
III

Objects as a Systems Organisation Principle

J. Brenner

Rapporteur: Macieji Koutny

·1

i

I

IILl

Twenty ·ficst University of Newcastle upon Tyne In ternational Seminar
on Teaching of Computi ng Sc ience at Uni versity Leve l

Objects as a System Organization Principle

1. Introduction

by John Brenner,
ICL, Bracknell UK.

September 1988

The subject of this lecture is Objects as a system organization principle,
applied to distributed processing. This raises issues different from those in
the more familiar fields of object-oriented programming languages and
object-oriented database.

I will talk about experience in the ANSA project and in Open Distributed
Processing (ODP) standardization in ISO and ECMA.

ODP standardization should have major technical and commercial impact in
the 1990s, and hence an impact on the computer science curriculum.

W.e have found object-oriented techniques to be an essential ingredient of
distributed processing architecture, and a source of great technical strength.
But we have also encountered difficulties. These are, in part, cultural
problems of different perceptions that people have of object-oriented
techniques, not just technical issues. This may be of particular concern to
educators.

What I am about to describe is not "yet another object system" laying claim
to intellectual turf in this field. Rather, I intend it to be an account of what
object-oriented concepts we have found to be useful in this ongoing work.

Consistent use of terminology is difficult to achieve. My general starting
point is the terminology defined by Peter Wegner in [lJ. I will point out
differences where they arise.

2. Who weare

I would like to begin with a few words about the organizations involved.

ANSA is the think tank in which these ideas have been sorted out. It is a
UK Alvey project for industrial exploitation of research results in the field of
distributed processing. This is a collaborative project, in its fourth year. The
Chief Architect is Dr . Andrew Herbert, formerly of the Cambridge
University Computer Laboratory. The project team is located at Cambridge,
and consists of about 12 people, mostly seconded from the Companies

111. 2

collaborating in the project (British Telecom, DEC, GEC, HP, ICL, ITL,
Olivetti, Plessey, Racal) . This work is expected to continue via an ESPRIT 2
project, with enlarged membership (the Integrated Systems Architecture
project, ISA). A description of the ANSA project is in a draft Reference
Manual [2], and there is a summary in [3].

ODP standardization in ISO (the International Organization for
Standardization) started in early 1987, and has led to the formation of a
working group (lSOIIEC JTCI SC211WG7) which is developing a Reference
Model of Open Distributed Processing (ODP-RM). The ODP-RM will define
an architectural framework for distributed processing standardization,
within which relevant new and existing standards will be positioned. This
new work reflects growing recognition in ISO that Open Systems
Interconnection (OSI) [4], which has been the focus of attention in recent
years , is only part of the distributed processing story. References [5] [6] and
[7] provide general information about ODP standardization and its
motivation.

ODP standardization in ECMA (the European Computer Manufacturers
Association, of which most of the world's leading computer manufacturers
are members) started several years earlier. ECMA has recently produced an
RPC standard [8], is contributing actively to the ISO Reference Model work,
and is pushing ahead with standardization of an ODP object support
environment [9], positioned within the emerging Reference Model. ANSA is
the main source of technical input to this ECMA work. Another major
contributor is the IBM European Networking Centre at Heidelberg.

I am the co'nvenor of this ECMA group (TC32-TG2), and also participate in
the ANSA and ISO activities. I am employed by ICL, where I have a
responsibility for distributed systems architecture. ICL produces a wide
range of systems for selected markets, primarily European. A major
ingredient of our business is integration of heterogeneous distributed
systems; hence our interest in Open Distributed Processing standardization.

ANSA has gained informal technical leadership in ODP standardization
work by participating actively and to good effect in ISO, ECMA and the UK
standards body, BSI. We hope that this will result in ODP standards soundly
based on current research results. To encourage this orientation ANSA
contributed at the start of the ISO work a comprehensive survey and reading
list of current distributed processing research, reproduced in [10] .

III. 3

3. Open Distributed Processing

The field in which we are applying object-oriented principles is Open
Distributed Processing (ODP). I will briefly explain what ODP is about
before going on to consider the object-oriented ramifications.

~ Open means conforming to standards, such that products can be
procured successfully from multiple independent competing suppliers.
Such standards should be:

- technically sound,
- commercially practicable,
- under public control,
-applicable world-wide.

