart Compuring: Tel (44) 41 631 1483

August 1988

REKURSIV Smaliralk Instruction Set

PUSH <binary value>

PUSH binary value

Notes :

(1).  No type is assumed, just a 24 bit binary quantiry.

This instruction simply pushes its 24 bit binary operand onto the stack.

Linn Smart Compuring: Tel (44) 41 631 1483

Augusr 1988
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REKURSIV Smallialk Instruction Set

PUSH

Linn Smart Compunng: Tel (44) 41 631 1483

August 1988

REKURSIV Smallralk Instrucrion Ser

GET <index>

GET index

The object on top of the stack is replaced with the component whose offset 1s specified by
the operand. If the index is invalid, nil is pushed.
Notes :

(1).  If the index is zero, the type of the object will be pushed onto the stack.

(2).  This instruction provides a low level interface to the object store and is used
during the bootstrap.

Linn Smart Compuring Tel (44) 41 631 1483 August 1988
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REKURSIV Smalltalk Instruction Ser

GET

Hp — an0bject

" — valoe
Fallure:

p —| mil

amObject

Linn Smart Compuning: Tel (44) 41 631 1483
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REKURSIV Smalltalk Instrucrion Ser

PUT <index>

PUT index

The stack holds the replacement value above the container object, and this value 1s
written into the container object at the index specified by the operand The result is the
object, or is nil if the index is invalid.

Notes :

(1). It is not possible to write to the component at index zero (the type of an
object).

(2).  This instruction provides a low level interface to the object store.

Linn Smart Compuring: Tel (44) 41 631 1483 Augusr 1988
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REKURSIV Smallialk Instruction Set

PUT

B —e valwe

an0bjoct

» —"| 280bjoct \

Fallure:

aa0bject

valme

Linn Smart Compunng: Tel (44) 41 631 1483

Augusr 1988

REKURSIV Smalltalk Instruction Set

BLKEXIT

BLKEXIT

This instruction causes the current context, which is a Block's context,
'home’ context to EXIT.

This can work only if the home context has not already EXTTed.

10 cause s

Linn Smart Compuring - Tel (44) 41 631 1483

Augusr 1988
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REKURSIV Smailtalk Instruction Ser

context to resame

BLKEXIT
w = resalt
p —= sender bleck's comtext
aBleck
L]
- o
Block
argper ——1 aBlock heme coatext
: ) Ppc tmpc arge
> — metised
bleck's heme comtext
]

Linn Smarr Compunng. Tel (44) 41 631 1483

August 1988

REKURSIV Smalltalk Instrucrion Set

EXIT

EXOIT

This exits from a block or a method, retuming to the suspended ‘sender’ context. If
necessary the resumed context’s method code will be re-cached.

Linn Smarr Compunng - Tel (44) 41 631 1483 Augusr 1988
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REKURSIV Smalitalk Instruction Set REKURSIV Smallralk Instruction Set

EXIT LIV <mode><offset>
Lv mode offset
» —e result

® *

L L]

: 2 If the mode is set, lowly classed variable from the metaclass of the receiver, otherwise
load onto the stack the instance variable at the offser specified by the operand into the
current receiver. If the offset is invalid, nil is reruned. Components of the receiver stant at
offset one.

fp — sender Notes:

(1).  Although the machine allows it, it has been deemed poor practice for methods
of one class to directly access instance varisbles of classes in the superclass
chain, so the compiler ensures that the instance variables of a class can be
accessed directly only by methods of that class.

