
IV

Experiences in Teaching Introductory Programming
in Scheme at University College London

J. A. Campbell

Rapporteur: Marta Koutny

...

IV . 1

EXPERIENCE IN TEACHING OBJECT-ORIENTED COMPUTING

CONCEPTS THROUGH SCHEME

J.A. Campbell

Department of Computer Science,
University College London, Gower Street, London WC1E 6BT

The Scheme language, derived from LISP, was adopted in
the Department of Computer Science at University College
London in 1986 for the initial teaching of programming
to its first-year undergraduates. Part of the material
covered deals with object-oriented computing. The gener­
al experience (positive) of this teaching during three
years of existence of the course is described . Some com­
ments are made about both t he adva ntages and drawbacks
of Scheme for teaching object-oriented computing , a top­
ic for which it was not designed .

Background

The introductory programming course at UCL before 1986
for students specialisi ng in computer science used a
traditional approac h supported by Pascal. In 1986 we
changed much of the appearance of the course by choosing
to base it on the Scheme language and the MIT Press text
"Structure and Interpretation of Computer Programs " by
H. Abelson and G. Sussman. The course has now been given
for 3 years, and has an audience (including students in
Cognitive Science and in a Physics with Electronics and
Computi ng programme) with a wide r variety of interests
than the one for which it was planned.

On paper the introductory course is given at a rate of 3
lectures per week throughout the academic year . In prac­
tice it is divided into 2 parts , with Scheme as the lan ­
guage of the first part and C++ as the language of the
second . The original d issatisfaction with Pascal as a
teaching language in our case was expressed by e n thusi­
asts for functional programming as a better educational
approach. In 1986 no suitable implementation or textbook
was available, but Scheme was seen as a suitable non­
Pascal-like alternative. (Discussion about the function­
al or non - functional nature of Scheme, a close relative
of LISP, was then short-circuited by my arrival at UCL
and expression of a st r ong taste for presenting a first
course in Scheme) . At the same time, it was generally
agreed that some part of the first-year introduction
to programming should include traditional procedural
work in a language that would appear in later courses ,
e . g . on systems software, operating systems and software
engineering. As the language that was used already in
these courses was C, and as it was also regarded as very
desirable to give stu d ents a reasonab l e expos ure to the
ideas of object - oriented programming (e.g. in connection
with modularity and reuse of software, in software engi­
neering) , C++ was selected as the language for the sec­
ond half of the course. Some of the supporters of C++
probably regarded the introduction to object - oriented

"

IV.2
ideas in chapter 3 . 1 of Abelson and Sussman as an unex­
pected bonus . In the actual teaching it has turned out
that this material is an effective overall introduction
to object-oriented programming, which dovetails well
into the later treatment of the subject in the teaching
of C++.

Facilities

The main programming system that is available for stu­
dents is the MIT implementation "C Scheme", running on a
large Pyramid 98X computer. This implementation is ro ­
bust and able to accommodate peak loads (25 to 28 simul­
taneous users) without difficulty once the random - access
memory available to each user is set at about 1 MB in­
stead of the default value of 4 MB . Even so, users of
other software have noticed enough of a slowing-down of
their service at peak hours to cause us to move to new
arrangements in 1988. In these arrangements, students
use the same basic terminals as before, but their jobs
are now run on a network of Sun workstations through an
assignment mechanism that ensures that no more than 2
Scheme jobs are placed on anyone workstation. This has
been fully adequate for the course, even though the
overall enrolment has grown to 63 and access to the net­
work of Suns is possible from remote locations (e.g .
halls of residence) as well as from terminal rooms in
the Department . The excellent support of our software
and systems group is responsible for the trouble-free
service that we have experienced .

In addition to the official provisions, some copies of
PC Scheme (a Texas Instruments product) for IBM - compat­
ible microcomputers are in use . The US price is low
enough (about $99) to have made individual purchase
attractive .

Some comparisons of Scheme with LISP

Scheme is basically LISP with somewhat more natural con ­
ventions for writing and processing several of its basic
operations, plus the possibility of defining procedures
that return procedural values. These higher - order pro­
cedures are useful in connection with the concept of
message-passing in object-oriented computing, although
that is not their main selling-point.

