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This paper briefly introduces the field of software configuration management (SCM), then 
presents an overview of the Vesta project, which addresses some long-standing SCM 
problems with a novel approach. 

What is Software Configuration Management? 
Regrettably, we can't give a crisp definition for SCM. It is an ill-defmed term that covers 
many aspects of a software development environment, including at least the following: 

• version management: the process of naming a series of temporally related data 
elements, usually flles, and supporting retrieval of those data by name. The names are 
generally mechanically produced by some numbering scheme (sometimes linear, 
sometimes hierarchical) , and the numbers are generally attached by appending to a 
root name chosen by a human. Version management applies to source material (e.g., 
code written by programmers) and derived material (e.g. , compiler output), and may 
use different techniques to manage naming and storage of the two kinds of 
information. 

• source control: the process of controlling the production of new versions of source 
data, generally flles. The operations commonly associated with source control are 
checkout and checkin, which respectively reserve a version number for a specified use 
(or, more typically, user) and supply the data for a previously reserved version. 
Source control usually is coupled with concurrency management as well, so that the 
action of performing a checkout operation on a particular version limits the ability of 
others to perform checkout operations on other versions related in some way. 

• configuration management: the process of defming which (versions of) software 
components are combined to produce larger components or entire systems. These 
definitions typically include instructions for performing the construction process as 
well. 

• building: the process of acting upon a configuration description to produce a 
resulting system or component. That is, the building process is an operational 
realization of a configuration description. 

• life-cycle management: an umbrella term for a variety of activities surrounding the 
actual production of code, including bug-tracking, quality metrics, etc. 

• process management: the process that specifies how a particular change to a software 
system is to be effected, i.e. , what source- and version-control steps are permitted or 
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required, who mayor must take specific actions related to code review, qUality 
assurance, etc., and other actions intended to provide for orderly modification of 
design documents, specifications, implementations, etc., of a software system. 

• specific tools: the programs that developers use to develop and evolve parts of a 
software system, such as tools for front-end design, documentation, analysis, testing, 
compiling, and so on. 

Clearly, the bounds of SCM aren ' t very clear. In fact, these preceding "definitions" leave 
plenty of scope for interpretation as well. Our purpose is only to characterize the area 
spanned by the term SCM, not to define it precisely. 

Despite its imprecision, this list enables us to focus our attention on particular aspects of 
SCM. The Vesta project concentrates on the activities that fall under the first four bullets 
above. We consider these to be the core aspects of SCM, with other topics being of 
secondary technical importance. We hasten to add that all of these topics must be 
addressed to some extent in real-world development settings; we claim only that without a 
firm foundation established by the first four items, a sound structure for the remaining 
ones is not possible. 

Because each of these areas has significance for practical software development, each has 
received considerable attention over the years. Regrettably, these areas have generally 
been pursued in isolation, or nearly so. As a result, each is rife with its own concepts, 
jargon, and techniques. Recently, there have been some attempts to bring solutions in 
these individual areas together by superficial integration techniques (e.g., a common user 
interface). As one might expect, such approaches haven't produced a comprehensive 
SCM solution. 

The SCM problem 
To work toward a solution, we must first have a clear idea of the problem. 

For SCM, the problem is the initial construction and subsequent evolution of a software 
system. To be concrete, we will take the construction of a system to begin when code is 
fust written. (This choice of starting point is more restrictive than is actually necessary, 
since some of the stages that often precede code production, e.g., specification, fit into 
our framework quite easily. Moreover, what constitutes "code" is somewhat flexible, but 
we take it to mean input that can be non-trivially manipulated by computer-based tools. A 
formal specification certainly satisfies this definition.) 

When coding starts, we obviously need basic development tools - an editor, compiler, 
linker, debugger - and a file system to store things in. But, in most cases, we need some 
SCM facilities as well. (There are some exceptions: a small, single file application 
intended only for the author's use can probably be successfully developed without any real 
SCM support.) The facilities required are typically in proportion to the size of the task; 
simple SCM facilities work quite well for smallish systems with only one developer and a 
small set of friendly customers. But successful systems like this tend to "grow up," and 
they acquire more developers, more code, and more complexity. They outgrow the simple 
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tools and require more comprehensive SCM. Here are some specific "growing pains" and 
the role that comprehensive SCM plays in allaying them: 

o Multiple files: The observation that developers need to keep track of which file 
ve rsions go together is quite obvious. Yet, amazingly, very few commercial version 
management systems address this need directly. The most popular ones provide 
virtually no help in grouping files; they are really programmer-controlled archiving 
systems. Comprehensive SCM keeps track of true configurations of files. 

o Multiple developers: Modern large-system integration has re invented the quaint charm 
of punched-card batch processing systems, in which jobs were submitted for overnight 
execution. Nowadays, developers of large software systems often are forced to submit 
their changes to an "integration group" whose function is to combine the changes and 
attempt to build the resulting system, typically overnight. This inefficient situation 
arises because the lack of comprehensive SCM has made it impractical for an 
individual developer to build and test a version of the system containing only his 
changes. It 's either too hard to specify the environment, or the system can't be built in 
iso lation from other developers, or both. Comprehensive SCM lets individual 
developers build as much of the system as they need in order to test their component, 
and to perform that testing without affecting the activities of their colleagues. 
Integration of multiple developers' work occurs only when it is functionally required. 

o Multiple customers: A company purveying a software product often seeks to deliver it 
on multiple computer platforms in order to broaden the market appeal and penetration. 
Moreover, there may even be an ongoing market for different versions of the product 
on the same platform (e.g. , CoreIDRAW!, for which three successive releases are now 
sold as dist inct products) . Comprehensive SCM supports these marketing possibilities 
by providing for branched and/or parallel development of software components. 

