
IV

DISTRIBUTED COMPUTING MEETS
TELECOMMUNICATIONS

A J Herbert

Rapporteur: John Dobson

IV.2

=

Poseidon House
Castle Park
Cambridge CB3 ORO
United Kingdom

I V. 3

ANS~
TELEPHONE:

INTERNATIONAL:
FAX:

E-MAIL:

ANSA Phase III

Cambridge (01223) 515010
+441223515010
+44 1223 359779

apm@ansa.co.uk

Distributed Computing Meets
Telecommunications

Andrew Herbert

Abstract

This is a presentation to be given at the lel I University of Newcastle Workshop on ''The Future
of Software", September 1995.

It focusses on the impact of deregulation and broadband technology on the telecommunications
industry, leading to the uptake of object technology in initiatives such as TINA. The presentation
then explores some of the extensions needed to current distributed object platforms to support
interactive multi-media services.

APM.1557.01

Distribution :

Supersedes:
Superseded by:

Approved

External Paper

25th August 1995

Copyright © 1995 Architecture Projects Management limited
The copyright is held on behalf of the sponsors for the time being of the ANSA Workprogramme.

IV.4

A
ANS~

Forces for Change

• Broadband
optical network, ISDN, ATM
digital services to user

• Deregulation
competition
new players

" PM 155701

• Interactive multi-media
Video-an-Demand
Home shopping
Information access

Approved e.'elTllll Peper

A
ANS~

• Challenge
fast roll out of new
services
exploit niche
opportunities
supplier independence

2~lh "'\tgu~1 1995

Traditional
Telecoms Architectures

Intelligent Network TINA
~I IJI

"PM 1557 01

SERVICE
CONTROL

CALL
CONTROL

CONNECTION
CONTROL

Service
Control
Po int

Erlemel Pape'

(--;;';~'C~~
I, CONTROL))

'-_. -=---.:-

Service
Control

SERVICE \1 '
CONTROL I ,

~N~~
CONTROL)

251hAu;lUS1 1995

~PM _ 15570'

,-,.;

APM 1557 01

Lt.
~

ANSf.\

IV.S

Telecoms Network versus Internet

Traditional Telecoms Network Internet data Network

Services

...
. : . , ~f'
Switching .",..

Services

.,. ,J ,,,'. ,

Routing

Transmission .. ~.';, '

A
ANSf.\

Convergence

/

Services

Routing

Transmission

251h Augusl 1995

(~-1QJ'----D~is-t-r-ib-u-t-e-d-·---y.--~~~~lgent terminals
I .dI!!!II!J' __ P roce s sin 9 411!!1' .&i? ' I I Environment I :
I i

SElrvices Services

Switching

Transmission

''''''''''

Services

Multi ~party services

)

OoS guaranteed
bit pipes

IV.6

A
ANSt\

Distributed Processing Environment Template
Using ANSA I TIN~ -Dist;:ibut~d-" --·- - E-"vi~onme';t - ! .

I OOP architecture ! ~rapplng technology

events conditions
monitoring actions

Based on CORBA
or COM technology

APM 155701

L:~
.L».

ANSt\

El1emal Peper

Queues, streams

251~ AUPU$11995

Principles for Distributed Processing Environments
Trading and Federation

Configurable interoperability

Custom Infrastructure
One s.ize does not fit all

Service Infrastructure

Abstract & Automate
Tools replace APls

Modular Engineering Wrap

Architected internal interfaces

APM 155701 e . ,emeI P8fHl'

Portability

Interop

I V. 7

A
ANSfl...

Trading and Federation

• Large systems are made up of autonomous islands (domains)
interconnected incrementally, no central authority

legacy of old technology, conflicting choices of new technology

• Administrative boundaries: where checks and accounting occur

• Technology boundaries: where protocol and data conversion occur

• Objects provides services to one another

• Object advertize services in traders

• Trader uses meta-data (type, properties) to ensure integrity
no sup rises rule for matching allows for system evolution

• Set up interceptors (gateways / bridges) on demand, when trading
between domains, driven by meta-data

APM 1S57 01 2S!IlAuguSII995

A
ANSfl...

