
.-

l.l

Persistent Programming
and

Object Oriented Databases

Malcolm Atkinson and Ronald Morrison
University of Glasgow University of St. Andrews

Abstract

Persistent Programming Languages are defined as those languages which allow any of their
values to have lives of any duration. The first ten years of research into those languages are
reviewed. The motivation for such languages has increased. There are significant technological
developments pertinent to their implementation. To obtain the ir benefits requires a radical
revision of the architecture of computer systems, and a major commitment to the paradigm .
Their potential as a foundation for implementing operating systems and database systems is
described, as well as their obvious use for writing long-lived and large scale applications. The
paper concludes by examining some aspects of object orientation, to consider the solutions
offered by the persistent paradigm.

1 Introduction

It is now ten years since a group in Scotland began the implementation of a persistent
programming language. This paper reviews the progress in those ten years, and then suggests
the next major step in persistent programming research. The review concludes that persistent
programming languages have the capability of supporting applications programs and many
components currently thought of as system components. The next step will demonstrate the
value of persistent languages as a foundation for system software. It will also realise the
target of 'seamless' computing which that research began to explore ten years ago, and provide
efficient implementation of this class of languages. Such a seamless system is expected to yield
very large productivity improvements for the implementers of large application systems.

The review reconsiders the major issues in persistent programming. In section 2 we offer a
definition of persistent programming languages, and show that they are a subset of database
programming languages. We are concerned that some people have used the word "persistent" in a
weakened sense, where it is not available to all data types. In section 3 the original motives for
bu ilding persistence are rediscussed, and we see that the range of applications for which they are
appropriate has expanded. In section 4 a brief history of persistent programming is given, as a
summary of progress and as access to the body of literature. The interaction between
programming language research and database research is of continuing importance.

The recognition of persistence as an orthogonal property of languages (section 5) leads to a
discussion as to why all languages do not have persistence or related languages with persistence.
First the issue of comprehendability is addressed and we show that a persistent programming
language is intrinsically simpler than the separate language and database system it replaces. In

1.2

sections 6 and 7 the fundamental issues concerning performance are considered. It is argued
that if we can make operating systems perform adequately, then we can also build persistent
languages of adequate performance (section 8). This leads to an analysis of the role of the
operating system and a proposal to replace it by an appropriate persistent language, leading to
a coherent and seamless context in which to build applications. This raises two challenges:
to the language designers to present the necessary range of functions in a way that can be

understood; and to the architects and engineers to implement these functions, automating all the
necessary physical and logical mappings.

Given such an implementation of an appropriate language, we may go on to use it to implement
an operating system (section 9), and various database management systems (section 10), so
that invested effort and experience may be transferred to this context. It is argued that
without such a radical change to system architectures the potential simplicity of persistent
languages cannot be realised, and implementation will remain difficult, as the 'old' system
components conflict with the new.

To illustrate the radically different approach of persistence, we consider object oriented
database systems as an example of contemporary research and technology in section 11. We
make a proposal for implementing them using a persistent language. We also propose
alternative, possibly better, ways of achieving their functionality using persistent languages.

2 Persistent Programming Languages

Persistence is a property of data values which allows them to endure for an arbitrary time. For
example, heap technology is introduced into programming languages, to extend the persistence of
data from the activation period of a block to the execution time of a program. This is still not full
persistence since there is an upper bound (the execution time) to the longevity of data. It is as
important that brief lifetimes (transience) should be included in persistence otherwise a
programmer has difficulty with intermediate results.

We identify three principles which direct the provision of persistence:

i) persistence independence the persistence of a data object is independent of
how the program manipulates that data object, and conversely, a fragment
of program is expressed independently of the persistence of the data it
manipulates;

ii) persistent data type orthoganality: consistent with the general programming
language design principle of data type completeness, all data objects,
whatever their type, should be allowed the full range of persistence;

iii) orthogonal persistence management: the choice of how to provide and
identify persistence is orthogonal to the choice of type system,
computational model and control structures of the language.

Compliance with these principles is a requirement for a programming language to be recognised as
a Persistent Programming Language. Note that persistence independence implies that the
language may not require the programmer to explicitly request movement of values between long
term and sllort term storage. Implementations of persistence must acilleve a consistent
semantics for data, irrespective of its duration, for example, sharing of mutable structures must
be preserved. Similarly, implementations must ensure that the presence of persistence does not
weaken type checking.

1.3
3 Motivation for persistent programming

The initial motivation arose from the difficulties of storing and restoring data structures arising in
CAD/CAM research. (See start of figure 1) Contorted mappings were needed to store
arrays and graphs represented as references and records onto database structures. These
contorted mappings had a number of costs:

i) they introduced concepts extraneous to the computation, obscuring code and
confusing programmers;

ii) they did not precisely preserve information and were not subject to type
checking, consequently they were a source of errors;

iii) it was difficult to incrementally translate in both directions and consequently
more data than necessary was loaded and unloaded per program run;

iv) there were large computational overheads performing the translations; and

v) concurrent use of the data was excluded.

These contorted mappings are symptoms of a philosophical error, which has its origins in the
limitations of computer technology at that time. That error is to divorce arrangements for using
a computer as a store (databases) from arrangements for using it as a symbol manipulator
(programming languages). Any constructs which are useful for organising or representing
information in a store are relevant to formation and performance of the computation model.
Similarly, operations and constructs needed in the calculation are pertinent to operations on the
store (extraction, selection, 'spring-cleaning', etc). Furthermore, we expect design criteria
applicable in one context to be applicable in the other (e.g. in programming languages, large scale
tasks result in a recognised need for constructs to provide modularity - these will be needed in
databases for the same reasons).

The loss of adequate typing arises in three ways. The transformation from the types in the
programming language, to the types in the storage form, and the inverse mapping, are not
checked to establish that one is the exact inverse of the other. There are higher level types, not
made explicit in the mapping or stored data, and so their conventions may be lost. (The present
effort for standard data interchange formats, e.g. EDIF, STEP, etc., addresses the final problem,
but does not address the first two.) Persistent languages deal with the first two sources of
loss, and some instances of the final source. This final source is further addressed by data
models implemented in persistent languages, but there always remains some structures that
programmers may not make explicit.

Persistent programming languages were created to solve the problems enumerated above. They
eliminate discontinuities in the computational model, and economise on design and implementation
effort by utilising the same concepts and constructs throughout the total computational system.
They attempt to give equal importance to the computer as a 'filing cabinet' and the computer as
a 'symbol manipulator'. This may be contrasted with databases (including OODBs) which allow
the former to dominate, and with functional programming which allows the latter to dominate. In
any given appl ication it is possible that data or algorithm will dominate, but it is inappropriate for
a data centred or algorithm dominated view to be built into a language which is the foundation
technology of implementation.

Recently, many more applications, such as office systems and artificial intelligence have come to
need a persistent language. We contend, in this paper, that persistent programming languages
are also su itable for implementing database systems and operating systems.

-.

1.4
We challenge the contention that there are separate classes of application - "data intensive" and
"computationally intensive". Application domains which appear ab initio "computationally
intensive" sooner or later develop large volumes of data, human processes which need to be
interrupted and resumed, and multiple project contexts which demand all the functionality of
database support. Similarly, application domains which appear to be "data intensive" eventually
prove to have complex data, exceptional cases, and sophisticated programming. We therefore
contend that the present discrimination is an artifact of the currently available technology, and
that eventually, a wide spectrum of applications will benefit from orthogonal persistence.

4 History of persistent programming

A recent survey [Atkinson & Buneman 87J presents an overview of the treatment of persistence
in DBPLs, here we summarise the history of persistent programming languages and show the
related DBPL landmarks in figure 1, the notes explaining figure 1 appear in figure 2.

Year PPLs Relational OBPLs Other OBPLs

1974 Need recognised 1 PascallR2 &
Aldat3 under
construction

1977 Design Automation Data PascallR2 paper
Requiremenls4

1978 Need for persislence
identified5

1979 Attempts at persistent AstralS, Rigel9
Pascal & persistent Theseus lO proposals
Algol 68
Nepal designed 6
S-algol7 implemented

1980 PS-algol version 111 Taxis 12
implemented

SDM 13

1981 Building Persistent 14 Plain definition 15 Daplex 16
Object managers published

1982 Shrines17
Transitive closure problem18

1983 PS-algol version 219 ModulalR20 built
Galilee 21 Adarel 22 proposed
EFDM 23 RAOUEL24 Adaplex 25
Persis lent Ada proposed 26

1984 PS-algol version 3 27
Amber28

1985 Napier 29 design begins
Appin 1 Workshop 30 Poly 26
CPS-algol 32

1986 PS-algol version 4 33 DBPL 34 RAPP 35

1987 Appin 2 workshop 36
RoscoH workshop 37 Ouest 38
Methodologies developed 39

Year

1988

PPLs

Napier version 1 implemenled 40
DPS-algol 42

1989 Persislent Systems track
HICSS 44
Newcastle NSW Workshop 45
Oregon Workshop 46

1.5

Relational OBPLs

History of Persistent Programming and OSPL Iandmar1<s

figure 1

Other OSPLs

Oberon 41
Modula-3 43

These notes are sometimes abbreviated to citation of relevant papers. Dales used are mostly Ihose of papers on the work
which obvious~ lags by up to 2 years behind the actual work.