These are difficult requirements to satisfy, not the least because much
of the technical work has to be conducted as a prolonged struggle for
world-wide consensus in international standards committee meetings.
This is very different from working in your own laboratory, and is a
difficult environment in which to achieve technical excellence. Those
of us involved in these processes do the best we can. The experience is
often frustrating, but on the whole enjoyable and productive.

Distributed means consisting oflogically separate components. They
may also be physically separate, to degrees varying from close
proximity to widespread geographical dispersion. An important special
case is logically separate components that are co-located, not physically
separate.

~ Processing means computation and its mechanization.

Therefore, distributed processing is about computation achieved via
multiple separate modular computing agents directed towards some conunon
purpose; and open distributed processing is about standardization to
facilitate industrialization of distributed processing.

The notions of "computation via modular computing agents" and "object
oriented computing" have much in common, and this was our starting point
for use of object-orien ted techniques in ODP.

II I. 4

4. The Problem ofODP

We now take a closer look at the problem space to which we seek to apply
object-oriented techniques. This part of my talk is based on an ISO document
[7] which discusses the requirements for distributed processing and the
motivation for developing ODP standards.

The distribution of information systems is a necessary consequence of
constraints arising from the real world which affect all kinds of information
systems. The field of application of distributed processing techniques is,
therefore, virtually unlimited. Some diverse examples are:

• Data Processing Systems;

• Database Systems;

• Office Systems;

• Process Con trol Systems;

• Knowledge Based Systems;

• Integrated DatatrextIVoicelImage systems;

• C' I Systems;

• Horne Entertainment Systems.

The point to be made here is that this field includes requirements (such as
fault-tolerant processing, real-time processing and interactions based on
isochronous voice and image) that are not usually on the agenda when object
oriented techniques are evaluated.

Heterogeneity is another major ingredient of the problem space to be
addressed by ODP:

• Computing equipment heterogeneity;

• Interconnection network heterogeneity;

• Operating systems heterogeneity (and almost none of the operating
systems are object-oriented);

Computational heterogeneity (different languages etc., usually not
object-oriented);

• Authority heterogeneity (cooperation between separate organizations);

• Application heterogeneity (desire to integrated different kinds of
applications together).

The point to be made here is that whereas most other work on object-oriented
techniques assumes homogeneity (the usual subject is an object-oriented
programming language, an object-oriented operating system, etc.), we have
to use and evaluate object-oriented techniques in the context of extreme
heterogenei ty.

Il I. S

The essence of the problem space to be addressed by ODP is distribution
transparency which is about managing the consequnces of separation. This
has several different ingredients, which are needed to varying degrees in
differing circumstances:

~ Acc.ess transparency. Concealing the use of communications when
accessing remote resources.

~ Location transparency. Enabling the use of a resource, independent
of the placement of that resource in the distributed system.

~ Migration transparency. Enabling the migration or reconfiguration
of resources in a distributed system.

Replication transparency. Enabling the use of multiple instances of
a resource for such purposes as enhancing dependability and
performance.

Concurrency transparency. Avoiding inconsistencies due to parallel
execution, by using concurrency control techniques.

Fault transparency. Concealing faults by using error processing
techniques.

~ Performance transparency. Minimizing the performance penalties
associated with using remote resources.

Scaling transparency. Concealing variations in system behaviour
due to scaling up to large or busy or turbulent systems, and scaling
down to small or placid systems.

The point to be made here is that the core of our technical work is about
combining distribution transparency techniques with object-oriented
techniques. Again, this is a major distinction from other usage of object
oriented techniques.

One further point is that ODP must consider distributed information
systems from many viewpoints other than that of the computer scientist.
Ideally, a common core of object-oriented techniques would provide unifying
abstractions applicable to a distributed processing system as viewed by its
users, managers, designers, programmers, operators, maintenance staff, etc.

To summarize, major considerations when selecting, adapting and using
object-oriented techniques for ODP are:

~ Diversity of applications;

~ Heterogenei ty;

~ Distribution transparencies.

These are the same kind of considerations that would apply to any approach
to the integration of large scale software systems (i.e. programming-in-the
large).

...

