
Rapporteur: A. Petrie

II

GIP ALTAIR

F. Bancilhon

11.1

Object-Oriented Database Systems

Fran~ois Bancilhon
Altair

BP 105, 78153 Le Chesnay Cedex
France

Abstract

This paper describes my vision of the current
state of object-oriented database research. I
first briefly define this field by it. objectives,
and relate it to other database subfields. I
describe what I consider to be the main char
acteristics of an object oriented system, Le.
those which are important to integrate in a
database system: encapsulation, object iden
tity, clas ses or types, inheritance, overriding
and late binding. I point out the differences
between an object oriented system and an ob
ject oriented database system. I rusa point
Ollt the advantages an'd drawbacks of an ob
ject oriented database system with respect to
a relational system. Finally, I list some re
search issues.

1 Introduction

The database field is concerned with the man
agement of large amount, of per,i,tent, reli
able and ,hared data. "Large" means too big
to fit in a conventional main memory. "Persis
tent" means that data persists from one ses
sion to another . "Reliable" means recover
able in case of hardware or software failures,
"Sharable 71 means that several users should

© ACH

1 nv ited 1 ec ture
7th AC M SIG ART-SJGMOO-SJGACT
Sympnn ium nn Principles of Oata
n"se Syst.ems .
Austin , Tex"s , r1arch 19f1fl.

be able to access the data in an orderly man
ner. These four adjectives chara.cterize the
database problem and they define the speci
ficity of the field.

While this statement is (I hope) trivial, I
think it is good to remember the exact prob
lems we are solving. I did not say that the
database field was concerned with cutting re
lations in smaller pieces or finding optimal
join algorithms or des'igning a new distributed
version of 2PL. These are not problems, but
solutions we have devised to solve the prob
lem.

It is therefore possible to find new solutions
(for instance outside of the world of relational
systems) to the basic problem of shared access
to large amounts of reliable persistent data.

However, to many outsiders, the field might
look (or might have looked) concerned with
the design and implementation of relatio nal
systems for business type applications. The
emphasis on business is obviously historical:
the importance of the database problem was
first felt by implementors of business appli
cationsj hence a bias towards the specific re
quirements of this community. The emphasis
on relational systems comes from the fact that
they provided a good answer for these appli
cations.

Three new phenomena are appearing:

1. New non business-type users are feel
ing the need for large amounts of reli
able, sharable and persistent data (CAD,
CASE, office automation and AI). These
new customers of database technology
bring in new requirements.

2. The main memory cost and the memory
to-disk cost ratio are changing, thu s mod
ifying the assumptio ns behind cu rrent
database system designs

11.2

3. We have discovered the impedance mis
match. Relational systems are well
suited for the ad hoc query mode but
not for application development. Ap
plication development requires the com
munication "between a relational query
language and a programming language.
These two types of languages do no mix
well: they have different types, they
have different computational models, re
lational systems are set-at-a.-time while
programming languages are record-al-a
time . Solving the impedance mismatch
requires integrating database and pro.
gramming language technology.

Up to now, the database community has
strongly felt the first phenomenon: we put
a lot of work into understanding new appli
cations and building systems for them. The
second was felt to a lesser extent: some work
was recorded on main memory databases .
The search for a solution to the impedance
mismatch hil.S been fairly active recently.
We have tried to merge logic programming
and databases, functional programming and
databases and more recently object-oriented
programming and databases.

2 Nature of the field

I think three main factors contributed to the
interest for object-oriented database systems.

(i) People building object-oriented systems
needed database functionality. Adding some
of this functionality to a system turned it into
a database system.

(ii) The database community perceived the
impedance mismatch : they started look
ing for technologies to solve this mismatch .
Object-orientation looked promising because
it provided a framework to represent and
manage both program and data.

(iii) An interest of database people for some
of the object-oriented technology. Other as
pects of this technology (essentially the mod
eling power of the approach and the semantic
data model aspect) tempted some database
system designers and they included some in
new prototypes of systems. The emphasis was
o n so lving the database design problem by
providing more powerful tools to m odel the
real world.

The overall objective of the field is to in
tegrate database technology and the object
orie nted approach in a single system. It is
therefore a system driven effort which will be
judged by the quality of the systems it gener
ates.

The approach taken by most researchers is
the foUowing:

1. Specify an object-oriented database sys
t em : this means define an object-oriented
data model, its connection to a program
ming language (or the inte gration of a
programming language in the model) and
the dynamic aspects of the system (trans
action management for instance),

2. Develop the necessary technology sup
port: algorithms to implement the sys
tem and theories to gain better under
standing of the mode l and the system.