1) [Atkinson 74 a,b, 75, 76J all these mappings to text, relations or Codasyl model proved unsatislactory.
2) [Schmidt 77J
3) [Merrett 77J
4) [Atkinson & Wiseman 77J
5) [Atkinson 78J
6) [Atkinson 9t at. 82J This language proposal proved too complicated, it proposed: inheritanca, block structure, explicit

name spacas, nested transactions, concurrency, objects and orthogonal persistence.
7) [Cole & Morrison 82J
8) [Amble et al. 79J
9) [Rowe & Shoens 79[
10) [Shapiro 79J
11) [Atkinson 9t al. 81J Orthogonal persistenca for all the existing types in PS-a1gol.
12) [Mylopoulos 9t al. 80J Primarily a design aid in ~s early form.
13) [Hammer & McLeod 81J
14) [Atkinson et al. 83a, 83b, Cockshott 83, 87, 88a, 89, Brown & Cockshott 85, Brown 87, 89J A succassion of vers ions .
15) [Wasserman et al. 81 J
16) [Shi>man 81 J
17) Implementation 01 a POMS: shadow paging via VAX VMS memory mapping by Paul McLellan & Ken Chisholm -

unpublished .
18) The transitive closure problem was identilied at a workshop in UEA [Atkinson et al. B4J .
19) Added first class persistent procedures [Atkinson & Morrison 85aJ.
20) [Koch et al. 83J
21) [Albano et al. 83, 85J.
22) [Horowitz & Kemper 83J.
23) An experimental version 01 Deplex, buin using PS-algol [Kulkarni 83, Kulkarni & Atkinson 84, 86J.
24) An experiment with building relational databases and HCI using PS-algol [Hew 83J.
25) [Smith et al. 83J
26) [Hall 83J
27) Addition of rectangular image types and other facilities to permit HCI programming [Mornson et al. al. 86a, bJ.
28) [Cardelli 85J.
29) An intended succassor to PS-algol [Atkinson & Morrison 85bJ.
30) The first international workshop on Persistent Object Systems, held at Appin, Sootland [Atkinson 9t al. 85, 88bJ .
31) [Matthews 85J
32) First experiment with concurrent persistent languages [Krablin 85J.
33) Added to PS-algol: events, exceptions, and the callable compiler [Philbrow 9t al. 88J.
34) [Matthes & Schmidt 89J
36) Second international workshop on Persistent Object Systems (see note 30), [Carrick & Cooper 87J.
37) 1st International Workshop on database database programming languages, Roscoff, Brittany, France [Bancilhon &

Buneman 88J.
38) [Cardelli 87J
39) Methodologies lor organising persistent programs [Cooper 9t al. 87, Dearfe et al. 87J.
40) An implementation 01 Napier88 revised from the original (see note 28) [Dearie 88, Morrison 9t al. 89J
41) [Wirth 88J
42) A design and prototype implementation for a distributed and concurrent persistent language [Wai 88J.
43) [Cardelli 9t al. 88J
44) Proceedings of the 22nd Hawaii International Conference on System Sciences.
45) Proceedings 01 the third international workshop on Persistent Object Systems, Newcastle , NSW, Australia, January

1989
46) International Workshop on DBPLs, Oregon, June 1989 (Iollows Irom Roscoff, see note 37).

1.6
Figures 1 & 2 are presented for two reasons:

i) for the new research student in PPLs or DBPLs, to use as a guide when
reading into the subject; and,

ii) to show that there is a considerable body of research into persistent
languages which already interacts strongly with the DBPL and general
programming language research.

4.1 Persistent Programming: where database and programming language research interact.

As an example of this latter interaction consider the search for effective bulk data types in
persistent languages. Buneman and Ohori [Buneman 85, Buneman & Ohori 87, Ohori 87J have
explored the integration of relation types with inheritance and record types, using a semantics
similar to that developed by Cardelli [Cardelli 84J for multiple inheritance, and first exhibited in
Amber [Cardelli 85J. This work by Ohori and Buneman was initiated in the early design
discussions for Napier, as the relational type proposed for Napier generated a complex
interaction of types [Atkinson & Morrison 85bJ. It has led to a proposal for a language,
Machiavelli, with extensional polymorphism [Buneman & Ohori 89J which they claim exhibits all
the properties of object oriented systems, and is superior to Amber in avoiding loss of type
information, when an extensional polymorphic procedure is used. Similarly work on persistence
for functional languages [Argo et al 87J is the basis for potentially large scale data structures
with optimised access [Trinder & Wadler 88, Trinder 89J. That method of organising bulk data
derives from notations present in Miranda [Turner 87J and Orwell [Wadler 85J and has similarities
with FQL [Buneman et al. 82aJ. Other approaches to bulk data potentially include facilities for
the programmer to define the appropriate type, if sufficiently rich type systems can be defined
[Cardelli & Mitchell 88J. In object oriented systems the extent of classes are often the only bulk
type. In O2 [Bancilhon et al. 88, Lecluse et al. 88J there is an explicit set construct, as well as
these extents. Leibnitz [Keedy & Rosenberg 89J provides both sets, and sequences with various
forms of ordering. There are difficulties in arranging to optimise expressions involving these bulk
types, in the context of languages which have objects or are data type complete [Zdonik 89J.
The elaboration of this example is not meant as a survey of current work on bulk objects
[Atkinson et al. 89aJ in PPLs, but rather to illustrate the following aspects of persistent
programming languages (and to some extent DBPLs) consequent on pers istence being an
orthogonal property of data:

i) that it benefits from research into programming languages;

ii) that, potentially, once persistence is a well developed concept, with good
supporting implementation methods, it can be composed with any (nearly
any?) good programming language design to yield a persistent programming
language; and

iii) that it is the concern of PPL designers to face both the issues of
programming languages and of databases and to synthesise designs that
effectively address both domains.

These last two aspects are now considered further.

!.7

5 Persistence as a separate dimension

'Dimension' is used here, to indicate a property that can vary independently of the other
properties of a programming language, We argue that the investigation of persistence is
independent of the investigation of other aspects of the language, such as computational model,
control structures, type systems etc,

But, if this is the case, why aren't there a plethora of persistent programming languages to
match all the non-persistent ones?

To answer this we first consider the questions:

i) is persistence absent because persistence combined with an arbitrary
programming language is intrinsically difficult to understand? and,

ii) is persistence absent because it is intrinsically too difficult to implement?

The former question is the more fundamental, since the understandabi li ty of a language
(primarily for the programmers who use it, but also for those who implement it) is the most
important property of any language, This question is a question about the nature of those
programmers, To build a particular application they either have to:

a) understand language X and database (fil ing system) Y and the interface XY
between them, or

b) understand language X', where X' is X with persistence added,

We contend that the latter option is intrinsically easier for them, If the data representation and
operations of X and Y differ (if they don't the system reduces to X') then the representation of
the same information will differ in X and y, The programmer then has to organise the
translations and movements of data between X and y, In the case of X' neither these explicit
translations nor the explicit organisation of movement are necessary, At present, in both
systems, the programmer still has to assist with the organisation of concurrency, transactions,
recovery, etc, In both systems problems of scale, distribution, name organisation, etc, may also
arise, It is unlikely that separation of the support system into two components will help with any
of these additional requ irements, indeed, in general, such separation means that each has to be
considered twice when using X and Y, but only once when using X', (Even when using X' they
may still be intrinsically difficult factors to specify and implement.) In reality , much of the
present implementation of these factors in present day application programming depends on the
use of a third support component, an operating system Z, which we discuss shortly (sections 8 &
9),

The two options may be summarised by the following diagrams:

Programming
Language X ..

1. 8

Database V

Real System
R

USING A COMPOSITION OF LANGUAGE AND DATABASE

persistent
programming X·
language ~ .. --------------~.~ RealSystemR

USING A PERSISTENT PROGRAMMING
LANGUAGE

These diagrams emphasise the simpl ification achieved by PPLs. In the former, the applications
system builder (attempting to model, administer or control a real system R) is concerned with
maintaining three mappings: XV, VR and XR. In the latter, the appl ications systems bu ilder
(undertaking the same task) has to maintain correctly only one mapping X'R. This should be
intellectually easier. Not only is the number of mappings reduced, but the possibility of
inconsistency errors, where XV followed by VR is a different mapping (for some information)
from the direct mapping XR, is eliminated. In general, the mappings have to operate in both
directions. A consequence, in the former system, is that mapping X to V fo llowed by V to X may
not be information preserving. The avoidance of translation and, potentially, the support of type
checking throughout the data's lifetime, eliminates this class of errors from the persistent
programming system.

Philosophically, we can argue that if there was a case for two support components X and V,
they would evolve to be similar. Both are required to support models of the same set of real
systems {RI. Eventually, any feature or concept which assists in building the mapping XR, will
prove useful in VR and vice versa. Consequently they will both eventually be based on the same
concepts, and there would be no logical benefit in keeping them separate.

