
VIn 

THE SOFTWARE PARADIGM 

8 Warboys 

Rapporteur: Dr Paul Watson 



VIn.2 



VIII. 3 

The Software Paradigm * 

Brian Warboys 
Department of Computer Science 

University of Manchester M13 9PL 

September 11, 1995 

Abstract 

Note from the briefing fo r this talk . 
"Fundamental sin ce software is the defining technology and prescribes the extent of au­

tomation designed into a system.'l 
The nature of modern computer systems is such that a single paradigm is an ins ufficient 

model. The paper attempts to show that what is required is for projects to create a design 
framework which tolerates change (and failu re) in the design process. Within this framework 
the appropriate paradigm should be selected for appropriate design components. 

1 Introduction 

Two case studies will be used th roughout to illustrate and illuminate the issues. They are 
arbitrarily selected from numerous possiblities. They happened to be on my des k when I wrote 
this paper. 

The first is based on the report (Computer 1993) on the series of fatal accidents which 
occurred between J une 1985 and January 1987 from fatal doses of radiation from the Therac-25 
computerised radio therapy machine. References to this case study are labelled 'The rac. n.' 

The second on t he report of the inquiry into t he chaos caused in t he London Amb ulance 
Service when the new Computer Aided Despatch System went operational on the night of 26 
October 1992. References to this case study are labelled 'LAS.n' . 

My point in using these case studies is not to resort to "scare mongering" but to illustrate 
the difficulties with practical examples. Software Engineering is not an academic exercise . The 
detailed attention to semantics cannot be ignored. If it is, it can have disastrous consequences 
for pract ical systems. 

William Blake (1794) "He who would do good to anot her must do it in minute particulars 
General Good is t he plea of the scoundrel, hypocrite and flatterer For Art and Science cannot 
exist but in minutely organised particulars". 

LAS.1 ... on" November 1992 the system did fail. This was caused by a minor programming 
error that caused the system to 'crash '. The automatic change over to the back up system had 
not been adequately tested, thus the whole system was brought down. 

The rac. 1 In the code, the ClassS variable is incremented by one in each pass through Set-Up 
Test. Since the ClassS variable is 1 byte, it can only contain a maximum value of 255 decimal. 
Thus, on every 256th pass through ... the variable overflows and has a zero value. The over­
exposure occurred when the operator hit the 'set' button at the precise moment that ClassS rolled 
over to zera ... . A ECL described the technical 'fix ' implemented for this software flaw as simple . 

• A paper prepared for the MOD DSAC seminar on 'Practical Limits of Automation in CIS' 
London November 1994 
Published in The ICL Techn ical Jou rn al Ingenuity May 1995 



= 

VIII. 4 

2 On the nature of Software 

Software is "soft"; it is generic, formal and extremely malleable. Its application as a process 
tool has social, psychological and management effects. We are effectively moving away from 
software programmes as calculators towards viewing software systems as partners. This is t he 
basic meaning of the expression "Programming in t he Large" introduced to describe the practise 
of building large systems containing many bought-in components. We might better describe 
modern approaches where the emphasis is on "programming the business" as "Programming in 
the Huge" . 

However the conventional issues with software still remain. It is thus , at a technology level, 
a precise formulation whilst being, at a human system level, the means of producing a very 
imprecise guidance tool. Real world performance issues are an obvious example: 

LAS.2 ... the computer system itself did not fail in a technical sense. Response times did 
on occasions become unacceptable, but overall the system did what it had been designed to do. 

Therac.2 They determined that data-entry speed during editing was the key factor in pro­
ducing the error condition: If the prescription data was edited at a fa st pace (as is natural for 
someone who has repeated the procedure a large number of times), the overdose occurred. 

The conflicts between its implementation needs and its ultimate system usage represent one 
of the difficulties. Another the challenge of controlling the conflict between software, being on 
the one hand malleable and one the other manageable as a development. 

An astonishing fact is that, in spite of decades of evidence to the contrary, "management" 
and software designers are still eternally optimistic about software development. 

LAS.3 The Chief Executive's report also states 'there is no evidence to suggest that the full 
system software, when commissioned, will not prove reliable' . 