3. Build the system and make it run fast.

3 Status of the object
oriented database field

Three points characterize the field at this
stage: (i) the lack of a common model, (ii) the
lack of formal foundations and (iii) a strong
experimental activity.

Whereas, Codd's original paper set the goal
by giving the specification of a relational sys
tem (data model and query language). no
such specification exists for object-oriented
systems . There is no clear consensus on
what an object-oriented system is, let alone
an object-oriented database system. There
is still some argument on the basic principles
and on the main characteristics of an object
oriented database system. People still argue
about definitions of concepts, The favorite
game of the opponents of the approach is to
ask a crowd of object-oriented zealots to de
fine object-orientation: the result is in gen
eral a c ivil war among the crowd . Even if one
agrees on the definition, there is a lot of free·
dom in choosing seemingly minor aspects of
the system: such questions as "is a type an
object?" or "should we support type exten
sions?" are still subject to debate, and these
"minor features" have a stro ng impact on the
system design and implementation,

.,

The second characteristic of the field is
the lack of a strong theoretical framework.
To compare object-oriented programming to
logic programming, there is no equivalent
of the IVan Emdem and Kowalski 761 paper.
The need for a solid underlying theory is ob
vious : the semantics of types, of programs,
of object. identity iB very often poorly defined.
This absence of a good theoretical framework
Ls, in my mind, the cause of the lack of con
sensus on the data model.

Finally, a lot of experimental work is go
ing on at this moment : people are actually
building systems. Some of them are just pro
totypes ILecluse et al 871. INixon et al 871.
[Banerjee et al 871, some are commercial
products. The situation is analogous to that
of relational database systems in the mid sev
enties (even though there seems to be more
start-ups IMaier et al841,IAtwood 851) ill the
object-oriented case). For relational systems,
the specifications of the 'syste m were common
to everybody and people were mainly devel
oping support technology.

Today, we are choosing at the same time the
spec ification of the syste m and the technology
to support its implementat ion. Thus, con
cerning the specifications of the system, we
are taking a Darwinian approach: it is hoped
that, out of the set of experimental prototypes
being built, the best model will emerge. We
hope that at the same time the support tech
nology will be developed.

Unfortunately, with this flurry of experi
mentation, we run the risk of seeing a system
emerging as the system, not because it is the
best (or just good) but because it is the first
one. It is a classical and unfortunate pattern
of the computer area that the first product
to appear becomes the de facto standard and
never disappears. This is at least true for lan
guages and systems (Fortran, Lisp, Cobol and
SQL are good examples of such situations) .

4 Object-orientation

I now describe what I consider to be the main
characteristics of an object-oriented system.
These are the features one should put in a
DBMS to make it object-oriented. Of course,
my choice is somewhat subjective . I chose
these features because I cOll~ider they repre
sent the more original ideas and those who

II.3

will have the most impact on programmer
productivity.

4.1 Encapsulation

Encapsulation is the principle that one should
model at the same time data and operations.
Thus, an object has an interface part and an
implementation 'part. The inte rface part is
the specification of the set of operations which
can be performed on the object . It is the only
visible part of the object. The implementa
tion part has a data part and an operation
part. The data part is the memory of the
object and the operation part describes, in
some programming language, the implemen
tation of each operation.

Consider, for instance, the Employee ob
ject. In a relational system, it is represented
by some tuple . It is queried using a relational
language and, later, an application program
mer writes programs to update this record.
Programs are written to raise the Employee's
salary and to fire the Employee . These are
written, either in some imperative program
ming language with embedded SQL state
ments, or in some fourth generation language .
These programs are stored in a traditional file
system, separately from the database. Thus,
in this approach, t.here is a sharp distinction
between program and data, and betwee n the
query language (for ad hoc queries) and the
programming language (for application pro
grams).

In an object-oriented system, we define the
Employee as an object which has a valu e part
(probably very similar to the record which
was defined for the relational system) and an
operation part which consists of the raue and
fire operations and maybe Borne extra oper
ations to consult the Employee data. When
storing a set of Employees in the dat.abase,
we store at the same time the data and the
application programs.

Thus , there is a single model for data and
operations, and information can be hidden.
Once the interface to the object is defined, no
operation, other that the ones specified in this
interface, can be performed. This is true both
for upd ate and consultation.

4.2 Object identity

This issue has a tendency to be obscured
by some religious and philosophical con
cerns. Object ide ntity has been is pro
gramming languages for quite a time now
(Lis p and Smalltalk). The discussion is
more recent in databases. I don't know
where it was discussed firs t, maybe in
[Maier and Price 841. A complete and more
recent paper on the topic can be found in
[Koshafian and Copeland 861. It is a good
idea, but there is nothing very profound about
it and I am worried that we might soon be
getting pane~ or conferences on the topic.

