
III

EXOSKELETAL SOFTWARE: MAKING STRUCTURE EXPLICIT

J Kramer

Rapporteurs: Rogerio de Lemos and Cecflia M.F. Rubira

III. 2

III.3

EXOSKELETAL SOFTWARE - making structure explicit

Jeff Kramer

Department of Computing,
Imperial College of Science, Technology and Medicine,

180 Queen's Gate, London SW7 2BZ, UK.
(jk@doc.ic.ac.uk)

Hypothesis: Consider the humble crab. Ignoring its culinary appeal, the crab provides
us with an example of a working system which explicitly flaunts its structure, both in terms
of components and interconnections. One can readily comprehend its operation from its
exoskeletal architecture. Each part provides at its interface a clear indication of the allowable
interactions with other parts yet hides its internal workings. Like the crab, it is possible for
many software systems to benefit from an explicit and visible architecture, not only during
design and analysis but also in the constructed system.

1. The general area: Distributed Software Engineering

Distributed processing provides the most general, flexible and promising approach for the
provision of computer processing. Interconnected workstations are widely used for local
processing, to support user communication for interaction and cooperation, and to provide
access to shared facilities and information. Conventional and special purpose processors are
interconnected to support a wide range of applications from chemical plants to cars, from
stock market trading to campus meal reservations.

Why are distributed systems so attractive? The answers are as multifarious as the
applications. The users of computers, the information they require and provide and the
applications themselves are often physically distributed. To match these needs, both the
hardware and software can be designed and constructed in a flexible modular fashion - as
interconnected and interacting components. Particular resources, services and information
can be accessed across the network and shared among the system users. Some seek to
exploit the potential for improved availability by the use of replication and the removal of
single failure points. Others seek performance gains by improving the response time through
local processing or the throughput by the use of parallel processing. Thus distributed
computing offers advantages in its potential for improving availability and reliability through
replication; performance through parallelism; sharing and interoperability through
interconnection, and flexibility, incremental expansion and scalability through modularity.

However, to gain these benefits, we must cope with the issues that distributed computing
raises. The interactions between the concurrent components give rise to issues of non­
determinism, contention and synchronisation. Component separation and autonomy gives
rise to issues of partial information and partial failure. These issues demand that we adopt
effective engineering methods and tools. Our techniques must avoid constraining the
resultant software unnecessarily by the use of conventional sequential or centralised designs
but take cognizance of and exploit the component-based nature of these systems. Software
engineering itself must be extended and adapted to address these distribution issues: hence
Distributed Software Engineering (DSE).

Construction
The need to construct these systems as interacting components can be considered a blessing
which forces software engineers towards compositional techniques which offer the best
hope for constructing scalable and evolvable systems in an incremental manner. There is
some consensus on the mechanisms which should be used to support component
interaction. Among the mechanisms agreed as useful are: communication by remote
procedure call , atomic group cast communication between server replicas to support

III .4

availability and atomic actions to preserve data consistency in the presence of failures. This
consensus is reflected in the inclusion of most of the above in commercially available
distributed applications platforms such as ANSA and OSFIDCE. However, none of the
above mechanisms help in the design process of decomposing an overall application into a
set of components nor in its subsequent construction. They are rather the "glue" used to
compose components such that they may communicate and interact. What is missing is any
notion of structure. Support is missing for the design and construction of applications
exhibiting a structure which is any more complex than a simple client-server arrangement.

Software Architecture
Software systems should be designed using a combination of models, such as structural
models to convey the overall architecture as interacting components, computational models
to describe component behaviour, and interaction models to describe the forms of
communication and synchronisation. Hierarchical composition is used to form subsystems
and finally the system itself. Model precision varies greatly from the informal, such as data
flow diagrams, to more recent formalisms, such as the 1t-calculus, which can be used for
expressing and reasoning about particular architectures. The key ingredient here is
composition: the ability to check consistency of interconnection and interaction and the
ability to infer and analyse composite behaviour. Composition of behaviours is the means by
which we can gain greater confidence in the adequacy of our designs in meeting their system
specifications.

