
VII 

DISTRmUTED OBJECTS AS A LEGACY INTEGRATION 
MECHANISM 

J Sventek 

Rapporteurs: Cecilia M.F. Rubira and Rogerio de Lemos 



VII . 2 



VII . 3 

DISTRIBUTED OBJECTS AS A LEGACY INTEGRATION 
MECHANISM 

Joseph S. Sventek 
Hewlett-Packard Laboratories 

1501 Page Mill Road 
Palo Alto, CA 94304 

USA 

An object model for application components permits component users to con
centrate on the component interfaces without worrying about the implemen
tations. The work described in [1] was concerned with the use of such a model 
for designing and constructing new systems/applications; the encapsulation 
behind the model also provides scope for the integration oflegacy applications 
and data. 

This paper explores various techniques for integrating legacy applications and 
data into object-oriented, distributed applications. Access to source for a leg
acy application will prove to be the gating factor for tight integration, 
although non-negligible integration is possible when restricted to binaries, 
especially ifthe application supports a callable API. Appropriate architectural 
structures in the distributed object infrastructure can enable the tight inte
gration of legacy data, as well. 

1.0 Motivation 
Historically, enterprises have used monolithic application programs; these 
applications usually generated data in the form of files which could be further 
manipulated by the creating application or a (usually) small set of related 
applications. 

Enterprises have accumulated vast amounts of data through the use of these 
traditional applications; this data represents a large part ofthe information 
equity of each enterprise. Since applications come and go over time, one needs 
expertise in a vast array of applications to be able to access all of this informa
tion; the ability to integrate this information to form synthetic data is difficult, 
at best, if not downright impossible. 

To be sure, some enterprises have solved part of this problem by forcing all of 
their data into database systems, both relational and hierarchical. Report 
generators based on 4GLs can then be used by individuals in the enterprise to 
integrate different elements from the database into synthetic data elements; 
these synthetic elements, themselves, may be placed back into the database. 

Even for enterprises which have made such a choice, the advent of personal 
productivity tools on workstations and personal computers has contributed to 
an explosion in the amount of generated data which does not fit into the data
base/4GL model. Yet, this data is part of the enterprise's intellectual equity, 



= 

VII.4 

and there is often the desire to integrate this information with information in 
the databases to yield richer synthetic data. 

Distributed object technologies are becoming popular mechanisms for con
structing components that can be integrated into applications/compound 
objects tailored to the needs of a particular enterprise. As with any new com
puting paradigm, it is important to understand how an enterprise can bring 
its information legacy/equity (applications and data) forward into the new 
paradigm. 

The remainder of the paper describes various mechanisms for using distrib
uted object technologies to bring forward an enterprise's information legacy. 

2.0 Encapsulation 
The key aspect of object-oriented software technology for enabling integration 
is encapsulation - i.e. the interface to a component, including syntax, seman
tics, and protocols, completely describes a component to prospective clients of 
the components. Moreover, component suppliers are free to innovate behind 
the interface along all dimensions that are not constrained by the interface. It 
is this latter characteristic that eases legacy integration, since the object 
implementer is free to support the interface in any way possible. 

There are three types of legacy applications/data that may need to be brought 
forward: 

• applications that provide computational services; these need to be sup
ported as computational objects in the new paradigm 

• applications that generate file-based data (e.g. spreadsheet program); each 
spreadsheet is to be considered as an object in the new paradigm 

• data that is stored in database systems; we will concentrate upon data 
stored in relational systems, although the discussion will carry over to 
hierarchical systems, as well 

Prior to conversion of any applications/data to objects, it is essential that the 
interfaces that each component must support be defined. The language for 
expressing these interfaces is normally dictated by the distributed object 
infrastructure that animates interactions between its supported objects/com
ponents. 

While some of the techniques for encapsulating applications and databases 
are common, it is informative to discuss them separately. 

2.1 Objectifying Applications 
2.1.1 Access to Source 
The most straightforward way to convert a legacy application into an object is 
to modifY the source code; of course, this assumes that the source code is at 
hand. From the interface specifications that the component must support and 



. 1 

VII. S 

the mapping of distributed object concepts to the programming language in 
which the application is wntten, the appropriate code to support the inter
faces can be inserted into the application. 

Encapsulation achieved in this way permits the resulting components to be 
completely integrated with other components built to the same set of integra
tion interfaces. On the down side, this intrusive style of encapsulation 
r equires that the programmer have a good understanding of the original code 
base to guarantee that the modifications do not adversely affect the original 
code. 

