
VII

THE DEATH OF COMPUTER LANGUAGES,
THE BIRTH OF INTENTIONAL PROGRAMMING

C Simonyi

Rapporteur: Dr Robert Stroud

VII.2

Introduction

VII.3

THE DEATH OF COMPUTER LANGUAGES,
THE BIRTH OF INTENTIONAL PROGRAMMING

Chnrles S imonyi
Microsoft Corporntion

One Microsoft Way
Redmond, WA 98052-6399 USA

This leclure series spousored by Prof. Randell has a long-slanding "adilion of grand overviews of Ihe slale of
the aft in so me aspect of computer science. For this instance, Brian and I have decided to brenk with this
tradition fo r a number of reasons. First. currently [am on ly al1iculme when I discliss Intentional Programming
so this limited the choice of subjects. But the gencrn \ topic of "Future of Software" suggests Ihm we look
forward and it also grallls a certai n license to speculate. It so happens Ih<lI this is the first public fOnlIn where I
have ever disclIssed these ideas and thi s should also lend some spice to the occasion .

I intend to discllss one possible [l!1U re avenue for the evolution of ou r e.'\pression of compute r prograllls which
would create e.\citing new possibi li ties in the production :lIld sharing of software nrtifacts. In my second talk I
would like to demonstrate, lIsi ng an operational implementat ion, how programming might be done in the future.

Why Inlk nbolll Ihe de,"h of programming langllnges? Is somelh ing ailing languages') AI Ihe Oliisel il is safe to
say that \\'e all share a fee ling of unease insoflH as the genera l Slate of software is concerned: deve lopment is
difficult. achieving correctness is difficult. levels of softw<1re reuse are low relative to what we would intuitively
e.\pecl. Bu t how much of this has to do with programming languages ns opposed to software engi nee ring? I
suspect it has to do Cl lot with IClnguages. Hnd to see why, I enjoy arranging the common properties of languages
in three ca tegories:

• Unassai lnble : stalements which everybody. including me. bel ieve to be good, although there might
be arguments about importn nces . I think they are important in that they are the only unassailable
and hence invariant properties. For example, [ra nk "efficiency" as unassailable.

• Doubtfu l: these are good and necessary propert ies except that it is wide ly beli eved that a choice has
[0 be made and then that choice must be "right" . For example "syntax" fails into this category,
Needless to say there is disagreement in what " righI" is. at worst due to differences in opinion and
<1t best due to differing requirements. I ca ll these issues "doubtful" because [belie\'e that we have
the freedom of deferring the choices to a time cllld place whe re information suppo rt ing the choice
is ma:,iIllClI and the cost of making the \vrang choice is minimal. rendering these issues routine.

• Terrible things that are accepted as HOrillal. For example: Different languages <lre Jlot compatible
with each other. These things are so obviolls that people do not even think about them. If pressed
they would agree that they are bnd things which should be allevimed when possible. not unlike
automob ile accidents which \\"ill happcn despi te our best efforts to reduce the mayhem on the
highways. Again, I believe that we underestimate the degrees of freedom we possess in the
software world, and therefore it may not be a W<ls te of time to inventory the bad things eve n if they
seem unavoidable.

Time fo r an admission. \Vhile this p:1per is organ ized as a deriva ti on of Intentional Progr:1ll1lllillg OP) from first
principles. it IllllSt be obviolls to anyone with practic:1 1 scientific e.\perience that the historical development of IP
follo\'~:ed a heuristic. pragm:l!ic and itcrati\'e pat h. and the present logic has been reverse engineered from the
results of this de\,elopment for pedagogic;ll clarity. Indeed. the pedagogical purpose is on ly enhanced if the
pretense were lifted and the list were taken to be a description, as well as a lllotiva tion for (P. The "lIIlClss<1il"ble"
iteltls will forlll the basis for IP <Ind iudicate the emphasis: the "doubtful" items will be ail delegcHed back to the
users for routine resolution. and the "terrible things" will all find solut ions.

VII.4

So let liS com plete the lists. first the IInnssaiiables. The li st is rnthe r shalT

• The purpose of a lnngl1:1ge is to ellcode rhe progrnll1ll1crs' contributions: The reasons fo r making
thi s obviolls fact explici t is thn! the list of essc nlinls is so short thaI we lll;)Y be in the danger of
losi llg track of the baby in the bath wa ter. This statement just says what the baby IS . The program
is. or should be. simply a represe ntation o f w it;)! on ly the progrnlllIncr could h:1\,c known: nothing
more, noth ing less.

• Abstr<lction mechan isms: The act of abstraction is the obt:1illlllCIlt of the genera l in favo r of the
spec ific. Our human civili zation rests on the power of abstrac tion insofn r as the \"o lume of spec ific
cases IUlIldled by an abst raction is typicnlly Illuch grearer than the overhead of the abstraction
mechanism itself, This is especially tme in softwa re so the ability to abstract is key to any
encoding.

• Directness (s implicity) of expression: At so me level. nil parts of n program are specific: either they
deal with specific facts or they describe a specific abstract ion. Directness of expression just means
that the units thm the programmel. thinks of as spec ific correspond closely to the units of encoding,
Note that thi s is not the sa me as saying that the encodi ng be simple because there is no guamntee
at all th tlt the progra mmer's thought s (o r the programmer's problems) are simple, All that is
required here is Ih el l the mapping betwee n the two be st raightronvard ,

• Accessib il iry of desi red imp lementatio n (implementat ion efficiency): The progrnlll lller's goals
mi ght we ll include a degree of performance which depends Oil a paniclilar implementa ti on method
or the e,'\ploileltion of opemting system or hardwClre features, While this requiremen t is fa r from
lInive rsClI. ill a competitive enviroll ment perfo rmance becomes a goa l fo r most pieces of software,
This mle basically says thell there should be no incentive to go outside of the normal langtlnge
framework (for exa mple by desce nd ing to IllClchinc code) e\'en if Cl specific impiemcillmion is
desired

In the best of possible worlds. there \\oH ld be no cOltOict between abstraction and effi cie nc: . indeed the best way
to express a speci fic implementatio n would be by abslracti ng il in lo its complll CHio nnl intent. The notion of
directness is also related to Clbst relc lion. ill that if so mething is not done directly one should be able to rlbs lract it
to become direct. IP ' s "intentions" nre Stich lllli\'ersa l abst ractio ns

Next the doubtful ones. If you diselgree with nny of the points, pleelse re·reelcl the defin ition of tile technicClI term
"'doubtful" above. IP in each cnse will fOCllS on finding ways to delegn te the choice to the use r. 1I0t to try to
propose new super-duper choices, LP will not solve the problems, but enable the user to make the easier. specific
choice in the users domain. The precise methods fo r delegntion will be described ill the seqllel.

• Si mpliciry of IClngurlge: The word "simple" is so metimes llsed in softwa re engineering as if it were
a synonym fo r "good" when it is renlly \·alue·free akin to. say, "small" , While the simpl icity of
exp ression of the solution is lI11Cl ssCl iiable. the si mpl ici ty of the Inll£11age itself is doubtful. The
existing tensio n is bctwee n the lang11Clge designer's desire on one hand to keep the IrlllgUi1ge
simp le in order to reduce lea rning ,md system implelllenwli oll costs. and on the othe r, to try to
optimize ense of programming in some domains and ofte n 10 also co nsider the speed of executi on,
At one extrelllc of the simplici ty scnle is, of course, the fearsome "'Turing tarp it". where the speed
of programming and object program executio n both are brought to n \'inU;ll standsti ll due to
si mplicity of the language primitives,

• Syntax: Synta:x has long been co nsidered somewhat unimportnnt as the term "syntactic suga r"
ind icates, This term is llsed whcn there (llrc:ldy ex ists so me bas ic S1" I1I:1X \\'hich needs to be made
more paiatflble for the user by the <ld l1l issioll of the sweete ner sYllla."\. the s~ ntactic sligar. But if. CI t
the extreme. \\e conside r tile ulldcrl~ ing s~ nlax 10 be all abs tract s~ ula ,"\ tree. all other sY llt axes
become just sugar. IP takes this view, Use rs wi ll direct ly manipulate the prog ram tree while they
\'iew the program using :11l :1 rbitrary and 1l01l·penntlncllt syn rax, Prese nt del~ sYllta ,"\ had bee n
predicated on a ch:lr;lctcr strea 11l tilat cou ld ha\'e been input fro lll pUllch Girds, or tclerypes, IP 's
"sy nlflx" will CIllo\\' arbitra ry typograph ical or e\ 'en graphica l notatio ns, Decades flgO. Algol 60 has

,I

VII , S

Classes. inlilling. and othe r abstract ion machinery can hide imp lementation detai l. but still leave
the uniform reference at the decl;) r;lIi ons unreso lved. \Vilat is the [Oflll of tI class declamti oll for a
conlniner with a si ngle boolean member (i.c. class c f bool III: 1·;) which cou ld be implemented in
any of the abo\'c ways'! Thi s is not a fri,'o lo1l5 question because of the fi xpoi nt problem. n<lmcly
th:lt there l1l<ly be strong reasons e lsewhere in the program under cOllstmct ion which support the
fi xing the impicmcnt<uioll ill a ce rta in way. It Illny not be crit ical that any container should be
smoot hly re·implementnbl e, for e.'\(lmp le <IS sepa rate arrnys fo r each member. indexed by co ntniner
instance number (the JIl[c l exa mple). but the issue is rather that given so me such existing arrays.
ca n we still consider them ns containe rs? Snyi ng tlwt the already fi xed implementati on should be
changed. or that the objects ill question shoul d 1I0t be cOllsidered containers under the
cirCUIllSt<lIlCeS ignores rea li stic bou nda ry condi tions on one hand and violates sound software
engineeri ng on the other.

• Progress in progralllming lan!,'1mges is limited, among other fac tors. by the small nllmber of
ianh'1wge designe rs.

• Mnny pieces of progra m te t are !Jot abslrac table. or abstraclable only in pre-processo rs. Examples
in Ca re ilerolors. or repeal ed pieces of code in procedures which could be easi ly expressed os local
procedures if sllch e\isted. Relinnce 0 11 pre-processors crea tes a who le differe nt set of problems in
terms of naming. and the limited co mputing c:lpabili ties which are avail:1b le.

• Mcw-work (i.e. consistcnt rewriting or a program) is 1I0t c\pressiblc in languages eve n though it
comp ri ses a s\lbst<l l1tilll PCll1 of prognllllllle r"s workload. Lisp is an exception in thi s regard. but
only nt the cost of f:liling Illost other tests fo r usability.

• Domain-specific knowledge ca n not be injected into the cOlllp ii nlion process. Programmers are
often given co mplete suzerainty over nlll-lime. but their specia l knowledge of the abstractions. or
of the mles of comb in ing the nbstrac ti ons. co nstant fo ld ing. ini tia li zations. and so on. would 110t be
lIsed at all by the co mpiler.

• Progrnl1lmers are acnmlly encouraged to make part of their con tribu tions in the fonn of non
Ill :lchine processnble text (i.e. cO lllments). Eithe r this te:...t is llOt very useful. and then we mnke fu n
of it : or it is useful. in which case we might well ask why the informa tion (describing perhnps an
invariant. n metn -wo rk procedure. n type limitation. test info rmnti on. etc.) is not in processable
forlll . It is only a slight c:...aggeration to S:1Y that every good comment in a program represents a
slTlali failure of the \;lIlguage . (Cobol had a good idea ill this regard : the Identi fi cation Division
lIlade machine processable i.1l least a s llla ll fracti on of the informat ion prog rammers rypic:llly
encode int o cOlll ments.) E\'en ove rview co mments describing program contents or stmcture are
often deri vab le fro lllundcrlying program stntcture.

• Many "natu ral"' notat ions are not acceplnble. For e:...a mple. a;+2ab+b; would be an unthinkable
1l01,lI ion in current computer la nguages e\'en though its meaning is clear. Notat iona l frel:!dolll will
beco me more iJllpon;lJlt when programllle rs get a say in lnngllnge design . SOllie mathematicia n
who develops a gre:lt ty pe system. compile-t ime optimize r Hnd co nstant fo lder fo r mat rices wit h
specia l propenies may \vell choose to use a traditio llal notati on.

In sum mary. we are sceki ng a S~StC Ill for cncod ing the progr;lI11lllcr"S contribut ions in units tha t co rrespond to
the program1l1c r's intentions. \\ illl arbitrary abst r:1Ctio n that does lIot incur nUl- time costs. implementation
detai l should be separnble frolll computati onal in ten t. :lnd any implementation should be nccessible for a given
intention. including those lll~tchillg any gi\'en fi cd poi nt. The issues of sym,I.". lypes. sta ndards. and naming
shoul d be delegated to tile progra mlllers. but in a way that their co ntribu ti ons remain compntible even when
different cho ices or tradeoffs ;lre made by dirferen t progr:lI11lllers. In sy nta any notat ion should be accept:lble .
Arbitr~ry type c~ lcl1lll S. mela -\\·ork. domain-specific compiiatlon knowledge. and info rmat ion tradit iona ll y kept
in "good" cO lllmen ts should be e.'\pressible as pa rt of the lll:1c hine processab le P;l rt of the program.