Furthermore, the specification of system structure or architecture can be used to generate and
manage the system itself. Hence, system structure (architecture), separately and explicitly
described, should be recognised as the unifying framework upon which to hang the
specification, design, construction and evolution of systems. Such architectural models are
more abstract in the upstream activities such as requirements specification, but become more
specific and concrete downstream in design and coding. Unfortunately, in practice, the
description and retention of the architectural information becomes more and more implicit as
we move from design through coding into execution and maintenance. For instance,
components (such as objects in OOP) generally make direct calls to others thereby obscuring
their interactions. Component instantiation is often embedded in the code of various other
components.

Why tolerate this loss of architectural information? One would expect that, since this
information is so useful to system integrity, comprehension, construction and management,
it should be explicit and visible, being retained in the design, code and possibly even in the
running system. Our aim is to make exoskeletal software so that its architecture is as
obvious as that of the crab.

2. The particular approach: a Configuration Language (Darwin)

The premise of our approach is that a separate, explicit structural (configuration) description
is essential for all phases in the software development process for distributed systems, from
system specification as a configuration of component specifications to evolution as changes
to a system configuration. Descriptions of the constituent software components and their
interconnection patterns provide a clear and concise level at which to specify and design
systems, and can be used directly by construction tools to generate the system itself. In
many cases - particularly embedded applications - it is the structure of the application itself
which is used to dictate the structure of the resultant system. This approach, initially under
the guise of simple "module interconnection languages" (MIL) and subsequently as
"configuration languages" provides generalised to support for a wide variety of component
and interaction types.

We use the neutral term "component" to mean a software entity which encapsulates some
resources and provides a well defined interface in terms of the operations it provides to

IlI. S

access the resources and the' operations it requires to implement its functionality, Further,
we require our components to be "context independent" in that they use only local names to
communicate with their environment, thereby allowing them to be developed independently
of the context in which they execute, Context independence makes it easy to plug a
component into different programs since it specifies both the communication objects
required as well as those provided.

Design
In contrast to the "specification driven" approach, our approach to distributed systems
design is "constructive". The "specification driven" approach attempts to formalise the
decomposition process based only on the system specification. We believe that this process
of component identification remains informal as it requires design information not usually
included in the system specification. Decomposition is best dealt with through design
heuristics. Emphasis should rather be placed on the validation process using analysis
through composition of component behaviours analogous to "construction" of the system
from components. This constructive approach is the means by which we gain confidence
that our design is satisfactory. Our design approach is thus not restricted to a specific design
method or technique such as SASD or OOD in the sense of enforcing those specific rules
and method steps. Rather it supports a general approach to design consisting of the
following general design activities:

-Structure and Component Identification: Initial design aims to identify the main
processing components and produce a structural description indicating the main data
flows.

-Interface Specification: This aims at introducing control (synchronisation) between
, components and refining the configuration, component interface specifications
(intercommunication) and component descriptions accordingly.

-Component Elaboration consists of elaboration of the component types, either by
hierarchical decomposition of composite component types into a configuration of
subcomponents, or by functional description of behaviour (formal or informal
specifications). Primitive components must also be provided with implementation (code)
descriptions. As before, the identification of common component types is emphasised.

Although this description emphasises the top-down approach, bottom-up (constructive)
composition and component reuse can be used at any stage.

Construction
The design activity culminates in a structural description of the desired system and a set of
primitive component types described in a programming language. From these, the executing
distributed system can be constructed by invoking the appropriate compilation, linking and
loading tools. Central to the construction activity is the structural description. It can be
annotated with non-functional information such as location, availability and resource
requirements during the design process to direct the construction phase.