2.1.2 Wrapping Binaries 
In the more typical situation, one does not have the source to legacy applica
tions. In these cases, one must construct a wrapper to the existing application 
which supports the component interfaces; the methods behind the interface 
operations then use a variety of mechanisms to induce the original application 
to perform requested operations. 

These wrappers usually execute in an address space different from the one 
which animates the original application. The developer is free to design the 
wrapper code such that animation ofthe wrapper in a single address space 
can represent several objects/components of the same type; alternatively, it 
can be designed such that a separate wrapper process is needed for each com
ponent. These options are depicted graphically in Figure 1. 

Figure 1: WrapperlLegacy Object Relationships 

(wrappe~ ~8 
Wrapper (wrappe) ~8 

(wrappe~ ~8 
Note that the separation of the wrapper and legacy application into different 
processes provides scope for the wrapper and application to be remote from 
one another. This wrapper technique over a distribution infrastructure is com
monly being exploited to downsize from mainframes to mid-size server sys
tems. 



VII. 6 

Typically, the legacy application only supports the functional interface of the 
object/component. In addition to providing a mapping ofthe functional inter
face to invocations of the legacy application, the wrapper must implement all 
integration policy interfaces mandated for the enterprise, as described in [1J . 

In general, there are two mechanisms by which the wrapper can interact with 
the legacy application: 

• Some recent applications (e.g. Microsoft Excel) support a callable API by 
which other programs/applications can access the functionality of the leg
acy application 

• The wrapper masquerades as a user by manipulating the input/output 
channels of the process animating the legacy application 

Obviously, supporting a callable API makes the legacy application easier to 
encapsulate with a wrapper. Unfortunately, the number of applications acces
sible in this way is quite small. 

2.2 Objectifying Databases 
AB described earlier, the intellectual equity of many enterprises is stored in 
database systems. Any movement to an object-oriented environment to 
achieve enterprise integration will require that the data contained therein be 
integrated into this environment. 

The primary mechanism for encapsulating and integrating database systems 
into this environment is using the wrapper technology described in the previ
ous section. Database systems typically provide a callable API for accessing 
their contents; even if a particular database system does not, most support 
queries in SQL and return appropriate records on an output channel that can 
be parsed and processed by the wrapper. 

The fact that the wrapper and database engine can be in separate address 
spaces can be exploited in mainframe downsizing. The typical scenario is to 
construct the wrapper to run on a mid-size server system which is linked to a 
mainframe and its databases by a (typically proprietary) communications pro
tocol. The wrapper receives operation requests for the objects in the database, 
translates them into queries on the database system, receives the responses, 
and translates/forwards the responses on to the original client. 

Wrappers designed for encapsulation of database systems usually follow the 
leftmost relationship structure in Figure 1. The key integration dimension for 
the wrapper designer is the granularity of objects in the database. Two granu
larities come immediately to mind: 

• The database is one huge object - in this case, the wrapper provides an 
interface to the data in the database object by supporting queries on the 
database object (usually in SQL). The answers to the queries are in terms 
of things in the database, not interface references to objects. 



-

VII. 7 

• Each row of each table is an object - in this case, each table determines the 
type of a class of objects. Each object in the database responds to opera
tions to getJset the attributes of the object. An additional "database object" 
supports SQL queries; the answers to the queries are in terms of interface 
references to the matching objects . 

Note that this choice is very visible to the programmer invoking operations on 
the database. In the coarse-grained case, the programmer is aware that he/ 
she is interacting with a database. In the fine-grained case, the programmer 
can choose to be aware ofthe domain created by the database engine; it is not 
required. Manipulation of individual objects in the database is effected in the 
same way as any other object in the system. 

3.0 Infrastructure Support 
It is possible to construct the interaction infrastructure between objects such 
that the integration of database systems is eased. A schematic structure is 
shown in Figure 2. Each object implementation is constructed within the 
framework of an object adapter; the object adapter provides the common ser
vices necessary to construct an equivalence class of object implementations. 