The idea is the following: in a model with
object identit.y, an object has an existence
which is independent of its value. Thus two
objects can either be identical (they are the
same object) or they can be equal (they have
the same value) . This has two implications:
one is object sharing and the other one is ob
ject updates.

Object sbaring: in an identity based
model two objects can ahare a component.
Thus, the graphical representation of a com
plex object is a DAG, while it it is limited to
be a tree in a system without object identity.
Consider the following example: a Person has
a name, an age and a set of children. Assume
Peter and Susan ·both have a 15 year old child
named John. In real life, two situations may
arise : Susan and Peter have the same child
or they don't. In a system without identity,
Peter is represented by

(peter, 40, {(john, 15, O)}) and Susan is
represented by

(susan , 41, {(john, 15, O)}). Thus, there
is no way of expressing whether Peter and
Susan have the same child . In an identity
based model, these two structures can share
the common part

(john, 15, 0) or not, thus modeling both
situations.

Object update. : assume now that Pe
ter and Susan do indeed have the same child
Jo hn, then when we update Susan's son Jo hn,
this updates the object John and Peter's son
is updated . In a value based system, we have
t o take care of updating both sub-objects.

Of course, one can simulate object id entity
over a value based system by introducing ob
ject idcHLifit!r~ all over tltt! place, but this puts
the burden on the use r (and this burden ca.n

II . 4

be quite heavy for operation s such as garbage
collection).

Note that identity based mod els have al
ways been kn ow n in imperat ive programming
langua ges: each object manipulated in a pro-
gram has an identity and can be updated.
This identity either comes from the name of a
variable or from a physical location in mem
ory. But the concept is quite new in the rela
tional world where relations are value based .

4.3 Types and classes

A type, in an object-oriented system, de
scribes a set of objects with the same char
acteristics. It corresponds t o the notion of an
abstract data type. It has two parts: the in
terface to the object, and the implementation
of the object. Only the interface part is visible
to the users ofthe·type, the implementation of
the object is seen only by the type designer.
The interface consists of a list of operations
together with their signatures (i.e. the type
of the input parameters and the type of the
result) .

The type implementation consists of a data
part and an operation part. In the data part ,
one describes the internal structure of the ob
ject data. Dependin g on the power of the
system, the structure of this data part can
be more or less complex. The operation part
gives a program which implements each of the
operations in the interface part.

In programming languages, types are tools
to increase programmer productivity, by in
suring program correctness. By forcing the
user to declare the structure of the objects he
manipulates, the system checks that the user
does not perform wrong assignments or ma
nipulations on objects. Thus types are used
at compile time to check the correctness of the
programs .

The noti on of class is different from that of
type. Its specification is the same as that of
a type, but it is more of a run time notion. It
contains two aspects: an object fact ory and
an object container. The object factory means
that the cl ass can be used to instanciate new
objects, by performing the operation new on

the class . The objec t container means th at
attached to the class is its extension, i.e. the
set of objects of the system which belong to
the class at this time. The user can manipu-

-

II.S

Ia.te the container by applying operations on
all elements of the class. Classes are not used
for ch ec king correctness of programs but to
create and manipulate objects.

Of course, there are strong simi larities be
tween classes and types, and the differences
can be subtle in some systems.

4.4 Inheritance

This is probably tlie most powerfu l concept
in object·oriented · programming : it allow.
objects of different structures to share oper
ations re lated to their common part.

Assume that we have Employees and Stu·
dents. Each Employee has a name, an age and
a salary, he or she can die, get married and
be paid (how dull is the life of the Employee!).
Each Student has an .age, a name and a set of
grades. He or she can die, get married and
have his or her GPA computed.

In a relational system} the data base de
signer defines a relation for Employee, a re
lation for Student, wtites the code for the
die, marry and pay operations on the Em
ployee relation, and writes the code for the
d,'e J marry and GPA computation for the Stu
dent relat.ion . Thus, the application program
mer writes six programs.

In an object-oriented system, using the in
heritance property, we recognize that Em
ployees and Students are Persons; thus, they
have somet.hing in common (the fact of being
a Person). and t.hey also have something spe
cific. We introduce a type Person, which has
attributes name and age and we write the op
erations die and marry for this type . Then,
we declare that Employees are .pecial types
of Persons, who inherit attributes and opera
tions, and have a special attribute jalary and
a special operation pay. Similarly, we declare
the Student as a .pecial kind of Person, with
a specific 3d-oJ-gradej attribute and a special
operation GPA computation. In this ca.se, we
have only written four programs .