For a number of years, the Conic environment supported the use of an explicit configuration
language ("configuration programming") for distributed system construction. A number of
other research projects make use of a separate configuration language for distributed systems
construction (Durra, Lady, Polylith) but few are as widely distributed and used, and as
simple yet versatile as the Conic configuration language which included facilities for
hierarchic definition of composite components, for parametrisation of components, for
replication of both component instances and interface ports, for conditional configurations
with evaluation of guards at component instantiation, and even for recursive definition of
components. This work has been extended to include dynamic and generic structures in our
new configuration language, Darwin. Darwin descriptions compile to C++ procedures
which elaborate the required structures at system generation/instantiation time. Darwin
permits the definition of both static and dynamically changing structures. Darwin is neutral
with respect to the form of inter-component communication or interface specification used
although it will allow these interfaces to be checked for compatibility. Constructed
distributed systems run using our in-house platform for distributed computing, Regis.

III. 6

Analysis
In order to exploit the central architectural view, we adopt compositional techniques
analogous to system construction except that the entities being manipulated are not software
components but associated attributes giving specifications or models of their functional or
timing behaviour. The objective is to ensure that the structure of the system and of its
specification is the same. System architects should be free to select those specification
techniques that are appropriate to the application. Currently we have focused on the use of
Milner's work on the 1t-calculus as a means for defining the semantics of Darwin. More
recently, we have been working on the use of labelled transition systems (similar to state
transition systems) to describe component behaviour. Reachability analysis is then provided
using an approximate but tractable technique for flow analysis of distributed programs and
an exhaustive compositional technique for reachability analysis. Both techniques are
supported by automated software tools.

Tool Support
The architectural methodology described is supported by a graphical environment, the
System Architect's Assistant, for the design and engineering of distributed systems (see
figure). The SAA has the capability to manipulate structural (Darwin) descriptions in both
graphical and textual forms and is intended to transform one to the other (currently only
graphical to textual). Its functional ity can be split into three complementary and interacting
areas. These are support for design, analysis, and construction. The SAA is intended to act
as a front end for specifying the structure and those component specification attributes
selected by the designer. It should then be possible to invoke the relevant compositional
analysis or verification tools associated with any or all of the provided attributes.

Design
Requirements ,

Analysis Design
Architect's
Assistant

Component
Library

Interface

Specification

prlm/~V ,~:poslte Implementation

" I I I I," ,,~~,,:!p..0~e..nts "" I om!~~e~:"""" II •
Construction . l,;omponem Configuration

compiler
J Language Translator

IIIII """"":;:""":;::~""",,,,,
Execution

I C Distributed Application :::::>
Configuration
Monitoring . (Distributed Execution Environment 1

\ Regis)

Integration using the System Architect's Ass istant

3, Conclusions

Our approach is to adopt an architectural design methodology in which distributed systems
are described, modelled and constructed in terms of their software structure. Descriptions of
the constituent software components and their interconnection patterns provide a clear and
concise level at which to specify, design and analyse systems, and can be used directly by
construction tools to generate the system itself. Darwin, Regis and the Architect's Assistant

III.7

are intended to provide an environment for supporting this methodology.

The specification of system requirements can be construed as a set of tests which the design
and subsequent implementation are expected to satisfy. A design is a model of the system on
which these tests (often specified as scenarios with specific required results) can be
conducted. Test satisfaction strengthens confidence in the adequacy of the design, and test
failure indicates particular inadequacies. It is thus essential that designs are testable. The
level of the design model(s) is selected so as to support such testing and analysis yet also
provide the basis for (efficient) implementation.

Design initially concentrates on the description of an instance of the architecture. This can be
generalised to provide generic architectural types with the inclusion of component
parameters, conditional instantiation and binding, iteration and recursion, and generic
structures with component type parameters. The designer is obliged to ensure that the
particular required instance can be generated from the general architectural description. This
process of moving between the specific (usually described graphically) and the general
(usually described textually) requires further work in both the methodology and in the
support offered by the Assistant.

Could (generic) component types be analogous to having a generic architecture for the crab
family (genus)? If, say, one of the parameters was the size of one claw, we could make it
larger and stronger than the other and thus instantiate afiddler crab!