Figure 2: Interaction Infrastructure 

Client IDL Object Implementation 
Spec 

j • I 
1 r r 1 I 1 r 

.",. ..,,~ ~ 
IDL ?Z ... -. Skeleton I Adapter DVNAPI Stubs Compiler 

3.1 Object Adapters 
An object adapter is responsible for the following functions : 

• generation and interpretation of object references 

• method dispatch 

• security of interactions 

o 
R 
B 



VII. 8 

• object activation and deactivation 

• facilitate access to persistent storage 

• registration of implementation classes 

Typically, an object adapter has its own idea of object identifiers. When a ref
erence to one of its objects emerges into the outside world, it must be put into 
a form that the communications substrate knows how to handle. This does not 
imply that an adapter must generate such references for all of its objects - this 
only needs to be done when a reference escapes as an argument/result of an 
invocation. 

All invocation requests to an object logically go through the object adapter. As 
such, the object adapter can be involved in method dispatch; some adapters 
may choose to handle all of method dispatch themselves, while others may rel
egate all of it to the skeleton. 

The object adapter must be involved in the security of messages which are 
used to implement object interactions . If any mandatory controls have been 
selected, such as end-to-end encryption, then the adapter may be involved. It 
will most certainly be involved in enabling any required discretionary con
trols. 

To support the illusion that objects are active at all times on system with finite 
resources, the adapter must handle object activation and deactivation. The 
responsibility for this is firmly in the adapter's province since the communica
tions substrate has no knowledge of how objects are managed by the adapter. 

An object adapter may choose to facilitate access to persistent storage by the 
objects that it controls. This can span the spectrum from actually providing 
the persistent storage itself, to providing access to files in the file system, to no 
support at all. 

Each object adapter may have a very different view of how the operations of a 
particular interface are implemented. This implementation information must 
reside with the controlling object adapter to help it perform the method bind
ing and activation/deactivation. 

An object implementation will depend upon the object adapter for which the . 
implementation is targeted. It will also require an IDL compiler which gener
ates a skeleton appropriate to the targeted adapter. 

3.2 Specific Object Adapters 
The CORBA specification [2] only defines a single object adapter, the Basic 
Object Adapter; the BOA was designed with object implementations that are 
individually animated in POSIX processes in mind. The BOA is therefore con
cerned with how to activate a process when needed, how that process faults in 
the persistent state associated with the object, how the communication end-



I 

VII . 9 

points to the object's process are encoded in object references to pennit clients 
to bind to objects and to enable location transparent access. 

An object adapter for a database system, on the other hand, would be quite 
different. All of the objects in the database (I am assuming here the fine
grained definition of objects from Section 2.2) are animated by a single 
address space, which most likely would be activated at system boot time. The 
activities of the wrapper in the previous section actually map very nicely into 
a database-specific object adapter. Since object adapters are expected to have 
a tight relationship with other components ofthe infrastructure, it is expected 
that providing the wrapper functionality as an object adapter rather than as a 
separate, proxy process will be more efficient in execution. 

4.0 Examples 
4.1 Application Encapsulation 
All of the OLE-enabled applications that are beginning to appear in the mar
ketplace are examples oflegacy integration by source modification. The OLE 
interfaces define an integration policy; for component applications to inter
work correctly with each other, they must be modified to support the OLE 
interfaces. 

HP demonstrated a number of encapsulated applications using the wrapper 
technique during the required OMG demo during the deliberations over the 
Object Request Broker submissions which led to CORBA. A discussion of some 
of these applications can be found in [3] . 

4.2 Database Encapsulation 
4.2.1 SQL Server 
Over the last few years, NASA has deployed several orbiting telescope plat
forms in a variety of frequency ranges. Given the investment in these orbiting 
platfonns, and the desire to support cross frequency correlation by NASA
funded researchers, NASA has funded the development of the Astrophysical 
Data System (ADS). 

For each orbiting platfonn, the data is downlinked into an archival system 
specific to the platfonn. The data is usually stored using a commercially avail
able relational database system; unfortunately, it seems that each archival 
system uses a different RDMS system. 

The ADS has constructed SQL servers that wrap the specific RDMS used by 
the different archival systems. A client application which pennits the 
researcher to issue SQL queries on the multi-spectral data and which per
fonns local joins of the resulting tuples knits these SQL servers together and 
provides value to the investigators. This simple integration ofthese individual 
legacy databases has enabled multi-spectral correlation that was impossible 
before the advent of the system. 



VII.10 

4.2.2 Object Adapter 
An insurance enterprise is storing claims information in a relational data
base; this includes elements of many media types, not just text (e.g. digitized 
audio of the telephone interview with the claimant). They desire the ability to 
integrate this information, together with data from personal productivity 
tools, as part of their claims processing. 