Therac.3 Given the complex nature of this software and the basic multitasking design, it 
is difficult to understand how any part of the code could be labelled 'straightforward ' or how 
confidence could be achieved that 'no execution paths' exist for particular types of software 
behavior. 

This situation is exaggerated by the trend towards end-user programming of software ap­
plications. Here the "programmer" is thinking much more about programming the business 
rather than programming the machine and, unfortunately our research over the last 25 years 
has tended to focus on the problems of the latter. 

Djikstra remarked, as long ago as 1973 at the IBM Newcastle Conference on the Teaching of 
Computer Science [1], that "Is Computer Science nearing its completion? Is computing practise 
settling down in a way beyond recovery? Or are, as a result of current circumstances, university 
professors tired and discouraged". 

Already signs that the wider problem is perhaps too difficult to solve? So what does an 
exploration of "The Software Paradigm" reveal about the limits on the application of this most 
malleable of technologies? 

3 Software Crisis or Software Affliction 

Dasgupta in his book on "Design Theory and Computer Science" [2J introduces the notion that 
we are suffering not from a cr'isis but from an affiiction. Software Engineers have been talking 
about a "Software Crisis" virtually since the term "Software Engineering" was coined at the 
Nato Conferences of 1968/1969 [3J . Crisis is defined as a "turning point". In particular the 
turning point of a desease when it becomes clear whether the patient will live or die. Yet we 
have had a crisis for nearly 30 years so the term is misplaced. What we really have is a chronic 
affiiction, that is something which lasts for a very long time. 

Some of the causes of this affliction lie with: 



VIII. 5 

• T he attention to detail t hat is requi red 

• T he conflicts between a malleable and manageable technology 

• The evolutionary nature of the software design process 

• The evolutionary nature of software itself 

• The differing emphasis on the development of products versus the support for human 
processes 

4 On paradigms 

A paradigm is usually defined as a pattern or a model. T he term is associated closely with 
the work of Kuhn which led to the formulat ion of t he notion of Kuhnian Paradigms [4J. He 
identified them as having two related aspects . 

• A disciplinary matrix - essentially a network of beliefs, techn iques and theorems. They 
have three main properties: 

Symbolic generalisations: General formal assertions that are later taken for granted 
and employed without question. (e.g Ohm's Law) . 

Model beliefs: A commitment to a belief in a model to which the relevant domain 
conforms. (e .g Bohr-Rutherford model of the atom). 

- Values: e.g scientists believe that prediction should be quantative rather than qual­
itative . 

• Exemplars: Shared examples that illustrate the properties of the paradigm. 

5 A superficial r eview of the most influentia l Software P a r ad igms 

In the beginning there was: 

5.1 T he A lgorit hmic P a radigm (AP) 

Based on the notion that software design problems are well-structured. It is characterised as 
the execution of a domain-specific algorithm, which given a set of requirements , generates a 
design satisfying them in a finite number of steps. This is classical design automation. It 
views comput ing as an algorithmic style and is essentially language-based. Typical examples 
are mathematical models of air fl ows, CFD problems and language processors. Algorithms are 
problem solving systems that do not have explicit access to external knowledge. Rather the 
knowledge is contained in the algorithm itself. More precisely, control strategy and knowledge 
about the task domain are intertwined and together "define" the algorithm. 

Significantly the regularity of the this paradigm does guarantee the avoidance of errors, 
only too prevalent, which arise when an 'ad-hoc' approach is taken to well-st ructured problem 
domains. 

LAS.4 ... an example of such problems was the failure to identify every 53rd vehicle of the 
fleet. 

It was soon clear that the class of software which was producable this way was, although 
important, very li mited. 

So then: 



VIII. 6 

5.2 The Analysis-Synthesis-Evaluation Paradigm (ASE) 

Essentially, given a set of requirements, the software design process principally invo lves : 

• Analysis of requirements 

• One or more stages of synthesis principally driven by decomposition 

• Evaluation 

The best known example is the Waterfall Model of the Software Lifecycle. It derives from the 
desi re to make software development "scientific"; essentially to define an Engineering Method. 
At the Nato conference in 1968 [3) Ross observed that "The most deadly thing in software is 
the concept, which almost universally seems to be followed, that you are going to spec ify what 
you are going to do, and then do it .... The projects that are called successfu l, have met their 
specificat ions. But these specifi cations were , in t he main, based upon the designers ignorance 
before they started the job." 