This has two advantages: it is a powerful
modeling tool, because it. gives a concise and
precise description of the world. It helps code
reusab ility, because every program is at. the
leve l at which the largest number of objects
can share it .

4.5 Overriding and late binding

There are cases wh ere, on the contrary, one
wants to have the same name used for dif
ferent operations. Consider for instance the
di"play operation: it takes an object as input
and d isplays it on the screen. Depending on
the object, we want to use different kinds of
display : if the object is a picture , we wa.nt
it to a.ppear on the screen, if the object is a
person, we want some form of a tuple being
printed, and if the object is a graph, we will
want its graphical representation. Consider
now the problem of displaying a set of objects,
whose type is unknown at compile time.

In a standard sys'tem, we have three op
erations: d,'jplay-perjon, display-bitmap and
di,play-graph. The programmer will test for
the type of each object and use the corre
sponding display operation. This forces the
programmer, when he displays an object, to
be aware of the type of the object (extra
knowledge at compile time) and t o be aw are of
the associated display operation and to use it.
accordingly (more information to remember) .

In an object-oriented system, we define the
display operation at the object type level (the
most general type in the system). Thus, dis·
play has a single name and can be used in
differently on graphs , persons and pictures.
However, we redefine the body of the opera
tion for each of the types according to the type
specificity (this is called overriding) . This re
sults in a single nam e (display) denoting three
different programs (this is called overloa ding).
To display the set of elements, we simply ap¥
ply the display meth od to each one of th em.

In this case, we have a different gain: we
still write the same number of programs. But
the programmer does not have to worry about
three different programs . The code written is
simpler: there is no case statement on types.
Finally the code is also re-usable : if we in·
troduce a new type in the system and in the
set of objects to be displayed, the same dis·
play program works (provided we override the
display method for that new type) .

To offer this new fun ctionality, the system
cannot bind operation names to programs at
compile time . Therefore operation names are
resolved (translated into program addresses)
at run time (this is called late binding).

II .6

4.6 Degrees of freedom

I listed above what I consider to be the maj or
characterist ics of an object~oriented system,
i.e. the minimal fea.tures it should have to
deserve the object· orie nted label. These fea.
tures do no t completely specify a. system and
degrees of &eedom are left to the designer.

The major one is the computational model
wh ich is independent of the approach . A
specific computational mode l has to be cho
scn, but its choice is left open. Many
object-oriented systems are based on func
tional langu ages . IBobrow and Steifik 811.
ICardelii 841. Suggestions for mixing the logic
programming approach can be found in the
literature IBancil hon 861. IZaniolo 861. Many
others use more classical imperative languages
ILecluse et al 871. IS troustrup 861. IEiffel 871.

The object constructors which the model
uses are open and most models differ on
these. Some systems are typed ICardelli 84].
while others are not and only use classes,
IGoldberg and Robson 83].

The degree of uniformity can vary from one
system to another. Some systems view things
uniform ly (every thing is an object: objects.
types and methods;. type and method ma
nipulation is done by message passing), some
system view things non uniformly (types and
methods are not objects and are manipulated
by special commands) .

This non exhaustive list explains why, even
if there were an agreement on the minimal
features of an object-oriented system, there
would still be room for a lot of different sys
tems.

5 Related fields

A number of new database sub fields are re
lated to the object-oriented field. These sub
fields are : semantic data models, nested re la
tiolls, eXLensible database systems, database
programming languages and persistent pro
gramming languages.

Semantic da ta models appear as an inte
gration of AI and database concepts. Seman
tic data models have in common with object
oriented data models, the notion of complex
objects and the hierarchy of types (called the
isa relationship). These models however ig
nore encapsulation and late binding. They are

in general more concerned with data model
ing issues and querie s than with running ap
plication programs. The associated query lan
guages are not computationally complete .

Of course, the distinction I introduce here is
arbitrary: some researchers in semantic data
model have been concerned with those prob
lems INixon et al 87]. But the point I want to
make is th e following : one of the main issue
in object oriented systems is how to find good
support for encapsulation, overriding and late
binding . This is where the fu s ion between
databases and programming language is in
teresting and hard to do. Part of the seman
tic data model people are more interested in
the conceptual modeling issues than in those
system aspects.

The area of nested relations (which
seems a much better name than NF2) is
a fairly active field, devoted to the exten
sion of relations to nested re lations. The
concern is more the extension of relational
concepts (query languages, query evaluation,
schema design and relational theory) from fiat
to nested relations. Some prototypes have
been or are being designed and impleme nted
IVerso 86]. /Dadam et al 861. The major dif
ferences are the lack of encapsulation, object
identity and computational completeness.