A function (= " procedure" in Scheme : " function " in the
Scheme textbook has just its mathematical meaning) to
make a copy of a list x in Common LISP is define d via

(defun copy (x) (cond «null x) nil)
(t (cons (car x) (copy (cdr x)))))) [1]

where cons is the basic list - constructor, and car and
cdr access respectively the head and the tail of the
structure denoted by their argument. The corresponding
definition in Scheme, taking advantage of the simplified
conditional expression that can be written when only a
two - way choice is i n volved , is

(define (copy
(cons (car

x)
x)

(if (null?
(copy (cdr

x)
x))

nil
))) [2]

This example is st r uct urally typical of many definitions
in first - course LISP or Scheme . It draws attention to an

IV.3
amusing feature of programming with this family of lan­
guages. The Common LISP definition [1] ends with 6 right
brackets. The input conventions of the earliest LISPs
would have required 7 for this function. The Scheme def­
inition has 5 . All of these numbers are the most likely
ones to occur at the ends of simple programming exerci­
ses in their respective languages . In the early days
of LISP , miscounting of brackets at the ends of function
definitions was the most widespread programming error,
and the greatest barrier to students' desire to perse­
vere with learning the language . The limited evidence
available on teaching Common LISP as a first language
suggests that users still complain about right brackets,
although much less loud l y. Our UCL experience with
Scheme is that the miscounting of terminating brackets
is just one possible novice error among several , and
that right brackets in Scheme do not cause any signifi­
cant alarm and despondency among students . There is pro­
bably a paper on the adaptatio n of language design to
the cognitive make - up of programmers in here somewhere:

In LISP, the function defun in [1] is reserved for de­
fining functions. In Scheme, the use of define in [2]
is not unique: the same procedure is used to attach val­
ues to variables, as in

(define pi 3.141592) [3]

LISP would put setq in place of define in [3], i.e .
defining functions/procedures and defining or updating
variables are kep t separate conceptually. It is a defect
of Scheme for teaching , especially on object - oriented
computing, that this aspect of LISP is missing .

The simplest example and justification of highe r- o r der
procedures in the Scheme textbook is the definition [4] .
This procedure computes sums of the form f(a) + f(a 1) +
... + f(b), where f is a function represented by term,
and where the computation of the next argument (e .g .
a 1) from the previous one (e . g. a) in the sequence is
carried out by next

(define (sum - series term a b next)
(if (> a b) 0

(+ (term a) (sum-series
term (next a) b next»)) [4]

Thus, if a procedure (cube x) is defined as (* x x x) ,
a call to (sum - series cube 1 10 1+) causes compu-
tation of the sum of the cubes of integers from 1 to 10 .

During t r eatment of the basics of Scheme and of the mod­
ern Good Things of education in programming (top - down
design, modularity, reuse of software, functional style
(almost), referential transparency), the first 2
chapters of the textbook introduce examples that have
the possibility of teaching some lessons about object ­
oriented programming . One of them is actually treated as
an example about something else, but tends to be noticed
by the more wide - awake students as an example that is
"special " in a sense for which they have difficulty in
finding a phrase . The pleasure that they get when "mes ­
sage-passing" is suggested to fill the gap is very
noticeable .

The example was devised to show that cons car and

IV.4
cdr are not necessarily fundamenta l procedures implemen-
ted in only one way, which is undefinable in Scheme or
LISP. It makes explicit definitions , relying on the ex ­
istence of the higher-order procedural feature of Scheme .

(define (cons x y)
(define (dispatch m)

(cond ((eq? m ' car)
((eq? m ' cdr)
(else (error

dispatch)

(define (car z)
(define (cdr z)

(z
(z

' car»
' cdr»

x)
y)

» »

set up a test case as follows :

[5]

[6]

Suppose that we

(define test (cons 'n o 'surrender»

Because of [5] , test has a procedural value , associ­
ated with the I-a r gument procedure dispatch . When (cdr
test) is evaluated, [6] indicates that test is sent a
message that can be read as "your cdr, please ", the atom
cdr is substituted for m in [5] , and the correct answer
surrender is obtained.