LAS .5 It should be noted that the SO quotation for the CAD development was only 35000 
pounds - a clear indication that they had almost certainly underestimated the complexity of the 
requirement ..... the bid ... was some 700K pounds cheaper .... 

The Ross quote was, for the first time to my knowledge (note it was 1968 though !) that it 
had been suggested that software development was a learning process. That software evolves. 

Therein lies the fallacy with this paradigm. Essentially Software Design: 

• Problems are incomplete 

• Requirements may be inconsistent 

• Acquires a "life of its own" . Second order requirements arising from the design process 
itself. 

This leads us to the concept of "Bounded Rationality" expounded by Simon in 1976 [5) . 
In essence he pointed out that in such systems t here are constraints on the cognit ive and 
information processing capabilities of the decision making agent which means that the agent is 
not independent in a way wh ich could possibly lead to a normal rational process . 

LAS .6 ft should be said that in an ideal world it would be difficult to fault the concept of the 
design. It was ambitious but, if it could be achieved, there is little doubt that majo,' efficiency 
gains could be made. 

Thus the ASE paradigm leading to the classical design approach of decomposition is not 
widely applicable to software development. Decomposition essentially identifies possible choices 
of components considered independently. This produces unbounded problems as the compo­
nents interact and generate second order requirements. 

The ASE paradigm leads the designer to assume that his problem is well-structured. The 
characteri st ics of such systems are that they are empirical , that is their solutions, possible 
transitions are observable. This tendency is exaggerated by modern quality procedures which 
emphasise the need for formal inspections at the end of each development phase res ulting in a 
"freezing" of the outputs of that stage. 

The problem with modern "guidance" systems as distinct from simple tools is that they are 
essentially non-deterministic. There are all manner of second-order effects. The most significant 
being that the use of these systems changes our behaviour and hence our requirements of the 
system . 

This rapid and inevitable evolu tion means that the ASE paradigm is too rigid for all of our 
needs although useful for some aspects of the system. 



VIn.7 

5.3 The Formal Design Paradigm (FD) 

Since decomposition was clearly limited , the alternative of abstraction with subsequent refine­
ment was introduced. Abstraction provides us with a more flexible tool. Further mathematics 
provides a tool for abst ract ion and further as Hoare reasoned in 1986 at his inaugural lectu re 
at Oxford [6J : 

• Computers are mathematical machines (behaviour is mathematically defined) 

• Programs are mathematical expressions (describe precisely what) 

• A programming language is a mathematical theory (a formal system for program ming) 

• Programming is a mathemat ical activity. 

Thus software design becomes a mathematical proposition or theory that solves the problem as 
represented by the specification of the requirements. Hence, in the FD paradigm, the design 
process is an activity which exploits the traditional methods of mathemat ical reasoning. It has 
been frequently justified by quoting Djikstra's remark that "Testing can show the presence of 
errors but never their absence". 

However like the ASE paradigm it assumes that requirements are known and that essentially 
the problem is well-structured. It is in essence a refi nement of the ASE pa radigm. 

As appli cations of software became more strategic so grew the desire for decision-support 
systems with more "intelligence". 

T hus we arrive at: 

5.4 The Artificial Intelligence Paradigm (AI) 

This derives from the view that software design problems are not well-structured . T hus rather 
t han define a rigid set of requirements the system should absorb domain-specific knowledge to 
an extent that it can provide a set of possible answers which satisfy the const raints implied by 
that knowledge. The design process involves: 

• A symbolic representation of the problem (the problem space) st ructured in terms of: 

Initial problem state 

- Goal or desired problem state 

- All other states are reached or cons idered in attempting to reach the goal state from 
the initial state 

• Transitions from one state to another are affected by applying one of a fini te set of 
operators 

• The result of applying operators is , in effect, a search for the solut ion through the problem 
space 

The pa radigm is explicitly founded on the concept of search, knowledge and heuristics, in 
t hat t he search is determined by knowledge of the problem domain and by a collation of general 
heuristics. The rules are partly domain specific and partly domain independent . The more 
the problem solv ing system relies on domain specifi c knowledge the "stronger" is the problem 
solv ing method itself. "Expert Systems" are instances of such "st rong" methods. In the case of 
the Algorithmic Paradigm , the algorithmic design sty les correspond to the domain independent 
heuristics of AI. However domain specific knowledge in algoithms are generally fewer in number 
but of greater scope and granulari ty t han the rule-based type of knowledge seen in AI systems . 