None of these situations is particularly new or unusual, so, at first blush, it might seem 
surprising that software development organizations put up with the lack of comprehensive 
SCM. Some of the blame can be put on simple short-sightedness (and a chronic 
underinvestment in software tools), since the traditional view of SCM is as a collection of 
unconnected tools whose importance in the programming environment is secondary to the 
editor, compiler, linker, and debugger. But the real difficulty is that comprehensive SCM, 
is quite difficult to implement on a scale adequate for real-world software development. 
As we noted above, there has been a historical tendency to attack parts of the SCM 
problem piecemeal, and more than twenty years of experience with that approach hasn't 
produced a comprehensive solution. Those who have recognized the central importance 
of SCM have proposed some appealing approaches, which, when implemented at all, have 
only worked on modest demonstration examples, making them regrettably impractical for 
commercial application. 

Motivation for Comprehensive, Scaleable SCM 
The Vesta system concentrates on the four technical areas mentioned earlier - version 
management, source control, configuration management, and building - providing the 
necessary infrastructure for tools that address other, ancillary areas. Moreover, Vesta 
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implements facilities in these core areas on a scale that is large enough to be used in the 
real world. 

Specifically, the design center for Vesta is a source code base of about 20 million lines, 
meaning that a single-version "snapshot" of the system has that size. Experience shows 
that a system of this size will have about 5 million derived ftles and consume about 125 
Gbytes of disk storage. A Vesta implementation on this scale is capable of handling the 
development of large operating systems such as OSFI , VMS, or Windows NT, a full­
featured relational database system, or a telephone switch. If not the absolute largest, 
such systems are certainly among the largest code bases requiring consistent construction. 

One might take the view that , while some large software development projects may 
require such an ambitious SCM system, there aren't very many 20 million line programs. 
Indeed, systems of this class form a niche market, but the Vesta approach is both 
applicable and desirable for much smaller systems. For example, the development of even 
medium-sized programs, e.g., a compiler, often stresses existing SCM tools beyond their 
abilities. There is plentiful anecdotal evidence of the need for better tools for projects of 
intermediate size (say, 0.5M source-lines or smaller); one need only follow relevant 
Internet bulletin boards for a week or so to amass tens of requests for Vesta-like facilities. 

Before surveying those facilities, let's look at the problems that an SCM system must 
handle in real-world development. 

• Escalating functionality. Software systems keep getting bigger and more 
complicated. Vendors add functionality based on their perception of what their 
customers want and what they expect/fear their competitors will provide. One need 
only look at the long lists of "check-off' features on word-processors or spreadsheets 
or other mass-market software to see this effect. 

• Parallel development. Not only is functionality increasing, but vendors feel pressured 
to get it to market faster and faster. This leads to parallel development and 
overlapping release cycles, in which work on version N+ I begins while version N is 
still underway, and while bug fixes for version N-I are still being developed and 
shipped. 

• Broad integration. Fewer and fewer applications and systems are stand-alone. 
Instead, more system layers or components have to be built together consistently. 
What constitutes a "system" for configuration management purposes may include a 
suite of applications, a set of libraries that they share, and perhaps even an underlying 
operating system. 

• Multiple platforms. To reach the most customers, vendors must make their software 
run on multiple platforms, with differing hardware, operating systems, networks, or 
perhaps all of these. 

• Geographically dispersed development. Big systems are increasingly developed at 
multiple sites. Because of wide-area bandwidth limitations, a central site storing all the 
ftles is impractical. Replication becomes necessary, and with it comes the risk of 
inconsistencies in the replicas. 
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It is evident that most of these problems are non-existent in small systems and grow 
inexorably with system size. A practical SCM approach must deliver a manageable 
solution for medium-sized systems and scale naturally as the system grows. 

The Vesta Axiom 
Most of the key design cho ices in the Vesta system fo llow from a single assumption, 
which might reasonably be called the "Vesta axiom," which is : 

Complete. modular. source-based system descriptions are an essential 
foundation fo r configuration management. 