II I. 6

5. Framework of abstractions

The ODP-RM will be primarily concerned with modelling and specifying the
structure of distributed information systems. We need some agreed
framework of abstractions wi thin which to deploy our object models etc.

The current proposals for this framework are documented by ISO in [11].
The purpose is to identify sets of abstraction with which distributed
information systems can be described for ODP purposes. The emerging
consensus is that five sets of abstractions are appropriate. These are
currently labeled A-E (we are still arguing about their names).

A. Abstractions for enterprise information modelling, defining what the
information system is required to do for the enterprise concerned.

B. Abstractions for the information structure and the information flows of
the system design.

C. Abstractions for the operational and computational aspects of the
system design.

D. Abstractions for the engineering design that supports the distributed
processing.

E. Abstractions of the artifacts with which the system design is realized
(heterogeneous operating systems, computers, conununications, etc.).

Each set of abstractions provides a vocabulary to produce a closed world
projection of the actual information system being modeled. Closed world in
the sense that all relationships are between things in that projection, and
there are no references to things outside it. Projection in the mathematical
sense that descriptions in different projections are all complete descriptions
of the same system, viewed in different lights. The formal basis for this kind
of modelling is taken from J.F. Sowa [12]. Independent corroboration of five
generally applicable sets of abstractions is provided by J.A. Zackman in [13] .

The acid test is: does this framework of abstractions work for us? Many of us
think that it will, and there is some practical evidence to support this. But
the matter is not yet finally settled.

I do not have time now for more detailed description and justification of this
framework . Two key points relevant to this lecture can be drawn from it:

~ Common Modelling Technique. To achieve consistency across these
different projections, we require that one general-purpose modelling
technique is used throughout. The choice of that technique is what this
lecture is about.

~ Focus of ODP Standardization. We are now agreed that projections
B (information structure), C (computational), and D (engineering to
support distributed processing) are the core subject area of ODP
standardization, most especially D .

It has also been made clear the the ODP-RM has no pretensions to be "the
architecture of the universe of information systems". It is only intended to be

III.7

"the architecture of distributedness" (which is still an ambitions
undertaking). Figure 1 summarizes our current understanding of this
framework (note that projections do not imply layers) .

.... I(E--.;....- One object model is used in all the Projections ---~.~

Projection A
EnterprISe

InformatIon

Modelling

Projection E
Art ifacts

~... "K

..................... """"""
... I"" ' I"""

",~",~""
distributed processing system

Figure 1: The Framework of Abstractions.

This overview of ODP has set the scene for considering Objects as a system
organization principle applied to distributed processing.

6. Modelling Technique Requirements

An ISO working paper [14] explores the requirements for modelling in the
ODP Reference Model. It was drafted in June of this year by a group of
experts with different technical backgrounds and from several countries.
The principal author is Professor Peter Linnington of the University of Kent,
and it draws heavily on material provided by Andrew Herbert (ANSA) and
Elspeth Cusack [15] of British Telecom. It is summarised in this part of the
lecture.

The kind of modelling technique needed is explained step-by-step. As
anticipated, the answer is an object model. But because the term "object" is
heavily overloaded by different assumptions and different meanings, we
have avoided using it in the initial exploration.

The first step of this exploration is clarification of what we mean by
"modelling technique".

~ A model is a representation of a system simplified for the purpose of
description , simulation or calculation.

~ A modelling technique is any technique used to construct a model.
As such it is equivalent to a distinct language .

~ Our concern is specification, hence a specification language.

111 .8

A specification language is a language tailored to the expression of
requirements and properties (as distinct from an implementation
language concerned with mechanisms). It may include graphical and
textual formalisms.

The next step is to identify concepts to be expressed in a specification
language for distributed processing. An incomplete list is:

• component: an arbitrary part ofthe distributed system.

• occurrence: a significant point in space time. Occurrences will be
captured in a specification in terms of events at some level of
abstraction .

event: a set of occurrences which is regarded as atomic in the
specification concerned.

interaction: a set of possible events shared by all members of a given
set of components.

• interaction point: the set oflocations associated with an interaction.

• inheritance: see below.

• configuration: specification of the system in terms of which
components interact, and at which interaction points.

We can consolidate this into an object model in which:

• In general an object is whatever is the subject of description.