VIII.8 

In such situations the algo rithmic design system converges to a solution with virtually no search 
of the problem space. 

Again an in teresting class of problems scan be addressed in this style but the rule-base 
tends to become unstructured and in very large systems di fficult to digest. In addition many 
components are dealing with well- structured problems and can be easily developed through 
algorithmic approaches . 

T his leads us to the obvious conclusion that sys tems are hybrid in nature and that t he 
appropriate parad igm is one which recognises this fact. T hus: 

5.5 The Theory of Evolutionary Design Paradigm (TED) 

This is also referred to by Dasgupta [2] as "The Theory of Plausible Design" but I prefer 
the emphasis on evolu tion. This takes as its start ing point that the software design process 
is evolu t ionary. T he requirement is .to create a design framework which accomodates change 
(and failure) and utilises one of the previous paradigms at the appropriate places . Basically a 
collection of tentative hypotheses such that: 

• One can at tempt to provide evidence in their favour to establish the "plausibility" of the 
design 

• Belief in the design's plausibility may have to be revised 

TED is based on the view of design as an "empirical scientific" activity in stark contrast to the 
Formal Paradigm which views design as a "mathematical modelling" activity. Essentially TED 
maintains that design in mixed paradigm sys tems can only consist of establishing constraints 
on the implementation. Collectively these constraints "epresent the design . 

The approach means, in practise, t hat designers are forced to resort to satisfactory rather 
than optimal designs. Thus recognising both the evolutionary and error-prone nature of software 
development. It is worth noting that, even given that there will be elements which clearly can be 
formulated as well-structured problems, their optimal solutions may turn out to be intractable. 
It is interesting to observe that in both our case studies "perfection" was required and being 
unachievable led to problems which were major contributing factors. 

LAS.7 However its success would depend on the near 100 percent accuracy and "eliability of 
the technology in its totality. Anything less could result in serious disruption to LAS operations. 

Therac.4 A common mistake in engineering, in this case and many others, is to put too 
much confidence in software. 

Under such conditions it is frui t ful to view the act of software design as an evolutionary 
process and the design itself at any stage of its development as a tentative solu t ion to the problem 
posed . The adequacy of the design is determined solely according to whether it meets the 
requirements prevailing at that stage of the design process . Thus the design is not only tentative 
at intermediate stages of its development but also when the designers (or their managers!) see 
fit to terminate or freeze the design. 

In other words, according to the evolutionary model, a design at any stage of its development 
(including the final stage) is: 

• An evolutionary offspring of an earlier design form 

• Likely to evolve fu rther in the future 

Thus software design problem solving is a special case of the process of scientific discovery 
and suggests that we recognise in ou r design management systems: 

• The strong link between natural and artificial sciences 



= 

VIII. 9 

o The use of testable hypotheses as a method (use of prototyping and simulation) 

o The nature of evolutionary systems and hence the need for an incremental development 
a pproach (a working product (or subset) which evolves on a daily basis) 

This is recognised in t he attachment wh ich accompanied our briefings. "An early and 
modified SHAPE description of CIS shows its complex and multi-disciplinary nature. It reads 
"CIS is a designed sys tem comprising organisational structure, doctrines, procedures, rules, 
personnel, data, software, communications and equipment ... " . It is worth st udying the scope of 
this descrip tion since it indicates very clearly t he 'socio-technical' nature of CIS and the hyb rid 
nature of t he science- base which underpins it. " 

In bui lding such software sys tems we are attempting to apply the style of the software 
paradigm(s) to real world problems, but recognising at the same time that the problem cannot 
be t ransformed into a basic calculation problem . 

6 Conclusions 

The advantages and shortfalls of the various paradigms outlined above are, I hope, evident. 
They all contain usefu l notions and, as the various quotations from the case studies clearly 
illust rate, they should not be ignored. 