The use of X' is neutral about the precedence of data and program. In contrast most
combinations of X & Y give a data centred view. Design and decisions regarding the data
precede the work on programs, and it is often difficult for the programmer to influence the model
created in database Y as a result of insight developed while programming the application. In
other cases, where V is a fili ng system (which carries very little semantics about the data it
stores) the programming decisions dominate. In a persistent system X', program and data have
equal precedence and may be designed incrementally, in either order. Practice, disciplines, and
methodologies may then choose any pattern of design, specification and construction that is
appropriate to the application, without constraint from the implementation technology, X'.

1. 9
These arguments imply that the addition of persistence to a programming language leads to an
intrinsically simpler system to understand, for build ing a complete application system.

We therefore consider whether the difficulty of their construction and support is an impediment to
their widespread use.

6 The cost of persistent systems

The question, "Is persistence absent because persistence is too hard to implement?" is
interpreted here as a question regarding the cost of engineering to support a persistent
programming language. We can review the support of a PPL as requiring three components:

A) a mechanism for translating the constructs in the language into appropriate
data structures, including the representation of procedures (e.g . code
generation);

B) a mechanism for interpreting (called 'executing', 'evaluating 'etc) those data
structures; and

C) a mechanism for managing (creating, storing over a lifetime, etc) those data
structures.

Mechanisms A and B for PPLs are not intrinsically different from the same mechanisms for
other languages, see for example [Dearie 88). Mechanism C, however, is the focus of much
attention, and with the present state of widely available technology raises difficulties. It is,
therefore, discussed in more detail.

Mechanism C can be divided into three subcomponents:

C1 The provision of sequences of bytes of stable storage in which to store the
values that represent the information;

C2 The provision of addressing mechanisms for identifying the sequences of
bytes of storage; and,

C3 The provision of stores and interfaces which make those byte sequences and
addresses consistently available to mechanisms A and B.

When stated in this form, these may be recogn ised as components of a typical operating system .
For example, the segments of Multics [Organick 72J provide such sequences of bytes, and are
addressed by segment numbers, and made accessible through an address faulting and paging
mechanism. Why then isn't C trivially provided by copying the operating system technology?
The reasons commonly put forward are two fold:

i) The populations of byte sequences have different properties from those in
operating systems; and

ii) the stability requirements are more severe.

These differences may arise because the operating system offers the programmer facilities to
manage physical mappings whereas, the PPL presents logical mappings. The differences are
considered in turn. We will call the byte sequences 'chunks' [Atkinson et al. 83b], though they are

1.12

8 Operating Systems and Persistent Programming Languages

If the diagrams in section 5 are redrawn to show the operating system Z we get the following:

Real System
Programming .. _---------~~~ R
Language X

Using a composition of language, database and operating system

OPERATING SYSTEM
Z

Real System
Programming _-----------lI~~ R
Language X' •

Using a persistent programming language and operating system

The relationships between Z and the other components are not all data and representation
mappings as in the earlier diagrams. Z provides functions which enable X, Y & X' to operate,
e.g. the ability to execute a machine instruction, to do a disc transfer, or to wait 5 seconds etc.
There is a mapping of data across ZY and ZX', as the operating system may make (usually
minor) changes to the bytes (e.g. adding framing data) when storing data on behalf of Y and X'.
The interface ZR is typically active if R includes people , who then stimulate and communicate
with the other components via the operating system.

Again we note that the additional support component introduces complexity. The applications
programmer has to understand and use the operating system, while understanding and using the
other components X &Y or X'. The interaction between Z and these components may not be
easy to understand. For example, if some data is stored directly in Z's files, and other data
stored via Y (or X') , then if the rol lback facilities of Y (or X') are used to restore an earlier state,
the programmer or user will be responsible for explicitly restoring those files to the corresponding
state .

Again we therefore propose a simpler system:

1.1 3

persistent
programming X" ~._---------_. Real System R
language

USING A COMPLETE PERSISTENT PROGRAMMING LANGUAGE

In th is system the functions of the operating system have been subsumed into the new persistent
programming language X". The advantage is a seamless world for the applications programmer,
where there is one coherent model of computation, not just calculation, covering everything
necessary for application programming, in a single consistent framework. The conceptual
advantage to the application's programmer is obvious, and there are many more application
programmers than systems programmers.

There is a philosophical argument as to why it is likely to be both desirable and feasible. An
operating system provides an abstract (higher level) machine,

F1) Independent of the supporting hardware, e.g. that machine has process
creation operations, file operations, character stream 110 operations, etc;
Some of the principal functions of this abstract machine are:

F2) To organise the concurrent execution of processes;

F3) To provide and manage storage;

F 4) To provide a filing system, including stable storage, naming of long term
data, protection, security, and incremental update;

Fs) To provide incremental delayed binding mechanisms, e.g. to bind a program,
identified by a file name, to a process, then to bind data, identified by some
other file names, to that executing process; and

Fs) To provide a control language enabling users to organise their computations.

But it is also the task of a programming language to provide an abstract (higher level) machine,
with a semantics independent of the supporting hardware. If it were persistent then that
programming language would also need to provide functions F2 to Fs consistently defined in F1. If
that language, as is now likely, also had an interactive (immediate execution) mode of operation,
then it could also service Fs, otherwise an interpreter written in the language would service Fs.

Therefore, there is very considerable overlap in the functions of an operating system and a
persistent programming language. Furthermore, they are trying to support the same people,
manipulating sim ilar data, with sim ilar algorithms, tackling similar applications. Therefore, we
would expect the requ irements, loads, data properties, etc to be the same. The major difference
being the expectation of seamlessness for the persistent programming approach.

If the operating system and the persistent programming language implement the same functions
for loads described by the same parameters it is redundant effort to implement both, and it
generates unnecessary complexity for programmers. Often the two implementations will
conflict and interfere deleteriously.

1.14
The above argument is only sustainable if we accept a closed world hypothesis, i.e. that entire
systems are implemented in isolation within this persistent system. Elsewhere we discuss ways
of relaxing that hypothesis [Atkinson 89].

9 Persistent systems implement operating systems

Section 8 established that there is a large overlap between the functions provided by an
operating system and a PPL. The work of implementing the run-time system of a PPL (we call
this run-time system a "persistent system") may be potentially redundant duplication of the
effort in writing an operating system. When they are implemented separately they will conflict
(e.g. for physical memory space) and present a more complex support system for applications
programming.

How should we proceed to implement X" to avoid such duplication? We conclude that the
persistent system should be built directly on the hardware of the host machine. The operating
system should then be built by writing code in X". This does not differ fundamentally from the
approach which justified the design of Oberon [Wirth 88]. It differs significantly in detail, as it is
intended that the functions of X" are much higher level, for example, they abstract over the store
hardware, so physical store mapping is no longer a consideration for the operating system writer.
Similarly processes and concurrency may be supported in the PPL [Morrison et at. 89b], so that

any residual operating system functions are likely to be relatively trivial to implement. We
illustrated the implementation of such a residual function, the filing system [Atkinson & Morrison
87] in an envisaged PPL. The PPL, X", would already provide the storage, and concurrent
access to arbitrary data structures, and persistent name management. The implementation of
a typical, UNIXTM -like filing system then requires very little code. PPLs also require incremental
binding mechanisms which meet requirements F5 [Atkinson et at. 88a].

The early implementations of PPLs did not attempt to cover the fundamental functions of an
operating system. The implementations, e.g. versions of PS-algol, Amber, Poly, Galileo, etc. fall
short of this approach. In each case they are implemented on top of an operating system
(invariably UNIXTM), and lose much in potential efficiency by duplication and interface traversal
costs. They also fall short in another respect. These languages have depended on the
surrounding operating system for many functions, e.g. process creation, and have not provided
such functionality themselves. Therefore, they are incomplete and, even if implemented
properly, would not provide sufficient primitive functions from which to provide or implement the
operating system functions F2 to Fs. It may also be argued, that the example languages cited
have not been targeted at the system writing process, and hence have too many high level
constructs, whereas a balance towards efficiency oriented constructs [Wirth 88] would be more
appropriate. This is a moot point, but is separate from the discussion here, since we consider
the persistent programming language to be based on any appropriate language design with
orthogonal persistence. The inclusion of polymorphic processes within the value space of Napier
[Morrison et at. 89a, b, c] is a significant step towards providing sufficient primitive functions.

Another group of experiments concern the design of appropriate computer architectures to
support persistent systems [Cockshott 88a, 89, Rosenberg et at. 89, Pose 89]. In principle, these
experiments, which explore new architectures, would build their own operating system and
persistent languages. Consequently, they might explore the structure outlined above. However,
so far they have not been able to do this, as building the experimental hardware, and getting a
minimal system operational has consumed the available effort. Perhaps the project most
advanced (in this sense) is the implementation of Leibnitz on the Monads machine [Keedy &
Rosenberg 89]. Many of the experiments also seek to build hardware which will support the
targets of modern operating systems better. For example, to have much larger address spaces,
to deal with distribution, to allow smaller units of protection and store to be economically
supported, etc. Such goals will benefit systems where persistence is the lowest complete
system supported, as the goals and loads that motivate those changes in operating systems also

..

1.15
apply to persistent languages, as explained above.

The arguments given above (sections 7 and 8) suggest that the functions and load on a
persistent system and an operating system are sufficiently sim ilar, that we should experiment
with new relationships between them.