But why talk aboll t the de:lIh of la nguages? \Vould not any systcm sJti srying these requirements be considered a
In nguage by delinit ion? To be :lble to answer this quest ion neg,lIive ly. I have to rely 011 a mctnphor from the
realm of bio logy. YOII migh t h;we followed the incredible Ooweri ng of evolutiollnry biology thnt foll owed a shift
in emph:1si s. originally proposed by Dr. Rich;lrd Da\\kins. from the c\'olutio n of species to the evolution of

VII . 6

already c:\p ressed the longing toward clarity of notation when it defined a typogr<lphically rich
publication Iclllgl.lage separate fro m the so·c:llled reference :lnd impicmelllation languClges.

• Types and type checking: The type system of a language is really a compile· timc 5ublclllgl.lnge. so
the lISli Cl I \nngunge issues. e,\cept for execHtio n efficie ncy. will app ly to types as we ll. The benefit
of types cOllles Ill<linly from I-:Ve checking. Type sllblanguages are not "tJlli\'ersa l" in the Turing
sense. so there is no !,'l.lllfa lltee that some gi\'cn type·like sC l1lnlltics of a clnss of quan tities in the
use r's progra m cnn be c,\p ressed at a ll. This is ::lcceplable. been lise type checking is just a
cOllvenience. C11beit all impoI1ant one . There are two cO lllmon forms of esc~pe when the "tme" type
is not e,'\p ressible: either ('Ill availab le sllperclass is lIsed instelld. or ll il explicit "coe rcion" is lIsed to
paper over the difficulty. An exa lllple for the former is when an integer type is lIsed fo r a logica l
name, sllch as a window number. An example for the IcHter mi ght cO llie up if the wi ndow Humber
can have its own type but this prevents it frolll pa rt icipating in superc lass illleger opera tio ns, for
exa mple 110, However there arc numerous other cases where a typical modern type system is
simply unable to e.'\press directly what the use r wishes to crente. [P will delegate the problem of
exact type creation to the user b:t: providing for universa l com putat io n in the type machinery at
compile time.

• Other slllndmds enforcellle nt :The remarks on types are also applicable to instClnces where a
language enfo rces or encour;lges some gene rCli soft ware engi neering discipline. such as goto-Iess
progfClll\ming. object orien ted programming. lise of interfaces. or modularization . [n eClch of these
cnses a sublnngl.lage exists nnd there is a pote ntial tension betwee n the user' s requ ireme nts. the
expressiveness of the sub-Iangllage. and the escape mechanism. The latter effectively becomes the
extension lllachinery in cases when the requirements and the sub-Innguage do not match .

Finally we h",'e the li st of .. terrible th ings" which a re tnken for grnllted :

• Lanh'lmges nre no t co mpa tib le wit h each ot her: For e.'\ample. Illy system is in C. I ca n 110t combine
it with Ada. Or. (can ' t use a nice feature of Ada ill C. as [would use a foreign bon mol in normal
English text. It is tnte tha t modules com piled fro m different lallg1,ages can be ofte n linked
together. but this just shows tiltH the difficulties are not necessarily caused by semn ntic
incompat ibility. For a pennanen l and lllailltallHlble combinat ion, the declarations would have to be
sharable and the code mi xab le.

• Languages are not compat ible with thelllsel\'es: For example. I share two independent ly developed
mod ules in my C progrnlll. Unfort llllClIely. bot h modu les include a definiti on for a macro cal led X
which calise a "nam!! col lisio n" . This is as if ill rC;ll life if a John Smith \\orkcd for it co mpany as
an accountant. 11 second John Smith could not be hired as another accountant or eve n as a lawyer
without inordinate repercHssions. Stich as lega lly changing the name of olle of the Smith's or
replacing the first Smith.

• Languages me not compa tible with a fixed point : For eX<lmple. if the st ring desired by the
operating system. proprieta ry software package. or efficient algorithm is nOt represented the same
as ill the I:1nb'llnge. n potentially COSily and unreliable conve rsion hns to be employed. In effect, the
iClIlf,'lmges ac t as add itiona l fi xed points when they should be the accoJllll\odators.

• Co mputational intent and implementation detn il s are intermingled. Consider. for e.'\(lmple the
in te ntion of selecti ng a membe r I1f from a co ntai ner c. There nrc a I3rge nl1ll1b~ r of impleme ntCltio ll
possibilities. ns implied by the following access codes:

C.m
C·> 111

cllll i
1111 c I
C(III)

III (C)

("clilill
(c» I1\)& I elc. elc.

VII.7

genes. In this new view the genes occupy the ccnter stage. thcy vic for survival by repl icat ion efficiency. whi le
the individuals in a give n species are "sUryj,';l! machines" whic h the ge nes h;l.\"c built so to spcllk "i n order 10"

protect and replicate themselves. Thi s new \' je\\' helps CO llllcct a lot of <lddiliona l biological phenomena with
Darwini an theory of evolu tion . Unfo rtull:ltcly my task is 1I0(to cOIl\'i ncc YOli that this is great for biology (o ne
ca n cnsily show that it is) but instead I would like to posit a parr-dl el stmcture in the world of computer
languages: languages are the species. whic h :1dapt to the users needs. while the spec ific featu res of the
langll:1ges are the genes (or more precisely. information "memes") tha t they ca rry . The whole li ves in a
Ilu rtu ring and sometimes violent universe of language designers. langl l<lge itnplementors and users.

For exa mple "infix apemlar" is a meme. Algol. Fortran. and C carry il . Li sp does nol. Gnrbage calleclian is
another Illellle : Li sp and Smalltalk cnrry it. Algol. Fortrnn nnd C do not. Other memes cn n be identified which
dist inguish the individual languages or Innguage families. sllch as " labe lled cOlllmon". "n", .. types" and so on.

IP represents a simila r shift in emplwsis from langunges to memes of Inngllage fen turcs which we shall cnll
" intentions". Ench intention carries the definition of its associated notation ('"syntax") and implementations
("semantics") as altached met hods. A progra ntcons ists of a tree of nodes, each node being an instance of some
intention. In thi s view the lang11ages sti ll exist but onl y ns q ll asi~ephe 11leral conglomerat io ns of memes.
La ngu(lges would 110t be designed (l nd they would not be IllHned. hence they will "die" as identifiable artifac ts,
(A propos names: the enrly hi story of prognllllllling languages has a ramolls e,,;lI nple or a language which was
rea lly jllst a pragmntic collectio n or fea tures, named by Mr. Jules Schw(lrtz. a rebellious progmmmer, as
"JOVI ALI " thm is "Ju les' Own Version or the [nt crnilliol\el l Algorithm ic Languelge" , This W(lS one small step
toward the intentional world),

One key property of intentions. as desc ribed in the sequel. is th(lt they ca n coexist wi th each ot her
"syn tactically" and can be mnde to coexist "se m;lIHic;llly", This means that the exis ti ng legacy code of the users
is 110 longer an albntross rewrding innO\';'Hi on. but n \'aillabl e asset to which new services cn n be tied without
limit. Once encoded in terms of in tentions. software ClSSUllles nn inva riant "immona l" form, rree fro m inherent
obso lellce.

The fate of IClngliages will rough ly parallel the fate of dedicated word processo rs. Fo r example, we cnn imagine
having asked in 1 97~ the following question : word process ing is a key need in1l1yrind aspects of business and in
eve ryday life so how rea listic is it to talk nboul the death of \Vord Processors? III fac t the questio n \\lns debnted nt
the time and many reasonable people took the co nservative stance that the specialized and highly optimi zed and
hence con tinually improving Word Processors wi ll continue to be the best delivery vehic les ror word processing
solut ions, As we know loday, dedica ted 'Nord Processors have beco me dimestore curios ities if not completely
exti nct and people 's wo rd process ing needs el re s,lIi sfi ed by an incredible range of softwa re products which mn
on standard ized co mmodi ty comput ing platforms. in other words pes, In the para lle l picture. lP wi ll be the
platform which ca n suppon n llluitiplicity of con tinuollsly evolving intention lib mries,

II is illiereslillg 10 compa re Ihe eca,s),slelll or old-sl} Ie dedicaled Wo rd Processo r develapme lll \I ilh old,slyle
language development, In eelch cnse l11u(:1tion, hence improve ment. was limited by the sllla ll number of
manufacturers and language designers respecth'ely, Stability was further ensured by direct dependence on the
hardware box in case of word processing. and the dependence of legacy code on the languages, Were someone
to create a new sty le of wo rd processo rs. use rs would ha\'e had (Q buy iI ncw hardware box: likewise a new sryle
of 1:1llgll<lge \\loliid have Illncle it necessa ry that the users rewri le their legacy progra l11s. a co nsidemble obstacle
to evo lution in both instances, We ca n now observe the bencfit s of cnabling C\'ollilion ill least in the word
processing case, Once the rela tively cxpensi\'e hardware box wa s 111ade uni\'ers<11. the nUlllbe r of word
processors skyrocketed il nd the qUill ity and po\\'c r or the products greatly increased, There emerged il sma ll
Ilul11ber of do minant word processin g p:lckClges. bu t therc arc a 11I~ ri ;l(1 of niche products al so, MoreO\'er. the
dOllli ll <1llt products C~lI1 remain on the top only by continually e\ 'ol\'ing ellld improving and they ~lre orders of
magnitudes belle r in e\'cry respect than their p re ~e\ 'O hlliollary prototypes.

Indeed. the major proillise of IP may not be the fixing of a finite number of 11lullda lle problems. btl{ lhe enab ling
of the la rge r scale evolut ion of progr,lIlllll ilig technology , One facto r thill enilbles evo lution is the delegatio n of

VII . 8

many decisions to the user, which ra ises the question of whethe r the user could. or would IClke on th is add itional
burden. In [nct. the PC software industry !Ins been buill 011 Cl lIlodel where a rC\cllively sl1lnll segment of the
"user" popuinlion ~pec i a li zes in the creal ion of solutions fo r the rest of the use rs. the "e nd users", whenever a
system is open to modifications. Even the s lllail fonner segment . the "solution providers", cnn number in the
thousa nds. so it is much Inrger theW the h<llldflt1 of gums who lIsed to contro l the mea ns of abslrnction. There is
every hope that this Illode l of the indllstry w ill be CClu;lll y v;'Ilid C'lIld va lu;lble for progralllming technology also.

T he Source Tree
So let liS provide form to the thoughts. \Vithoul being ove rly pedantic, we should set the stage by admitting the
obvious: prognul1ming systems exists because hUIllnn progrnllllllers have ideas to contribute. So we place the
programmer ill the picture:

programmer's mind

<

prog mmer's intention

programmer

programmer's contribution

GUI

NY
.. NY'.

IP
kernel

. EXE
the desired

program

other programmers'
contribution

.'

IP maintains the co ntributions from severa l programmers who may be coopernling as a ten m, or the
co ntributions cn n be loaded frolll separntely aCCluired librnries. The contributions are in the form of a tree of
nodes, ca lled the IP Source Tree. At the time pictured here. the programmer is interact ing with IP via a
graphical use r interface (GUI). The interfnce displays the source tree nnd fncilitates its editing. A key element in
progralllming is the forming of so me intention ill the programlller's mind. By programmer's intention we mean
a desire that something be accomplished. Its emerge nce is best provoked by a direct Clueslion: "\Vhal do YO li
really intend here?" . The possible answers Ill ny rrlngc frolll "add these two !lumbers and remember the result".
through "ca ll a spec ialized inst<lllce of procedure P Int nsformed \\' ith respect to seco nd ('md third paramete rs and
partially inlined up to medium level: adapted 10 the present implementCltion of the first p:lrameter. etc. etc.". To
actualize the prograllllller's nbstmct desire. speci fic nodes are created b~ the progralllmer in the SOllrce trec. The
nodes nrc ench identified as an inst;lIlce of the particu lar prilili ti ve Intention by a "gmph -like" pointer to the

VII . 9

declarntioll of the intelltion. The nodes ,ll so co nta in "tree -like" poin ters to any IIumber of mgmnellls ('IS showll in
the following figure:

Intention
instance

Graph-like ptr.

Operand nodes
•

Declara ·on of intention •

Methods of the intention

Need less to say. the declamtions. and the details of the Inte ntions ~ re themselves a lso intenti on insta nces and
reside within the sou rce tree. typica lly. but not always. in a sl<l ndard library. Thlls the programmers '
cOlltri butions form a "t ree" of nodes. Some nodes. thm is those pointed to by graph-like pointers. are
deciarcH ions. Each node is idelllified as to its intention by the graph-like pointer. Each node can be embellished
with arbitrary detail by hanging add itional nodes below it.

There is just one more small del,li!: nodes mny also cO IlI:lin literal data stored as bils. So if the constant
2 needs to be sto red in the tree. the bits me stored in the node and the grClph-like pointer wi ll define
how the bits are to be in terpreted - that is. what dClta represe ntation is used. There is 110 requirement
thrll such nodes be terminal nodes in the tree.