(2).  Class variables are held in an Array as pan of the metaclass of the receiver.

agptr —>
» —| —
p —=

argptr —

Linn Smart Compunng: Tel (44) 41 631 1483 August 1988 Linn Smart Compunng Tel (44) 41 631 1483 August 1988
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REKURSIV Smalltalk Instruction Set

REKURSIV Smalltaik Instruction Set
LIV SIV <mode> <offset>
anObject
— recoiver ==
offset = 2
i = sV | mode offset
- - ~
° [ ]
If the mode is set, store (and pop) into a class varisble otherwise store (and pop) the
stack top into the instance variable at the offset specified by the operand into the current
vibes receiver. If the offset is invalid the update operation is abandoned. Components of the
receiver start at offset one.
o — [uver's clase
tp — Notes :
(1).  Class variables are held in an Array as part of the metaclass of the receiver.
&
—racaiver’s metaciass
argptr ——= a00bjoct Se—
» ——» vaime -
cdass variables
[
» il N Array Wi
value
Linn Smart Compunng: Tel (44) 41 631 1483 Augusr 1988
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REKURSIV Smalitalk Instrucnion Set

SIV P
J E ......
— |

REKURSIV Smalltalk Instruction Ser

INTEGER <binary integer>

INTEGER binary integer

Notes :

bits.

Load onto the stack an Integer object whose value is specified by the 24-bit operand.

(1).  Integers are represented as compact objects, with 32 bit data tagged to 40

(2).  There will probably need to be a way of creating ‘big’ integers, with 32 bits.

Linn Smart Compuning Tel (44) 41 631 1483

Augusr 1988
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REKURSIV Smalltalk Instruction Set

INTEGER

salnioger
1]1 Integer % letager V aloe
»» k) | °
Linn Smart Compuring: Tel (44) 41 631 1483 August 1988

REKURSIV Smalitalk Instruction Ser

CHARACTER <character>

CHARACTER char

Load onto the stack a Character object whose value is specified by the 8-bit operand.

Notes :

(1).  Characters are represented as compact objects, with 8-bit data tagged to 40
bits.

(2).  If necessary, font and scale information can be incorporated into the upper
bytes of the character’s representation.

Linn Smart Compurting: Tel (44) 41 631 1483 August 1988
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REKURSIV Smallialk Instruction Ser

CHARACTER

—

!

characterValue

Linn Smart Computing: Tel (44) 41 631 1483

Augusr 1988

REKURSIV Smalltalk Instruction Set

PSEUDO <code>

PSEUDO

code

operand.

case <code> of

0 d AL E W -

Notes:

true
false

nil
receiver
context
method
objects
super

This instruction loads one of a variety of special values onto the stack. as specified by the

(I).  All of these quantities are represented as objects, not binary quantities, so
when loaded onto the stack they are tagged sppropriately.

Linn Smart Compuring Tel (44) 41 631 1483

August 1988
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REKURSIV Smalltalk Instruction Ser

PSEUDO

~—— ..

» —-I anObject ‘

Linn Smart Computing: Tel (44) 41 631 1483

August [988

REKURSIV Smalltalk Instruction Set

STRING <count> <offset>

count offset

Notes:
(1.
).
(3).
(4).
(%)

This instruction will cause a String object to be loaded onto the stack.
derived by indexing into the current method, at an offset specified by the operand. to
extract the string’s object identifier. If this is nil, the string must first be built up from
the literal in the method. In this case, the number of characters packed into the words
that follow is given by <count>. These start at the word after that given by the <offset>.

A string object is built using this literal, and the result written both on to the stack and
into the method at the specified offset. Thus, only string literals which are actually used
get created as objects, and once created for a given method are thereby cached by it.

The characters are packed running down the word, first at the highest byte.

Trailing bytes after the last character in the final word are null padded, to nil.

Characters in a String object start at index one.
The longest String literal has 4K characters.

The character count of a String is an Integer, so dynamically generated strings

may grow very large!

The string 1s

Linn Smart Computing. Tel (44) 41 631 1483

August 1988
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REKURSIV Smalltalk Instruction Set

Linn Smart Compunng: Tel (44) 41 631 1483

STRING o
~— .

REKURSIV Smalltaik Instruction Set

LV <level> <offset>

LV level offsst

The value of the block or method variable (argument or temporary) at the offset specified
by the operand, within the comtext ar a level down the static chain specified by the
operand, is loaded onto the stack.