An operating system and any PPL will on ly have the same functionality if they have the same
target. Each operating system designer has in mind a particular universe of applications (R) (see
section 5). Similarly each language designer has a target universe (R). Only when these two
are the same wil l the two systems require similar functionality. For both languages and
operating systems the initial universe of application is usually simple and well defined, though the
definition may not be made explicit. Subsequently, partly via the misunderstandings of users, and
partly via inconsistent enhancement, the definition often becomes blurred.

The operating system will not then totally disappear. Some of its kernel's implementation
technology will be relocated, after a check that it is essential and appropriate, or reimplemented,
in the run time system of the PPL. These primitives wi ll be presented within the PPL, so they
may be used by al l programmers. The rest of the operating system conta ins either useful or
essential superstructure. That superstructure would then be implemented in the PPL using those
primitives. Experience with operating system design would then be utilised, in the specification,
design and implementation of modules and procedures providing that superstructure from
persistent libraries.

This new architecture has some similarities to research into lightweight operating systems where
the rest of an operating system has then been implemented on top of the lightweight system.

10 Persistent languages supporting database systems

It was argued (Hepp 83J that the persistent language should provide all the central functions
(concurrency, transactions, stable store, recovery) of any DBMS for any data model.
Subsequently, it has been shown that it is relatively straightforward to implement various data
models using a persistent language which has the following features:

i) delayed incremental binding ;
ii) an extensible type system; and
iii) a callable compiler.

Examples of such demonstrations are given in Cooper et al. 87, Cooper & Atkinson 87, Cooper &
Qin 89, Kulkarni & Atkinson 86, Cooper 89b, Abderrahmane 89. Experiments demonstrate the
ease with which a persistent language may be used to implement an object oriented DBMS
[Cooper 89a, Ph ilbrow et al. 89J.

When considered alone, the method of implementing DBMS via persistent programming languages
is justified because:

i) it amortises the cost over many DBMS of providing the data model
independent (perhaps 90%) of operations (e.g. recovery, locking and
concurrency etc.), by these operations being implemented in the language,
which is then used to implement many DBMS;

ii) it has been reported that operational prototypes of a new data model with
reasonable interfaces have been implemented in as little as one month [Cooper
& Atkinson 87J;

ii i) the DBMS is then portable, since the implementor of the persistent
prog ramming language provides the same abstract machine via each
implementation; and

1.16

iv) quite high level data structures, naming systems, transaction mechanisms and
concurrency arrangements will become common to more than one DBMS, thus
facilitating interworking and comparison.

If the superstructure of the operating system were also built using a PPL (secti on 9), then it will
have common underlying behaviours and structures and hence more compatible semantics with
the persistent programming language, and with the DBMSs implemented in it. Therefore, we
may expect interworking between the DBMSs and operating system to be made easier.

If persistent programming languages perform as expected, new application systems would be
implemented in them. The various DBMS and operating systems would still be useful for two
reasons:

i) to accommodate invested effort (e.g. implemented systems, existing skills) ; and

ii) to behave as libraries of related functions of established utili ty (abstract data
types) for use in the construction of new applications.

The hypothesis that efficient DBMS can be built using a good quality PPL as foundation should
be tested for production work. It is based on the argument that suitable optim isations may be
written within the language, for example, repeated binding is avoided by cal ling the compiler, and
optim isations, such as transformation of expressions may be performed when preparing the
parameters for such a call of the compiler. Data structures, such as indexes can be built using
the PPL, or built into the PPl.

In the interim we see two advantages to using PPLs to implement DBMSs based on various data
mocels:

i) it is sufficiently easy to produce a reasonable prototype, that data models can
be readily evaluated to verify the ir claims to aid in system design and
construction; and

ii) the lower cost of implementing the data model, and the improved ease of
interworking, may modify system design and construction behaviour, as people
may now prefer to build one application using two data models, each suited to
different parts of the application.

This whole area is ripe for further research and experimentation, as better quality PPLs become
available.

11 The consequences of a perSistent approach

The persistent programming paradigm provides a new way of looking at applications
programming and computational problems. To illustrate this, we look at object oriented database
(OODB) research and present the persistent programming approach to their situation. OODBs
are chosen as our example for several reasons:

i) they have avowed goals in common with PPLs of making the relationship
between program and 'database' simpler, and of improving applications
programmer productivity;

ii) we have examined several OODBs recently;

iii) OODBs are a particularly active area of research at present; and

iv) some of the OODBs we exam ined still present mismatch problems.

•

1.17

A particular application area, or some other system area cou ld equally well have been used for
illustration.

11.1 The properties of OODBs

To allow our discussion to proceed, we present a description of OODSs based on papers by
Sancilhon [Sancilhon 88, Atkinson et al. 89b]. The list of requirements for OODS is then:

i) Encapsulation - an object has an interface specifying a set of operations and a hidden state
which may be manipulated and accessed only by that restricted set of operations;

ii) Common storage arrangements for data and program - these are stored using the same
mechanisms and the bindings between them are also stored ;

iii) Identity - leading to object sharing - an object may be a value in arbitrari ly many other
objects which store references to it, and updates are visible to the object via all references
to it;

iv) Types - objects with the same characteristics are said to have the same type - this
usually means the same signature where signature is the set of name:type pairs of the
operations in the interface;

v) Classes - these are the set of currently extant instances of a particular object type;

vi) Generators - these are the operations that generate new objects - often named in terms
of the type or class, e.g. new <class name>;

vii) Inheritance - th is allows type specialisation;

viii) Delayed binding - names of operations maybe reused (overloading), the object on which an
operation is being appl ied is identified by interpreting the name in the context of that
object's type (or super-types) ;

ix)

x)

xi)

xi i)

xiii)

xiv)

xv)

xvi)

Bulk operations - usually these operations are over sets;

Longevity - any data in an OODS (including program) may be required for an arbitrar ily
long time;

Reliability - data should be protected against failures by redundancy and recovery
mechanisms;

Protection systems - data needs protecting against various forms of misuse ;

Sharing and concurrency - different requirements will be met from the same data body
(requiring the equivalent of views) and uses will occur concurrently;

Large data volumes - the stored volume of data may range from moderate to very large
scales;

Distribution - geographically dispersed implementations of an OODS are required :

Ad hoc use - query languages have proved advantageous with relational systems, their
role must be met for OODS; and

f

1.18

xvii) Tool sets - large collections of tools are needed to a)examine and maintain metadata, b)
to examine, instrument and maintain data and program, and c) to accelerate applications
system construction.

These requirements on an OODB correspond either to modelling requirements, or to database
requirements. As we have stated, the modelling issue is orthogonal to persistence, and all the
database requirements are requirements that could be placed on a persistent system. We first
discuss a general approach to OODBs and then briefly consider the specific approach taken by
the persistent paradigm to each OODB requirement.

11.2 Persistent object oriented languages

One way of achieving an OODB is to construct a persistent OOPL. For example, to make
C++, objective -C, Modula-3 or Oberon persistent.

This approach has the advantage that it eliminates a reappearance of the mapping problems
which occur otherwise. For example, in many of the current OODBMS, the database (i.e.
classes) are defined using an 00 language specific to this DBMS, but the operations (methods)
are defined using some generally available programming language (e.g. C). In consequence within
the method there is a mapping between the C data structures and types and those of the OODB,
reintroducing the old map programming and maintenance problems.

11.3 Persistent paradigm substitutes

For each of the requirements for OODB given above we now consider the persistent
programmers' options, assuming the persistent language is not object oriented. In fact, these
options depend on the particular persistent language in some cases, and the language Napier88
[Morrison et al. 89] meets most object oriented programming requirements directly, and the
process modelling available with Napier probably supersedes object oriented modelling.

i)' Encapsulation - most PPLs provide a modern type system (e.g. in Napier: first class
procedures, ADTs and processes) which provide several appropriate mechanisms for
encapsulation.

ii)' Common storage for program and data - most PPLs (e.g. PS-algol, Napier88) have ways
to make procedures persist as properly formed closures. The constructs of Napier listed
above all provide this.

iii)' Identity - programming languages support this as references and recursive data types.
Persistent programming languages concentrate much of their implementation effort on
supporting it persistently.

iv)' Types - these are fundamental to all existing and likely PPLs.

v) Classes - these are not normally maintained automatically. If a persistent programmer
requires such constructs for a particular type, then an ADT is constructed which
maintains the extent and provides the iterator. The bulk types of languages such as
Leibnitz and Machiavelli facilitate such coding. Polymorphic ADTs, as in Napier88, may
allow its generic provision. Insertion into the extent is arranged by including this in the
operation to create an instance, exported from the ADT. A removal operation, exported
from the ADT, would remove from the bulk type. Retention based on reachability is
normally the only straightforward semantics, consequently removal may not result in the
object ceasing to exist and simultaneity of the two events cannot be achieved.