So far so good. One could S(lY Ih:H the tree-l ike poilllers nre a litt le like S-e:xpressions in Lisp. while the graph
like pointe rs define the object type in the object-oriellled view. The source tree provides (I solid substrate for
represe nting Mbitrmy inten tions in a 1ll0dulM fashioll . Ident ific;"ltioll is U1U1I1\bigl10US and invMi,mt. via the
graph-l ike poi mers. Derail ca n be Clddcd at (In), point. wi thout disturbing nny other p:ln of the tree.

Defining Intentions
\Vh,lt is missing? Just sy ntax and se man tics. th ;lI is. looks Cl nd mea ning. Tl11e 10 Ihe progralll we set lip ea rlier,
we j ust invite the user (some user) to furnis h the com pl1!at ion for :

• Imaging: to displ Cly an instance of the intenti on ill sO llie nOtCltioll . and
• Redllcing: to prodtlCe a part icular impl ementati on or the inte ntion by perrorming an arbitra ry

program trallsformation on a copy or the source trce. ulltil the copy tree cOlltains only a limi ted set
ofpri llli live intcntions rro lll which lIl ;lch ille code c;w be generated by the lIsllal tecilnoiogies. Once
its data IHls been processed. the reduced tree will be illllllcd intely disca rded.

Co nti nu ing the biologic<li metapho r. we call these methods Imaging. and Reducti on Enzymes respectively.
T heir descriptions C:lll be hung under the decl:lralioll of the intent ion they describe ;)nd they (Ire c(llled rrom the
IP Kerne l by spec iC"1I method ca lls. For eX;lIl1pl e. whe n (he use r interface needs to show the image of the tree
starti ng ;)1 SOIllr: node N, fhe in terrace code will 5illlIJ ly t.:.'\t.:clIIe the ·· i ll l.lgt:: yourse ll" method on the object N.

VIL10

The enzymes can be wrillen ill IP itself. and new intentions Illay be also lIsed in the enzymes themse lves. Is this
circul ar? Of course it is. btu standMd bootstrapping methods can ensu re tlmt a working copy of the system is
kept nt any time while the new enzymes :lrc debugg\!d .

How is this differell t from opening lip the ins ides of a comp iler, or ha\"jng a retnrgetnble compiler? First of all
there is no parser there is only an mbitrclry notation that the illmging enzymes produce. This means that the
prob lems and limits of extending the notational space arc merely Ih:lt of comprehension li nd aesthetics and 110

longe r technical in nature. Of course. this rai ses the issue of how the tree is input by the user. which wi ll be
treated ill the next sectio n. The seco nd diffe rcnce between IP and cli l ope n compile r is the panicularly uniform
and familiar way Ihal the exte nsions are introduced. In thi s regard IP inherits the best property of Lisp : in both
e llvironments Ihe programmer intemcls essentia lly with the sa llie stnlcture as the programmer's exte nsion
progra ms do. If ClIl)1hing, IP 's tree is better optimized for representing progmllls, since il is not intended to
serve as the main nlll-t ime data slOrage abstraction as Lisp's S-exp ressions do.

Completeness of Development Enviro"nment
Integrated Deve lop ment Environments (IDEs) are the cornerstones of modern software engineering. When one
looks at Ada. C++ or Lisp IDE sa les literature. the support of the IDE fo r the specific language is always
emphasi zed. Of course what is being specifically supported is not the Iclllh'l.lage pe r se. but some language
features . In IP the system is divided into a sha reable kernel IDE and the e,tended behaviors contributed by the
int entions to each IDE componenl. Thesc COlllPOIlClltS are as fo ll ows:

• notat ion / display / pointing
• ed itor / \1se r illlerface / browsing
• version control
• reduction / compi lation /change propagation
• li brary system
• debugging
• profiling, testing (future)

\Vhen a new intcntion is dcfined, the defmli t methods for nowl ion, editing. version control. library access, and
debugging will do a decent job in (lny C:lse . Even the sema ntic definition C(ln be left to def(lult to a simple
procedure cal l se mantics. Of course. a new intention can be l1\C1de Illuch mo re attractive to use as more and more
of the met hods in the va riolls components are redefined to match the intention specifically. For e.'\ample. a new
type may come with its own rOlltines to display v<llues of the type in the debugger. Or. the ed itor ca n perform
spec ific compu tatio n to propose def:H11t operands when an instance of the intention is created .

It is worth noting that the deve lopment environment is also ll10deless insofa r as the user perceives only one
interface and edit ing of the source tree is ahv(lYs possib le. The re is 110 debugger. per se. there Me only
debuggil1g~orien ted commands. Selli ng a brc<1kpoint or insening a new Sl() telllenl. ror example. me both
(lccolllp lished lIsing the same selection mcthod ror selecting the place where the bre<1kpoi n[or new statement
should go.

The following figure illustr:ltes the components and their interrelationships:

VILll

-- .. _ ..

---I-.H'------.j Version Control

- -.--.---~

, ,
/

/ ,
... --- ... , , , ,

, '
I Source tree I forest ~ , ,

, ,
.... _---

Source denved
Inro (sVmbol
tables etc .)

,

Display

Editor I
Command
processor I

Browser

Oebugger

Reduction I--,,-~\ Standard code r-:::===\ r-::::==~\ ---V generator f- / Standard linker t- .:.t/ EXE

RCOOE

InJlut

. OSJ

enzymes previously
compiled from source tree

Imaging enzymes can be quite ~rbitrn ry and they work in one direction on ly which rnises the question of how
the source tree is input. If we wtlmed to parse the input. the imaging computation would have to be invertib le.
T he problem is avoided. by denying the premise Of;1 strict one -to-one connection between input nnd display.

A not -en tire ly-frivolotls arguillell t is thai the premise does not quite ho ld even \\it h today ' s pa rsab le
languages. When prograllltilers interact with the source. they use some te.\t editor. For eX11mple. to
enter the C program text fragment:

if (alpha < ill
the programmer might h:1\'e :1ctually typed:

if')"(alfa""pha <= ny''''''''

VII .1 2

where 1\ denotes a backspnce. cursor positioning. mouse click or delete. The point is tilnt progrclll1s have
been a lways exp ressed in tenus of editor cO llllllands cllld this o\'c rl ay has not bee n co nsidered a burden
by progralllillers.

In TP iI1lcnr ions arc input by di rect lll<lllipul cllioll of the tree. Vari olls [orllls of selection are used to designnte the
operand or the place in the tree. and thcn the usual Clii/copy/paste operations can be performed. Text typed in
f rom the keyboard is lokenized and p:lfsed by a very si mple cOlll illnnd processor. The tokens are presented to all
declarat ions fo r recognition. and then the appropri'llc methods arc executed on (he declaf;ltion which matched
the token . It is easy to arrange things so that typ ing "if' will result in the inse rtion of an "i f' in te ntion, and
typi llg "" Ipha" will paste the referellce to the declarati oll of "a lpha".

The Clbove eXClmple. if entered IP entirely fro m the kcybomd with no erro rs wou ld be:
if_alpha<O_

where _ denotes Cl spnce. This is neither less efficient. nor rndica ll y different from what had to be done
in the old parndigIll .
In a numbe r of insta nces the departure of the input l~llg1lage fro lll the image can be quite rad ical. For
exa mple. we fOllnd it convenient to type "cast"' to enter a cast. or type "'p roc" to declnre a new
procedure. eve n though in the currenti'Y mOSt popular il11(lgi ng idiom, C, these appear as:

(.. .) .. . or0 :)
respective ly. where indica tes inco mplete parts. E:\ peri ence sho\\·s that the "burden" of having to
remember the words "cast" or "proc" is not insu fferable . SO llle users prefer to se t up their keyboard
inte rface instead so tha t CTRL-(ca n be lIsed to en ter a cast (no shift key is necessa ry).

Agaill. we call look back at the developmellt of WYSIWYG (wh"t you see is what you get) word
processi ng systems. To ente r italic te:\t by str ict analogy to hO\ plai n te:\t is typed. one would need an
italic keyboard. or at least a lockable " italics" sh ift. just like the currellt "Caps Lock" key. This was Ilot
done. because it \\"ould not have been sufficient. as tile Ilumber of characte r fo rmatting options
prolifernted through thin. selll iboid and bold. (1(/ infinitum; because of practical difficulties, and because
the re were other perfect ly intentional ways of specifying "itnlics" though menus, tool bars, dialog bo:\es,
or keyboard cO llllllilnds sllch as control -I. These input methods generally do not correspond to the
image of the intentioll . but nlther Ihe:v have just a mnemo nic co nnecti on wi th it. IF e:\ tends the same
stra tegy to co mputer progra lllming.

It is wort h noting th:lI ident ifiers or names in IP are lIsed only in interact ions with the user. Furthermore. the
lise of names is not the only 1001 ClvCl ilnble to the user to designat e identity - pointing to instances or specifying
prope rties cnn be also lIsed for ident ificati on. Once <Ill object is iden tified. a link to the declarat ion is stored in
the SOllrce tree as a graph-l ike pointer. Th is mea ns that the name machi nery call foclls on optimizing
co mnHlIlic:lIio llS wi th the programme r and be other\\"ise cO lllp lete ly ignored by the semantic portion of the
system.

T he problem of inputti ng legacy code writtcn in l eg:Jc~ I:1ngu;lges is quite sepM3te. To do this. first the features
of the language have to be defined ill tc rms of IP declar:lIions. <l nd then a cO llllllercia l parse r for the I:1nguage
has to be modified to produce the source tree. There are some in terestin g cOlllplic:lt ions which stem from the use
of pre-processo r direc ti ves in some langtlages. These are discllssed in the sequel.

Review of the Requirements
\V ith the enzymes in p\(1ce. IP possesses. in add itio n to ge nerality of represe ntati on. modu lari ty and illVa ri(1IlCe,
the following desired propenies:

• E.\" tensibility : the fea tu res of the system are determined by declara tions wh ich a user might
providc.

• Not:1 tion: nrbitr:lry nota tions llIay bl;! lI sed including those Ihnt are nOI parsab le and ambi guolls.
:--J illning is e:\trclllcly nc.\" ible.

• Arbi trary se mantics and implemclltat io n nc:\ibi lity: since the sel1la lltics are expressed in terms of
program trallSfOrtll illio ll S.

VII . 13

It is wo rth reviewing how IP helps wit h the "terrib le problems" which we re en umerated e:lr lier:
• Langu:lges COJllp;ltiblc wi th e:lCh othe r: once read inlo IP wi th the app ropri:ne legacy pa rser. the

nodes arc self idell tifying wit h respec t to HOI:1 1ioH and sc mcl!lrics. Compatibi l ity becomes a
tract<lble issue of choosing or wri ting illl p lel1\CIl I<l tio ll methods for the i<lngu:1ge intent ions which
ca n wo rk togethe r. Even p<Htic ll inrly obno:',iolls leg;)cy CQlIstmcts ca n be acco mmodated, fo r
eX[ll ll ple. by prm"idi ng a simp le but inefficient impleme ntation to bridge Q\'er the period du ring
which instances of the CQllstmcl are replaced by morc robust C'lbstfact ions. The benefi t is that the
system unde r deve lopment wi ll remain teswble while the nbstractions are cha nged, It is also
possible Ihal lhe simple imple mcnlalio n will sll ffice ill Ihe fi rs l place.

• Nn me cOltflicts: since n:1 ll1es :1 re not llsed for identificat ion, except only during initi al input
(incl ud ing leg:1cy code pnrsing) when there is ample oppo rtun ity to designate scope or otherwise
di sambiguClte betwee n diFferent possi bili ties. Ila me cOltflicts nre impossible in IP. Na mes are still
llsed to cO llllllunicnle \vilil the user, If the lIser is cO ltfl.l sed by n:1me ambiguitv, there me many
remedies which are guara nteed not to affect se ma ntics. Browser co mma nds are- avn ilab le to show
the declClfCltio ns. or the na mes can be c ha nged in the decl arat ion qu ickly and safely, with all
references to the declaratio n updated in co nstant tillle,

• Computationa l in tent and implementat ion deta il: In IP the in tent ;lnd the II nplel1le nta tio n de ta il
ca n be sepa rated . First. the intent C;l n be e,"p ressed by c rea ting a new intention declarat ion, or by
hnnging new att ributes under ,1Il existing node, Nex t. the reductio n transforlTla!ion associated with
the intention can be changed or \\idcned to create the des ired implementatio n,

• Abstract ion: Any abs traction in IP ca n be impleme nted :1S an ilHent ion which does no t reduce to R·
code. bu t insle,ld 10 differe nt inten ti ons which ha\'e to be reduced in turn. Any node in the tree ca n
be repl:1ced \\'llh :111 abstractio n Clnd fOrJIwl operands cn ll be added as requi red,

• ivfeta-work: This is just equi va lent 10 progra m transfo fll1 :l ti ons wh ich :1 re in lum integra l to the
opera tion of the s~ste l11 , The IP edito r proy ides:l way to a pply an enzyme ("Edi ting Enzyme") (Q

the source tree so thm the results arc pernwne nt as if they we re in put by the progr:1lllmer, Here :1re
some exa mples of editing enzymes :

• Li ft Abstrnct ion: Changes se lected code into a procedure, Depending on \'mious optio ns,
the vnriables refe renced may be made in to fO flll :11 parnllleters, The origi nal copy may be
rep laced \\'ith an appropriate call to the new procedure, For example. by point ing m:

A~ I
a procedure : PROC ·'·'·'(A) A+ I: is crealed a nd Ihe original A+ I is replaced by ?'1'?(A).
The unknowll n;llllC '!'!? c;w be e;ls il y ed ited because single-poi nl rell:1ming is si mple in
JP, A \ ':1 ri<l Jl t of this enzyme ca n furt her pnrallleterize a fl1nctioll , Select I in the
procedu re. and execut e the ~ lI zy lll e, \Ve get a [le\\! par:1 l1leter <l nd :111 Gills will be ed ited.
100.