The appearance of extensible database
systems follows a natural trend of com
puter science: that of moving from compil
ers to compiler-compilers, from syntax edi
tor to syntax editor generators etc . An ex
tensible database system, as ex amplified by
ICarey e tal] is in essence a database gener
ator: the user of the system specifies the
database system he needs (concurrency con·
trol mechanisms, access paths, data model
etc.) and the generator produces for him the
corresponding system.

I doubt database generators, at their cur
rent stage of development, could be used to
write an object-oriented database system (as
I define it) . They could (and should?) how
ever be used to write parts of it.

Database programming languages are
the result of the effort of database people
to extend the functionality of a database
system to that of a programming language,
while persistent programming languages
are the result of the effort of programming
language people to extend the functionality

II .7

of programming language systems to that
of a database system. Eventually these
two su b6elds should merge into a single one
[Atkinson 86[, [Bandlhon and Buneman 87[.
Object-oriented databases , as I have defined
them, lay in the intersection of these two ap
proaches .

6 Object-oriented systems
vs database systems

It is important to have a clear notion of what
is the advantage brought by the the introduc
tion of database functionality in the object
oriented system. In other words, what is miss
ing in an object-oriented system to make a
database system.

6.1 Set programming

The history of sets in computer systems is in
teresting:

Traditional programming languages do not
have in general the concept of sets: they use
otller structures to irnplement sets: arrays,
lists or files. This is why they have no specific
operations to manipulate sets .

In logic programming, sets exist only at the
upper level of the hierarchy: the database
con sists of a collection of named sets (the
predicates). Below this level, all we have
are lists (or terms). If one wants to ma
nipulate sets at a lower level, one uses the
sy stem hack 3d-of which turns a eet into a
lis t of elements. Recent efforts to change
this state come from the database community,
[Tsur and Zaniolo 86[' [Kuper[.

Functional programming people have al
ways been very fond of lists and do not feel
the need for a set construct.

This is also true of most object-oriented sys
tems: the set construct and the class structure
are in fact distinct. In Taxis [Nixon et al 87[
for instance, there is no set constructs and
the only way to manipulate sets is by creat
ing types and manipulating their extension.

The main thing that database people have
brought is considering sets as first class citi
zen s . The relational model introduced an al
gebra based on sets with the associated oper
ations. By defining selection and join as the
maj or operations, the relational model gave

the description of the operations to optimize.
The limitation of sets in relational systems is
due to the fact that only sets of tuples and
tuples of atomic values are considered.

Nested relations are an attempt to raise this
restriction: one can build sets of tuples of sets
and so on. In most nested relation models,
there are some restrictions (set and tuple con
structors have to alternate, objects in a set
must be of the ,arne type etc.) and, in al
most all of them, the database is a collection
of named sets (relations).

I think that treating sets uniformly is one of
the major challenge facing designers of object
oriented database systems.

6.2 Persistence and reliability

Most object-oriented systems do not offer per
sistence. Thus, the only way to keep data
from one session to another is to use a file
system and save the necessary data. This re
quires an explicit storage operation from the
programmer. It also requires translation of
the object from the application format in the
file format. This puts extra burden on the
programmer, complexifies the code and de
grades performance.

The system provides no protection against
hardware or software failures, it provid es no
mechanisms for roll back or to insure transac
tion atomicity.

6.3 Sharing

These systems are single user and do not pro
vide any control over the concurrent access to
the same data.

6.4 Managing large amounts of
data

Most system run in main or virtual memory,
application programs are therefore limited, in
the size of the data they manipulate, to the
virtual address space. Furthermore, the disk
being managed only through the virtual mem
ory mechanism, the performance of the ma
nipulation of large amounts of data is in gen
eral not good.

These systems make no use of indices ,
smart buffer management schemes, clustering

II. S

of objects on disk, clever strategies for selec
tion and joins or intelligent query optimiza
tio n.

7 Object-Oriented vs Re
lational

Current relational ,ystems together with their
connection to a general purpose programming
language can do almost every thing: they in
sure persistency, reliability, data sharing, they
can model any data and can perform any pos
sible computation . . But, even though every
application can be written on top of 8uch a
relational system, it might be extremely hard
to do or it might be incredibly ,low. Thus, to
compare a new system to a relational system,
the criterion for improvement is not comput
ing power, it is computing speed or ease of
programming.

7.1 A step forward

In many regards object oriented systems are
superior to relational systems.

7.1.1 D ea ling with complex objects

The ability to ,tore 'and manipulate com
plex objects is a feature of many object
oriented systems, while relational systems are
restricted to store and manipulate only flat
tuples. This gives more modeling power:
complex structures can be represented di
rectly, and do not have to be mapped onto
lower level relational structure.