• An ODP-object is an abstraction by which arbitrary components of a
distributed system are modeled in a specification language.

ODP-objects are characterized by the interactions in which they can
participate, defined in terms of shared events.

The defining abstraction for such interactions is an interface
specification.

• Specifications are organized into families by inheritance structure.

This exploration confirms that an event-oriented object model is needed. This
finding is controversial, in that some ISO participants with a database
background expected to use exclusively an object model based on information
modeling techniques (entity, attribute, relation, etc.).

111.9

7. Inheritance

Inheritance is widely recognized as an essential characteristic of object
oriented languages; see [1] and [15] .

An inheritance structure is a hierarchy that defines the way in which objects
are classified into families, such that the properties of an object are deemed
to apply also to objects subordinate to it in the inheritance hierarchy. The
inheritance hierarchy provides the basis for re-use and reproducibility of
design, and the substitution of alternative implementations of objects while
maintaining conformance with required characteristics.

In an object-oriented specification language for defining ODP architectural
structure, the concept of inheritance necessarily applies to inheritance of
specification. Any inheritance of implementation mechanisms (e.g. re-use of
code), however desirable, is an implementation matter outside its scope.

In ODP we have adopted an algebraic framework for inheritance, defined in
set-theoretic terms by Elspeth Cusack of British Telecom. This defines
inheritance as a hierarchy consisting of a set with a partial order, an
equivalence relation , a binary operation and conditions satisfied by that set.
The details are in [14] and [15].

Related choices are that ODP usage of object-oriented inheritance will be:

~ Derived from an unique top element. This ensures that all
members of an object hierarchy can be related (the above mathematical
model allows more than one top element).

Strict inheritance. The exclusion of "non-strict" inheritance removes
a source of complications which threaten the crucial re-use,
reproducibility and substitution characteristics. Also we do not have a
mathematical model for non-strict inheritance.

Multiple inheritance. This increases the expressive power of the
specification technique, and helps with object composition and
decomposition. It is covered by the mathematical model.

These decisions relate to selection of object-oriented concepts for ODP
architecture. They do not preclude use of other object-oriented techniques
(e.g. other styles of inheritance) in the languages etc. used to implement
distributed processing systems.

That is about as far as we have got in the ISO deliberations on object
modelling in Open Distributed Processing.

Il I. IO

8. Where Next?

In this part of the lecture I will give a preview of what ANSA and ECMA are
likely to feed into ISO over the next year.

Intension and extension. ODP needs to make systematic distinctions
between the use of intensional and extensional definition of objects. (In
simple terms an intensional definition defines what something is or does; an
extensional definition refers to how it is constructed.)

• Extensional definition of objects is a necessary characteristic of object
oriented programming languages. Their inheritance hierarchy points
at ancestral objects, the realizations of which are the shared resources
to which further objects are bound (it defines how objects are
constructed).

(But intensional definition is inherent in ADTs, therefore object
oriented programming languages that have data abstraction also
include intensional definition.)

Intensional definition of objects is a necessary characteristic of an
object-oriented aDP specification language. ODP-objects are defined in
terms of what they do (Le. the behaviour visible at their external
interaction points, their interfaces) . Their inheritance hierarchy
defines units of behaviour specification (it defines what objects do).

(Extensional definition of ODP-objects would be inconsistent with
distributed processing, because practical considerations of scaling and
performance mean that non-local resources cannot be shared like local
ones.)

Essentially the same points are made by Peter Wegner in [1], although
without making the extensional / intensional distinction explicit.

The same mathematical model of the inheritance hierarchy [15] works for
both styles, intensional and extensional. It is also independent of whether
the word "type-definition" or "class-definition" are used for the defining
abstractions that are organized and inherited.

In ANSA we have chosen to associate the terms "class" "subclass" "class
definition" etc. with extensionally defined object structure, and the terms
"type" "subtype" "type-definition" etc. with intensionally defined object
structure. The choice of terminology is arbitrary (but is broadly consistent
with the way the term "class" is used in Small talk, and "type" in ADTs).

The outcome is that we now have "interface types" defined by "interface type
definitions"; we use the term "subtyping" when talking about inheritance
hierarchies. We avoid using the terms "class" etc. in this context. We have
no inhibitions about using the term "type" to refer to data types, operation
types, event types etc. ; but I am not sure if we would go so far as to define
inheri tance hierarchies for them.