PROC add(A. "'!") A+""": "dd(A. I)
(asslllll ing tila t the procedure name has already bee n changed to "add") The enzyme ca n
also crente names aUlo l1la tica ll y acco rdi ng 10 se lected nami ng sc hemes,

• Change sequences arC #de fincs inlo C++ enums: for example
#clcfi nc A ()
#d~fille B I

would be replaced by :
Clllll n : A: B::

• Apply Dc-Mo rg;lII'S law. or othe r tra nsforms to t:," pressiolls: fo r example
if('a && b) II"0llid be Ir"nsfo r1l1ed illlo : if(!(" II !b))

VII .14

• Domain-specific knowledge: type calcu lus. constant folding. and the basic node processi ng
functions of the reducer arc all e,'\lendib le. Any informat ion th(ll makes intentional sense can be
included in the source tree :l lld appropriate processing fo r the inforl11:ltiol1 cn n be de filled <IS
methods in the imention dcclnr:ltio ll s.

Obviolls Fenrs
IF rep rese nt a subst(lllti al clulilge fro m past practices. \Vhal are the possible downsides?

• Wh,H will happen to legacy code: IP denls \'cry well wit h the legacy problelll . Not Dilly ca n it nlll
legacy langllnges. but it is all excellent platfonn for re-engineering legacy code.

• Amateurs playing with SYI1l:1,'\. ca using cO lulision: In fnet no permnnent hann will cOllle from
lIsing badly designed notatio11s. just that interaction will be difficult while the notation is in effect.
The programmer can return to a sta nda rd or co mmercial notation m any time withollt loss of data.

• Run lime efficiency: Since IP uses cOllllllercial code-generator back ends, the qua li ty of code for
the Hsual le\'e l of abs tract ion should be unchanged. There is a lso the strong hope that by using
dOIl\:lin specific opt imiza ti ons alld specializ:Hion. code efficiency ca n be improved.

• Editing efficienc!: Direct lIlanipulation of the source tree raises the specler of Syntax Directed
Editors which ha\'e lIe\'cr become sllccessful ill Inrge part becCluse they \\ere unpleas:llll to use,
This issue will be discussed iu {he sequel.

• Efficiency of represent,Hion : Ille<lsurements sho\\' that the source tree correspo nding 10 a C legncy
program is IClfger b) a fact or of 3 than the C source encoded as Ascii. Howeve r. raisi ng the
abs tracti on level and increasing code shilring C:ln reduce the number of nodes in the program, so
the factor of 3 should be thought <IS an lIpp~r limit. (n addition. llluch of the "e,\;tra" bits in [P help
browsing fl lIlctions 10 tht: c,'\tent that some browsing datnbases become unnecessary.

• Capital costs : Unfortunately. tc ,'\t-b:Jscd too ls can nOI be lIsed wilh JP. so cha nge -control. source
check-in. source le\'e l debugging <lnd other important auxiliary syste llls have to be also re
implemented , The high eapitC1\ costs of doing so might exp la in in pan why Stic h systellls have not
emerged ea rlier. On the positive side. the source-tree b;lsed approach. once illlplemellled. can
provide new fUllctio nality. For e,'\C1ll1ple a source control system now ca n ha\ 'e access not only to
the history of edils th:lI a use r made. but al so the Se l1l11111ics of the nodes which have been edi ted,
The system C<ln use th is knowledge to merge changes made by different people. and to detect
co ntlicts. Of course. end-users would not be noticeab ly aFfected by capital costs ,

• New :lbstr:lctiolls: are there usefl ll ones'? On ly time will tell. Right now. there is a backlog of
nbstractio ns, sllch as paninl c\':llu:lIioll. which have been used in rese:l rch contexts only and which
would have ob\'iolls uses wh~1l applied to e\'eryday systems. [n the reSI of the paper we'll be
discussing il I\umber of abstractions whi ch 1Il,lke progralll sharing easier. We should nJways
remember that in the old world the cost of:l new abstraction was ve ry high : typically it meant that
il new language \\ ollJd hnve to be used. Consequently. the be nefits had 10 be also ve ry high fo r the
nbSlfactioll to lll;1ke se nse. Method calls prior to C++ could be ci ted as a rare abst raction which
took root in Smal ilalk and other ialll:,'liages , \Vilh IP. th l.! dec isio n to lise il new abs tract ion C;lll be
co mpletely routine. 1101 unlike the decision to lise a pub lished algorithm or a lib rary, Thc initial
costs are lo\\'. and the cost of re\'crsing the decision is ;llso lilllited. III effect. the IP abstractions do
not ha\'e to rc\ 'oluli oll:1ry to be IIsefll!.

• COlllpk,'\i ly of\\Titlllg CllZ~lll es : Here the bad memory is Ihat of "progra ll1 gelle r:ltors" which we re
difficult ~Ilo ll gh !O co nst ruct that th~ir usc has lIot b~colllc \ddcsp re;ld despite of their power alld

VII .15

benefits. IP has two ndvanrages over the earl ier attempts : first. the tree is panicuiarly easy to
gencr:1te with progrnllls • a cynic would say it is optimized for ge neration by programs fntile r than
by programmers - <lnd seco nd. new intentions lIlay be created fo r the COIll III OI1 cl iches used in
enzyme wri ting.

No tati onal Space
The excit ing [;lC(about notations ill IP is Ihm it will be nble to evo lve ove r time. without loss of info rmation.
Two component s COOPCnltc to create the disp lay of the source tree: The first compone nt consists of the set of the
imagi ng enzymes. whic h arc created or collected by the user. There Illay be morc than Qne image for each
intention, and there will a!\\'(IYs be at lenst one defau lt image. The use r ca n select, say. C-view, directing the
system to invoke the C enzymes when aVCli lable.

The second com ponent is CI built-in fonnmter which lays out the screen illlClge. handles fonts. breaks long lines
Cit the appropriate points. nnd lllil ill t ~i lls the information fo r decoding the use r' s pointing actions. For the l<llter.
the system has to mai nta in a data stntcture wh~h ca n map a particular pixel 0 11 the display back to the tree node
wh ich is "behind" the pixel. This data stmct ure is also lIsed to trigger the recomputatio n of the illlClge when the
supporting nodc is edited.

The interface between the componen ts is a si mple rich-text formatti ng Iclll ,gllage. not unl ike Cl min i-TEX. There
Me 110 plCll1s to nlCl ke the outpu t langunge ex tendible by the user ot he r tlwll by copiolls parameterization. Its
current capab ilities include fOlltS. fom modes (bold. etc .). many underl ines. o\'erli nes and strikethroughs, colors,
Clnd simple fOrl1wlCl layout (matri ces. integra l forms. roots. fractions. etc .) More capabi li tics C(lll be added to new
ve rsiolls of the system. Ollly the imaging enzymes cO Jl{ ;l in knowledge of the imaging language; the source tree
has none. with a specific exception which h<ls to do wi th the progmml1lers' specin l fOl'm<lning instntctions.

In IF, the choice of nO(;l tion will be just a personnl decision just as indeillation and comments lIsed to be.
Arb itrmy manual formatting wit h spaces and tabs is no longe r possibl e: the choice of vie\v determines not ollly
whatllsed to be the "'Ia ngu<lge" that is C. Pascal or Cobo l. but also the formatting conventions. such as the K&P
style indent.lI ion:

i f (f) :
i = 0:

:
or indentation with the brackets lineclup .

if (f)

i=O:
}

As the systcms develop. these sryles may include morc h~uristic niles to crea te for example :
if(f) {i=ll: :

Any add iti ona l co ntrol of the fonn;lIting by the progra mmer will require cooperat io n by the imaging enzymes. A
simple and lIseful trick is to introduce an intclltio n for a blank line:

if (f)

i=O:
}

The semant ics of the blank line is jllst a noop. but it is displayed ",ithollt the e.'\trll semicolon. If there are
re<lSOIlS for formatting the same inte llli on in dirfe rent ways. the in tention IllUSt lI.we a parameter exp ressing the
cho ice . For example. a CO ll lmc nt ;lssoci;lIed with a statcme nt might appe:lr ill differen t positions:

/I COll1ment I
i= I:
i=2: II COllll llent 2

VI I. 16

II CO lllllle nt 3
i=}:

The choice between positions I (lnd 2 is expressed ill terllls of all intentional property under the comment node:
IcC1 vs. right COlllments. The specia l inden ti on of choice J is expressed by (lssocin ting a geneml formatting
properly 011 the comment node : outdent by so-and -so Illuch . The m:lill reason for worrying aboul these issues at
all has to do with legacy code. The better job IP docs of prese rvi ng the stnlcture of the legacy code, which in the
past had to be expressed CIS fOrln;lIling Olnd CO ll llncnts, the e;lsie r the re-engineering process will be for the
progr<l Illlllers.

The imaging Ic1llgllage allo\vs Illultiple fOlllS ewel tile 16-bi t Unicode character set becomes readily available. The
constants in the source tre.e afC self-identi fying so they I1l(lY or I1l ClY not lise Unicode or any other encoding.

Since the source tree does IlOt depend on names for identifying graph-like links. the only restriction on names in
IP are those that the programmers choose for si mplifying the input of new progra ms. It is possible to establi sh a
link without using the name, just by direct pointing to the destination of the link: fo r example add I to the
va riab le declared there - click. Si mi la rly th topera tion "add". and in principle eve n the cOlll mon constant I
could be se lected by clicking. However. some simp le restrictio ns on the nallles make it possible to tokenize the
keyboCird input:

1+1
inlo Name token : 1. Name toke n: +. Co nslant token : I. wh ich then can be armllged to have the desired effect.
thClt is the creation of the source tree +(1. l). But e\'en this rest ricti on for tokenizations does !lot necessarily
mea n thClI the 1lC1Illes have to be restricted the sallle way . Lookup for input ca n be perfonned on the b(lsis of
partial matches. iYfore illlportilntly. declarations ca n have Illultiple n:lIncs :

• link name whic h relliains ilwarialll even when the declaration is renamed
• nortllCll. or short name used for iuput <I ud for e.'\pert overvie\v
• di scursi\ 'e, or long 1lt1Ine, which cou ld be llsed by progrnllllllers unfamiliar with the progrmll
• foreign names, needed when seve ral differelll nat ural languages are used in de\'clop lllent

Note tilnt the lack of restrictions on nil mes opens lip the reali stic possibility of progratllming in kanji and
Chi nese, not 10 mention the lise of Greck. cyrillic and other alphabets.

Tile notion of " Iite rate programm ing" W;IS introduced by Knuth so that parts of programs ca n be exposed in an
order that ilelps the reader. for exa mple in the order of stepwise refineme nt. IP is all obviolls vehicle for
implementing sllch displays in <Ill illleractive setting. where the sa llie inten tional stnlctu re cou ld be displayed
both in ·· li terate" and in ··Iiteral" forms . rv1any other views (Ire Cllso possible: fo r eXClmple. Olle might want to
group the object-method pairs by objects or by methods. The simplest variab le view comma nd, outl ining, has
Cllready been implemen ted.

Extension Mnchinery
At the IllOSt abs tract level. extensio n si lllpl ~ mC:\IIS tll;lI pans of the user ' s code IlI;lY be executed by JP . This
means that parts of the user's code me Sllil:Jbl~ iden tificd as some e.'\ le llsioll of IP . There has to be a libmry of
illlc rface specifi ca tio ns which is e.'\poned by IP tlnd to whic h the user e.'\tensio l1 s IIIl1St confor1ll .
Extension code is thell culled toget her and <I dynalink libmry is crcated which can be IIsed illlll1ediCltely by IP.
iYlost. but not all. e.'\ tcllsiolls are associated with intentio ns. These follow the object pmadigm, as shown in the
fo ll owing figure:

Instance node

L-_____ .JI- --I

, ,
I

.... 11

VII . 17

Declaration of intention

-+

1
Code of method instance

1--< 1

1
Code of method instance

--
J
T

Code of method instance

Declaration of virtual
intention

•

ethod
name

• \Aetho~1
name

I

ethod
name

•

: Ilc================*--------'- - - ..
1

where the method names ident ify the aspect of the system that is extended by the intention. and the procedure is
the cont ribution from the user which perfo rms the cx tension. Thc dotted gr~ph·likc poi nter indic~tes Ihm ~n
Clpprop rin te Illultiple inilerit;lllce scheme is provided. Instead of just fo ll owing the graph·like pointe r to the
immediate dec lar<l ti oll, the inheri t;lllce co mputation cnn generate a set of underlyi ng inten tions of which Ihe
node in Cjuestion is nil instance. For eX<llnple, <l node poi nting to the declarat ion of an integer vCl rinble Illny
inherit methods from the "virt ua l" intent ion ·'simple \·ari;lblc" and [rOl Il tile actual type ·'integer" . Effectively.
the inheritallce CO ll lput<'l lioll can classif·y nodes .15 represe nting seve rnl ·'vi rtual" intentions sttHl ing from , and in
(ldditi on to. the one pointed to by the node. The roOI of [he inherita llce hierarchy is implemented entirely in the

..