Bibliography (available by anonymous ftp from dse.doc.ic.ac.uk)

Distributed Software Engineering:
Jeff Kramer, "Distributed Software Engineering", Proc. of 16th IEEE Int. Conf. on
Software Engineering (ICSE-16), Sorrento, May 1994,253-263.

DarwinJRegis:
Jeff Magee, Naranker. Dulay and Jeff Kramer, "Structuring Parallel and Distributed
Programs", Proceedings of IEE 1st International Workshop on Configurable Distributed
Systems, London, March 1992, 102-116.

Jeff Magee, Naranker Dulay, Jeff Kramer, "A Constructive Development Environment for
Parallel and Distributed Programs", Proceedings of IEEE 2nd International Workshop on
Configurable Distributed Systems, Pittsburgh, March 1994,4-14.

Architect's Assistant:
Jeff Kramer, Jeff Magee, Keng Ng and Morris Sloman, "The System Architect's
Assistant for Design and Construction of Distributed Systems", Proceedings of 4th IEEE
Workshop on Future Trends of Distributed Computing Systems, Lisbon, Sept. 1993,
284-290.

Analysis:
Shing Chi Cheung, Jeff Kramer, "Enhancing Compositional Reachability Analysis with
Context Constraints", Proceedings of ACM SIGSOFT'93: Symposium on the
Foundations of Software Engineering, Los Angeles, California, Dec 1993, 115-125.

Shing Chi Cheung, Jeff Kramer, "An Integrated Method for Effective Behaviour Analysis
of Distributed Systems", Proc. of 16th IEEE Int. Conf. on Software Engineering
(ICSE-16), Sorrento, May 1994,253-263.

IlLS

Air Accident

1 Issue: What was the cause of the accident?
What were the factors which caused the accident to occur?
(Demo User)

1.1 Position (Responds To Issue 1): Operational
Effect of an operational action of lack of an operational action.
(Demo User)

1.1.1 Argument (Supports Posi tion 1.1): Aircrew not qualified
Required qualifications not held
(Demo User)

1.1.2 Argument (Supporrs Position 1.1): Flight not Authorised
Authority for the parricular aspect of the flight had not been granted
(Demo User)

1.1.3 Argument (S upporrs Position 1.1): Aircraft operating outside limits
Limits of CAA release being exceeded.
(Demo User)

1.2 Position (Responds To Issue 1): Engineering
Engineering cause
(Demo User)

1.2.1 Argument (Supporrs Position 1.2): Equipment failure
Failure of equipment
(Demo User)

1.2.2 Argument (Supports Position 1.2): Servicing Error
Incorrect servicing procedures
(Demo User)

1.3 Position (Responds To Issue 1): Air Traffic Control
Action or lack of action by Air Traffic Control
(Demo User)

1.3.1 Argument (Supporrs Position 1.3): Incorrect procedures
Procedures as laid down in CAA Regulations had not been followed
(Demo User)

1.3.2 Argument (Supporrs Position 1.3): Procedures not clear
Procedures in the CAA Regulations are ambiguous
(Demo User)

1.4 Position (Responds To Issue 1): Weather
Effect of weather
(Demo User)

1.4.1 Argument (Supporrs Position 1.4): Outside operating limits for this aircraft
Aircraft was being operated outside limits laid down in CAA Regulations
(Demo User)

1.4.2 Note (About Position 1.4): Copy of Meteorological Information
Details of the weather at the time of the accident.
(Demo User)

2 Issue (Expands On Argument 1.2.1): Was initial design correct?
Was there an error in the original design which could have contributed to the failure?
(Demo User)

August 30, 1994 Air Accident

III. 9

DISCUSSION

Rapporteurs: Rogerio de Lemos and Cecfia M.F. Rubira

Lecture One

Professor Rechting raised the issue whether the "context independent" property of a
component was an unnecessary constraint. since general purpose systems are usually
less efficient than specific purpose systems. Dr Kramer agreed with the comment. and
emphasized that in software terms. to be context independent is a nice property
fundamentally in the initial stages of architecting the software. He continued by saying
that this property provides flexibility by allowing to delay to the later stages of software
development issues concerning. for instance. reliability and efficiency.