I.l9

vi)' Generators· these are automatically provided as a consequence of defining a type in most
PPLs, and are usually identified by the type name.

vii) Inheritance· this is not generally provided in PPLs. In Napier the equivalent effects are
provided by various polymorphic constructs (e.g. env). We discuss this design issue below.

viii)t Delayed binding . the naming of operations via an object and its supertype chain is not
used in Napier. Equivalent effects can be achieved via environments [Dearie 89]. union
types, or bounded parametric polymorphism [Cardelli & Wegner 85J.

ix) Bulk operations . the best way of providing these is not yet determined; they are present
in some PPLs and have to be coded by a programmer and provided in a library in others.

x)t Longevity· the requirements (and achievements to date) are identical.

xi)t Reliability· the requirements are identical, and the support system is expected to meet
them.

xii)t Protection . various capabil ity structures in the support system, combined with compiler
enforced encapsulation and type checking, provide security.

xiii)' Sharing and concurrency· Leibnitz provides views of modules. Napier, Le ibnitz and X all
provide processes, and interprocess communication.

xiv)t Large data volumes· the requirements are similar.

x v) Distribution· in both contexts this is only a topic for research and is not yet available in a
'product'.

xvi) Ad hoc use . browsers meet one aspect of this [Dearie et al. 89]. and immediate
evaluation of expressions may meet other requirements [Atkinson & Buneman 87J. Other
user interfaces to higher level views of the data would be constructed as part of the
application.

xvii) Tool sets· the requirements are similar in both systems.

Those items marked with ' are well developed concepts in programming languages, those
marked t are well developed in persistence research or databases.

11.4 Inheritance and classes reconsidered

The process model in Napier provides the modelling power of some object systems with
inheritance [Morrison et al. 89bJ. The various uses of inheritance that have been proposed are
clearly incompatible, for example, the use of it as a modelling construct, and as a type checking
construct conflicts [Wegner & Zdonic 88J. We therefore propose that using separate constructs,
as in the present persistent languages, is likely to be more efficacious, and better understood by
programmers. We see the uses of inheritance as:

i) as a shorthand notation and aid to program correctness;
ii) as a modelling tool ;
iii) as a means of organising nested extents;
iv) to promote code re·use;
v) as a structure for large systems; and
vi) as an abstraction over a class of data structures.

1.20

Each of these will be considered in turn. Some were discussed in earlier papers [Buneman &
Atkinson 86, Atkinson & Buneman 87).

11.4.1 Shorthand notations

When a type, e.g. person is declared, it may be quite complex. Later, if an employee type is
declared, the definition for person may be reused, e.g. type employee is person and . .. Such
an abbreviation has several advantages:

i) it saves rewriting the common definition;
ii) if the person definition has already been demonstrated correct and useful, th is is

carried forward; and,
iii) if the person definition is revised and this source code is reprocessed, then the

employee type may be similarly revised.

Note that none of these require the generated types to have a recognised relationship within the
system. These effects can all be produced by suitable program development tools, such as
browsers which would allow the person type to be found, and then 'cut' into the new code and
textually extended. Such operations are supported by data dictionaries, which may also keep
track of the derivation sequence and hence dependencies.

11.4.2 Modelling and inheritance

Another possible implication of a statement like type employee is person ... is that the behaviour
of instances of employee will be related to the behaviour of instances of person, e.g. that every
operation allowed on an instance of person is also al lowed on an instance of employee. A
stronger interpretation is that every instance of employee is also an instance of person (so with
this interpretation a reference requiring a person referend could have an employee referend).
Alternatively, for every employee instance, there could be a corresponding person instance, so
that a reference could discriminate between them.

Most useful models on a computer reflect dynamic behaviour. In this case we would expect to
model a person becoming an employee, and also ceasing to be an employee. Further, we would
expect movement into and out of many categories, e.g. person ---) pupil ---) student ---)

applicant ---) undergraduate ---) postgraduate ---) tutor ---) etc. Such movement does not
form a sequence, many developments occur independently, e.g. the above person may also
perform child ---) orphan ---) spouse ---) parent and person ---) golfer ---) diver -)
hillwalker. Note also that previous states are not necessarily abandoned when a new one is
entered, e.g. not all divers give up golf.

The variety of mechanisms for describing these models is further complicated by the fact that
categories themselves are created (and perhaps cease) dynamically. For example, dynamically
we may introduce the new specialisation of person, speleologist, and then derive cave-diver from
both speleologist and diver.

If then the modelling view is taken there are many variations in the form of model programmers
wish to employ. Possibly different forms for each appl ication. It is preferable, therefore, to
provide simpler primitives in the support system, out of which appropriate 'inheritance' models can
be built. There are several experiments using PS-algol which show this is possible [Philbrow et
al. 89, Cooper et al. 87, Ku lkarni & Atkinson 86, Cooper & Atkinson 87J. It has several
advantages:

I. 21

i) a variety of models can coexist in the system;
ii) supporting tools or methods can facilitate the approach;
iii) programmers not using the model(s) do not have to be aware of such complex

semantics; and
iv) the interference between modelling and type checking is avoided.

11.4.3 Nested extents

In languages with classes, there is a corresponding extent maintained, either as a set or
sequence. Operations may be provided to iterate over that extent. Without inheritance this
raises some semantic difficulties, e.g. explaining to the programmer which types have extents (
for each r in real do .. .), which instances are in the extent (when an object has ceased to be
reachable via other routes does it drop out of an extent, if an object is explicitly removed from an
extent but still a referend from some other object, does it pop back in, or isn't the extent all the
existing instances) , what order is the iteration performed, how do creations and 'deletions' during
the iteration affect that iteration, etc.? Is existence defined for this site , th is database, this
user's view, etc.? Some of these problems can be avoided by not having implicit extents.

When inheritance is introduced the semantics of extents becomes more complex. Is the extent of
employee a subset (subsequence) of the extent of person or do they have separate extents? In
the latter case, is the iteration order over one of the extents the same as that over the other?
Is there a performance or order difference between for each e in employee do ... and for each
p in person where p is a employee do . .. ?

Further we observe that other instances of bulk types may be useful to programmers. These
may be defined separately as a bu ilt-in construct, with only a few of the difficult ies above, or
they may be built out of primitives by the programmers, and possibly be provided in libraries.

To provide the programmer with such an independent bulk type seems to offer more power,
potential flexibility, and avoids complex semantics. The persistent programming language should
therefore take this approach. Where a type related extent is needed it should be achieved by
encapsulating the type in a polymorphic ADT which provides for the maintenance of extents.
This is also potentially more efficient, as the extent overhead is only incurred when it will be
used.

11.4.4. Code re·use

Code re-use in this context depends on inclusion polymorphism [Cardelli & Wegner 85). For
example, it means that if the operation marry had been defined for person x person , then that
code could be used to marry two employees.

In most inheritanc.e implementations th is requ ires that the programmers have anticipated this
need and defined an appropriate node in the type lattice. For example, if the database held
information about dogs, horses and people, we may later find that there is a need for code to
record procreation, e.g. proc give-birth [type T) (mother: T ~ T). Unless the system
designer has a type node animal above dog, horse and person and below object, this is not
definable by inclusion polymorphism based on an explicit type lattice. It is not usually possible to
retrofit animal into the type lattice. Once inserted, it must then have the necessary attributes,
e.g. date of birth & gender. Many systems then given a mother, e.g. of type person, produce a
less precisely typed result, e.g. animal. Bounded universal polymorphism , or extension
polymorphism, as in Machiavell i, avoids these problems, but has similar implementation costs.

1.22

11.4.5 Large system structure

Objects with inheritance claim to provide encapsulating and naming regimes to impose structure
on large systems and to allow incremental systems construction through dynamic binding.

To fit all system structure within the object oriented model can sometimes be difficult. For
example. there is no natural home for dyadic operations between two types. or transfer
functions between types. Transfer functions present further problems as to make it possible to
write them, too much of the internal structure of at least one type must be exposed.

Alternative structures combined with objects overcome these problems. First class procedures
can be identified and stored to provide dyadic operations. Modules can implement families of
types, exporting the types and the transfer operations without exposing internal detail.

Evolution is only partially accommodated by the signature matching of bounded universal
polymorphism, as it allows code written to operate on new types which have the appropriate
properties. We utilise extensible universal unions to introduce such new types and to limit
checking (env and any in Napier). The env type also provides management of names and
dynamic structures. This approach means that the programmer can choose where to pay the
price of dynamic and incremental change, so such overheads are not needlessly invoked for
stable parts of the system.

11.4.6 Data structure encapsulation

Whatever model is chosen to implement the functions carried by inheritance in object oriented
systems, quite complex data structures result. Unaided, a programmer would find these
confusing and make mistakes. Inheritance avoids that at the expense of imposing a model a
priori.

Systematic construction methods supported by tools can overcome this as have been illustrated
using PS·algol [Cooper 89a, Philbrow et al. 89J.

11.5 Object oriented and perSistent paradigms

The conclusion of the above discussion is that 00 research is developing many models useful to
application programmers, Zdonic's suggestions on how we may support collaboration are a good
example [Fernandez & Zdonic 89J.

The persistent programming research on the other hand sets out to provide a suitable set of
primitives out of which to construct such models more economically. Application system building
may then be a parameterisation, refinement and combination of such models, extended where
necessary by new models and application specific code in the persistent language.

Development may now proceed in three ways:

i) collaboratively;
ii) with the persistent paradigm superseding the object oriented paradigm; or
iii) competitively.

,.

l. 23

If the collaborative route is taken the persistent programming paradigm provides an abstraction
over the methods of providing stable stores. The object oriented community then builds libraries
of abstract data types on this foundation layer, possibly exploring and developing models more
rapidly, and certainly avoiding confusion between modelling and implementation technology.