We need to examine the meaning of these terms a bit more closely and understand some of 
their immediate consequences. 
• System descriptions are source-based. Vesta makes a precise distinction between 

source and derived fJ.Ies. Derived fJ.Ies can be mechanically generated or regenerated 
by a Vesta system when they are needed, while source fJ.Ie s cannot. Source fJ.Ies are 
usually handmade by humans, but may also be programs or data produced remotely 
that cannot be regenerated by local means. For example, a distribution of an operating 
system is viewed as a collection of derived fJ.Ies at the site that produces it, but is 
generally treated as source by its purchasers, who lack the means to construct it. 

• System descriptions include source files and building instructions. System 
descriptions explain exactly how to build a system. In principle, Vesta builds every 
system from scratch. To be practical, of course, it is essential that Vesta reuse 
previous results (i.e., derived fJ.Ies), although formally these are just optimizations. 

• System descriptions are self-contained. System descriptions tell the entire story of 
system construction, capturing every relevant detail of the environment. Of course, 
every source fJ.Ie is explicitly mentioned. Moreover, every version of every tool and 
every switch and option and flag is specified. These details are in terms of source, so 
the tools are specified not as executable programs but by giving the system 
descriptions that construct them. (Clearly this is a recursive process. Of course, the 
descriptions really don't go all the way back to the Big Bang - there must be a 
practical limit - but the basis for the recursive description of tools is chosen by the 
users of the Vesta system; it is not an implementation limitation.) 

• System descriptions are immutable and immortal. System descriptions, and therefore 
the source ftles they reference, cannot be changed once created. Because the 
descriptions are complete, they retain the same meaning forever, and a system build 
using those descriptions has identical results (i.e., the same derived ftles) whenever it is 
performed. Furthermore, the immortality of system descriptions assures that a system 
build can always be performed, because no piece of it is ever lost. (One might believe 
that there are pragmatic limits here, too, since it would be too expensive to retain all 
versions of all source fJ.Ies forever. Limits do indeed exist, but they are far more liberal 
than those typically used or imposed in conventional version management systems. 
The economics of modem disk systems make it practical to retain essentially all 
versions of source fJ.Ies indefinitely.) 
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• System descriptions are modular. To be manageable, the description of a large system 
cannot be monolithic; it must be composed from smaller ones. Thus system 
descriptions and the language in which they are expressed must be designed to support 
composition, meaning that information necessary for consistent building must be easily 
transmitted between system description modules . 

The Vesta system descriptions that are characterized in this way are called system models, 
a term which henceforth we use interchangeably with system descriptions. 

Let's now look at the Vesta core facilities that implement the consequences of this axiom. 

Vesta's Core Facilities 
Figure I shows a block diagram of Vesta, showing its logical components. This isn't an 
implementation diagram; we'll get to that a little later. This diagram introduces the 
functional components of Vesta and their overall relationships. 

Clearly we need a place to store things: the source flles and system models that go into a 
system and the derived flles that are constructed by the building process. The Vesta 
repository provides that storage facility. It does so in a way that integrates closely with 
the flle system; roughly speaking, it hides under the flle system abstraction, although, as 
the picture suggests, a small amount of it peeks out. (The replicator is also closely related 
to the repository; we'll discuss it later.) 

We also need an engine for the construction process. This is the interpreter of system 
models, which we also call the builder. It is the builder's job to perform the construction 
process incrementally, reusing suitable pieces of previous builds. It needs to call on 
particular tools to produce derived flles; these tools are compilers, linkers, macro 
processors, etc. We call them bridges. It is convenient to think of these bridges as 

C 

etc. 

Control Other 

Standard file /n ~ 
system I ...... I--~eplicat/>---I .. ~ 

Repository ( U·) e.g., niX 

Figure 1: Vesta Functional Diagram 
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grouping the tools associated with a particular programming language, although this 
grouping is only a convention. 

Finally, we need a way to communicate with these core facilities . The control panel and 
ordinary shell commands provide the necessary human interface. 

Let 's now look at these facilities in more detail. 

The Repository 
The Vesta repository appears to the user as a ftle system extension, meaning that the 
reposito ry provides access to the ftles it stores through the ordinary ftle system interface. 
This has the attractive property that ftles stored by Vesta are accessible by ordinary 
applications that don 't know anything about the repository, and is in contrast with the 
approach taken by "add-on" versioning facilities like SCCS or RCS, which store vers ioned 
ftles in a separate name space inaccessible to ordinary programs. The Vesta repository 
encodes versioning information in ordinary ftle names, so it remains visible to the user. 
This is in contrast with other SCM systems, e.g., Atria's ClearCase, which generally hide 
the versioned names from users and establish a "view" that allows the user to access a 
single version at a time through an unversioned name. In such a scheme, the meaning of a 
unversioned name varies with time and with the user or program that utters it. while the 
Vesta repository traffics only in versioned names, whose meaning never changes. 

Although the repository goes to considerable lengths to make its facilities available 
through the ordinary ftle system interface, it cannot provide all its functionality in this way. 
Consequently, a secondary interface is provided for tools that exploit this functionality. 
We ' ll see an example of this functionality, appendable directories, shortly. 

The name space of a Vesta repository thus consists of a directory tree, just like a regular 
ftle system. However, the directories behave somewhat differently. Vesta actually 
supports three kinds of directories: immutable, appendable, and mutable. To explain the 
purpose of these directories, it 's convenient to introduce the notion of a package . 