III. 11

This is a conscious departure from the normal object-oriented practice of
associating the term "inheritance" exclusively with "class" and extensional
definition [1). Something has to be done about this terminological trap,
because the concept of "inheritance" derived from "inheritance hierarchies"
is universally applicable. Perhaps the proper way to make this distinction is
to use (re-invent ?) different terms like "intensional inheritance" and
"extensional inheritance".

Formal Methods. An important next step in the ISO ODP-RM work will be
decisions on what formal specification notations to use. There is already
agreement in principle to use formal methods; but always in conjunction
with natural language description acceptable to a wide non-specialist
audience.

The work already described here has laid some of the foundations. The basic
concepts and constructs will probably be defined using elementary set
theory, as has already been done for the inheritance concepts. The modelling
of interactions as events opens the way to using process algebras to specify
object behaviour. Most probably the ISO LOTOS language [16) will be used.
This is based on CCS, and includes a data typing language (ACT-ONE)
which could be used for ADT definition of objects. Our definition of "event"
also allows formal composition and decomposition of events. Our foundation
definition of "occurrence" ties into physics formalisms.

There is also a need for an Interface Definition Language (IDL) in which to
express interface type definitions (and thereby to define objects). Interface
definitions expressed in an IDL can be exploited as a means of declarative
specification of protocol, synchronization, atomicity, etc. In the ECMA work
we will probably continue to use the IDL defined in the ECMA RPC standard
[8). This IDL is a proper subset of the abstract data syntax and operation
definition notations used in Open Systems Interconnection (OSI) standards.
ANSA have a prototype IDL which is positioned much closer to the way
progranuning languages work.

Object Engineering. In ANSA we are developing a formulation of object
modelling for distributed systems which we call "object engineering". This
provides a simple, but formal, graphical notation ("ball and stick diagrams"
as illustrated in figure 2). It is underpinned by use of set theory.

Client

Service
Manager

A

B

File
Server

Disc
Server

Figure 2: An Object Engineering diagram.

III. 12

ANSA object engineering lays down general rules for the composition,
decomposition and configuration of systems designs expressed as objects that
interact with one another via various behaviour alphabets. It is mainly the
work of Professor John Monk of the Open University, who is a part time
member of the ANSA project team. I had hoped to present it more fully in
this lectu-re, but have not yet had the time to master it myself in sufficient
detail. For those who would like further details, preliminary documentation
is available now from ANSA. Comprehensive and stable documentation
should be available towards the end of the year, and is likely to be
contributed to the next ISO meeting (December 1988).

Multi-interface Objects. In ANSA and ECMA we have the concept of
objects with multiple interfaces. I mention this because it is controversial.
The initial reaction of some people is that it is heresy (if only because
familiar object-oriented programming languages like Smalltalk have no
such concept). But multiple interfaces are an obvious necessity in the
different field of systems modelling, as illustrated by the trivial example in
figure 2, where one object has three interfaces (and different roles w.r.t.
each). The interface characterized by alphabet A is used by the Client; it
might have operations like "open file" and "read record". The interface
characterized by alphabet B is used by the Service Manager; it might have
operations like "switch off the service" and "change security policy". The
interface characterized by alphabet C is used by the File Server itself, and
might have operations like "read sector".

Figure 3 is a more complex example copied from an ANSA document. The
details need not concern us, but it illustrates more of the range of object roles
and granularity that are within the scope ofODP and object engineering.

Requester

Association

Active
process
model

Processes Binder

Policy

Available
processor
model

Offerer

Diagnostics

Binder Processors

Figure 3: A more complex object engineering diagram (incomplete
example of processor scheduling, taken from the ANSA object
support system) _

I II .1 3

Trading. A major ingredient of the architecture developing in ANSA and
ECMA is "trading", defined as the function of matching bids to use services
("imports") with offers to provide them ("exports"). These bids and offers are
expressed primarily in terms of interface types. The configuration of
distributed systems is defined in terms of "trading", "trading scopes" and
related n'aming structures, access controls, etc. The ECMA onp Support
Environment [9] will define trading concepts and structure.