Objects in Scheme

The standard textbook example here is that of a bank­
account object . After refinement of the initial versions
of the example , the complete definition is

(define (make - account balance)
(define (withdraw amount)

(if (> = bala nce amo un t)
(sequence

(set ! balance (- balance amount»
balance)

"Insufficient funds " »
(define (deposit amount)

(set ! balance (+ balance amount»
balance)

(define (dispatch m)
(cond ((eq? m ' withdraw) withdraw)

((eq? m ' deposi t) deposit)
(else (error m "not recognised"» »

dispatch) [7]

Here , make-account is a procedure-valued procedure
servi ng as a gene r al bank - account object , with withdraw
and deposit capabilities and with a sing l e local vari ­
able , which records a cur r ent balance. A new named ac ­
count which in he r its the capabilities and contains its
own private " balance " variable can be set up by a suit­
able ca ll to make - account , e . g.

(define fred-student - account (make - account 10» ,
[8]

which creates an account for fred and awards him a Brit­
ish bank's traditional starting gift of 10 units of cur­
rency. Possible fut ur e tra nsactions may be

((fred - student - account ' deposit) 50)

which brings the balance up to 60,

((fred - student - account ' withdraw) 20)

which would then reduce it to 40,

IV.5

and

«fred-student - account 'withdraw) 100) [9]

which would generate the appropriate message and not
c hange the balance. As in [6] , transactions can be read
as being initiated by the sending of messages to objects

This presentation h as a strong positive effect on the
audience. Students remember both the message-passing
paradigm and the idea of a secret private history and
attitude to the externa l world (including non-coope r a­
tion, as in [9]) and try to use them thereafter. The
pa r adigm obviously has a n appeal (to a London audience ,
at least) that is not yet exp l oited in textbooks for
beginners . Object-oriented questions set as options in
examinations are quite heavily favoured, and the st ru ct ­
ure of material such as in [7] is usually well repro­
duced.

Specific evidence for the effectiveness of the object­
oriented approach is that

- students enjoy the exe r cise of e x tending the bank­
account example to include passwords (with some

designs being quite ingenious , not to say
Byzantine) ;

there is a high rate of success in answering ques­
tions that hint at extension of the "private

local variable" idea for their answers, e . g. wri­
ting of a procedure that looks up rather than

calculates the square root of n if it has been
asked to find the square root of the same n

previously .

Some drawbacks

The examp l e [7] contains many of the desirable features
of an object-oriented definition, even though Scheme was
not planned for such a purpose . This positive outcome
can be credited to the fact that Scheme was designed to
embody (and even enforce) aspects of programming prac­
tice that are understood widely to be good . This appre­
ciation was not so widespread (particularly for teach ­
ing) around 1974 - 75, when the present form of Scheme
was being evolved.

[7] also indicates so me sources of confusion for stu ­
dents. One of t hese has been mentioned already, together
with [3] : the use of define for two different purposes
In [7] the local variable is updated with set: but
some students continue to use define and are puzzled
when they are told that this is not good behaviour.
These students would prefer the origin of the confusion
(the dual use of define) to be illegal in the language
Some students say this as soon as the dual use is shown
to be possible, i. e. well before any hint of object­
oriented computing appears in the course.

[7] demonstrates a fu rther drawback from the points of
view of both teaching and aesthetics . This is that, even
when define is limited to the definition of procedures
it still has two rather different interpretations. The
first is the expected one, which is shown clearly in [2]

IV.6

and [4J-[6]. The second occurs in [7] when any procedure
except make-account is defined . In the first case,
a defined procedure is later accessible everywhere. In
the second, when the object-oriented paradigm is taken
seriously, capabilities like deposit and withdraw
are intended to be local to their parent object and ir­
relevant outside it, but students infer quite reason­
ably that syntactic context alone is not enough to dis­
tinguish the two in general, and comment that the r e
ought to be two separate "define"s (one for local and
one for global use, so that the programmer can always
show clearly what the intention is in marginal cases -
and at least one student has called [5] and [6] a mar­
ginal case).