A package is simply a group of ftles that, for the purposes of system construction. are 
useful to keep together. Typically, the group is checked out of and into the repository as 
a unit , and thus logically worked on by a single developer. A package generally requires 
some sort of construction in order to be part of a system, and hence has a system model as 
one of its ftles. 

An immutable directory generally holds a version of a package. The version may be 
archival, or may be a snapshot of a state during a development session. Either way, 
immutability applies; the directory is created all at once, and cannot be subsequently 
altered. . 

A Vesta repository consisting entirely of immutable directories wouldn't be very useful. A 
Vesta repository also has appendable directories, which are generally used to build up a 
suitable naming hierarchy. Typically an appendable directory is 'used to group all the 
versions of a package, which are then collectively called the package family. Because the 
family directory is appendable, new versions may be created and added, but old versions 
may not be deleted. The structure of a package family may be linear, with a single 
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directory holding versions 1, 2,3 , ". of the package, or it may be more tree-like, with 
appendable subdirectories that represent separate lines of development , e.g., different 
major releases, or other axes of variation. Whatever the structure, the immutable 
directories at the leaves of the tree hold the individual package versions. 

Vesta must provide a way to build up incrementally the ftles that are placed in an 
immutable directory. For this purpose, the repository provides ordinary mutable 
directories. In fact , there is no logical need for the repository to implement mutable 
directories - those provided by the ordinary ftle system are perfectly adequate - but 
there are some performance advantages to be gained in doing so. 

The repository permits labeling of ftles and directories with attributes, which are mutable. 
Attributes are convenient for a variety of tools that are not directly involved in the building 
process. For example, an attribute might characterize the extent to which quality­
assurance testing has been performed on a particular package version. Attributes can also 
be a convenient communication mechanism between users and tools that run on their 
behalf. For example, consider a tool that builds an updated system model by revising 
references to packages that satisfy some predicate on attributes. Such a tool might take as 
input a request like the following: "Make a system model in which all the package family 
references are the same as in Standard_Envirorunent version 12, but whose versions have 
a Code_Reviewed attribute of "yes" and a Checked_In_Date attribute later than last 
Thursday." Since attributes are not used by the Vesta builder, their mutability cannot 
comprise reproducible construction. 

These facilities (directories and attributes) give users considerable flexibility in structuring 
their system components, while providing the necessary guarantees for incremental. 
reliable building (discussed in the next section). But the physical arrangement of ftles is of 
importance too, since it may be impractical to place all the users of a Vesta repository in 
close physical proximity. The bandwidth available between sites will typically be 
significantly lower than within a site, so that cross-site references are unappealing. For 
this reason, the Vesta repository supports selective copying between sites. The unit of 
replication is the directory (only appendable and immutable ones) , meaning that all the 
names at one site are replicated at another. However, Vesta doesn't necessarily copy all 
the values associated with those names; selected flies (or subdirectories) are copied, and 
the other names are marked at the destination site as "stubbed off'. Selective replication 
is often desirable because one site uses the end-products of another, so intermediate 
derived flies need not be replicated. Of course, this improves latency of replication too. 

Vesta's replication scheme doesn't imply any particular time-grain for the replication, and 
different sites may choose different techniques according to their needs. At one end of the 
spectrum is replication-on-demand; at the other, magnetic tapes and the postal service. 
An interesting intermediate point is the "siphon", a background task that replicates 
packages between sites according to a set of standing orders from the relevant system 
administrators. 

One fmal aspect of the repository deserves brief mention: the management of ftle storage. 
Immutability can only be achieved asymptotically, since disk storage at a site is flnite and 
can be filled faster than new disks can be acquired. In practice, the chief concern is 
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derived ftles, whose size dw<U"fs the source flies . Because, by defInition, these ftles can be 
mechanically reproduced by the Vesta builder. their retention is a space-time tradeoff. 
Vesta employs a background task called the "weeder" that selectively reverses the trade­
off by deleting derived ftles according to standing orders from the users and the 
administrators. Thus, derived ftles are retained not out of functional necessity, but on a 
space-available basis. 

The Builder 
The essential property of the Vesta builder is the reliable. incremental construction of 
systems, which follows from the complete, immutable system descriptions promised by the 
Vesta axiom. This property doesn't follow trivially by any means; a practical 
implementation of the builder is the central challenge of the Vesta project. 

We should understand why more conventional builders, typified by UNIX 'make' , aren't 
adequate. When we look carefully at the way 'make' is used to build substantial systems, 
we discover that developers simply can't trust its incremental technique to get the right 
answer. They only use it to build "from scratch", which makes in vivo testing of 
individual components by their developers impractical. System building is entrusted to a 
special "integration group", long turnaround cycles ensue, and productivity goes rapidly 
downhill. 