Custom Infrastructure - Enabling Trade-offs

• Distributed systems engineering is all about trade-offs
ABSTRACTION versus SPECIALIZATION - the more you hide, the less
control you have

CONSISTENCY versus AVAILABILITY - availability implies copies,
increases risk of inconsistency

AUTONOMY versus UNIFORMITY - autonomy gives more freedom but
leads to differences which increases complexity

SECURITY versus CONVENIENCE - security makes things harder to do

• Distributed application design versus distribution transparency

• Therefore we need a kit of transparent solutions and an open nucleus
into which they slot

• Moreover the nucleus must accomodate coexistance of alternative
parts for the same job

"

IV .8

Selective Transparency

• Transparency is about hiding mechanism
Location

Access

Migration

Replication
Persistence

Partial Failure

Federation

don 't need to know where it is to use it

don't need to know how it works to use it

it can move while you 're using it to balance loads
or reduce latency

there may be copies for reliability and/or availability

it only gets resources when it needs them

it always gets to a consistent state

you don't have to have the same administrator to use it

• Selective transparency requires
same API for core functions across all transparencies

extra management functions for controlling each transparency

APM 155701 e . lemal Paper 2SI~ AlIgUSl199S

A
ANS~

Abstract + Automate + Modular Engineering

"

I Generic At;P "

I Source I + AitrT6Ufes / ", ~
I ___ ..
i ___ J

Wrap

APM 15S7 0 1

Portability

Interoperabilily

--~

. ...,.,'-.~ Transparency
Control

\ API
/

Transparency
Mechanisms

2Sth AJgUSI 1995

IV .9

A .
ANS~

Programming for Distributed processing Environments

• Rich set of concepts needed
tllreads for concurrency

requests and replies (symmetrical c.f. procedure calls)

replication for availability, fault tolerance

atomicity for failure recovery , concurrency control

• Optimized engineering for common cases
e.g. forked call -> asynchronous call to save a local thread

• Special engineering for special cases
e.g. spawned atomic request -> start new top level transacti on

• Combinatorial explosion in functions overwhelms the programmer

APM 155701 Approve<! E"tIemal PIIIHI'

A
ANS~

Let Compilers and Tools Take The Strain

• Exploit abstraction, program in application oriented concepts

Illost aspects of 00 really help, some hinder

• Simple (pre-processor) extensions go a long way

especially if leveraging an 00 language

251h AuguSI 1995

• orthogonality - ·e.g. "dot" and "bar" VS. threads and RPC API

languages minimize complexity without losing scope for optimization

• declarative - state requirements and policies not mechanisms

point already proven by IDLs and stub generators

decouple applications from engineering - ANSA PREPC experience

• strong type checking for safety and confidence

APM 155101

I V.10

A
ANS~
ODP I TINA I CORBA Distributed Object Model (1)

User lnlerface OBJECT

"'PM. l ~51 .01

A

login (name, pin) ~> acct

INTERFA CES

lislAccls () .>

Bnnk
illterf

newAcct (name, pin, bal)
,> ok 0 -> fail (reason)

closeAcct (name)
,> ok 0 ,> fall (reason)

tlWllagcr
ace

Elflemal Paj)l! '

ANS~

.

,
"

,. ..

Accounts

1
AJH ' 1 1234

1

$200
1 ,

, ,

.I ~,p'(t l . 56: 8,1 $.~ OO _I

1
JDF' , 'I ,; 901 ~_ I' $350

1
... : "

1
,RMN ,' 1

8754
1

$170
1 ,

ODP I TINA I CORBA Distributed Object Model (2)

Userlnlerface OBJECT

login (CJP, 5678) -> accl

(
./

credit (amount)
debit (amount)

.> ok 0
-> refuse 0

IislBal 0 .> ..

APM 1557 0'

Banl(llla"<:Ige r
int er face

IislAccls () ,>
newAcct (name, pin, bal)

,> ok 0 , > fail (reason)
c10seAcct (name)

.> ok () ,> fail (reason)

~- -, Accounts ,. c ,

" ' '" i p , } 1 '.
1 " 1234'

1 1
AJH $200

i,-:'Mf·_.: ~:i;!4!'~~~h'!'~.-

' " I '~~P ',; I ",6,67~, I' $1 00 I
- I JDF ' 1, 9012 I $350

1

1
RMN I 8754 I $170 I

2Stn ""'iI'Js, ,995

·1

I V.11

Specific Telecoms Requirements

• Extensibility, scaleability, federation, dependability

• Support for multi-party interactions
explicit binding

• End-to-end quality of service control)
- explicit binding

fine-grained resource management

• Routing audio, video etc to applications

• Predictable computation
synchronous programming

• Performance
OPE close to bare hardware, perhaps merged with microkernel?