7.1.2 Object identity

The notion of object identity, as introduced
in object-oriented system, is clearly a plus in
modeling power. It allows the user to model
directly Borne situations (object sharing and
cyclic objects) without a.dding an extra layer
(of surrogates for instance) on top of the sys
tem. It provides operations such as equal and
identical. It finally provides a 'imple and nat
ural semantics for updates.

7.1.3 Extcnsibility

This is a major advantage of object
orientation: by adding new types (or classes)

in the system, one can extend it capabilities.
This is especially important to adapt the sys
tem to new types of applications.

7.1.4 Storing programs and data

While, in a relational system, data. is stored
in the database system, application programs
have to be stored in some other system. This
mean, that none of the features of the DBMS
can be used to manage the programs.]n
an object-oriented database system, programs
and data are stored under the same formalism
in the same system .

7.1.5 Typing and inheritance, overrid-
ing and late binding

Relational systems do not have any notion of
typing : each relation has its own type and
it is impossible for instance to declare a type
and to assert that several relations are of that
type. Inheritance, overriding and late binding
are tools which make the programmer's life
much easier.

7.2 A step backward

While object-oriented database systems are
superior in many way.s to relational systems,
,orne of the benefits are lost by ,witching to
this new approach. Sometimes we loose be
cause the technology is not there yet, and
sometimes we loose because the paradigm
makes things inherently more difficult.

7.2.1 Simplicity

One obv ious advantage of the relational model
is its simplicity: there are very few basic con
cepts and the whole story can be told in a
few transparencies (which is a good test for
a data model). Clearly, ,orne of this ,implic
ity is los t when we move to the object world:
there are more concepts, some of them over
lap, and once again the lack of a clear uni
fying formalism does not help. This point is
also emphasized by the lack of a solid formal
fr amework for the object-oriented data model.

7.2.2 Ad hoc query languagcs

Relational systems favor the ad hoc query
mode for using databases, and they provide

II . 9

nice query languages and interfaces. Object
oriented databases do not have, at this point,
good query languages . The reasons for this
are two-fold:

(i) Because of the more complex structure
of their data and the lack of a good for
mal underlying model, object-oriented sys
tems do not have , lik e relational systems, a
simple and powerful query language. Some
languages have beell suggested, either derived
from functi onal or semantic data models, but
none has emerged. Those attempts have also
shown that designing simple query languages
for suc h a model is not such an easy task :
there is a clear tradeoff between simplicity of
the query language and the power of expres
sion of the data model.

(ii) The second problem is that query lan
guages and encapsu lation are somewhat anti
nomic : the encapsulation principle states
that data should be hidden fTom users, while
the query needs to see the internal structure
of the objects.

1.2.3 Declarative queries

Because object-oriented systems are more
functional in nature, data manipulation tends
to be more navigational: Thus the user is loos
ing some of the declarativeness of relational
systems. Naturally, if we are able to incorpo
rate set constructors in our model, we might
regain some of this declarativeness.

1.2.4 Relational interface

The absence of relational interfaces on object
oriented databases is a drawback. It might
see m strange to mention this as a problem.
However from an industrial point of view it is
certainly an issue. In the years to come, rela
tional systems will keep increasing their share
of the market. SQL is becoming a de fact o
standard. It will certainly become a standard
for exchange of data between heterogeneous
systems. So, even if objects take over the
world, we will keep exchanging data between
systems in relational form.

1.2.5 Speed

Of course, the performance issue will be used
as an argument against these systems, just as
it was used, not so long ago, against rel ational

ones. This is a clear challenge for system de
velopers. Can we build a system which will
perform selections on sets of objects, as fast
as a relational system currently select tuples
in a relation? Can we run the same amount
of debit/credit tran sactions per second on a
object system than on a relational system?

8 Conclusion and research
issues

believe that object oriented database sys
tems have a reasonable chance to take over
relational systems. My predict.ion is based on
the following facts:

• Object-orientation will win as a program
ming paradigm: it has some obvious
qualities, it is very appealing, it is a fash
ionable, it mixes with a lots of different
styles of programming, and finally it has
shown to be very successful in areas such
as AI and user interface development.

• Object-oriented databases blend the
most successful programming paradigm
with database technology, thus 'solving
the impedance mismatch.

• Their extensibility will allow them to
evolve and accommodate new types of
data types and new functionalitie s.

Of course, this will work only if we are able
to solve the major research issues. Some of
these are:

• Define a formal framew ork in which one
can define an acceptable object-oriented
data model; this data model shou ld in
clude a programming language . Give for
mal semantics to types and programs in
this framework.