However the TED paradigm sugges ts that we need to construct a design framework for 
modern systems which allows for the embedding of the appropriate paradigm to meet a specific 
design component requirement. T his framework must also, from the beginn ing, cope with 
the problem of the evolution of the system . As systems move from a task-oriented "do this" 
approach to a process-oriented "achieve this" approach so the need for smooth evolution will 
grow. As more of the human process is codified so the need for the process to change as it is 
used will grow. 

Further, in practise, the problem is how to apply the disciplines of systems engineering at a 
real world level. How to include the behaviour of t he human user in the system design. 

At t his level the system needs to be evaluated against three criteria: 

o Organi sational Adop tability (How easy is it for the organisation to adopt) 

LAS.S .. the inability of the system to cope easily with certain established working practises 
(eg the taking of a vehicle different to the one allocated by the system) . 

LAS .9 .. the impact of CAD upon the existing communications infra stmcture was never 
pmper/y and systematically understood. 

o Community Adoptability (How much does t he benefit depend on everybody else adopting 
it ) 

LAS .10 It was recognised that a system such as this would be a 'first' .. . (o ther similar 
ambulance systems were rejected - my paraphrasing) ... there is no confidence in the 
system. 

o Agent of Change (How likely is it to facilitate some new approach or make an existing 
one obsolete) 

LAS. ll Management were misguided or naive in believing that computer systems in them­
selves could bring about such changes in human practises. 

LAS .1 2 The changes to CA C operation ... made it extremely difficult for staff to in tervene 
and cortect the system. 

Such questions are a clear indication of t he hyb rid nature of t he design t ask. In such an 
env ironment "design by constraint and evolution" is a very attractive opt ion . 



= 

VIII. 10 

References 

[1J E.W.Dijkstra "Selected Writings on Computing: A Personal Perspect ive" Springer- Verlag 
1982 

[2J S.D asgup £a "Design Theory and Computer Science" Cambridge University Press 1991 

[3J P. Naur and B.Randell "Software Engineering: Report on 1968 NATO Conference" Nato 
1969 

[4J T .S.Kuhn "The Structure of Scientific Revolutions" University of Chicago Press 1972 

[5J H.A.Simon "The Sciences of t he Artificial" MIT Press 1981 

[6J C.A.R. Hoare "The Mathematics of Programming" Inaugural Lecture , University of Oxford, 
Clarendon Press 1986 



VII I. 11 

DIS CUSS ION 

Rapporteur: Dr Paul Watson 

Following Professor Warboys' points about the difficulties of writing Critical software 
Professor Randall made the point that at the time software is written its criticality may 
not be known. For example, a medic had been discovered using Excel on-line during 
operations. 

Dr Lesk asked why Professor Warboys hadn't mentioned Prototyping and Testing. He 
felt that Software has the advantage over hardware in that it is easier to test. Also, time 
invested in prototyping can reduce surprises when Users get the product. 

Professor Warboys replied that Testing and Prototyping were complementary to what 
he had been discussing. He said that Testing was important for management because 
the nearer a product gets to a delivery date, the more attention management give to it, 
and so the testing phase gets a great deal of attention. 

Regarding the evolution of requirements as software is developed, Dr Bourgonjon 
asked if Professor Warboys agreed that it was necessary to establish domains within 
which change can occur and this was helped by establishing requirements as early as 
possible. 

Professor Warboys agreed that systems can only change in certain dimensions and 
software should be designed with this in mind. 

Mr Ainsworth made the point that one of the problems with developing software was 
that when it was written, there was only limited knowledge of how it would be used, 
particularly because products evolve in the marketplace. 

Mr Dobson made the point that a consequence of the evolutionary approach to software 
development espoused by Professor Warboys was that requirements must be able to 
evolve, but this went against current practise in which the requirements are fixed in a 
legally binding contract. 

Professor Warboys said that this is a problem and there is a danger that the legal 
situation may force IT developers to adopt methods of working which aren't the best. 

Mr Dobson added that if some major IT suppliers are bankrupted as a result of legal 
action, then the laws may change. 

Professor Martin asked whether lawsuits will lead to a trend towards large companies 
buying in and configuring commodity software, rather than risking writing their own. 
Professor Warboys felt that there would be increased outsourcing to specialized 
software companies - for example all telephone software might be written by one 
company. These companies would insure themselves against lawsuits, and because 
insurers would only insure those companies with a good track record the overall effect 
would be an increase in the quality of software. 



VIII.12 