Notes:

(1).  The current lexical level is zero.
(2).  The first variable is at offset zero.

(3).  Blocks can access method variables by reaching down the static chain one
level beyond their nesting depth in that method.

(4).  Since this instruction is generated by the compiler, it is assumed that the
depth level down the static chain, and the offset into the resulting context, are
valid. No checks are made to ensure that this is so.

(5).  Arguments reside at the base of each context, tempories are accessed as if
they were arguments, at offsets sbove the actual argument (allowing a space
for the context’s method and linkage information).

(6).  There is a maximum of fifteen lexicographical nesting levels.

Linn Smart Computing: Tel (44) 41 631 1483 Augusr 1988
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REKURSIV Smallialk Instruction Ser
SV <level> <offset>

The top of the stack is stored into the variable (argument or temporary) at the offset
specified by the operand, within the context at a level down the static chain specified by
the operand. The stack is cleared.

Linn Smart Computing: Tel (44) 41 631 1483 Augusr 1988

REKURSIV Smalltalk Instruction Set

SV

Local variables (level=0)

a——-m

J
scgper —= receiver w| s

temporaries

offeet

Linn Smart Compuring: Tel (44) 41 631 1483
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REKURSIV Smalltalk Instruction Set

SV

Block variables ene level back from current block's context (level =1)

— 7
—
L] L]
@

]
: i

bleck’s bome comtext

”—. sender
bleck's cemtext
mathbod
L4
argplty ——> aBleck
L L
™Y L]
° [
temperaried € o—
S

REKURSIV Smalitalk Instruction Set

Linn Smart Compuring: Tel (44) 41 631 1483

August 1988

DICTIONARY <count>

DICTIONARY count

The stack contains <count> pairs; replace them with a Dictionary initialised with these
key/value bindings. The size of the dictionary will be twice the count.

Note:

(1). A dictionary is always even-sized, it holds pairs, key bound to value. The key
and value may be anything.

(2).  This instruction is used during the bootstrap.

Linn Smarr Compuring: Tel (44) 41 631 1483
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REKURSIV Smallialk Instruction Ser

DICTIONARY
» — valwen
keya
—
value.l
key.1

Linn Smarr Compuring: Tel (44) 41 631 1483

Augusr 1988

REKURSIV Smalltalk Instruction Set

CLASS <cvarc> <objid>

CLASS objid

object

Note:

(1).

(2).
Q).

The stack has a dictionary above the instance variable base offset, the wnstance variable
count, the class name. a nil, the superclass and the class for the desired new class. If
there are any class variables to be made, it must be a metaclass, so make an Armay
<cvarc> big and push this onto the stack. Make a Class of the appropriate size,
replacing ts components on the stack with the class's object identifier. The new Class

<objid>, to create a kernel class.

will have either the next available object number or the identifier specified by

Only metaclasses have the "classvars” component, which is an Array holding
the class variables for the class of which this is the metaclass.

This instruction is used during the bootstrap.
There is a Limit of 15 class variables per metaclass.

Linn Smart Compuring: Tel (44) 41 631 1483 August 1988
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REKURSIV Smalltalk Instruction Ser REKURSIV Smalitalk Instruction Ser

CLASS METHOD <count>
» — aDictienary
[ =1 METHOD count
solnteger
anlateger
Serd superciass This sixteen-bit operand specifies the number of codewords following the instruction. A
Method object of size <count> plus two is created. This is then initialised from the
o ol codestream and the instruction pointer advanced to the next instruction.
The resulting method is pushed on the stack.
2Class class_same
2Class iv_count Notes :
iv_base (1).  This instruction is used during the bootstrap.
(2). All methods are compiled into the REKURSIV Smalltalk Insrructions and
aDictienary stored in the object store as objects of rype Method. Their idennfiers are
bound to their selectors in the message dictionaries of their parent class.
When a method is invoked it is cached into the instruction cache within the
processor’s pipeline. Methods are cached as they are required. The cache is
» ~ flushed when it overflows, and dynamic re-caching is recommenced.
REKURSIV Smalltalk instructions are designed to be relocateable by virute
— — of being position-independent. There are no jump instructions, there are no
addresses, so caching is efficient.
Metaciess
sepercises
=]
=
cv_coust
cv_base
aDictienary
class_vars