Object Groups. Concepts of object groups are important in distributed
processing. An "object group" consists of multiple objects of which the
externally visible collective behaviour is as if they were one object, with
attendant simplifications. Acting in concert, the members of a group may
achieve parallelism, resource sharing, resilience, fault tolerance, etc. There
are related concepts of atomicity, synchronization, reliable broadcasts, etc.
This leads into the world of fault-tolerant computing, which is why we
maintain close links with Brian Randell and his team here at Newcastle.
Such concepts will be included in the onp Object Model.

9. Summing Up

I would like to summarize the main strengths and weaknesses of object
oriented concepts, as encountered so far in onp standardization.

Strengths

~ Suitability. There is absolutely no doubt that object-oriented
techniques facilitate modular system design, and are the right
approach for modelling distributed systems.

Expressive Power. The evolving object model has appropriate
expressive power for the specification of distributed processing systems.
It is sufficiently abstract to avoid over-specification, and sufficiently
formal to minimise the risk of specification errors and ambiguity.

Programming-in-the-large. The further we go into distributed
processing standardization, the more it becomes apparent that its main
task is the integration of heterogeneous software components. It
therefore has much in common with programming-in-the-large.
Moreover, programming-in-the-Iarge needs the distribution trans
parencies provided by distributed processing technology. The same
kind of object-oriented abstractions are applicable to both these fields.

Implementation independence. We have found that distributed
systems structure can be defined in object-oriented terms, irrespective
of whether the implementations use object-oriented programming
languages or object-oriented operating systems. This de-coupling is
vitally important, because most of today's programming languages and
operating systems are not object-oriented.

. -

III.14

Simplicity. Although there is a persistent fog of confusions (see
below), object-oriented concepts are a source of simplifications which
greatly increase our ability to design, understand, build and operate
complex distributed processing systems.

Weaknesses

~ Absence of General Theory. There is, as yet, no generally accepted
theory of objects in computing science. There is a corresponding lack of
consistent definitions and consistent use of concepts and terminology.

D.I.Y. Consequently, we are having to take a "do it yourself' (DIY)
approach to object modelling in our field, with attendant risks.

The remaining weaknesses are essentially human problems arising from the
above absence of general theory and related gaps in knowledge and insight.
They could be classified as "confusions" rather than technical weaknesses:

~ Dogmatism. Most individuals (present company excepted) tend to
make passionate globally applicable assertions of the kind "Object
oriented is ... ", depending on their own personal exposure to different
facets of the subject. This leads to conflict which impedes consensus.

~ Concrete or abstract. In natural language an "object" is any thing of
interest ("this book", "that piece of computer software", etc.) . But in
progranuning languages, specification languages and modelling, an
"object" is an abstraction of some such thing; it is not the thing itself.
People have difficulty in maintaining these distinctions. At a more
refined level they can be expressed as "extension" and "intension"
(respectively). The overloading of subtle and often unnoticed
differences of meaning onto the common term "object" is confusing.

Programming or specification. Most programmers and system
designers do not recognize distinctions between "object-oriented
progranuning" and "object-oriented specification".

Types, Classes etc. Most people who make standards get into
muddles about classes, inheritance, types, ADTs, intension, extension,
etc. (myself included).

These strengths and weaknesses provide fertile ground for the computing
science curriculum and industrial training .

III. I S

10. Conclusions

The practical value of "object-oriented" has long been recognized in the fields
of programming languages and database. It is now time to recognize its
worth as a principle for system organization in the twin fields of distributed
processing and programming-in-the-large.

The great unknown for us in ODP/ANSA is: have we selected appropriate
object-oriented concepts ?

It is also evident that the computer scientist who writes the definitive
textbook on object-oriented techniques will be able to sell a lot of copies to
practitioners like us, and to the future generations of graduates we expect to
employ. I hope it will be one of you.

References

[1] WEGNER, P. "Dimensions of Object-Based Language Design" .
OOPSLA '87 Proceedings, ACM 0-89791-247-0/87/0010-0168.

[2] ANSA. "ANSA Reference Manual". Release 00.03, June 1987. ANSA,
24 Hills Road, Cambridge CB21JP, UK.

[3] HERBERT, A.J. "The Advanced Network Systems Architecture
Project". ICLTech J., Nov 1987.