• Define Ad hoc query languages and build
a relational interface to those systems.

• Solve the performance problem, i.e. de
sign algorithms for memory manage
ment, buffering clustering and garbage
collection.

• Find a. good formalism for sets in an ob
ject oriented database system, find a way
of doing associative access to sets, to use
indices and to re-use relational query op
timization techniques.

II.10

9 Acknowledgements

I wish to thank Serge Abiteboul, Didier
Plateau , Marc Shapiro, Eric Simon, and Fer
nando Velez for their comments, corrections
and suggestions on an earlier draft of this pa
per.

References

IAlbano et al 19861 A. Albano, G. Gheii, G.
Occhiuto and R. Orsini, "Galileo: a
strongly typed interactive conceptual
language" , ACM TODS, Vol 10, No .
2, June 1985 .

IAtkinson 861 Proceedings of the Workshop
Persistence and Data types, Appin,
September 86.

I Atwood 851 T. Atwood, "An object-oriented
DBMS for design support applica
tions" I Ontologie Inc . Report.

IBancilhon 861 F . Bancilhon, "A logic pro
gramming objec t oriented cocktail",
ACM Sigmod Record, 15:3, pp. 11-21,
1986.

IBancilhon and Buneman 871 F. Bancilhon
and P. Buneman (Ed), Proceedings of
the Workshop on Database and Lan
guages, Roscoff, September 1987.

IBanerjee et al 871 J. Banerjee, H.T. Chou, J.
Garza, W. Kim, D. Woelk, N. Bal
lou and H.J. Kim, "Data model is
sues for object-oriented applications" I

ACM TOIS, January 1987.

IBobrow and Steifik 811 D. Bobrow and M.
Steifik, " The Loops Manual", Tech
nical Report LB-VLSI-81-13, Knowl
edge Systems Area, Xerox Palo Alto
Research Center I 1981.

ICarde lli 841 L. Cardelli, "Amber", AT&T
Bell Labs ' Technical Memorandum
11271-840924- 10TM, 1984 .

ICarey et a~ M. Carey and D. DeWitt , "The
architecture of the EXODUS exten-
sible DBMS", Proceedings
International Workshop on
oriented database systems,
Grove, September 1986.

of the
object.
Pacific

IDadam et al 861 P. Dadam et ai, "A DBMS
prototype to support extended NF2
relations: an integrated view on flat
tables and. hierarchies", Proceedings
ACM Sigmod, Washington 1986.

IEiffel 871 "Eiffel user's manual", Interactive
Software Engineering Inc., TR-EI-
5jUM, 1987.

IF ishman et a!. 871 D. Fishman et ai, "lris :
an object-oriented database manage
ment system", ACM TO IS 5:1, Jan
uary 86, pp 48·69.

IGoldberg and Robson 831 A. Goldberg and
D. Robson, "Smalltalk-80: the
langu age and its implementation",
Addison- Wesley 1983.

IKing and McLeod 851 R. King
and D. McLeod, "Semantic Database
Models", in S.B. Yao Ed., Database
design, Springer Verlag, N.Y . 1985.

IKoshafian and Copeland 861 S. Khoshafian
and G. Copeland, "Object identity",
Proceedings of the 1st ACM OOP·
SLA conference, Portland, Oregon,
September 1986

[Kuperj G. Kuper, "Logic programming with
sets", Proceedings 6th PODS, San
Diego, March 1987.

ILeeluse et al 871 C. Leciuse, P. Richard and
F. Velez, "02, an object-oriented data
model" I Proceed ings of the Work
shop on Database Programming Lan·
guages, Roscoff, France, September
1987

IMaier and Price 841 D. Maier and D. Price,
"Data model requirements for en
gineering applications", Proceedings
of the First International Workshop
on Expert Database Systems, IEEE,
1984, pp 759-765

IMaier et al 841 D. Maier, J . Stein, A. Otis,
A. Purdy, "Deve lopment of an object
oriented DBMS" Report CSjE-86.
005, Oregon Graduate Center, April
86

INixon et al 871 B. Nixon, L. Chung, D. Lau·
zon, A. Borgida, J . Mylopoulos and

-.

II .11

M. Stanley, "Design of a compiler for
a semantic data model" I Technical
note CSRI-44, Univesity of Toronto,
May 1987.

[Schaffert et al 86[
C. Schaffert, T. Cooper, B . Bullis, M.
Kilian and C. Wilpolt, II An introduc
tion to Trellis / Owl" I Proceedings of
the 1st OOPS ALA Conference, Port
land, Oregon, September 1986

[Stroustrup 86[B. Stroustrup, "The C++
programmmg language", Addison
Wesley, 1986.