VII .18

IP kernel. It describes the most COIllJ1l01l behaviors for intentions as the defCllllt. This Ille~ns thnt ('In intenti on
need not define all methods. For c.\:(llllp le. a procedure call lise tlte c;..: isting call scnulIllics by default but define
its own illlrlging. Or. a new inre11lion with new SCIll:1 ll1ics cnn still lise the default p<lrcnrhesized fUIlCtio1lCl \
notati on ns i ls imaging. The inheritance computation itself cnn be e.'\ tcnded by "come from" hooks, described in
the sequel.

Clearly. c:-..: tcnsiolls me on ly possible when there is sOllie recognit ion by the creato rs of the IP kernel of the Ileed
for extension. Once th is is achieved. the new method name is defined in an illlerface file . The default
implementation for the met hod gets coded a nd the appropriate method ca ll s get inserted into the IP kernel. Now
the users ca n define new extension metilods nnd this will not disturb the ex isting exte nsio ns. The fnct that
methods can be defined for behnvior in al l parts of an integrated development environlllenr also di stinguishes
intent ions frolll clnsses. Clnsses differ fro lll each other only during execlit io ll of the program. They C(lnnor be
individually distinguished by nny other part of (I n in tegrated syste m: the edito r. ve rsion co ntrol. change
dependency propagation, browser. or the debugger. Inte nti on ca n de flile specifica lly appropriate behavio r in all
of Ihese compo nents.

As suggested ea rlier. SO llie desirable extensions may not be nssoc iated wilh allY givell intention. for e.'\ample if a
change in the in heritance mechani sm is desired . Also. there a re ma ny issues raised by the 11lodularizatioll of the
information necessa ry for e:-.:tcns ioll . What if libr(1 ry (o r lIse r) A desires to add a method to an intention frol11 a
differem library B? \V hat if type T of <1 11 interface defi niti on should be an opaq\le bo,'\ for the lI se r, but a deta iled
stmclure for tile implementing rou tines ill IP'? Fortunately, IP is imple mented in itself. so the required inten tion
can be pragmatically defined nnd used to so lve the prob lem,

Editing
Probab ly the least natura l aspect of IP seems to be the requirement Ihm the source tree be edi ted ClS a stmcture
aJld Ilot as text. Usc rs have histo rically <lccepted direct manipulation for graphics. for exa mple. Howeve r, when
the source data is shown in terms of characters. the tradition has been (Q edi t the source as it were a charac ter
strenlll , The ~:Vf1(nx directed cditors ha\'e cOllle the closest to appro,'\ illl<1ting the IP ed iting problem, In the
syntax directed parad igm. the sy"ta,'\ rules are immediately applied to the user"s input. with twO important
results: first the input of illegal constt1lctio ns is prevented at the ou tset: and seco nd. as a result of parsing. the
system has knowledge of \vhat has been ty ped and th is knowledge can be lIsed in turn to help the user wi th
prompt s. ilutom<ltic for matting. defmllt s a nd so 011 . Despite these advan tages. sy nta x directed ed iting has neve r
been :l co mmercial success. aile C: ln only surmi se th ~ reasous for the user"s dislike of such syste ms. but one
good l,'ucss is that a successfu l sys te1ll should be 1l10clcless :lnd intenti onnl. Mode lesss ness Illea ns thai work on
one sectio n of the code can be always sllspended and the foc us transfe rred to so me otller portioll . Intentional
here mea ns tiltH the edi tor CO llllll:lIlds should directly relate to the inte nti ons rather than the represe nt ation of
the in tenti ons.

Modelessness is important because programs are seldom co nst ructed ill a strict order. The programmer llluSt be
able to exp ress code fragments whcther or not they Ill:lKe se nse in their inte rmediate forms , There should be no
inle rnlptions. demanding prompts. or beeps. IP does ha\'e two subtle forills of reminders: inco lll plete opera llds
nre typic:1l1y highl ighted in color. and there is also a "To Do" li st with current references to a ll incompl ete or
othe rwise incorrect code as discovered by a background type checker. Afte r fini shi ng so me coding the
progr:II11lller ca n simply scan the scree n for highl ight s and then scan the todo li st ror any remaining errors. Of
course. there will nlwtlys be ;1 few obscure erro rs \\ hich will be uncove red only cluring the rcduct ion/co lllp il at ion
of the program .

Thc editi ng model is based 0 11 the st:lIlcl<Hd cut/copy/pastc opcr:lIiolls. but with aboll t seven di fferent selection
types as opposed to the si ngle text selection used by text edi tors. Just one of the selection types. for e:,\ illllpic. is
necessary for selections within co nstilnt s. llaOles or CO lllll lc nts which ca n a ll be ~di(ed as tex\. The other types
se lect subtrees. li sls of subtrees. individu:llnodcs. pl:lCCS ill li sts. ~ nd left o r ri ght ope ra nds for operatio ns, While
th is is qtlite :1 bit more complicated than basic word processing. the programlller users are well eq tl ipped and
motivated to hand le the conceptllal load .

VII . 19

Having a reliable and llIulti -SICP undo f;lCility ~llso help cre;He a comfon;lblc cII\'i ro nmcnt where the
co nsequences of mi stakes me vc ry mllch limi ted :l nd where e.\:pe ri l1lent~lI i o n is encouraged.

Example for an [ntention
Let liS co nside r the conslmclio n of a new intention for a dialog bo.\: , ClS in a user inlcrfnce for a progrnlll. The
in tentio n is not a class: the clnss already e:...:p resses some data stmcHire that is a particu lar implemcntc1lion of
dialog bO.,es. T he inlenlion is simply a repos ilOry of Ihe lIse r's cOlll rib'lIion. So Ihe process of de fin ing Ihe
intention Strlrts wi th catalogui ng the independent quantiti es. such as:

s ize (widlh/heighl)
Iii Ie
co llec tion of items. for ench

IYpe of ilem
position
lille
code 10 defill e defalill ya ille
code to call after vnlue changed
specific fields depend ing all type of item
billion:

code 10 en ll whe n bUllon is pressed

rad io bultOlls:

etc. etc.

collection or items. ro r each
position
lille
va lue to be returned when se lected

This process cnn be elaborated withou t lilllit s. The quan ti ties ill the in te ntio n may be identified by labels or by
positi ons. The qll<lIlt ities themselves Illay be co nstants. e:'\p ressions. code. poin ters to declaratio ns. graphics or
whateve r is req llired by the problem : their presence does not commit to (IllY p(lrticular fonn of processi ng or
illlerpretntioll yet. If there fire shared qua ntit ies. they shou ld be placed in a declaration. and then the sharing is
e.'p ressed by graph-li ke poinlers 10 Ihe dec la"nion (for simplicil),. Ihe above Iisl did nol include sharing).

Co nst(1llts can be interpreted in the co nte.'\ ! of the intenti on. Some consta nts will be lengths. these can be
encoded as discrete choices. take n fro lll the ana log length of a line segment. or as subtrees or character strings
with lInits provided. fo r examp le I 3f.t" or WC Ill .

One nice thing about intent ions is that they ca n be extended eve n when they are alrendy in use . Of course. the
order of pmcll lleters which were ident ified by posit ion Ill fly not be dis nlpl ed, but labe led or subsid iary
info rmati on ca n be nltached to any node without dis turbing the existing uses. In the Illost e.'\ trelllC cases. an
editing enzyme could be supplied to perform the tnl nsfo nnation necessary fo r an upgr(lde .

Once the intention is formalized. the firs t illlplemen tatio n Illust be decided. This Illay be as simple as ignoring
everyth ing initinlly. or may usc ;1 sop hi sticatcd class-based library. In eithe r case, the Reduction Enzymes have
to be written. The impl ementati on may be changed i1t any time.

An Imnging Enzyme ca n be also wrillc n which C;U\ echo "II contribut ions ~lI1d perhaps also pro\·ide a previcw of
the dial og bo.\:. A more sop hist icated illlplementation of the illterface code in the fl lture might provide tools to
all ow direc t manipul atio n of the graphica l itcms ~ s wcll. so that the progrnnllner cou ld adjust the size
p;uamcters in the intention by dragging the bo rders of the preview. Failing <In)' th is. the in tentio n cou ld be still
dispJClyed and inpHt in sl<l ncimd fUlict ional notation.

=

VII . 20

Usefu l A bstractiolls
The prediction is that IP 's combi nfltioll of e.'\prcssive power ,lnd ::lvnil<lbiliry will give rise to an incredible burst
of c reativi ty from many corners. The purpose of the foll ow ing c:\Cl mpies is 1I0t to demonstrnte uni'lue crcmivity
bu t to illu st rmc the degrees of freedom . Espec i<llly in the beginning. the plate will be ful l \\ ith g rand old ideas
wh ich somehow have got ten stuck in some niche language slich as Lisp, Sllla lllCllk. or even Be pL. Just
bringing these abstractions inlO gene ra l use will be a major undertaki ng with fm reaching co nseque nces.

Va lor. A sho rt- lived fC:l111re of BCPL was the "va lof' primary which could be used to write an arbit rary
computatio n as part of an expression, fo r e,'\<1 lllplc:

sult\=valof{illt i, sum =0: for (i=O .i<20:i++)sum+=<lIiI : resultis sum: }-ciJeck_su m:
(where Ihe resulii s cOllslmcl defilles Ihe resuli a lld breaks 10 Ihe elld of Ihe valof braces) II gal left out of C,
prob<lb ly on rhe v<l lid b/lsis thaI the S:lme code could h<lve bee n written more clearly CIS <I n equivalenl sequence of
sl<ltemenls. However. the constnlct ioll is invaluabl e <IS a way station ill a series of rransfo nnations. If <In enzyme
were to expound on the exp ression:

SUlll = La - check_sll lll:
it might well wish 10 choose the inline loop as the implement<llion of the sUlllming intent ion. and it would prefer
to do the substituti on in plClce. \vilhont the need of analysis. In effect. v:l lof is the key primiti\'e ingredient of the
vmious inlining fealmes of lanb'lmges such <IS C++. But how can valof it self be implemented? It is worth
enumera ti ng the ways, bectluse they /I re typ ic<l l for a \vhole c lass of primi ti ve intentions:

• The necessary complex analysis tll:ly be performed to displace the code to the netl rest legal pitlce
which is execut ed before the <l ct ll ll l use and use a temporary \ ',uiable to transfer the va lue.

inl T:
illt i. sllm=O·. for (i=O: i<20:i ++) sll m+=a [iJ : T = Slim: goro end: end:
Sll ill = T - check_slllll :

• Use a tri via l if suboptimal imp lementation to ve ri fy tkH the abst raction is lIsefl ll. Frequent ly. the
benefits of lise outweigh the inemciencies. or problems unrel(lled to emciency ca n be identified
once an illlplelllent:lt ion is (wa il ab le. \V hen the feature pro\'cs itself. lIew implementations ca n be
introduced wi thout negating in any wlIy the im'est lllen ts made into using it. thil t is wi thoU! having
to change existing code. The frivi;l l imp lementa tion for ya lof is to int roduce it funct ion:

illl T(ill l a[])
! int i. sum =0 : for (i=O. i<20:i++}sull1+=:l[il: retu rn SUIIl :

St lJn = T((l) - check_slim:
• If the (lbst ract ion is lIsefli1 and sufficiently basic. it C~ J1 be absorbed into R-Code. which simply

mC;1ns th:1I the opti miz:ltio llS of the code-gencr:lIing b:lck end me all owed to posses knowledge of
the abst r(lct ion ill questio ll .

Scpal'atin ~ computational intcnt from implementation detail . The idea here is to provide pnrllllleters
("ll nnotatioIls" and "stipulations") to declnratiolls or ope rnti ons wh ich de termine how the intentio ns should be
implemented: thm is. whnt reduct ion enzyme should be <lpp lied. A few cla rifications nre in orde r: IP nllows (In
arbi trary nllmber of ar.f,'l.II11cn ts to /l ny node. but how would one sepmate an not at ions fro m standard opefll nds?
T he answe r is essc nti:llly thnt intentions for annotClti ons are ex pected to answer tme to the "a re you BIl

nnllolation?" method. (In the rare cases whclI annotati ons Ihclllse l\'es Illust be ope rands. special intentions. '
which ignore this answe r. provide the required CO llt CXt.) By separati on. IP mcans an arbitrary distllnce, so that
the change of impl ementa ti on can be effected without hayi ng to change the code that uses the intention in
Cl uestion . Bu! the choicc of illlplclIlen t:llion has to be made tlt the sit e where the intentio n is used. so how does
the information get there? By sllcccssi\'c abstraction. Allnotilling the actual intentioll 'illSltl ll Ce would be possible
but probably rare. Ncxt. olle cou ld :llIllot:lI e the dec laratio n of an opc r:lnd. the declaration of the type of the
opera nd. and so Oil. at e;lch level nffecti ng Illore and mo re Clua l\t i l i~s with fcwer and fewe r (l llllOt<ltioIlS.
Implementation information ca n be also propagat ed through procedure interfaces lIs ing "sp~ciali zatioll" (c L)
:llld completely remoted fro m it s pbce Of ;lCti\ 'ity by "proxy cO lltribu tions" {cL}.