Linn Smart Computing: Tel (44) 41 631 1483 August 1988 Linn Smart Compuring: Tel (44) 41 631 1483 August 1988
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REKURSIV Smalltalk Instrucrion Ser

METHOD

~—

» —s| aMethed

Linn Smart Computing: Tel (44) 41 631 1483
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REKURSIV Smalltalk Instruction Ser

PRIMITIVES

String
at:

at:put:
size

List
car

cdr

KeyedCollection

find

Integer

Array

length

The list of microcoded Smalltalk primitives includes:

Linn Smart Computing: Tel (44) 41 631 1483

Augusr 1988
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REKURSIV Smalltalk Instruction Set

SequenceableCollection
at:
at:put:

Object

classOf

size

isNil

notNil

hash

=

cons:

isKindOf:
isMemberOf:
isSameClassAs:

Class

Context

blockCopy
sender

Block

value
value:
whileTrue:
whileFalse:

Boolean
not
ifTrue:
fTrue:ifFalse:

Linn Smart Compuring: Tel (44) 41 631 1483

August 1988

REKURSIV Smalltalk Instruction Set

SequenceableCollection
at:
at:put:

Object
classOf
size
isNil
notNil
hash
=
—
cons:
1sKindOf:
isMemberOf:
isSameClassAs:

Class

Context

blockCopy
sender

Block
valus
value:
whileTrue:
whileFalse:

ifTrue:
if True:ifFalse:

Linn Smart Compuring: Tel (44) 41 631 1483
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REKURSIV Smalltalk Instruction Set

STATISTICS

The instructions are used in different ways depending upon algorithm, however because
there are so few instructions available there is relatively linle scope for variation - all
that a smng processing application is likely to do to diston the figures is change the
String and Character instruction counts, for example. The only major distortion of
instruction counts is likely to be caused during system bootstrap, when the class building
instructions are used, before there are sufficient classes to support message passing
operations.

Static Statistics

The static instruction counts for the example used in the following test are :

23 pseudo

16 send

12 integer
50%------—-

10 exit
0% —-—-—-

8 Iv
70%—-—-—-

6 push

6 method
80% —-—-—-

Dyvnamic Statistics

Taking the bootstrap alons we get dynamic frequencies as follows :

21.8 pseudo

174 push

173 method
60%———

14.7 integer
70%———

11.0 object
80%—-——-

72 class

90%---—----

If we now include a small amount of "interactive use” we get

REKURSIV Smallalk Instruction Set

19.8 push
17.1 pseudo
123 integer
Linn Smart Compuring: Tel (44) 41 631 1483 August 1988

50% -
10.5
(1L S
95
|y S—
9.2
I —
50
46
() S—

so clearly half the instructions executed are various kinds of stack-push of trivial
quantities.  Message sending and variable access are only beginning to become
significant. The bootstrap still dominates, however.

Running a longer test eliminates the effect of the bootstrap, viz

21.1

19.1
17.7
60% -
122
g1 T—
10.1
80%---—-—-
8.5
LT S—
26
13

which doubtless begins to show a realistic working mix.