A final drawback for general teaching of object-oriented
computing is that Scheme allows nothing more (and hence
nothing more flexible) than the inheritance mechanism
used in [8j . Therefore there is not even as much scope
for discussion of inheritance as a unifying idea as
there would be if one taught with the help of a class­
ical simulation language from the 1960s, such as Simula.
This would have been a problem if object - oriented teach­
ing had had to continue in Scheme , but (as indicated
above) this has not been the pattern followed at UCL .

General consequences

For students, the main effect of the change from Pascal
to Scheme has been a much earlier introduction to a mod­
ern range of concerns about (and models for) computing
in practice , with a minimum of diversion of attention
through a need to think about the details of the scaf­
folding (i.e . the language in which the practice is
given) . These concerns certainly include the essentials
of object - oriented computing , which are built on in the
continuation of the course via the use of C++. It is
fair to say that C+ + is full of scaffolding , especially
because the first books available as reading material
were not textbooks for beginners . However, the grounding
given in the essentials of computing through Scheme has
meant that the sudden change of environment to C++ has
not been intimidating for the students .

A consequence of the increase in ground that the new
first programming course has been able to cover is that
the students are better prepared to deal with informa ­
tion in later courses that have come to rely on it . This
is so for the later courses in systems software, soft­
ware engineering and artificial intelligence (disguised
as "ex per t s ys tem"s "). I n a ddi tion, the a ud ience t ra ined
on Scheme has forced the pace in a new second-year
course entitled Programming Paradigms (involving con­
currency , programming with logie, and constraint-based
programming) . A new result visible for the first time in
1988-89 is that veterans of the Scheme course have cho ­
sen some interesting and demanding final-year projects,
e . g . on exchange of knowledge between different repre­
sentations , which build directly on their experience
of Scheme .

For the academic staff , one observed result has been
happier lecturers in the second- and third-year courses
just mentioned . Apart from courses, it is possible to

=

IV.7

say that some projects have more of a researc h f l avour
than would have been the case before 1986. I n at least 2
exa mp les , completion of the projects (which use educa­
tional fo un dations f rom t he Scheme cou r se) should
gene r a te material immediately fo r publishable papers.

A s uccess story is possi bly a little s uspicious unless
it hints at some lack of success along with its positive
results . If so , then Scheme is above s uspicio n here .
The pressu re in favour of a first cou r se in a functional
programming language at UCL has only been dormant, not
abolished , s in ce 1986. It has been revived latel y
because a textbook and a n appare ntly s tudent-pr oof
implementation of o ne functional lan guage a re now a v ai l­
able. This revival is almost i ndependent of the merits
or demerits of Scheme , an d enti r ely independent l y of the
merits or demerits of teaching firs t- yea r undergraduates
about object - o r iented computi ng . But many goo d things,
like the pre-war Esto nian Republic, are i ncide ntal casu ­
alties of vast hist o rical movements . In th a t particular
case , its merits are bein g r ed i sco ver ed 48 years late r
und er the infl uen ce of perestroika. It is rea so nable
to suppose that, if Scheme disappea rs temporarily from
the UCL map , a co rresp onding ed uca ti onal pe re stroika
may arrive after an order of magnitude less time .

IV.S

DISCUSSION

After the talk Professor Campbell was asked for further details about the way
in which the assessment of students is carried out, and if there is any additional
support to the lectures. The speaker replied that the majority of assessment is by
a traditional examination method, and that there is a tendency to increase the
proportion of (interesting) programming exercises in the examination process.
As the most important additional support Professor Campbell mentioned quite
frequent tutorial meetings.

In response to Dr. Wolczko's question, Professor Campbell expla ined that his
Department runs a course on pure object oriented language (Smalltalk) and
shortly described its organisation .

Dr. Schaffert asked whether the lectures cover continuations, and how the
students react to this. Professor Campbell responded that continuations surface
in the context of a subsequent C++ course rather than in the teaching of
Scheme, and that the general reaction of students was positive.

. ;