We can identify several reasons for 'make's inability to cope with substantial systems: 

• A dependency recorded by 'make' corresponds to the use of a ftle with a particular 
timestamp in the course of building a given target (derived) file. 'Make' compares the 
timestamp of the existing target file with the timestamps of all the files on which it 
depends, and rebuilds the target if it is older than any of its dependencies. This simple 
test makes no allowance for the multiple versions of files that occur during parallel 
development. Consequently, when parallel development streams are merged, 'make' 
may erroneously judge a target as up-to-date when in fact it requires rebuilding. This 
situation arises frequently in mUlti-person development projects and is a primary 
reason for mistrusting 'make 's incremental building. 

• The 'make' notion of dependency is incomplete, since it reflects omy dependencies on 
ftles. Some versions of 'make' recognize other dependencies, e.g., command line 
switches, but none implement practical means for expressing dependencies on 
(versions of) tools. 

• Checking a timestamp requires a ftle system operation, which, in systems involving 
hundreds of files and thousands of dependencies, limits turnaround cycle performance. 
It is not unusual in such systems, following a change to one source file, for 'make' to 
take more time to determine what to rebuild than to recompile the file in question. 

• The language used to express building actions to 'make' does not support any notion 
of modular composition or hierarchical description. It is these facilities that permit 
dependencies to be checked at the component level. Since they are absent in 'make', 
dependencies have to be checked at the individual file level, which can be quite time-
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consuming in a system containing tens of components and hundreds of meso Once 
again, this produces poor building performance. 

Actually, we shouldn't be surprised that 'make' exhibits these deficiencies. [t was never 
designed for the classes of systems to which it is routinely (mis)applied today. To be sure, 
there are evolutionary descendants of the original 'make' that adequately address some of 
these problems. None of them, however, eliminate the performance problems or permit 
reasonable modular decomposition of large system descriptions. 

The inescapable conclusion is that 'make' is too limited for large-scale system building. [t 
just doesn ' t have a scaleable way of describing systems that permits reliable incremental 
construction. A better form of description is necessary. 

Vesta System Models and the Description Language 
As we've seen, system descriptions must be complete and immutable in order to be 
practical for real-world development. But the structure of system models is far from 
determined by these considerations alone. How the models are structured depends on the 
size and scope of the system being described, as well as the organization that builds it and 
the software methodology they employ. Organizations should be able to control things 
like the structure of libraries and the interfaces they provide; what's in a package; what 
constitutes a test of a package and when and how it is run; the relationship of 
documentation to the code it references; and a myriad of similar considerations. 

It would be unwise, therefore, to "hard-wire" decisions of this sort into the description 
language. Instead, Vesta adopts a very basic language with only broad, generic facilities 
whose chief purpose is to support tailorable extensions. This is certainly not a novel 
technique; many programming systems, starting with Lisp, have used it (though admittedly 
for different reasons). Just as only a few hardy souls program in pure Lisp, only a few 
people use Vesta's base language directly. Most Lisp users program in an extension, 
containing syntactic extensions to the base language and a comprehensive collection of 
library functions. Similarly, in Vesta, most users write system models with the standard 
extension. which offers conveniently packaged facilities for utilizing bridges, and enables 
system models to be written in a largely declarative form. Moreover, if the standard 
extension proves inadequate in some situation, it can be tailored to the specific need or, if 
the organization prefers, entirely replaced, since it is simply a program written in Vesta's 
base language. 

Let's turn, then, to the base language itself. It is a small functional programming language 
based directly on the A-calculus. A functional language is well-matched to Vesta's 
incremental bl,lilding approach, since the semantics readily permit results of function 
applications to 'be cached with dependencies directly derived from the arguments of the 
application. This caching is at the core of Vesta's incremental building; a "hit" in the 
function application cache permits a portion of a system build to be bypassed by 
substituting the cached result. The precise representation of dependencies in the cache 
enables reliable construction. Of course, significant engineering is required to implement 
this cache on a scale that works for systems whose models contain thousands of function 
applications. 
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The base language is in the spirit of Lisp, but with a less spartan syntax. Functions 
(actually, closures) are first-class entities in the language. The language has "readable" 
static scoping. Values are typed, but checking is not static. (There is no point in static 
checking, since "runtime" for the Vesta language is construction time of the system being 
described, and thus type errors in system models will manifest themselves as failed 
construction, though possibly with less-than-obvious diagnostics. ) 

The language 's syntax and primitive operations emphasize the manipulation of composite 
values , typically lists or bindings (i.e., sets of <name, value> pairs). Values of this sort 
arise very frequently in configuration descriptions, for example, interface definitions, 
implementation modules , libraries, compiler options, package versions, etc. 

Vesta's modular descriptions are really built by tasteful use of functions. This allows the 
construction of packages to be described independently and precisely parameterized, 
permitting them to be composed in a well-defined way. It is careful parameterization that 
permits separation of the environment from the package description. The Vesta approach 
is in sharp contrast to typical 'make ' usage, in which many references to the environment 
are implicit and difficult to spot by reading the descriptions. 