VII.21

Finally. the notion of "implementing" is to be inlc q>rcted under the nssulll pt ions that are implied by the
flllllOI<ltiollS <lnd stipulations. For exa mple. ~l four-eleme nt fixed CH ray 1H:ly well be nil "implementat io n" for a
genera l collection, intention. provided that the HUlIlber of elellients in the collect ion will never c,'\ceed four, the
ele ment sizes lIlatch the army type. ze ro is (l\ ';lil :lble 10 Illark the absence of llll eleme nt. etc .. etc. Allllowting the
co llectio n wit h the 1l<lIllC of the imp leme nt ation (film is. the reduction enzYllle) \\ou ld be understood by lP as a
stipulat ion by the user that sufficie nt co nd itio ns fo r the lise of the impleme ntat ion me s(l ii sfied. Or, co nventions
could be illlroduced where the speci fi c stipul;lI ions could be llIade by the user which could be interpreted by the
enzy mes to see which enzyme should be awa rded the job.

But is it wonhwhi le to optimizc code to the c:-.: tcnt implied by thi s faci lity? Thc answer lI1ny or may nol be yes.
but the 'lues ri on could be more lIsefully re t'ocllssed on the IlCt of writing the code in the first place . It has been
said that "p remature optimizlltion is the root of all evil". yet <Ill programmers have experienced the 'lll<l ndary of
writing code that hClS a ch:lnce of performing well ve rsus writing a f1ll1ctional prototype which wi ll have to be
rewritten for performance. Where does "designed-in performance" end and "p remature optimization" begin? IP
remO\'es the 'luandary. When you have the urge to co mmit prem;lIure opt imiza tion. you can express both the
prototyp ical int ention and the more compl icateo implementation at the S:lme time . Perhaps the e.'\pression of the
illlplcmclHa ti on as (Ill enzyme I1lny be h;lrder than writ ing the code direct ly but as <l bonus. the particular
imp lement:l ti on trick now becomes (I sharab le ,1Ild llwrkewbl e object. to be used whc never a similar situation
mi ght arise. Also. the optimizatio n. pre lllalUrc or not. beco mes rcplnccab lc by other impleme ntati ons with
differen t performance chnrac tcri st ics.

How is this diffcrcnt fro m classes in Object O riented Progrml\ming'! First. the illlplelllenl(ltion choice (lpplies to
every imeIllion. not just objects. so the system do~s not have to be one-hundred-percent pure object oriented to
have the benefi ts of scparClt ioll . E\'cll when the object par;ldigm itsel f is considercd Clil inte nt ion. it might benefit
frolll vario lls illlplcmentatioll models that do not im'o lve OOP. Co nverse ly. OOP it se lf includes many
implellle llt ,lI ion choices <lnd different structures might bellt!fit from differenl implementat ion cho ices. Second,
under IP any illlplement<ltion tricks are :1ccept:1ble. not only those which nre exp ressib le in terms of methods.
Fo r example a procedure might rcques t space ill the cll il er's frame. Clnd dem'lIld <l poimer to it to be pClssed. A
field in a st mcture CCln be a fixed size ar ray. a relath'e pointer to CI ,"ari ablc size arra~. with the size stored
separa tely, or a heap pointer (Q .:lll alloca ted block \\'il h the size compu ted from the block size. Thesc choices
could be all sillluinted in OOP CIt one level. bu t you could not dcfine an embcdded object wh ich. if included into
another class as a fi eld. would create Cl il y one of the nbo\'e choiccs. Th irdl). in IP the "independe nt " 'luClIliities
whi ch form the programmer's contribution to all intclltion ca n be kept t e:\ lU al1~ s~parat e and witho llt any
impact Oil the nUl-time progrnlll. frolll thc "dcpendcnt" 'lll ,lIItities which cOl\lp rise the imp lementation. In OOP.
similar sepllf<lIioll \vithi n a class is illlpossibl e ;lnd ca n be olll y approx illlated b:v public/privClte labels, COllllllent.
and program formatting. The form of exp ression of the int en tion is difficu lt to separ.:lte from the nllHime
rep resemnt ioll in that a ll~1hillg a programmer wr it cs ill a class constnlcto r. for e.\;;Jmple. has to lwve so me mll
time ex istence by dcflni tion.

The illle lllion/ implelllent,lI ion absl r<lcti on does 11 0 1 replace procedurcs. Rough ly spenki ng. a procedure is an
intention with one implemelllntio ll \\'hich is ill the form of n subrou tine. Clsting thl! illlpicmen t:lt ion into
transfonnntionni form becomes eITecti\'e ollly whcn an in tention \\' ill ad 111 11 to llluitiple possible
implementations. or if the act ual paramcters exp ressi ng the intentions differ lIlarkcdl~ fr01ll the forma l
pmalllete rs which implement the in tenti on.

Specialization . The act of specinli zCllio ll is sa ti sfying a procedure ca ll by the creation of n new procedure
instance by partial eval uation of the old instance with respect to some ;lddi[iona l infornmlion nbou t the val lies of
the nClll~ll :Irglllllent s. t),piC;llly the info l'l l1;lIioll that sonle ;l rgulIlen t has a gi\'cn co nstilll t \'alue. This should
ha ve absollllcl:v 110 effect on the r~su1ts bllt for t\\'o \'c ry illlPOrt:ll l1 f.:lctors : First. so me interesting 'lu(lntities
mllst be co mpile time COl1s tan[s: fo r C.,\;lI l1PIc Sti llic types. il ll ple mell t;lI ion choices. field selecto rs. code
sC'lllences . ~mcient array lilllllS. Abscn t specia li z;lIioll. forllla l pnrillllclers to proccdures are. by definit ion,
variable . Ergo: lIlany interesting 'luil1l1 it ics "1111101 be IIscd as pa rametcrs 10 procedures unless on!! hCls
spec inli z:lIioll. Spec i:l li z;lIion thus rcmoves the ince llti\'cs to lise sou rce-leve l macros or othe r preprocessor
CO IISlf1lC ts wilen nbs tract iolls \\ilh compile limc co nstant fo nnill p:lralllcters :Irc Ilccd~d . Much cluller in C

VII. 22

production code is caused e.,\tlctly by the]\lacro definitions and " ifdefs" which express otherwise quite normal
nbstractions. but lIsing a very prim itive nnd lln:lttnlcti\'(! language.

The seco nd key factor tltCH favors speciali za tion is effi c iency. Existing procedures can oflcn be speeded lip in key
con texts by jud iciolls specinlization. "I nlining" is a CO IllIHOIl feature in progra mm ing Inllgunges that achieves
the same or greate r perforlllance imp rm'c lllcnl than spc::c inliz:1tioll , except tha t in lining is pro nigmc in its use of
code-space. fn (lilY case, specialization provides fo r a spect nllH of tradeoffs. But the most important effect of
efficiency will be Ilo t a ll c.'dsling code, bu t on new code. Once it is clear that pammctriza tion does not involve
nll\-til1le costs (nor a change in the mode of e:\p ression. fo r e.'\a mpie. havi ng to use macros instead of
procedu res) the prognlmmer cn n express more and more vminb ili ty in the code in terms of pnnlmeters. This will
give rise to lnrger. very genem l. "a rchetypn!" procedures wh ich will hnve one or maybe n few instantiations in
any give n lIsing progrn m. The archetypes would be ext remely reusable becntlse of thei r ge nern li ty. Also they
would be usable becnuse from any si ngle program 's point of vicw they would be as effi cient and have ns few
free paramete rs as if tailo r-made. In the 1 %8 Nato confere nce Mclllroy made the fa mOlls predict ion that a
ltniversal co mponent library could be developed and it might co ntain "lOO of just sine routi nes alone", not
unlike a hnrdwnre compo nent calnlog in whic hC'"there are at lenst toO kinds of op nmps. This pred iction has not
cO llle tnle Illtlybe bectlllse 100 is too small - whe n the combinatorics of possib le numbe r rep rese ntations.
wordlengt hs. desired precisions. prefe rred appro.'\illl<l ti olls. space/time tradeoffs. elc. are lClken Ill to nccoulll. The
number 100 is (l iso 100 \mge. \\ hen one co nsiders the size (Iud orga nization of cata logs and de li vemb les. (lnd the
prob lem of the ma rketer and customer to e:\change inforlll:lIion abollt supply and dema nd.

\Vi th speci(l ii zClt ions. the 1Illh'ersill li brary wou ld have just one si n routine (or perhaps just one trig archetype
where the pnrticulnr trigonometric fllllCtio ll is :lI so jllst a parameter) and users would be (lb le 10 specify, or let
default. a dozen or more paramete rs. The numbe r of possib le specific rou ti nes which could be go tten from the
a rchetype \\ ould be co mb inntorinlly huge.

Come from statement. This novel abstnlct ion helps with hiding informat ion betwee n modules. It stnnds in
co nt rast with a normal procedure cn ll. where the ca ll er knows whell procedure to c(l ll , but the procedure only
knows what it implements. not \\'ho mi gh t ca ll it. In n "come from" procedure. the potent in I cn ll sile. the "come
from Inbel". knows on ly whal ill\'nria nts M C tnlc at the si te. but does not know what procedures, if any, might be
cnlled. The procedures. in tu m specify wha t "come from Inbels", that is under what co ndi tio ns, they should be
c" lIed fro Ill .

"tabels" Procedures

"come from" declaration ~L ____ -'~

y,---------,!----" [I ~ ,,---------,
~ ~'---. ---'~

For cxmnple. when cache Cis clIl pry. the foll owi ng come fro m Inbel Illay be executed:
CachcElIlpty(C):

VII . 23

a lld the fol lowillg procedure would be called:
proc comes from Cac hcElllply(CACHE c) : . :.

note that parameters wou ld be :1 llowcd. A ll this looks perfectly norm;)1 except for the fact that the
procedure Illust also impo rt the ll'IIIlC "CacheElllpty" just as the label does. and tha t the re could be, say
::; kIbe is and -+ procedures rerer ring to the Sclmc name. At c:lch of the 3 Inbeled places, 4 calls. one to
e:lch of the -+ procedures would be e.'\ccliled . fnfofln:lIio n hiding would be pe rfec t <IS the only definitio n
I he~ would nil llCl\'c to kno\\' is the llClIllC of the im'ariant they :111 apparently have a stake in .

Proxy contrihutinl1s. Th is intention is anothe r nbs traclion to help l1l :li ntnin informat ion hidi ng, wit hout havi ng
to reso rt to nlll- li me interpretation. Fo r exa mple. to extend the behavior of all intentio n defi ned in a system
library. the method ca n !lot be wri tten ;lS part of the declaration. instead, it is "contributed" by proxy. In a
sim ilar man ner, a modul e ca n add fie lds to a data stnlct ure. or add vCll ues to an enumerated type that it does not
own.

Legacy Pl"Ograms
IP prom ises to be a grent \'ehicle fo r re -engineering legnc)' code. T he method fo r incorpo rating a legClCY
IClnguage L int o IP is as follo\\ 's:

I. Ide nt ify the intelltions in L either with existing intent ions (such as +, in!. gata) or wit h specific
new illientions (such as MOVE CORRESPOl'.'DING.)

2. Ad:l pt an existing parser for L to crea te the sou rce tree of these illten tions. II helps if this parser is
written in a IClllguage fo r which a legac~ ' parse r already e:.;is ts (such etS C.) Otherwise. the parse r
has to be re·coded ..

3. Choose illlplemeill;lIiolls for the !leW illlClltiolls and defi ne the transfonnettio lls for thcm. At th is
point choices IUI\ e to be made abollt seillantic compa tibil ity with existing intentions. FOJ1unarely.
these choices will 1101 be pe n ll<l IlCnl. so engineeri ng tradeoffs ca ll be made bet\\'een requirements.
schedule. and illlplemen l;lI ion cOSts. If II l.!cessary. compcll ible im plementa tio ns Illay have to be
.:ldded to e.'\ist ing intentions .

.+ . Typically. illlaglllg enzylllcs ollgh t be defined 10 be able to display the code Ime to the language L.
Thi s is very ensy 10 do and wil l help <l lot in verify ing the parser has worked and attracting legacy
use rs. By the wny. it is ncceptnb1e if intentions outside of L. and e\'en r(lre L intentio ns do not have
imaging enzymes : the inherited or default notations will typically suffice ill such cases.