If the persistent paradigm subsumes the role of object oriented systems it will do so through
having high enough level constructs in its languages to satisfy application builders. In achieving
this it may sacrifice some of its suitability for implementing system software.

If the two groups proceed competitively this avoids risks associated with persistent programming
failing to live up to expectations. It probably delays both from achieving their expectations.

However, if both then succeed, the problems of interworking will be exacerbated , and
implementation effort will be duplicated.

12 Conclusions

The persistent programming paradigm has been presented as a strong contender for greater
exploration, development and use. The arguments for its use in application programming have
been presented before, but they are brought together in this paper and made explicit.

The growth in persistent language research and its implementation is shown to be significant over
the past ten years. In particular, there are now at least 9 persistent programming languages in
use or under development, as shown in the following table:

Persistent Programming Languages

Language

PS-algol

Napier88

Leibnitz

X

E

Galileo

Poly

Amber

Persistent Prolog

Status

several implementations in use.

first implementation complete.

first implementation nearly complete.

being implemented.

being implemented.

implemented and in use.

implemented.

implemented.

being implemented [Colomb 89].

Exploration of the addition of orthogonal persistence to a variety of other languages is
recommended . To aid those who might wish to do this, we discuss the systems which support
th is. In most cases they now present, at some level , an abstract stable store which could be
used to support a variety of languages. There are several attempts to build hardware wel l
adapted to this purpose.

The relationship between existing persistent systems and operating systems is shown to be
unsatisfactory. In particu lar, they represent duplicated implementation elfort, and often conflict
in their use of machine resource. More seriously, the combination presents an unnecessarily
complex environment to applications programmers.

l. 24

The overall impact of these persistent languages is illustrated by considering object oriented
DBMS. One strategy would be to finesse the task of implementing object oriented DBMS by
making a good object oriented language persistent. The facilities of persistent languages are
compared with the provisions of OODBMS and we conclude that the existing PPLs can
potentially meet all the targets of an OODBMS, and may well avoid semantic complexity
inherent in the multiple uses of inheritance, classes and object based naming. We identify three
strategies by which the persistent and object oriented paradigms may coexist. The most
profitable is the complementary approach where persistence provides the implementation
technology for object oriented systems and the object oriented paradigm provides modelling
strategies for applications programming as libraries in the persistent space. We would argue
that this is typical of the relationship that will develop between persistence and other database
research. In particular, there will be a large repertoire of models and algorithms, including
technologies now thought of as optimisation techniques, implemented within a persistent language,
making available a repertoire of data handling techniques for applications implementers, as
extensive as those currently prevailing for numerical work and graphics.

We identify the potential of persistent programming to be considerable. The preliminary research
has been done, and the time is now ripe for major research and development projects which will
bring it to much wider production use in various ways. The maximum gain will only be realised if
we are prepared to totally restructure our computing systems.

Acknowledgements

This work was supported by grants from Alvey Initiative and the British Science and Engineering
Research Council and by collaboration with STC Technology Ltd., at both the Universities of St.
Andrews and Glasgow. GIP Alta'ir have also contributed to the work at Glasgow. A grant
from the British Royal Society towards travel to Australia, helped to provide the time to look at
persistence more generally, and the opportunity to discuss it with enthusiasts in the field.

J. 25

Bibliography

[Abderrahmane 89J Abderrahmane, D. Thesis in preparation, University of Glasgow,
Department of Computing Science, 1989.

[Albano et al. 83J Albano, A., Cardelll, L. & OrSini, R. 'Galileo: A strongly type
interactive conceptual language". Tech. Rep. Internal Technical
Document Services, A.T. & T. Bell Laboratories, Murray Hill , New
Jersey, U.S.A., 1983.

[Albano et al. 85J Albano, A., Cardelli, L. & Orsini, R. 'Galileo: A strongly typed,
interactive conceptual language", ACM Trans. Database Syst. , 10,
2 (June 1985),230-260.

[Amble et al. 79) Amble, T., Bratbergsengen, K. & Rlsnes, O. "Astral: A structured
and unified approach to database design and manipulation", in
Proceedings of the Database Architecture Conference, Venice,
Italy, (June 1979).

[Argo et al. 87) Argo, G., Fairbairn, J., Hughes, R.J.M., Launchbury E.J. & Trinder,
P.W. "Implementing Functional Databases", in Proceedings of the
International Workshop on Database Programming Languages,
Roscoff, France, Sept.1987.

[Atkinson 74a) Atkinson, M.P. "PIXIN: a network modelling language", IFIP
Congress 1974, North Holland, 1974,296-300.

[Atkinson 74b) Atkinson, M.P. "A survey of current research topics in
data-structures for CAD", in Programming Techniques for CAD,
ed. M.P. Sabin, NCC publications 1974, 203-218 and 297·316.

[Atkinson 75) Atkinson, M.P. "Network Modelling", Ph.D. Thesis, Cambridge
University (1975).

[Atkinson 76) Atkinson, M.P. "IDL: A Machine ·independent Data Language",
Software Practice & Experience, Vol. 7 (1977) 671-684.

[Atkinson & Wiseman 77] Atkinson, M.P. & Wiseman, N.E. "Data management requirements
for large scale design and production", ACM SIGDA Vol. 7, 1, March
1977,2-16.

[Atkinson 78) Atkinson, M.P. "Programming Languages and Databases",
Proceedings of the 4th International Conference on Vel}' Large Data
Bases, Berlin, (Ed. S.B.Yao), IEEE, Sept. 78, 408-419.

[Atkinson et al. 81) Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. "PS-algol: An
Algol with a Persistent Heap", ACM SIGPLAN Notices Vo1.1 7, 7,
(July 1981) 24-31. Also as EUCS Departmental Report CSR-94-81 .

[Atkinson et al. 82) Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. "Nepal - the New
Edinburgh Persistent Algorithmic Language", in Database,
Pergammon Infotech State of the Art Report, Series 9, No.8,
(January 1982) 299-318.

[Atkinson et al. 83a) Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. "Algorithms for a
Persistent Heap", Software Practice and Experience, Vo1.13. No.3,
259-272 (March 1983).

[Atkinson et al. 83bJ

[Atkinson et al. 83cJ

[Atkinson et al. 84J

1. 26

Atkinson, M.P., Chisholm, K.J. & Cockshott, W.P. "CMS· A chunk
management system", Software Practice and Experience, Vo1.13,
No.3 (March 1983),273-285. Also as EUCS Departmental Report
CSR-110-82

Atkinson, M.P., Bailey, P., Chisholm, K.J., Cockshott, W.P. &
Morrison, R. "An approach to persistent programming", The
Computer Journal, Nov 1983, Vol. 26, 4, 360-365.

Atkinson, M.P., Bailey, P., Cockshott, W. P., Chisholm, K.J. and
Morrison, R. "Progress with persistent programming" in Databases
- Role and Structure (Eds. Stocker, P.M. Gray, P.M.D. and Atkinson,
M.P.) Cambridge University Press, Cambridge, England 1984,
245-310.

[Atkinson & Morrison 85aJ Atkinson, M.P. & Morrison, R. "Procedures as persistent data
objects", ACM TOPLAS 7,4, (Oct. 1985) 539-559.

[Atkinson & Morrison 85bJ Atkinson, M.P. & Morrison, R. "Types, bindings and parameters in a
persistent environment", Proceedings of Data Types and
Persistence Workshop, Appin, August 1985, 1-24.

[Atkinson et al. 85J Atkinson, M.P., Buneman, O.P. and Morrison, R. (Eds.) Proceedings
of the Persistence and Data Types Workshop, Appin (August 1985),
Persistent Programming Research Report 16, Universities of St.
Andrews & Glasgow, Scotland.

[Atkinson et al. 86J Atkinson, M.P., Morrison, R. & Pratten G.D. "Designing a Persistent
Information Space Architecture", Proceedings of Information
Processing 1986, Dublin, September 1986, (ed. H.J. Kugler). 115-119,
N. Holland Press.

[Atkinson & Morrison 87J Atkinson, M.P. & Morrison, R. "Polymorphic Names and Iterations",
in Proceedings of the International Workshop on Database
Programming Languages, Roscoff, France. (eds. Buneman &
Bancilhon) September 1987.

[Atkinson & Buneman 87J Atkinson, M.P. & Buneman, O.P. "Types and persistence in
database programming languages", ACM Surveys, Vo1.19, No.2
(June 1987) 106-190.

[Atkinson et al. 88aJ Atkinson, M.P., Buneman, O.P. & Morrison, R. "Binding and
Type-Checking in Database Programming Languages", Computer
Journal, Vol. 31, No.2 (March 1988) 99-109.

[Atkinson et al. 88bJ Atkinson, M.P., Buneman, O.P. & Morrison, R. Data Types and
Persistence, Springer Verlag, Berlin, 1988.

[Atkinson 89J Atkinson, M.P. Architectures for Persistent Systems, In
Proceedings 3rd International Workshop on Persistent Object
Systems, Newcastle, N.S.w., Australia, Ed. J. Rosenberg (January
1989).