By optimising Send to camy its selector as an operand in the instruction, rather than
having it first placed on the stack by Push, the following counts obtain

23.6
21.8
50%
15.1
) ——
124
70% -
10.5
80% -
32
27
1.6
(1) S

The Push instruction is still used, during method construction, but has been relegated to
that set of instructions which get called upon only during system creation.

send

exit

push
send

Iv
pseudo
integer
exit

sV
siv

siv
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The execution times for each instruction, accumulated during the test, excluding the 2
bootstrap, were as follows : Instruction Formats
mS Fotime Foopcodes
" SEND aargs o
send 13.94 61 236 -
exit 399 17 10.5 ALLOC
Iv 324 14 218
sv 0.64 2 32 PUSH bimary value
pseudo 027 ~1 15.1
integer 0.22 ~1 124 GET index
PUT index
From these figures it is clear that six instructions consume 99% of the time, and two of
these nearly 80%, these being Send and Exit. These same six instructions comprise BLKEXIT
some 90% of the dynamic opcode counts. It is clear, therefore, that message passing in
this Smalltalk instruction set is the main activity. It should be noted, however, that in the It
time allotted to message sending, the Send instruction includes the time spent within a
primitive if that message was implemented directly in microcode. Sinceé{)%‘ of messages LIv
sent in the example were primitive, it is not surprising that Send is the dominant
INTEGER bisary integer
CHARACTER char
PSEUDO code
STRING connd offost
Lv fevel effest
sV level offost
ARY count
CLass evine g
METHOD connt
39 3 42220 16 12 8 °
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(2).
3).
(4).

(3).

(.

General Notes

The stack is pre-incremented, so always points at the topmost element. The
registers are :

fp
sp
argptr

and these are stack addresses, not objects.

However, there are also registers in object format :
current context
current receiver
current method

for fast access.
Garbage collection is automatic.
Execution times?

There are no addresses, no jumps, position-independent code, methods are
cached in.

Instructions needed only during bootstrapping can thereafter be deleted from
the control store map and thence rendered unavailable leaving only the

REKURSIV Smalitalk Instrucnon Ser
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THE MESSAGE AND METHOD CACHES

Message lookup, method invocation and method execution are all assisted by the
existence of caches.

That is, the instruction cache is loaded only with those methods which get invoked.
These are loaded dynamically, when needed. This cache 1s withun the processor
architecture, close to the sequencer, so that opcode decoding and operand stripping can
be pipelined.

Each method so cached is tagged with the start address of its codestream in the
instruction cache. This gets set when the method’s codestreamn is first loaded into the
cache. A simple examination of a method reveals both whether or not it has been cached.
and identifies its stant point in the cache in the case that is has.

The instruction cache is filled on a first-come basis, so when it overflows all methods
which point into it are reset to indicate that they are no longer cached, and the cache
pointer reset to the base of the cache. To facilitate this unlinking, an array of method
identifiers is kept, and this is automatically scanned when the cache is cleared and each
method identified by it has its cache address set to zero, to indicate not-cached.

Thus, given a method, it can quickly be established that it has been cached and, because
of being 'locked into’ the processor’s sequencer, it can executed very efficiendy. Clearly,
therefore, because it is truly a method cache, there will be no page faults from the
codestream during execution of a method, and so no need for disk access. The instruction
cache is quite large, up to 128K instructions, and because methods tend to be fairly shor,
a few dozen instructions, there can be many methods in the cache at any given time. To
remove the possibility of the cache management table causing a premature flush, the
cached-method table grows automatically when necessary.

It is in the nature of message-based systems that much time can be spent merely
searching the message dictionaries associated with any given item of data, trying to find
the meaning of a pamicular message. This could involve searching the entire class
hierarchy, to find the proper method. An optimisation over repeatedly searching the class
hierarchy is to maintain a cache that records which method was found each time a
particular pair of selector and receiver class are looked up. If that message has been sent
to that class of data before, the cache identifies the appropriate method, so a full search
is not necessary.

The message cache is organised as a triple. It records a binding between a selector. 2
class and a method. Given the selector and the class, it provides the proper method. A
straightforward hashing algorithm is employed, using the low order bits of the selector
and the class to provide a cache index. If the selector and class maich those of the cache.
the method is extracted. If they do not match, the method is found by searching the class
hierarchy of the receiver for that message and the message. class and method are then
written to the cache for future reference. This cache can grow if necessan

The access time for the message cache is half a dozen cycles, to establish that there ..
no match. with a further three cycles to extract the method should a match occur. This 1s
likely 1o be far faster than searching even the first-level class’s dictionary.