[T su r and Zaniolo 86[S. Tsur and C . Zan
iolo, "LDL: a logic-based data,
language" I Proceeding of the 85 Con
ference on VLDB, September 1985

[Van Emdem and Kowalski 761 M. Van Em
den and R. I\owalski, "The semantics
of predicate logic as a programming
language" , JACM, Vol 23, No . 4, Oc
tober 1976 pp. 733-142

[Verso 86[J. Verso , "Verso: a database ma
chine based on non INF relations" I
INRIA Rapport de Recherche No.
523, May 1986.

[Z aniolo 86[C . Zaniolo, "Object-oriented
programming in Prolog ", Proceed
ings of the first workshop on Expert
Database Systems, 1985.

II . 12

DISCUSSION

When, during his talk, Dr. Banchilon expressed doubts about whether the Darwinian prin
ciple would apply to the various experiments that were being made, Professor RandeIl
remarked that it was survival of the fittest and not survival of the best.

In the discussion foIIowing the lecture, Professor Nygaard said that Dr. Banchilon's set
of requirements were very similar to the set of requirements used by the people working on
the object store at Parc or the people working on VBase , and consequently were fairly stan
dard. However a very important thing has been omitted. When doing object oriented pro
gramming one is going to want to put into the database objects that are active and in an
unfinished state of execution. For example one might have something that is managing a
complex sequence of actions taking place in an office, which one will want to put it in the
database, take out and make active again and then store ita next state. Professor
Nygaard said that this was a new requirement but one which he found that database peo
ple did not think about. Nevertheless he feIt that it was very important one for object
oriented applications.

A second point was that Dr. Banchiion had emphasised speed and performance. This was
right but that for people who were concerned with designing and using large scale object
oriented applications or environments it might be less in order to make demands on speed
because of the need to hand over things to the database and get them back again. Extreme
demands on speed do not apply to everyone and one of the problems is to achieve progress
in spite of standardisation. This is perhaps a case of the object oriented community being
willing to live with flexibility in spite of less performance.

Dr. Banchiion suggested that perhaps Ms. Goldberg might like to answer the question.
Ms. Goldberg said there wasn't an object oriented programming system or programmer
who would tolerate a slow storage manager or garbage coIlector. She said that you might
think that you would have to give up flexibility to get performance, but the goal should be
flexibility shouldn't give up on performance.

Professor Bayer said that storing objects in a semi-finished or intermediate state was
very closely related to generalising the transaction concept and database people have been
thinking about this for a long time. They are very aware of the problem but they haven't
come up with any generaIIy accepted answers. There are many solutions but no reaIly good
ones or generaIly accepted ones.

He asked whether, with respect to languages and computational completeness, Dr. Banchi
Ion was thinking of generalising SQL or extending something like C+ +. One view of pro
gramming is that changing languages i. not acceptable so you will have to make a decision
which way you want to go.

Dr. Banchiion said that each database system would have SQL and that no one would seIl
a database system in the near future without it. If the implementation of SQL is adequate
for querying a database then everything is fine. If not, then each one of these database
systems wiII also have its own custom made query language apart from SQL.

II. 13

Professor Bayer said that one was then stuck with several languages.

Dr. Banchilon said that they were for different purposes. You need SQL because you
want to talk to other people. You need a specialised query language to allow the user to
interact easily with the database. This query language might be purely graphical. It
might just be a browser.

Professor Tannenbaum said Dr. Banchilon had wanted to roll the clock back fifteen
years with regard to data independence and so on, and had used an example which had pro
grams for "Move Employee" and "Fire Employee" in the database. Professor Tannen·
baum said that he would envision that, in a complex database, the number of possible
operations that you would want to perform would be so immense that the only way that
you could possibly put the operations in the database would be to have , for a tuple with n
fields, basically 2n operations, one for reading and for writing each of the n fields. In
which case, technically you have made the database object oriented but it is basically point·
less. Professor Tannenbaum said that he didn't see how you put operations in the data·
base without having, basically, an operation to read and write each individual field.

Dr. Banchilon said that that was a very interesting comment and that the following was
what happens . There are internal methods and what is needed in the interface is exported
used the export function . If he looks at the examples written by himself and colleagues he
finds that at the end of every type there is written "export all" . He could take the same
programs and put back most of the program in the objects. It is a question of whether or
not you want to follow the philosophy of tying a large complex program to a given type.
Dr. Banchilon said that usually when he looked at these programs he could rewrite them
reasonably well and say "this is what you want to tie to this type" and "this doesn't have to
go out there" . The date of birth of an employee is not a method. There is no point in hav·
ing a specific operation to deal with it. It is inside there for programs which need it.