The base language is methodology-neutral; it does not embody any "name brand" 
programming methodology. It contains no operations that are peculiar to software 
construction, which leaves to the standard (or other) extension all decisions about the 
structure of libraries, applications, releases, and the like. Specific building steps, such as 
compilation, are simply represented as functions supplied by bridges included in the 
extension. Therefore, the base language is also insensitive to the programming language 
or languages chosen for implementation of the system being described. 

The Standard Extension 
Let's turn now from the base language to the standard extension that most users see as the 
actual description language. We want it to be very easy to say ordinary things, but allow 
considerable flexibility for saying less common things, like "compile this module with these 
non-standard switches", or "override the standard string library with this one". The 
guiding principle is that simple things should be simple, while complex things should 
nevertheless be possible. 

The standard extension provides a comprehensive set of tools (that is, bridges) for 
programming in a number of common languages, plus a consistent set of libraries and the 
interfaces for using them It thus provides a comfortable set of facilities that we expect to 
find in a well-equipped program development environment. The standard extension, or 
environment, is defined by a Vesta system model, which means it identifies precisely and 
immutably the versions of the tools, libraries, interfaces, etc., that it includes. As long as a 
user's system model refers to a particular version of the environment, all of the 
environmental facilities it uses remain unchanged. Thus, the individual user is in complete 
control of his programming environment; new facilities appear only as a result of the 
conscious act of using a different version of the standard environment. 

As we noted earlier, the standard environment encourages the user to write his system 
models in a largely declarative form. By this we mean that, roughly speaking, the 
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environment provides some functions that perform common construction actions, such as 
building an application program or a library, and the user' s model simply specifies the 
function to be invoked and declares the parameters, which are normally lists of ftles. 
Many common situations are handled by invoking a single construction function in this 
way, so simple things are indeed simple. Figure 2 illustrates one such case. 

Without analyzing this example in detail, we can readily see that there is a single function 
application that builds a C program. It accepts four parameters: the name of the program 
(He 110), a list of header ftles specific to the program (here , just he 110 . h), a list of 
source code ftles (two in this case), and a list of libraries from the standard environment 
(here, the single library c-lib). The function Program compiles the source code ftles 
having established an environment containing hello. h as well as the header ftles needed 
to use the functions in the c - 1 ib library. The results of these compilations are then 
linked together with the object code of the library to produce the executable program 
Hello. Notice, therefore, that a library is not just a pile of code. Rather, it is a 
composite object that includes both interfaces and implementations. This is a 
methodological choice provided by the standard extension, and some organizations might 
prefer to arrange things differently. 

The Program function is an example of a wrapper, since it "wraps up" the functionality 
of two basic tools (compiler and linker) in a single convenient bundle. Such wrappers are 
naturally a part of language-specific bridges, in this case, the C bridge. Since the C bridge 
is part of the standard environment, the user's system model isn' t cluttered with the details 
of individual compiling and linking steps. 

Before leaving this example, we should comment on its apparent violation of the 
completeness requirement of the Vesta axiom. The system model in figure 2 makes no 
reference to the version of the environment it is using, which we argued earlier was an 
essential property of the Vesta approach to system descriptions. This is because the 
builder isn ' t asked to evaluate this system model in vacuo. Rather, it evaluates a quite 
trivial model that does nothing more than reference this model and a version of the 
standard environment, then specify that the former is to be evaluated in the context of the 
latter. The system model of figure 2 is actually an implicit function parameterized by the 
environment, and the "$" preceding the name c-lib is some syntactic sugar that refers 
to that environment. The user controls the contents of the model presented to the builder, 
and therefore specifies what version of the environment is to be used. This is typically 

DIRECTORY 
hs = [ hello.h ]; 
cs = [ hello .c, hellosub.c 

LET 
name = \\Hello"; 
libs = [ $c-lib ]; 
prog = $C$Program( name, hs, cs, libs ) 

IN 
{ !name, !prog } 

Figure 2: System model for "Hello, world" program 
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done through the Vesta control panel, which we discuss in the next section. 

We 've seen how the standard environment makes it easy for a user to perform simple 
building operations. The standard extension also accommodates some complex things. 
For example, it is possible to specify, on a ftle-by-ftle basis, that non-default compilation 
options are to be used. This is accomplished by allowing the parameter that specifies the 
list of so urce ftle inputs to be more elaborate than a simple list; it may be a list of bindings 
(that is, in Lisp terms, a list of association lists). The standard extension also allows for 
se lective invocation of pre- and post-processors surrounding the compilation step, 
permitting the inputs to be more general than simply source programs in a single 
programming language. There are other facilities as well, but the point should be clear: 
complex things are possible. 

Nevertheless, not all complex things are possible within the standard extension. For 
example, there are only limited facilities for building an executable program whose pieces 
are written in several programming languages. Most organizations don' t require this 
facility , which is why the standard extension doesn't attempt to provide it. But, 
unquestionably, it is important in some situations. It is for that reason that the standard 
extension is just a system model- it can be modified as necessary to meet a particular 
organization' s requirements. It can even be entirely replaced with a different environment 
that more directly supports the organization's system structuring preferences and needs. 
The goal of the standard extension is to spare most organizations the work of constructing 
their own environment when a tried-and-true one is satisfactory. 