HP has prototyped a database adapter in our Distributed Smalltalk ORB 
implementation which supports the different elements of the database as 
objects; we also prototyped a set of policies that enables the claims processing 
information integration desired by the enterprise. We are now in the process 
of turning the prototype adapter into a generally available product. l 

5.0 Summary 
The key aspect of distributed, object-oriented technologies, of interface con
formance without imposing implementation constraints, makes these technol
ogies perfect candidates for integrating legacy applications and data. Several 
mechanisms for integrating these legacies have been discussed; the most 
likely for most applications is wrapping the legacy application/database with 
code that conforms to the object model and enterprise policies. The CORBA 
notion of an object adapter is particularly suited for integrating database sys
tems into the object-oriented enterprise. 

6.0 References 
[1] Sventek, J., "System Integration Using Distributed Objects," these pro

ceedings. 

[2] The Common Object Request Broker: Architecture and Specification, 
Document Number 91.12.1, Object Management Group, 492 Old Con
necticut Path, Framingham, MA, 01701, 1991. 

[3] Sventek, J., "The Distributed Application Architecture," Proceedings of 
the International Conference on Enterprise Integration Modeling Tech
nology, Hilton Head, SC, June 1992. 

1. Note that the Object Data Management Group (ODMG) is in the process of defin
ing a standard object adapter in the CORBA scheme for accessing objects in 
object-oriented databases. 



VII . 11 

DISCUSSION 

Rapporteurs: Cecflia M.F. Rubira and Rogerio de Lemos 

Lecture One 

During the presentation Professor Randell pointed out that when performing system 
integration there is usually a need for a new component to be created. On these premises 
Professor Randell questioned whether the two level distinction on software componentry 
really ought to be important and to what extent one should be able to abstract from these 
differences. Dr Sventek answered that there exists already a language independent model 
for defining the interface of components, and because of the availability of classes and 
frameworks in C++, for instance, instead of constructing a new component from scratch, 
it might be much easier to construct this component using those classes from a library 
already available. 

After the talk Dr Aho asked for the speaker's personal experience of how much reuse 
people have been able to achieve by using object technology, particularly across different 
product lines. Dr Sventek answered that the reuse has been pretty substantial, mainly in 
analytical applications, such as spectrum analysis. He gave the example of a product 
which has undergone three evolutionary models in which from the second to third version 
of the product 60% of the code was taken from the library, allowing the product to be put 
on the market six months earlier. 

Professor Rechtin made a comment that in his opinion the reuse of software during 
design is difficult to achieve because during design the initial assumptions concerning the 
component might not be available, and the number of existing errors in the component are 
not known, implying that the certification of the component might be much harder than 
just building the component from scratch. Moreover, considering the different cultures 
across different companies the reuse achievement becomes more unrealistic mainly in the 
design phase. He continued by saying that what seemed to work was when you are in the 
same domain, preferably in the same company with the same culture, as a consequence 
you can have better understanding of what might work. Dr Sventek answered that one of 
the possible gains that you obtain from reusing components is that you do not need to re
certify at the component level, but you still have to do the system level certification, 
however if the initial assumptions no longer hold then the certification no longer holds. 

Dr Kramer asked which were the means provided to put the different objects together: 
formalisms, special integration languages or just assume that the available platform gives 
adequate support. Dr Sventek answered that he actually expected people like Dr Kramer 
to provide tools and guidelines. He also added that in terms of operational level, all the 
major subsystems being constructed from this technology are done by using C++ and the 
vertical market architecture. The latter allows one to understand how to put together the 
components, dictating how C++ should work. 

Professor Randell made a remark that in his view the present state of object-oriented 
programming is alarming because of the lack of standardisation, for instance, in the 
terminology being used. In this context, he asked whether the situation was going to get 
worse before getting better. Dr Sventek answered that he had the hope that it would not. 
He added that there was no guarantee that different applications from different vendors 
would be able to interact, although the technology was available, due to political problems 
there was no willingness of putting different applications together. 

Dr Aho asked the speaker to comment on the topics of object-oriented design and 
architecture. Dr Sventek answered that there is a real big gap between the business 
process and the actual things that you can orchestrate and implement. He continued by 



I 

VII. 12 

saying that often there were difficulties in the business process in finding an adequate 
granularity of reuse which satisfies the customer's requirements to reusable components. 

In the end Professor Rechtin made a remark that in his opinion object-oriented design was 
a very natural way of reasoning about systems. He added that object-oriented design is 
bener than the strict hierarchical model. 