[4] ISO. '1nformation Processing - Open Systems Interconnection - Basic
Reference Model". International Standard 7498 . International
Standards Organisation, Geneva.

[5] ISO. "Press Release - Open Distributed Processing". March 1988.
ISO/IEC JTCl/SC21IWG7 NOOl. (Available from National Standards
bodies).

[6] ISO. ''Proposed revised text for the New Work Item on the Basic
Reference Model of Open Distributed Processing". ISO/IEC JTCl/SC21
N1889. (Available from National Standards bodies).

[7] ISO. "Report on Topic 1 - The Problem of Open Distributed
Processing". March 1988. ISO/IEC JTCl/SC21 N2507. (Available
from National Standards bodies).

[8] ECMA. "RPC Basic Remote Procedure Call Using OSI Remote
Operations". ECMA Standard 127. December 1987. ECMA, 114 Rue
du Rhone, CH-1204 GENEVA, Switzerland.

[9] ECMA. "Open Distributed Support Environment (ODP-SE}". Draft
Technical Report. June 1988. ECMA, 114 Rue du Rhone, CH-1204
GENEVA, Switzerland.

III . 16

[10] BRENNER, J.B. "Open Distributed Processing". ICL Tech. J., Nov .. .
1987.

[11] ISO. "Working Document on the Framework of Abstractions". June
1988. ISOIlEC JTClISC21fWG7 N02I. (Available from National
Standards bodies).

[12] SOW A J.F.; "Conceptual structures - information processing in mind
and machine". Addison Wesley, USA (1984).

[13] ZACKMAN, J .A.; "A framework for information systems
architecture". IBM Systems Journal Vol 26 No 3,1987.

[14] ISO; "Modelling Techniques for the Specification of the ODP Reference
Model". June 1988. ISOIlEC JTClISC21fWG7 N022. (Available from
National Standards bodies).

[15] CUSACK, E.; "Fundamental Aspects of Object Oriented Specification".
British Telecom Technical Journal, July 1988.

[16] ISO. "Information Processing - Open Systems Interconnection -
LOTOS - A Formal Description Technique Based on the Temporal
Ordering of Observational Behaviour". International Standard 8807.
International Standards Organisation, Geneva.

CONCLUSIONS

• Time to recognize object oriented as a
systems organization principle.

• In the twin fields of distributed processing
and programming in the large.

• Have we selected appropriate object -
oriented techniques?

• Who will write the definitive textbook on
object oriented techniques?

'-0 I JBB Sept. sa 1S

WEAKNESSES

• Absence of General Theory

• DJ.Y.

• Dogmatism.

• Concrete or abstract.

• Programming or specification.

• Types, Classes, etc.

..... UBB Sept. 88 14

H
H
H

....
-.J

STRENGTHS

• Suitability

• Expressive Power

• Programming in the large

• Implementation independence

• Simplicity

'- IJBB Sept. 88 13

OBJECT GROUPS
Simple Object

Atomic Object Infrastructure

Atomic Object

Virtually,$Yrid'rOl\ous Object Infrastructure.

k
resiliency

(k + fJ

Fail-stop

I .

...... , Virtually

..... -----~----

I Synchronous
Object Group

Infrastructure .. ~

~~-~-----, -...
~ ...

.' ' Parallel
, _. ,,' Object Group

... ~

'- ' ----------
....... IJ8B Sept. 88 12

H
H
H

~

Cf)

,

TRADING

e
Import Export

...... I JBB Sept. BB 11

OBJECT ENGINEERING EXAMPLES

Client

Requester

Processes

Service
Manager

A

B

File
Server

Disc
Server

Scheduler

Active
process
model

Binder

Available
processor
model

Binder

....... I JBB Sept. BB

Offerer

Processors

10

H
H
H --D

"

FORMAL METHODS

• Always in conjunction with natural
language acceptable to wide audience.

• Elementary set theory.

• Process algebra (LOTOS CCS).

• Abstract Data Typing (LOTOS ACT-ONE).

• Interface Definition language
(ECMA 127 IDL 7).

• Object Engineering (ANSA).

• Physics!

'-. I JBB Sept. 88 9

INTENSION OR EXTENSION ?