The Control Panel 
The Vesta control panel provides a convenient graphical user interface for automating 
certain aspects of producing system models and invoking the builder. Most system models 
are simply text ftles that users create with an ordinary text editor. Sometimes, however, 
specialized tools can streamline this process, and in these situations it is helpful to have a 
more appropriate user interface than a text editor can provide. 

We already saw one example of this situation in the previous section. By convention, the 
system model that is typically presented to the builder is quite stereotyped; it says, in 
effect: "evaluate the most recent version of my package in this version of the standard 
environment". There are only two pieces of information here: the two versioned names. 
Typically, a user generates a series of versions of a package as he incorporates and debugs 
some new feature, and it is convenient to have the control panel keep track of the next 
version to be assigned. Moreover, the version of the standard environment used 
throughout such a development session typically remains unchanged, so the user can fill in 
a field on the control panel with this information at the start of the session. Thus, at the 
push of a button, the control panel can generate the desired system model and invoke the 
builder. 

We encountered another example of specialized model editing in conjunction with the 
repository' s attribute mechanism. The control panel can provide a convenient user 
interface for specifying a predicate on attribute values that is used to generate a model 
referencing selected versions of other packages. Of course, a text editor could be used for 
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this purpose, but the control panel interface streamlines an otherwise tedious manual 
procedure in a situation that occurs frequently in hierarchically organized system 
descriptions. 

Specialty Tools 
A comprehensive programming environment typically includes many tools to assist 
developers with various aspects of software production, and a number of these tools 
benefit from Vesta's core facilities. For example, the semantics of the Vesta repository's 
directories and versioning make it easy to produce helpful "differencers" for combining 
parallel development branches and resolving conflicting source code modifications. We 
won't attempt to enumerate the many possible tools that can exploit Vesta 's storage and 
construction semantics. However, we should comment on tools whose raison d'etre is 
Vesta's unique form of system description. 

Vesta 's system description language presents an "entry barrier" for users who wish to 
move an existing system that uses 'make' into Vesta. Consequently, Vesta includes two 
tools to make this transition easier by permitting the system to be converted a piece at a 
time, with some makeftles being rewritten as Vesta system models, and others remaining 
unchanged for a while. 

The first tool is an interpreter for the input that 'make' expects ("makeftles"). An 
organization can choose the portions of its software system that will first be converted to 
Vesta and produce system models for them. The other portions continue to be described 
by makeftles, and the Vesta-supplied interpreter is invoked at the appropriate point in the 
system model(s) to build the unconverted components in the old way. This interpreter 
acts, in effect, as a Vesta function whose input is the standard environment and a makeftle, 
and restricts all ftle accesses from the makeftle to the environment. While it doesn' t 
provide the incrementality of 'make ' (which, as we've noted, is often suspect anyway), it 
does permit a component described with a makeftle to be built reproducibly as part of a 
larger, Vesta-based system build. 

The second tool is a translation assistant that helps convert makeftles to Vesta 
descriptions. Regrettably, because make ftles have relatively little useful static structure, 
the tool can't translate them automatically to intelligible Vesta models that users would 
want to evolve subsequently. However, the tool can produce a good approximation of 
such a model, doing most of the mechanical work and leaving only a small amount for the 
user to do by hand. 

Using these tools, an organization can partially convert a system for development in Vesta 
and leave it that way indefinitely, continuing to use makeftles and the Vesta makeftle 
interpreter for selected components. Because the interpreter doesn' t perform incremental 
construction of those components, such a structure won't yield the full benefits of Vesta. 
However, if those pieces don't change frequently, the tradeoff might be attractive. 
Moreover, if the unconverted components must be shared with other organizations that 
don't use Vesta, it may be quite helpful to retain their building descriptions as makeftles. 
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Implementation Ov.erview 
Having surveyed the key components of the Vesta system, let ' s now take a brief look at 
the structure of the implementation. Space prevents anything' more than a cursory 
examination; our goal is to understand where the pieces of functionality reside and why 
they might plausibly scale to handle large systems. 

Figure 3 illustrates the implementation of the reposit.ory. The implementation is divided 
into a clerk, which exists in each client of the repository, and a server, which resides 
somewhere on the local area network. There are also fLie servers that implement the 
regular fLie system, which may also be accessed through clerk code on the client 
workstations (the diagram omits this detail). 

Most fLie accesses to the Vesta repository, including openlread/write/close operations, are 
handled entirely by the clerk code, which, in turn, accesses the appropriate fLie server(s). 
That is, most operations on repository fLies can be translated into ordinary fLie operations 
without access ing shared, global state. Hence, these requests don't involve the Vesta 
repository server, ensuring that it doesn't become a bottleneck. 