Once the desired method has been identified, it then takes only half a dozen more cycles
to establish whether its codestream has been loaded into the instruction cache, and to
stant setting this up in the pipeline.

[TIA
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Performance

The message cache performed, in small scale tests using different hashing algorithms, as
follows

hash %slots  %hits cycles uS

1 13 81 154299 22603
2 12 81 155172 22814
3 11 78 162370 23744
0 0 0 161207 24198
4 5 47 169733 25170
5 4 50 171657 2547"

(The cache had 255 slots, and 1903 messages sent during the test).
for hashing algorithms

none

( class XOR message ) 5

( class ADD message ) ¢

( class 0.3 << 4 ) message 3

( (NOT class) AND message ) ; g

( class AND message ) ¢

wm o WKN =0

where the result is always ORed with one to guarantee a valid (non-zero) index.

The favourite algorithm is therefore the XOR of the message and receiver class. Those
algorithms which performed poorly were actually disadvantageous, presenting an
overhead rather than an optimisation. It should be noted, however, that these tests were
carried out on a very small execution profile, some 25 milliseconds during which less than
2000 messages were sent; longer tests on a much larger system will be needed to
properly evaluate the benefits of the message cache.
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DISCUSSION

The discussion began by Dr. Kay asking Professor Harland how small he hoped to
make the Recusiv board. Professor Harland replied that their aim was to reduce the size to
that of a normal VME card, with double eurocard connections. Smaller that this was unlik-
ley, and the target was to achieve this reduction by next year.

Professor Randell asked whether the essence of the Rekursiv architecture could be
summarised as being the ability to execute tests and conditional branches in parallel. Pro-
fessor Harland replied that this capability was only one of the features of the architecture.

Professor Morrison asked Professor Harland how confident he thought his type system
was for representing all types, as concern was expressed about the size of the available
tags. Professor Harland replied that the tags could also be a word (in addition to the 5 bits
used by the compact types), and he thought that would be sufficient. Professor Atkinson
followed up on the previous question, being worried about the type system not supporting
persistence data fully. Professor Harland replied that Rekursiv does not support a type sys-
tem, but such problems could be solved by building suitable tools such as a browser to
browse the objects in the object store.

A member of the audience pointed out that the buyers of computer hardware are wil-
ling to pay extra for faster processing, but questioned whether they are also willing to pay
extra for the security of the type system supported by the Rekursiv architecture. Professor
Harland disagreed, pointing out that the type security supported by the architecture was
becoming a requirement, in particular for military use, and that to date 17 machines had
been sold. In reply to a question asking whether these machines had been bought by mili-
tary users, Professor Harland replied that none had been bought by the miltary. The prob-
lem with buyers such as the military being that they take such a long time to think about
buying a product that once decided, then the product is already obselete.

Professor van der Poel asked where the names Rekursiv, Objekt etc came from. Pro-
fessor Harland replied that the company (Linn Products) make hi-fi, and have a habit of
misspelling names, so that when the marketing people were consultated as to what to call
the architecture, the fact that it suppoprts recusive computations in the micro-code sug-
gested that it be called Rekursiv, with the name clearly being a misspelling of recursive.
This theme continued with the other components of the architecture.

Professor Randell asked whether a number of the machines could be used together.
Professor Harland replied that this was one of the aims of the group, and that his main
interest was now in constructing a distributed object store that could be shared by a
number of machines. One possibility being to use 6 bits of the object id to name a particu-
lar machine. Professor Harland though that this was an interesting problem, with lots of
tricky problems. Professor Atkinson stated that a similar approach had been adopted by
the IBM model 38 architecture, but there larger word sizes had been used. Professor Har-
land replied that he throught his approach would be sufficient to construct a distributed
object store.