[Atkinson et al. 89aJ Atkinson, M.P., Harper, D.J., Philbrow, P. & Watt, D.A. "Bulk data
types: design issues and practice in DBPLs", in preparation,
University of Glasgow.

l. 27

[Atkinson et al. 89bJ Atkinson, M.P. Bancilhon, F., DeWitt, D., Dittrich, K., Maier, D. &
Zdonik, S. The Object Oriented Database System Manifesto, In
Deductive Object-Oriented Databases Conference, Kyoto, Japan
(September 1989).

[Bailey 89J Bailey, P.J_ "Performance evaluation in a Persistent Object
System", in Proceedings of the Third International Workshop on
Persistent Object Systems, January 1989, 373-38S.

[Bancilhon 88J Bancilhon, F_ "Object Oriented Database Systems" In Proceedings
ACM SIGACT-SIGMOD-SIGART, Conference on Principles of
Database Systems, Austin, Texas, May 1988.

[Bancilhon et al. 88J Bancilhon, F., Barbedette, G., Benzaken, V., Debbel, C., S.
Gamerman, Leclude, C., Pfeffer, P., Richard, P. & Velez, F. The
design and implementation of O2, an object-oriented database
system. In Proceedings of the OODBS If workshop, Bad Munster,
West Germany, September 1988.

[Bancilhon & Buneman 88J Bancilhon, F. & Buneman, O.P. (eds.) "The Proceedings of the
International Workshop on Database Programming Languages",
Roscoff, MIT Press, 1988.

[Brown 87J Brown, A.L. "A distributed stable store", in Proceedings of the
Second International Workshop on Persistent Object Stores, Appin,
Scotland, 1987.

[Brown 89J Brown, A.L. "Persistent Object Stores", PhD .. Thesis, University
of S1. Andrews, Scotland, 1989.

[Brown & Cockshott 8SJ Brown, A.L. & Cockshott, W.P. "CPOMS - A revised version of the
Persistent Object Management System in Coo PPRR-13-8S,
Universities of S1. Andrews & Glasgow, Scotland, 1985.

[Buhr & Zarnke 89J Buhr, P.A. & Zarnke, C.R. "Addressing in a persistent environment"
in Proceedings of the Third International Workshop on Persistent
Object Systems, January 1989, 36-S0.

[Buneman et al. 82aJ Buneman, O.P., Frankel, RE. & Nikhil, R "An implementation
technique for database query languages", ACM Trans. Database
Syst. 7, 2 (June 1982), 164-186.

[Buneman et al. 82bJ Buneman, O.P., Hirschberg, J. & Root, D. "A CODASYL interface
for Pascal and Ada", in Proceedings of the Second British National
Conference on Databases, Bristol, England (July 1982) British
Computer Society, London.

[Buneman 8SJ Buneman,O.P. "Data types for Database Programming", in Data
Types and Persistence (Atkinson, M.P., Buneman, O.P. & Morrison,
R. eds.), Springer-Verlag, Berlin, 1988, 91-100.

[Buneman & Atkinson 86J Buneman, O.P. & Atkinson, M_P. "Inheritance and Persistence in
Database Programming Languages"; Proceedings ACM SIGMOD
Conference 1986, Washington, USA, May 1986.

[Buneman & Ohori 87]

[Buneman & Ohori 89J

[Cardelli 84]

[Cardelli 85J

[Cardelli & Wegner 85J

[Cardelli 87]

[Cardelli 88aJ

[Cardelli et al. 88J

[Cardelli & Mitchell 88]

[Carrick & Cooper 87J

[Cockshot 83J

[Cockshott et al. 84J

[Cockshott 87]

[Cockshott 88a]

[Cockshott 89]

J. 28

Buneman, O.P. & Ohori, A. "A domain theoretic approach to higher
order relations", A domain theoretic approach to higher-order
relations. In ICDT 86: International Conference on Database
Theory (Rome), Springer-Verlag, Berlin, 1987.

Buneman, O.P. & Ohori, A. "The Database Programming
Language, Machiavelli", In Proceedings ACM SIGMOD Conference,
Oregon, U.S.A (May 1989).

Cardelli, L. "A semantics of multiple inheritance", in Proceedings of
the Sophia-Anapo/is Workshop, Springer-Verlag, Berlin, 1984, 51-67.

Cardelli, L. Amber, Tech. Rep. A.T. 7 T. Bell Labs., Murray Hill ,
N.J., U.S.A., 1985.

Cardelli, L. & Wegner, P. "On understanding types, data
abstraction and polymorphism", ACM Computing Surveys, 17, 4
(December 1985), 471-522.

Cardelli, L. "Quest" In Proceedings 1st European Conference on
Extending Database Technology, Springer Verlag, Berlin, LNCS
303 (1988).

Cardelli, L. Personal communication, 1988.

Cardelli, L., Donahue, J., Jordan, M.J., Kalsow, W. & Nelson, G.
Modula-3 Report, Olivetti Research Centre, Palo Alto, Ca., U.S.A. ,
1988.

Cardelli , L. & Mitchell, J. "OOPSLA '88 Tutorial: Semantic
Methods for Object-Oriented Languages", September 1988.

Carrick R. & Cooper, R.L. "The Proceedings of the Second
International Workshop on Persistent Object Systems",
PPRR-44-87, Universities of St. Andrews & Glasgow, Scotland ,
1987.

Cockshot, W.P. Orthogonal Persistence, Ph.D. Thesis, University
of Edinburgh, 1983.

Cockshott, W.P., Atkinson, M.P.,

Cockshott, W.P. "Persistent programming and secure data
storage", Information and Software Technology, Vol. 29, June
1987, 249-256.

Cockshott, W.P. "Addressing Mechanisms and Persistent
Programming" in Data Types and Persistence (Atkinson, M.P.,
Buneman, O.P. & Morrison, R. Eds.), Springer-Verlag, Berlin, 1988.

Cockshott, W.P. "Design of POMP - Persistence Object
Management coProcessor", in Proceedings of the Third International
Workshop on Persistent Object Systems, January 1989, 51-64.

l. 29

[Cole & Morrison 82) Cole, A.J. & Morrison, R. An Introduction to Programming with
S-algol, Cambridge University Press, Cambridge, England, 1982.

[Colomb 89) Colomb, R.M. Issues in the Implementation of Persistent Prolog .
In Proceedings 3rd International Workshop on Persistent Object
Systems, Newcastle, N.S.w., Australia (Jan. 1989),67-79.

[Connor et al. 89) Connor, R., Brown, A., Carrick, R., Dearie, A. & Morrison, R. "The
Persistent Abstract Machine", in Proceedings of the Third
International Workshop on Persistent Object Systems, Newcastle,
N.S.w., Australia, January 1989, 80-95.

[Cooper 89a) Cooper, R.L. "The Implementation of an Object-Oriented Language
in PS-algol", In Proceedings of the Third International . Workshop on
Persistent Object Systems, Newcastle, N.S.w., Austral ia, January
1989.

[Cooper 89b) Cooper, R.L. Thesis in preparation, University of Glasgow,
Department of Computing Science, 1989.

[Cooper & Atkinson 87) Cooper, R. L. & Atkinson, M.P. "Requirements Modell ing in a
Persistent Object Store", in Proceedings of the 2nd International
Workshop on Persistent Object Systems, Appin, Scotland. August
1987.

[Cooper et al. 87) Cooper, R.L., Atkinson, M.P., Dearie, A. & Abderrahmane, D.
"Constructing Database Systems in a Persistent Environment", in
Proceedings of the Thirteenth International Conference on Very
Large Databases, Brighton, September 1987,117-125.

[Cooper & Atkinson 87) Cooper, R.L. & Atkinson, M.P. "A Requirements Modelling Tool Bu il t
in PS-algol", Persistent Programming Research Report 54 ,
Universities of Glasgow and St. Andrews, 1987.

[Cooper & Oin 89) Cooper, R.L. & Qin, Z. "Implementing IFO in PS-algol", in
preparation, University of Glasgow, Department of Computing
Science.

[Dearie 88) Dearie, A. On the construction of Persistent Programming
Environments, Ph.D. Thesis, University of St. Andrews, Scotland,
1988.

[Dearie & Brown) Dearie, A. & Brown, A.L. Safe Browsing in a strongly typed
Persistent Environment. Computer Journal, Vol. 31, No. 2 (March
1988), 540-544.

[Fernandez & Zdonik 89) Fernandez, M.F. & Zdonik, S.B. "Transaction groups: a model for
controlling cooperative transactions", in Proceedings of the Third
International Workshop on Persistent Object Systems, Jan. 1989,
128-138.

[Hall 83) Hall, P.A.V. "Adding database management to Ada", SIGPLAN
Not. (ACM) 13, 3 (April 1983), 13-17.

[Hammer & McLeod 81) Hammer, M. & McLeod, D. "Database description with SDM: A
semantic database model", ACM Trans. Database Systems, a, 3
(September 81),351-386.

1.30
[Hepp 83) Hepp, P.E. A DBS Architecture Supporting Coexisting Query

Languages and Data Models, Ph.D. Thesis, University of Edinburgh,
Scotland, 1983.

[Horowitz & Kemper 83) Horowitz, E. & Kemper, A. AdaRel: A relational extension of Ada,
Tech. Rep. TR-83-218, Department of Computing Science,
University of Southern California, Los Angeles, California, U.S.A,
1983.