The repository server does become involved in operations that inherently require 
serialization of user activities. For example, the checkout operation reserves a version 
name for later checkin by a designated user, and some coordination is required to ensure 
that the same name is not given out to multiple requesters. While it is certainly possible to 
implement this logically centralized function in a distributed way, the cost and complexity 
are much greater than a physically centralized implementation. Since checkout is relatively 
infrequent , the simpler technique can handle the load without strain. 

VI VI 

8 8 
Figure 3: Vesta Implementation: Repository 
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Figure 4 shows three possible ways to run the builder. It is possible, although unlikely, 
that all of these would be used simultaneously at the same site. As in figure 3, 
workstations appear at the top of the diagram and file servers' are at the bottom. In 
between are various servers that may be participate in a Vesta building operation. 

At the upper left is a workstation on which the builder is executing. The builder makes 
use of the Ve sta/unction caching service, which is the large oval at the left. It is 
implemented as a distributed service, as suggested by the nested ovals. This service 
provides a persistent store for the results of function applications in the Vesta description 
language, enabling the builder to work incrementally. The function cache is physically 
partitioned across multiple servers, and the builder presents its individual cache 
lookup/enter requests to the appropriate server. The configuration of servers 
implementing the cache can be changed while a builder is running and can perform 
dynamic load balancing in response to a persistently uneven pattern of requests. If a 
server fails , its load can generally be absorbed transparently by other servers. 
Consequently, the partitioned implementation of the function caching service provides 
natural scaling without reducing availability. 

Turning from the function caching service to the other components in the figure, we see 
that the builder at the upper left is executing on the workstation of the user who invoked 
it, as are the bridges needed by the building operation. The only remote facilities required 
are the regular fJ.]e system and the function cache. This is a common arrangement when the 
user has a reasonably powerful workstation and the bridges that are necessary to build the 
system under development can execute on the workstation platform. 

Looking now at the second workstation, we see that the bridges are being executed 
remotely. This might be necessary if the system under construction is being compiled for a 
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different kind of platform than the workstation performing the build. and cross-compilers 
that can execute on the workstation aren't available . The Vesta implementation provides 
a simple service so that the builder can run bridge components (tools) as necessary on 
appropriate server machines. 

For the build being performed at the upper right , the workstation is adequate to run only 
the user interface, perhaps because of limited functionality or performance. In this case, 
the builder as well as the bridges are run remotely on appropriate servers. 

Project Status and Conclusion 
The preceding description of the Vesta system is written in the present tense, suggesting 
that all of it actually exists. That' s a slight overstatement -let's correct it now. 

Most of the functionality described above was implemented in a prototype system and 
deployed in December, 1990. It was used in earnest for about 15 months by a group of 25 
programmers who were developing a sophisticated experimental software environment. 
This project included: a custom operating system; a ftle server; a novel compiling system; 
an experimental windowing system; a number of mathematical, graphical, and symbol­
manipulation libraries; and a spectrum of applications, including a text editor, a graphical 
editor, ray-tracing software, and some mathematical analysis tools. Collectively. this code 
base comprised 1.4 million source lines. Most of the components were built with the 
experimental compiling system (which was continuously evolving) , and were targeted for 
two different platforms: a V AX multiprocessor with the custom operating system. and a 
MIPS uniprocessor running OSFI. In short, this system provided a serious test of the 
Vesta approach on a scale comparable to many real-world development projects. 

The results conclusively demonstrated that the approach is workable and that the Vesta 
axiom can be practically implemented on this scale. (These results are reported in four 
research reports available from the author.) 

The Vesta prototype implementation did not support all of the functionality mentioned 
earlier. Most notably, it lacked facilities for wide-area replication and could not scale to 
handle a system of20 million source lines. A second implementation that remedies these 
deficiencies is underway. 

In conclusion, the SCM problem is significant and timely for real-world systems of all 
sizes. No comprehensive solution is presently available commercially. The Vesta 
approach, which follows from a novel axiom, offers a comprehensive solution whose 
practicality has been validated by a substantial prototype. A forthcoming implementation 
will provide this functionality for systems of essentially any size. 
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DISCUSSION 

Rapporteur: Frode Sandnes 

Lecture One 
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Professor Kopetz asked if Vesta can monitor hardware changes. Dr Levin replied that 
Vesta can be used to monitor hardware changes to a certain degree. In particular it has 
been used on systems to monitor microcode. There are restrictions, hence Vesta can only 
check whether the software is running on the correct hardware. 

Dr Dicker wondered if Vesta has got an API ( applications progranuning interface ). Dr 
Levin stated that it has. 

Lecture Two 

Professor Randell pointed out that there is a need for mutual attributes. Dr Lewin 
indicated that such facilities are still evolving. 

Dr Lewin announced that the nature of the official release of the Vesta software is yet 
unknown. It is either to be based on licencing or a public domain version. 

Dr Levin added the comment that inefficiencies in some compilers makes it necessary to 
patch the object code by hand prior to linking, and Vesta is fully able to track such 
actions. 

Professor Randell asked if Vesta could be used for non-programming purposes, for 
example building docwnents. Dr Lewin replied that Vesta has been used for 
a range of other purposes similar to the make utility. 