Step 3 might still be a sizable project for a l<Hge In ngu:lge such as Cobo l. PilI. or Ada. Of course the incentives
fo r an independent software yeildor to do this wo rk will be ;lIsa very large. Fo r smaller. loca lly popu lar
langu:lges. where the selllrlntics are marc standard than the sYllIax. the to tetl costs might be of the order of a
Illont h of a prograill mer ' s time depending on the ava ilabili ty of a parser to start wit h. \Ve have implemen ted a
f1 111 PI/m sysle m in IP in addition to the C legncy system Ih'H WetS llsed fo r bootstrnp. Wi lh PIIIll ill place, a
private collection of legacy code wri tten fo r some long defu nct plfi lfonn found a new lease on life . Indeed, if
there will e\'er be a computer museu ill for lallbrtl:lgeS. IP woul d be a ll ide:11 frnmev"'ork in \vh ich dead languages
coul d be resu rrected and maybe e\'en rind usc ill :1 itl.'\uriolls new development environment which would be
beyo nd the kll l!,'1mges' creators' wildest drc;lIlls,

Once a progra m written in L is imported in to 1P, it is apc n to re·enginccring by con tinuolls improvement.
Instances of incOllvenient old illlell tio lls could be rCIllo\'cd or co nsol idatcd ol1 c-by-o ne and the progr.:l 111 would
remain in n ll l.:lble and tcstable sw te througholll the process, Old PMtS could be \'iC\\'cd ill L or ill C. while new
parts wou ld show ill C (or \\h:llc\'er the best avail;lblc notation is.) The re-training of programlllers skilled ill L
could also proceed ill pn rallel \\ ith the ililproH': nlCl lI orthl! progra lll code. Large-scale systelllatic ch;lllges to the
legacy progr:llll could be dfcct~d by wri ting editi ng cnz:1l1cs,

Olle inte resting qllcs tion o rl~gac: parsillg is \\h;1I10 do \\illl pre-processor informatioll and with cOlllments? As
10 cO lll ments. they hi siorictlll: h;we cOlllp rised Clll illlponallt part of the prognlllliller' s contributions and must be

VII _ 24

preserved. The rea l issue is to deve lop heuri stics as to what node in the tree the comments should be attached 10.
thnt is to parse the t<lc it syn tax of CQ IlIIIl Cn(bindings.

In Icl1lh'1mges slich as C. \llIlch of the "i ntentiollal " informalion is encoded ill m(lcros . For e'\:lllllple. co nsider the
C fragmell l :

#define transform(.,,) .'\ + 5

pri Ilt (tr" Ilsform(a)):
It would be a tf"gic loss of info rmat ion if the legncy parser's total out put would be :

prillt(a+5):
which is whcH a typicn l compiler ri ghtly c.'...:pecis from its parser. Optima lly. we would e,'\pecl the IP legClcy
parse r to recover the underlying intention:

nnytype tr<lIlSfoflll (ca llbyn:llllC all~1ype .'\) {return .'\+5: }

prillt(trnllsform(a)): ~

Agni n. thi s cnlls for heuristics wh ich go beyond the originni languClge definiti on. but which. defined and applied
judiciollsly. not only prese r'\"e more of tlie intention of the source. but also serve as a first step lO re-engineering
away fro m macros.

Experience has shown that it is useful to classify C m<"lcros into a few ca tego ries:
• co nstant-like : sHch as #define a 1
• procedure-li ke : sllch as #defin e transfonn(x) x+5
• token-like: a catch-all catego ry. meaning that calls to it IllllSt be expa nded and that information

wi ll be unfortunately lost . The expcmsioll 1ll<"ly be labeled wi th the Ilnme of the Il1ncro so Ihat it may
be ident ified by a ll ed iting enzyme during re-enginee ring.

• state men t- li ke: #defi ne fore\'cr for(::) /I note last "pma meter" is the ne:" t statement
• type-modifier-like: #defi ne LI NK ••

Similarly. #ifders ca n be also classified into "token-like" which will be e:...:pa nded with informati on loss and
"honorab le". wh ich ca n be made intentional. So me classification ca ll be done automatica lly. and some of the
rarer ones Illusl be classified by the use r lIs ing n pragll\Cl CO ltllllc nt. Us ing the above classifica ti on and a few
intenti ons which e:...:press the underlying intent. pract ic:llly all macros and ifdefs ill very comple:...: progrnms call
be illTentionali zed. For eX:llll ple. (I n hono rable ifdef applied 10 statements ca n be e:"p ressed as a si mple if.
Howeve r when it is applied to a dec lara tio n. it is e.\p ress;lble only as n new intelltion: an nnnotation attached to
the dec ln nuioll which cO llt;l ins the condition under which storage need to be reserved fo r the dcclmat ion.

Business model
As mentioned emlier. some users of IP will specia lize in cre:lIing pack:lges of intentions and co llaborate to
estn bli sh stC! ndmds \\'11 ich ensure se mant ic co mpat ibi I i ry of ! ht.:: i tlte m ions. Let S dcnote t he Humbe r of stcll\dards.
I the number of intent ions. <"Ind U the number of enci-llSl!rs. The e.\ pect 'lIion is tilnt S will be small. I large. and
U very la rge:

S« 1« U
I will grow because the market wi ll the vcry large U. This is ,IS opposed to today where the lImrket for Inngllage
features is stClgnanl. tllaybe wi lh a few big s;l les every dec;lde.

The number of standards will be sllmll , but stCl ndards C:l Il be c\l :lIlged if Ihe benefit to U exceeds the cost of
recoding the I's. in other words the shift \\"ill be possible when costlbenefit < UII which will be in the
thousands. The cost \Yould be borne by the ISVs (independent Softw",e Vendors) but they would in turn eh" rge
the users according to the benefit of the change . This is \'cry !l lUch differcnt th:1I1 tod:-lY. whe n the cosllbenefit
IllUSt be less than I for change 10 t:-lke place.

Pressures fro lll U would be s: lIi s!icd b~1 IlC\\ J's . Thc re \\ill be \'cry few impedilllents in the way to growing I. In
the old world. pressurcs frolll U \\ould h il \ 'C 10 be h:llldll!d b~ essentially S. Now. pressures frolll l's would create

VII.25

new stalldMds, as described abm'e. AcclIlllulated difficul ties fnced by IS Vs would have to be re lieved by periodic
updates to the IP kernel, e' tending the ,,·ays that the kernel itself can be e'tended.

The market will be \'ery Imge beca llse of the absorption of more ~l1d more legacy languages. and because of the
increase in code sharing due 10 the separa tion of comput:ltiollal intcnt and implementation detail , (lnd because of
spec ial izatioll .

Su mmary and Status
\Ve have presented the ide;) of the intention as an abstraction mechanism, and ,111 integrnted development system
which may be used to deve lop systems lIsing in tentions. SO[1\mre encoded illlentionally can be said to be
immonni, in that its Itlcclll illg ca ll be sllstained independently of the long term progress in programming
notation nnd implementation techniques. The independence and self-sufficiency of intent ions miglu well crente
first a market in abstractions or "lallb'11age fea tures". followed by the long sought-after dream of a software
co mponentry marker. Leg<lcy code can be illlcgrmed into the new parndigm with minimal or 11 0 loss of
information (l nd there Me considernble prosP'icts for "hot" re-engineering or continuolls improvement, wh ich
can be performed while the legacy system is kept in opera ting condition .

IP is current ly under development at Microson Research. Several US Patents h(we been (lpplied for, covering
va rious nspects of the syste m. The system :lchie\'ed co mplete self-suffic iency M(lrch l. tl) <) j . (l nd since then (I II
funher development of IP h;]s bee n performed in IP itse lf The size of the syste m as of September 1995 was
(tboul 1. 7M nodes (intention instClnces) in the source tree. Plnns include the creation of componentlibrnries: the
support of ndditional legncy Inngllnges. sllcl, ns C++: operntiollni lise of the system elsewhere within the
company: and finally productizmioll berore the year 2000.

References
ABRAHAMS, P. W .. Typographic;]1 E' tensions for Programming Lanl,'t lnges: Breaking ont of the ASC II

StrHitjacker.
BACON. D. F .. GRAHAJ'vl. S. L.. SHARP. O. J .. Compiler Transformations for Hi gh-Performance Compnting.

A C.X-f Computing ,\'lIti1e:vs. Vol 26 No ... December. 1994 .
BALLANCE. R. A .. GRAHAl\i1. S. L.. VAN DE VANTER. M. L .. The Pan Language-Based Editing System fo r

Integr"ted Development Environments . . \,"jGSOFT. 1990 .
BASSETT, P. G .. Frilllle~Based So ft ware Engineering and iter;) ti ve Design Refi nement. S'oJtware Engineering:

Tools, Techniques, Practice. Apri l 199 1.
BASSETT. P. G .. Frame·Based Softwa re Engi neering. IEEE Sofiware. July 1')87 .
BATOR Y. D.. O'M ALLEY. S .. Tile Design and Implementation of Hierarchial Soft",",e Systems with

Reusable Components . . -1('.\·1 Transactions (~r,\'oJt\llnre Engineenng nnd .X-Ietlioc/%gy, Vol 1,
No ~ .

BERLIN. L . When Objects Col1ide: E.'pcri ences wi th Reusing Multiple Hierarchies. ECOOP/OOPLSA '90
Proceedings. Oct 191)0 .

BOSWORTH. G .. Objects. not classes. are the issne. IJhjec{ .14aga;ine. December I ~n .

BURSON. S .. KOTIK. G. B .. MARKOSIAN. L. Z .. A Progra m Transforma tio n Approach to Automating
Software Re~ellginee r illg. IEEE, 191)0 .

CA.J.\1ERON, R. D .. Efficient High-Ie\ 'c\ Iteration wi th Acculllulators . . ~CAI Trr1l1snctlOI1s on Programming
Languages and .\vsfellls. I 'JRI) , Vol Il. No 2. pp. 194 - 21 l.

CHEATHAM. T .E. Jr.. RCllStlb ility Through Program Transrofillatioll s. IEEE Trnnsacfions on S'oJtware
Engll1eel'lI1g, Vol SE- \(J. #5.

COHEN. H. H .. Source-to·Source In'pro,·ement of Recursive Programs. Ph .D. dissertation. Divi sion of App lied
Sciences. Hal\ '::l rd Uni\· .. May II)XO.

DEWAR. R. B. K .. GRAND. A .. Ll U. S .. SCHW ARTZ. J.T.. Programming by Refineme nt . as e.,emplified by
the SETL Rt!prcsc llt :l tioll Sublnnguagc . .-I CT TransactIOns on Programming Languages and
-\vsrellls, Vol!. No I. pp 27-.. 9.

DEWAR. R. B. K .. SHARIR. M .. WEI"''ELBAUM. E .. Transformatio nal Derivation of a Garbage Col1ection
Algorilhill . . ·/('.\1 l'rnI1SnCIIUI1S on PrograJllming Languages and .\VSICJIIS, Vol .. , No 4.

...

VII.26

DYKES, L. R., C.Au'vIERON. R. D .. To\\"ards high-Ic\'el cdiling in sy nlax-based edilors. Software Engineering
Journol. July 1990.

FEATHER. M. S .. A Survey and Cl ass ific,"io n on so niC Program Transfo rmalio n Approac hes and Techn iques.
ACT Trnmmcrions 011 Progral1lming Languages and S:vstems, Vol 13 , No J, pp. 3·H-371.

GRlSWOLD. W. G.. BOWDIDG E. R. W.. Program Reslnlcluri ug via Design -Le\'el Manipulation.
Proceedings oflhe Workshop on Studies of5iofiwnre Design, Baltimore. May 1993.

GROGONO. Poo Commenls. Assert ions. and Pragmas. SIGPL4N NOlices. Vol 24. No 3.
JORDAN. M .. An Evlensible Programming Environmelll for Modula-3. AC,IvI. 1990
KAELBLING. M. J .. Programming Languages Should NOT Have COnlinelll Sia lemenis. SIGPL4 N Notices.

Vol 23. No 10.
KOTlK. G. B .. MARKOSIAN. L. Zoo AUlomali ng Software Analysis and Tesling Using a Program

Transformalion Syslem. ACM. 19&9.
KOTIK. G. B .. ROCKMORE, A. 1.. SMITH. D. Roo Use of Refine For Knowledge-Based Soflware

Development. IEEE. 1996.
KRUEGER. C. W .. Models of Rense in Sofl\\'are Enginee ring. Carnegie Mellon Repon CS-89 -1 88, December

1989. &

MERKS. E. A. T .. DYCK. 1. M .. CAlvIERON. R. D .. Language Design For Program Manipu lalion. IEEE
Transactions on Software Engineering. Vol 18, No 1.

MINOR, S., [Illeracling with st mcture-oriented ed ito rs. Lund University. Sweden
PARNAS. D. L .. SHORE. J. E.. ELLIOTT. W. D. On Ihe Need for Fewer Reslriclions in Changing CO lllpile

Time Environments. Naval Research Lahoratory Report, 7S -t 7.
PRlETO-DIAZ, Roo Slams Report : Sofl\\"are Reusability. IEEE SoftlVare. May 1993 .
RIEf-U.E. R .. Objeclivism: "C lass" Considered Harmful. CO/ll/llunications of Ihe A C·M. August 1992. Vo l 35 ,

No 8.
SAKK[NEN. M .. The DC1rker Side or C++ Revisited . . ';,rllclUred Programming. I J: 15 5·177 .
SCHERLI S. W. L. . Absiraci Dala Types. Spec iahzaliolls. alld Progral1l Re llse.
SHAW. Moo WULF. W.A .. Toward Re l"xillg Assllmpliolls. ill Lallguages alld Iheir IlIIplel1lelllaliolis. SIGPL4N

15(J). 45 -6 1 IY80
YOLPANO. D. M .. KIEBURTZ. R. B .. The Templmes Approach 10 Software Use. Software Reusabi lily. Ediled

by BiggerslMf. TJ .. Perl is. A.J . Addiso ll-Wesley

VII.27

DISCUSSION

Rapporteur: Dr Robert Stroud

During his talk, Mr Simonyi argued that one of the "telTible things which are taken
for granted" was the intermingling of computational intent and implementation details
in conventional programming languages. Professor Katzenelson claimed that it was
possible to separate intention from implementation but Mr Simonyi felt that although
language mechanisms such as classes could abstract some things away, there were
always some details that had to be fixed. If his audience had doubts, he urged them to
suspend their disbelief and see what could be done about these problems.