• Extension ... how.

• Intension ... what.

• Extensional definition is a necessary (but
not exclusive) characteristic of object
oriented programming languages.

• Intensional definition is a necessary (but
not exclusive) characteristic of object
oriented ODP specification.

• Two distinctive cases of inheritance
hierarchy.

• Intensional inheritance (type / subtype),
inherent in 00 specification languages?

• Extensional inheritance (class / subclass),
inherent in 00 programming languages?

...... I JBB Sept. 88 8

H
H
H

tv
o

ODP INHERITANCE

• Inheritance is the defining characteristic of
.. object oriented n

•

• ODP inheritance can only be inheritance of
specification, not implementation.

• Organizes specifications into families.

• Hierarchy of interface specifications.

• Algebraic framework: an inheritance
hierarchy is a set with a partial order, an
equivalence relation, etc.

• Strict inheritance.

• Multiple inheritance.

• Free choice of object oriented techniques in
implementation.

...... I JBB Sept. 88 7

ODP OBJECT MODEL
REQUIREMENTS

• Specification Language (not programming
language).

• ODP-object = an abstraction to model
arbitrary components of distributed
systems.

• Objects defined in terms of the interactions
in which they can participate.

• Interactions defined in terms of shared
events.

• Interface specifications are the defining
abstraction for interactions.

• Specification families organized by
inheritance hierarchy.

....... I JBB Sept. 88 6

H
H
H

N
~

1/

FRAMEWORK OF ABSTRACTIONS

A ENTERPRISE

PROJECTION

I ", {,' INFORMATION '
iiivirPROJEOlON> ,

.-,~. ,-'" - .. ' " ',. ~. ~ ":, ~,-, .. ~.,
'z ,..

','t"'-'

(, e' , COMPurATION ;'
" ~: PROJECTION ,
"" • Y <. , _~ ,<_

,

, D ," , ENGINEERING ,'
" t::<:

, PROJECTION,

E TECHNOLOGY

PROJECTION

Same

Object

Model

, used in all

projections

...... UBB Sept. 88 5

THE PROBLEM SPACE

• Diversity of Applications

• Heterogeneity

• Distribution Transparencies

...... UBB Sept. 88 4

H
H
H

N
N

OOP

• Open = standards to facilitate
industrialization.

• Distributed Processing =
computation via modular computing
agents.

• Open Distributed Processing =
standards to facilitate industrialization of
computation via modular computing
agents.

....... I JBB Sept. BB 3

WHO WE ARE

• ANSA:
UK Alvey Project;

Advanced Network Systems Architecture;

BT, DEC, GEC, HP,lCl,lTI Olivetti, Plessey,
Racal.

• ISO:
International Standards Organization.

• ECMA:
European Computer Manufacturers Assn.

• ICL:
Systems supplier;

Integrating heterogeneous distributed
systems.

'- UBB Sept. 88 2

H
H
H

N
Lol

Twenty-first University of Newcastle upon Tyne

International Seminar on Teaching of Computer Science

at University Level

OBJECTS AS A SYSTEM
ORGANIZATION

PRINCIPLE

John Brenner

ICl, Bracknell, UK

'- IJBB Sept. 88 1

H
H
H

N
"..

III . 25

DISCUSSION

Professor Ba'yer raised the problem of the way in which multiple interfaces
could be handled formally . In the discussion that followed Professor Nygaard
suggested an introduction of the concept of internal objects to the framework
presented by Mr. Brenner.

Professor Lee expressed an opinion that a possible reason for weaknesses of
t he presented approach might be a distinction which is being made between the
behaviour of an object considered as an realisation of an abstract type, and the
behaviour of the obi' ects of that type in terms of specifications. Mr. Brenner
replied that he wou d always like to think about objects as abstractions which
only have specified interfaces, but due to some difficu lties in the formal
treatment it was necessary at some stages of the development to refer to the
behaviour of an object as a realisation of an abstract type.

In the final part of the discussion Mr. Kerr and Mr. Brenner briefly discussed
the relationship between the approach presented in the talk and some of the
aspects of a research project which is currently carried out in the Computing
Laboratory . The discussion was mainly focused on the differences and similarities
between interface languages and (standard) languages for object-oriented
systems,