APM 1!.57 01 Et1emal Paper

A
ANS~

Streams
----- - -- - -

I control, arg1, arg21 I video, map]

----_. --- ------ ..
I sync,arg1 I status, arg1 --.,..

• A stream must·be bound at both ends before it can be used

• A stream has a set of flows

• A flow has a set of frames (or signals) and a direction

• A frame has a name and a set of typed arguments

• Streams are typed and can be conformance type checked

• Frames transmitted by non-blocking writes, read by blocking reads

APM '~S701 Et1erna l Paper

APt.! 1557 01

I V. 12

A \
AN S t\

Binding - Another Distributed Application

client binding
manager

2

5 f.

7

server binding l manager

·n, / /--." ,
6 (?lie~t-.·.~+-) -1---- - -1-1: .Service)

local
client

endpoint

A
ANSt\

.. _ _ 9 __ ~--

e ... c~1 Pap$<

Synchronous Programming

local
server

endpoint

• a reactive system continuously interacts with its environment

its execution is divided into a sequence of discrete instants

2Slh Augu~1 1995

each instant reacts to its inputs and produces the corresponding outputs

• the synchronous hypothesis states all reactions are instantaneous
simplifies reasoning by removing all concurrency between instants

execution of communicating threads in the same instant are serialised

• deterministic behaviour

bounded execution paths, calculable in advance

with guaranteed resources:

programs have predictable timing and reproducible behaviour
[even in asynchronous systems 1

b" ' Paper

h
ANS~

<exp>
signal

IV.13

Example Synchronous Language

= <exp> I <exp> ; <exp> I <exp> I I <exp>
= signalName [attributelist)

"(" (typeExpression "J"
= "»" I \\ « " direction

flow = direction [attributeList)" (" (signal)
1\) /I

stream = "stream" [attributeList) "(" (flow) "J"
transmission = unit "J" signalName block
reception = unit "?" signalName
condition = "(" (reception) "J"
await = "await" condition
watchdog = "during" block "watch" condition block
presence = "present" condition

Approved 25tll ""gusl 1995

A .
ANS~

Key Points

• Distributed Objects

• Blurring of Computing / telecoms distinction

• Modular Infrastructure

• More of the OS becomes an "application"

• Computing with Time and Quality of Service

• Custom hardware turning into software on commodity hardware

APM 1557 01 2SlIlA..,guSII995

IV.14

DISCUSSION

Rapporteur: John Dobson

Lecture One

I V.1 5

Professor Martin asked whether Dr Herbert's use of the word "service" sometimes
confused the telecommunications community, who had their own interpretation of the
word.

Dr Herbert replied that this did happen on occasion, but the confusion sometimes
served to clarify what the word means in the telecommunications community and the
distributed systems community. Professor Katzenelson asked whether the approach
outlined was adequate to deal with real-time problems.

Dr Herbert replied that an efficient operating system (in performance terms) could be
engineered by placing the distribution mechanisms in the operating system closer to the
kernel, but additional abstractions were needed to handle real time, particularly in the
areas of control over multiplexing and time allocation to resources. Professor Randell
asked about the link between objects considered as bits of mechanism and objects
considered as linguistic constructs. Dr Herbert replied that encapsulation (i.e. the ability
to move an object about as a single entity) and genericity (types of object subject to a
common management regime) were what were important, and these could be seen
mechanistically or linguistically. Also objects might require different access paths under
different kinds of transparency attribute. These properties could not be handled if
objects were seen as possessing methods. Professor Randell further enquired if current
work on evolving objects was relevant to these points. Dr Herbert replied that it was.
Professor Kopetz asked whether encapsulation should include temporal properties. Dr
Herbert replied that it should, but currently no system supported that.

IV.16