Later in the talk, when Mr Simonyi was talking about the death of programming
languages, Professor Katzenelson asked if the abstract syntax notation used by
Intentional Programming (IP) was a language. Relating an anecdote about a murder
suspect under intelTogation, Mr Simonyi admitted that if he was forced to give an
answer, he would have to say "Yes" but then the next question would be "Where did
you hide the body?" which was harder to answer. To general laughter from the
audience, he explained that this was the problem with saying "Yes" under torture!

Dr Lesk asked why reduction was not called "compiling". Mr Simonyi explained that
reduction excluded parsing.

Dr Herbert said that the classical problem with this kind of approach to language
extension was the interaction of features. What happened if two different intentions
were applied to the same name or feature? Mr Simonyi said that this was a good point
and the problem was resolved by the use of links. Names were only used to
communicate with the user so there was no possibility of name conflicts. As far as
semantics were concerned, it was possible to change the transformations that were
applied to a piece of source code without changing the code itself. This would make it
possible to preserve and then enhance legacy code. However, programmers would
still have to agree on the order in which reductions were applied and some
collaboration on run-time standards might be required. But this would be a problem
for relatively few programmers (lOOOs rather than 1000000s). Dr Herbert suggested
an alternative way of tackling this problem based on the idea of keeping a history of
which reductions had been applied to a given piece of source code so that it was
possible to look back at the oliginal high-level structure and resolve conflicts in that
way.

Professor Katzenelson asked for clarification of the teITn " legacy code". Mr Simonyi
explained that in the past legacy code had always been thought of as an albatross but
it should be viewed as an asset. Using IP, legacy code could acquire immortality and
live on with any improvements to the system.

Dr Herbert said that the problem with this assumption was that most applications
were critically dependent on some huge library which typically included the whole
as. Mr Simonyi said that all this could be sucked up into an IP system too.

Professor Katzenelson argued that specialisation was nothing new - it was done all the
time in Lisp. Mr Simonyi agreed but said that the difference was that now ordinary
commercial programmers working at places like Life Assurance companies would be
able to do it too.

Professor Hall asked about reuse. Mr Simonyi said that there were two stages
involved: first, create a market, then provide reusable artefacts. The reason that reuse
wasn't happening in practice was because the concepts that were used to express
abstractions didn't work. IP would make it possible to introduce new abstractions
without destroying legacy code and this in turn would lead to the market being

VII.28

flooded with reusable components. Like the PC world, in such a huge market, only
the best abstractions would survive.

Professor Randell asked whether it would be survival of the fittest or survival of the
richest. He was thinking in particular of the power of advertising. Mr Simonyi
disagreed, saying that portable phones were popular because they provided great
value.

Professor Hall asked about the 1.2M intentions in the prototype IP system. Was a
programmer expected to understand them all? Mr Simonyi explained that this counted
the number of times intentions were used in the system and in fact there were only
about 60,000 different intentions declared within the system. This number was almost
certainly too large because the system had been bootstrapped from C and was
therefore still largely based on C abstractions.

Professor Anderson said that he had suspended his disbelief and been willing to go
along with the idea of software engineering as an eco-system with the speaker playing
the role of a visually challenged watchmaker! But the problem with genetic engineers
was that they could disturb the eco-system. Didn't software engineers now have the
ability to destroy their own environment? For example, a new imaging enzyme might
inadvertently destroy the GUI. Mr Simonyi explained that IP was intended to be used
by professional programmers and how you interacted with end-users was a different
matter. Tools like Excel wouldn't go away. He wasn't proposing using graphical
notation to get children involved in programming - IP was intended for serious, large
scale software development.

Professor Katzenelson wanted to understand IP in more concrete terms and asked Mr
Simonyi to summarise the concepts. Reduction is a process of transforming one tree
into another. Enzymes are entities that the user can write to perform these
transfonnations. The IP system replaces very general nodes with more specific nodes
until the specificity of machine code is reached. Each intention has a number of
different enzymes hung on it to perform these transformations. The programmer can
also move from the specific to the general by introducing new abstractions but this is
an editing process and is not automatic.

Dr Herbert said that since the interpreter was fixed, the semantic base for IP was the
reduction engine and the R-code interpreter. This coloured what was possible.
However, Mr Simonyi argued that since these were Turing Universal, there was no
real restriction.

Lecture Two

Programming in 2000 - a demonstration

Dr Watson asked whether IP could be used to implement any language feature. For
example, what about unconventional features such as resolution in Prolog or lazy
evaluation in Lisp? Mr Simonyi said that the answer was "Yes" and the
demonstration would include an example. These were all ideas and IP just recorded
the programmer's intentions. Resolution could be provided by emulating whatever a
Prolog compiler did - supplying the necessary parameters to the resolution process,
performing the necessary transformations of source code, etc .. In this sense, IP was
nothing new - you still had to have a run-time architecture.

Professor Randell asked if there was anything that IP was not good for. Mr Simonyi
said that IP could only record the programmer's intentions and was not good for
anything outside this - for example, IP could not improve your design or augment
your intellect. In particular, AI was explicitly eschewed! IP was good for expressing

..

VII . 29

your thoughts but it could not improve them. You could perhaps argue that providing
all kinds of notational freedom was a tool that enabled people to do more complex
things, so perhaps in this sense IP could be used as a crutch that enabled you to
improve your thinking because you didn't have to worry about trivialities. But there
was definitely no AI involved here!

Professor Martin asked about support for structuring principles. Mr Simonyi replied
that IP was good at this. A restriction could be viewed as an intention and expressed
as a transformation applied to a node high up in the tree. If the structure below this
point was illegal, the transformation would result in an error message. Thus,
programming disciplines could be enforced by IP but at the programmer's choice.
You could choose whether to buy the "discipline package" or the " hippie package".
Professor Martin said that there might be a clash if you could add something on top of
existing code - for example, a coding shop might impose a rule about only using a
common subset of C. Mr Simonyi agreed that this was very possible.

Professor Randell asked about support for concurrency in two senses: concurrency of
design, and concurrent working. Mr Simonyi said that group work and programming
in the large were very much supported by the IP system, especially because of the
intention that ISV s should supply new intentions. As far as concurrent programming
was concerned, it would be possible to exploit domain specific knowledge (e.g.
operations that could be performed in parallel) when moving code between
architectures. The ability to express high level knowledge in the form of intentions
made this idea easier to realise and therefore more plausible. Furthermore, existing
programs could be augmented by adding additional stipulations to the abstract syntax
tree to support particular architectures. Although it would be the programmer' s
responsibility to ensure that these were true, it would also be possible to add run-time
checks or use a theorem prover to verify such assertions. Domain specific knowledge
could be very useful - for example, the demonstration included some simple loop
optimisations.

Thinking about the role optimisation played in RISe architectures, Professor Randell
asked what impact optimisation might have on the designer. Mr Simonyi felt that it
was too soon to say but said that there were two kinds of optimisation - general and
domain-specific. Many years of work had been put into general optimisation
techniques and IP exploited such optimisations by using a commercial back-end code
generator. Such code generators were very competitive and doing a good job. The
other kind of optimisation came from knowing the semantics of the application and
this was where Mr Simonyi was hoping that IP would provide a significant non-linear
benefit.

Professor Randell also speculated about whether IP would have a role to play in
VLSI, given the convergence between hardware and software design. Mr Simonyi
didn ' t think so - he felt that hardware design was not that important since the problem
of getting data from memory to hardware devices such as shifters or adders was not
really that different whether you were inside or outside the chip. At most, there was
only one order of magnitude difference in performance. Professor Randell disagreed,
saying that putting functionality inside the chip could reduce design complexity,
citing the example of MPEG compression.

Professor Kopetz asked whether an IP system could guarantee temporal properties,
for example put a bound on execution times? Mr Simonyi felt that IP was like any
other high level language in this respect but Professor Kopetz asked specifically about
guarantees for real-time systems. Mr Simonyi replied that he didn't think IP could
provide such guarantees. You could only create intentions that could be evaluated at
run-time. To support real-time systems, you would need an image in your mind of
what the run-time support system should provide.

VI I. 30

Professor Randell argued that surely one man's intention was another man's design.
Mr Simonyi disagreed, saying that intent and design were virtually synonyms.
Professor Randell was concerned about the process of transforming a design into an
intention which he compared to climbing up a hill but Mr Simonyi argued that
something like a dialog box could be described directly in terms of the programmer's
intentions, no more, no less.

Mr Elphick asked whether the concept of a declaration was built into the IP system.
Mr Simonyi's reply was "Yes and No". Every intention contained a pointer to its
declaration and since a declaration was itself an intention, there was an intention to
describe the declaration of a declaration. However, there had obviously been a need to
bootstrap the system although they hadn't attempted to start from a minimal set of
concepts. There was no infinite regress - instead, the methods that dealt with
declarations were hung on the intention which described the declaration of a
declaration and this was itself a declaration.

During the demonstration, Professor Randell asked about the project log - did it
record all changes? Mr Simonyi replied that the log provided a tree of changes but it
was possible that some parts of the tree were not accessible. If you tried to apply an
update, the system would check that this made sense from your current state.

Professor Bennett asked whether the intention shown in the demonstration that
implemented De Morgan 's law checked for side-effects? Mr Simonyi replied that in
principle it could and that this would be the kind of "value-added" that could
distinguish two different implementations of the same intention. However, he didn't
wish to defend the particular implementations of the intentions he had shown - the
important thing was that it was possible to write such intentions at all. Just as
telecomms companies should be selling bandwidth, compiler writers should be selling
abstraction mechanisms.

Professor Katzenelson asked how specific knowledge had been introduced about the
Bessel function, another intention that was shown during the demonstration. Mr
Simonyi said that the same techniques were used in each case - definitions such as
transform and fold Constants were hung on the function as extension properties.
However, as far as the programmer was concerned, it was the same function - it was
up to the system whether the function call was expanded at compile-time or run-time.
By separating intention from implementation it was possible to achieve many things.

Professor Backhouse wanted to ask two questions. In "cute C" mode, was it as easy to
edit a subscript as it was in ordinary C mode? Yes - at least in principle. In practice,
Mr Simonyi had some difficulty demonstrating this feature and was glad of the undo
facility! Unfortunately, there appeared to be a bug in the implementation of "cute C"
mode. However, in general, the ability to support this kind of functionality depended
on how much time you were prepared to spend on the implementation. There were
some obvious difficulties in this area such as the problem of selecting a hidden
operator in an expression such as 2n.

Professor Backhouse's other question was about whether it would be possible to use
an existing notation such as Maple or Mathematica for intentional programming. Mr
Simonyi said that the best thing would be for Maple to sell their system in a form that
could be linked with an IP system - if there was a strong pull for such a notation, then
this was the obvious thing for them to do and there would be a very great incentive
for them to do it. Professor Backhouse asked whether this would mean that they had
to change their software but Mr Simonyi replied that it was just a question of
packaging the software in the right way and in principle was very straightforward.

Professor Martin thought that the most interesting implications of IP were the
commercial changes that would result from creating a new form of "value-added".

VII . 31

Had any thought been given to commercial protection aspects? What about issues of
tracing faults and failures and dealing with notions of responsibility and
accountability? Mr Simonyi replied that they had not thought much about the former
problem but enzymes could always be distributed in object form. The other problem
was a serious issue though and there was a potential mess here. However, Mr
Simonyi felt that this was not so different from the current situation and was the price
of progress. Referring to a recent problem involving rapid acceleration in an Audi, he
asked who was responsible if a car ran out of control because of a fault in one of its
components?

Professor Katzenelson felt that associating methods with intentions was fine for
dealing with local operations and pretty printing but wanted to know how to perform
global operations on the source tree such as CSE elimination, optimisation and inline
expansion. Mr Simonyi said that in principle you could describe such operations by
intentions associated with nodes high up the tree. During reduction, when these
intentions were encountered, they could perform some operation on the whole subtree
beneath them. However, he was not in favour of this approach because much of this
sort of thing was done more efficiently by the back end which could accept directives
from the program. Professor Katzenelson asked whether it was possible to control the
evaluation process, for example how many times a given reduction was performed or
the order in which enzymes should be applied. Although these problems had not been
solved by work on program transformation, Mr Simonyi was confident that IP could
deal with such issues because the reduction process could accept input from the user
who could stipulate explicitly how to do something if it was important.

VII . 32