[Hurst & Sajeev 89) Hurst, A.J. & Sajeev, A.S.M. "A capability based language for
persistent programming: Implementation issues", in Proceedings of
the Third International Workshop on Persistent Object Systems,
Newcastle, N.S.W., Australia, (ed. Rosenberg, J.), January 1989,
186-201.

[Keedy & Rosenberg 89) Keedy, J.L. & Rosenberg, J. "Uniform support for collections of
objects in a persistent environment", in Proceedings of the 22nd
Hawaii International Conference on System Sciences (ed. B. D.
Schriver), (Jan 1989), Vol. 11,26-35.

[Koch et al. 83) Koch, J., Mall, M., Putfarken, P., Reid, M., Schmidt, J.w. & Zehnder,
C.A. ModulaJR report - Lilith version, Tech. Rep. Institute fOr
Informatik, Eidgenossische Technische Hochschule, Zurich, 1983.

[Krablin 85) Krablin, G.L. "Building flexible multilevel transactions in a distributed
persistent environment", in Proceedings of the Persistent and
Datatypes Workshop, Appin, Scotland, 1985, 86-117.

[Kulkarni 83) Kulkarni, K.G. Evaluation of Functional Data Models for Database
Design and Use, Ph.D. TheSis, University of Edinburgh, Scotland,
1983.

[Kulkarni & Atkinson 84) Kulkarni, K.G. & Atkinson, M.P. "Experimenting with the Functional
Data Model", in Databases - Role and Structure, Cambridge
University Press, Cambridge, England, 1984.

[Kulkarni & Atkinson 86) Kulkarni, K.G. & Atkinson, M.P. "EFDM: Extended Functional Data
Model", The Computer Journal, Vo1.29, No.1, (1986) 38-45.

[Lecluse et al. 88) Lecluse, C., Richard, P. & Velez, F. O2, an Object-Oriented Data
Model. In Proceedings of the ACM-SIGMOD Conference, Chicago,
June 1988.

[Matthes & Schmidt 89) Matthes, F. & Schmidt, J.W. "The type system of DBPL", in
Proceedings 2nd International Workshop on Database Programming
Languages, Portland, Oregon, (June 1989).

[Matthews 85) Matthews, D.C.J. Poly manual, Tech. Rep. 63, Computer
Laboratory, University of Cambridge, Cambridge, England, 1985.

[Merrett 77) Merrett, T.H. "Relations as programming language elements", Inf.
Process. Lett., 6, 1 (February 1977),29-33.

[Morrison et al. 86a) Morrison R., Dearie, A., Brown, A. & Atkinson M.P. "An integrated
graphics programming environment", Computer Graphics Forum, Vol.
5, 2, June 1986, 147-157.

•

[Morrison et al. 86b]

[Morrison et al. 89a]

[Morrison et al. 89b]

[Morrison et al. 89c]

[Mylopoulos et al. 80]

[Ohori 87]

[Organick 72]

[Philbrow 88]

1.31
Morrison, R., Brown, A.L., Bailey, P.J., Davie, A.J.T. & Dearie, A.
"A persistent graphics fac ility for the ICL PERQ", Software
Practice and Experience, 14, 3, 1986.

Morrison, R., Brown, A., Carrick, R., Connor, R., Dearie, A., and
Atkinson, M.P., "The type system of Napier", in Proceedings ofthe
Third International Workshop on Persistent Object Systems,
Newcastle, N.S'w., Australia, (January (989), 253-270.

Morrison, R., Brown, A.L., Carrick, R., Barter, C.J., Hurst, A.J.,
Connor, R., Dearie, A. & Livesey, M.J. "Language design issues in
supporting process-oriented computation in persistent environments",
in Proceedings of the 22nd Hawaii International Conference on
System Sciences (ed. B.D. Schriver) , (Jan. (989) , Vol. 11 , 736-744.

Morrison, R., Brown, A.L., Conner, R. & Dearie, A. "The Napier
reference manual", University of SI. Andrews, Department of
Computational Science, SI. Andrews, Scotland, 1989.

Mylopoulos, J., Bernstein, P.A. & Wong, H.K.T. "A language facili ty
for designing database intensive applications", ACM Trans.
Database Syst.,~, 2 (June (980), 185-207.

Ohori, A. "Orderings and types in databases", in Proceedings of
the Roscoff Workshop on Database Programming Languages, Alta'ir,
France, September 1987.

Organick, E.I. The MULTICS System, MIT Press, Boston, Mass.,
U.S.A. 1972.

Philbrow, P. ''The mongoose benchmark", internal note, November
1988 .

[Philbrow & Atkinson 88] Phil brow, P. & Atkinson, M.P. Exception Handling in a Persistent
Programming Language, Computer Journal, to be published.

[Philbrow et al. 89] Philbrow, P., Harper, D.J. & Atkinson, M.P. "An object oriented
programming methodology in PS-algol", in Proceedings of 2nd
Workshop on Database Programming Languages, Portland, Oregon,
U.S.A. (June (989), 313-330.

[Pose 89] Pose, R.D. "Capability based, tightly coupled multiprocessor
hardware to support a Persistent Global Virtual Memory", in
Proceedings of the 22nd Hawaii International Conference on System
Sciences (ed. B.D. Schriver), Vol. 11,36-45.

[Rosenberg et al. 89] Rosenberg, J., Koch, D.M. & Keedy, J.L. "A massive memory
supercomputer", in Proceedings of the 22nd Hawaii International
Conference on System Sciences (ed B.D. Schriver), (January (989),
Vol. I, 338-345.

[Rowe & Shoens 79] Rowe, L. & Shoens, K. "Data abstraction, views, and updates in
Rigal", in Proceedings of ACM SIGMOD International Conference on
Management of Data, Boston, Mass., U.S.A. (May 79), ACM, New
York,71-81.

[Schmidt 77] Schmidt, J,W. "Some high level language constructs for data of

[Shapiro 79]

[Shipman 81]

[Smith et al. 83]

[Stone breaker 87]

[Trinder & Wadler 88]

[Trinder 89]

[Turner 87J

[Wadler85J

[Wadler 87]

[Wai88]

[Wasserman et al. 81]

[Wegner & Zdonik 88J

[Wirth 88J

[Zdonik 89]

1.32
type relation", ACM Trans. on Database Syst. 2, 3 (September
1977),247-261.

Shapiro, J.E. "THESEUS - A Programming Language for Relational
Databases", ACM Trans. Database Syst. , 4,4 (Dec. 79) 493-517.

Shipman, OW. "The functional data model and the date language
DAPLEX", ACM Trans. Database Syst. , 6,1 (March 1981),
140-173.

Smith, J.M., Fox, S. & Landers, T. Adaplex : Rationale and
reference manual, 2nd Computer Corporation of America,
Cambridge, Mass., U.S.A., 1983.

Stonebreaker, M.J.
in Proceedings of the 13th International Conference on Vel}' Large
Databases, Brighton, England, (September 1987).

Trinder, P.W. & Wadler, P.L. "List comprehensions and the relational
calculus", in preparation. University of Glasgow.

Trinder, P.W. "Optimisation of List Comprehensions", in preparation,
University of Glasgow.

Turner,O.A. Miranda System Manual, Research Software Ltd .,
Canterbury, England, 1987.

Wadler, P.L. An introduction to Orwell, Oxford University
Handbook, December 1985.

Wadler, P.L. "List Comprehensions", Chapter 7 of The
Implementation of Functional Programming Languages,
Peyton-Jones, S.L., Prentice Hall, 1987.

Wai,F.
Scotland, 1988.

Ph .D. Thesis, University of Glasgow,

Wasserman, A.I., Shurtz, ~.O., Kersten, M.L., van Reit, R.P. & van
de Oippe, M.D. "Revised report on the programming language
PLAIN", ACM SIGPLAN Not. (1981).

Wegner, P. & Zdonik, S. Inheritance as an Incremental Modification
Mechanism, or What Like is and isn't like, In Proceedings ECOOP 88,
Lecture Notes in Computer Science 322, Springer-Verlag, Berlin.

Wirth, N. "The Programming Language Oberon", Software:
Practice and Experience, 18,7, (July 1988) 671-690.

Zdonik,S.B. "Query Optimisation in Object-Oriented Databases", in
Proceedings of the 22nd Hawaii International Conference on System
Sciences (ed. Schriver, B.), January 1989, Vol.

DISCUSSION

During the lecture Professor Randell noted that the history of persistent programming
languages seemed to have been dominated by Europeans and he wondered if this was
so. In reply, Professor Atkinson disagreed and referred to work done at DEC SRC by
Cardelli, together with some work that had been carried out at Waterloo .

Later Professor Nygaard questioned the assertion, made on one of Professor Atkinson's
slides, that programs were equal to data. Professor Atkinson answered this by saying
that he considered programs to be made up from code which was encapsulated in the
form of procedures. Since procedures were first-class objects and could be assigned to
variables then they were indeed simply data.

During Professor Atkinsons description of binding, Professor Randell commented that
"programming was the art of premature binding" . Professor Atkinson answered this by
saying that tools were required to enable a programmer to decide what should be
statically bound, and what should be bound dynamically.

I