Dr Sventek commented that it was nice to have the notion of plugging in and plugging
out components to a system. which is basically a context dependent issue. Dr Kramer
replied that in his approach the situation is handled by adopting an hierarchical model in
which there is a distinction between requirements at the same level of abstraction and
requirements at different levels of abstraction.

On the topic of what level should we make the system architecture. Dr Aho made an
analogy with urban planning (withwhich'a basic 'infrastructure is usually associated) to
ask to what degree should we leave the forces of the society to exploit such
infrastructures. Dr Kramer answered that his aim was to provide a way of describing
software architectures. which are just pieces of software that interact. In addition to that.
one also has to consider what is visible of that architecture in order to allow users. or
software engineers. to interact and manipulate with such architecture. The problem was
how to place constraints in order to avoid an arbitrary intervention where everything
could fall over.

Dr Aho continued by remarking that in his opinion Internet planning should follow the
same principles of urban planning because of the unforeseen problems that might arise
in the future. Dr Kramer replied that it was his impression that the Internet. mainly the
World Wide Web. represents the opposite case. where the open planning did not
established any controls over a structure. He continued by saying that an interesting
question that arises is how such a system should evolve; only from experience can the
right decisions be taken.

Still concerning the question made by Dr Aho. Professor Rechtin said that the concept
of "unboundness". that Dr Aho was referring to. is one of the sophisticated concepts
associated with architecting. He continued by saying that in general tenns all systems
consist of subsystems and therefore all systems are part of still larger systems. it does
not matter the architecture being considered because there is always a bigger one and
there are also smaller ones which leads to an hierarchy of architectures. This notion of
system architecting is drastically different from the scientific approach which deals only
with bounded systems where the system boundaries are very clearly delineated.
Professor E Rechtin concluded by saying that he originally thought that there was only
one architect. but now his impression was that an architect is a member of a family of
architects.

On the possible meanings of the word architecture. Professor Randell made a comment
that the meaning of the word that Dr Kramer was using. was different from the one of
Professor Rechtin. He continued by saying that in his opinion he tends to think of an
architecture not so much as being an architecture of a system but an architecture of a
class of systems. and as such an architecture tells you the sort of things you are not
allowed to do.

=

II I. 10

Lecture Two

During the talk, Dr Aho asked Dr Kramer who, in his understanding, was the client of a
software architecture. Dr Kramer replied that in his terms it is not the end user who will
produce the software architecture, but a software architect who produces it as a way of
arguing that the system is capable of achieving what the end user wants. He continued
by saying that in the kind of architecture that he was talking about the software
architecture was for designing, quite far down towards the implementation end, and it
was used as a way of discussing what the system is supposed to do. Rather than talking
about general properties, the software architecture was a way of assigning
responsibilities to a system performing different functions .

Dr Aho enquired at which stage in the software life cycle one obtains a software
architecture. Dr Kramer answered that for the type of systems that Professor Rechtin
was talking about an architecture is produced at the very earlier stages. Dr Kramer
continued by saying that he was concerned with software architectures very late in the
life cycle, those architectures which are used to construct the actual software; they are
produced by the designer rather than the requirements engineer.

Professor Randell asked what was the difference between the term software architecture
that Dr Kramer was using and the term programming-in-the-large. Dr Kramer answered
that what software architecture ·does is J3rogramming-in-the,large, and whatllclually he
was doing is configuration programming, which deals with slightly different kinds of
entities, that is, components that are to be put together. This was not like writing
individual sequential statements in a third generation language.

On the same topic Professor Randell asked why should software architecture be
assumed to be a one level notion instead of a multiple level notion, in the sense that we
can establish other levels in which we have to program in the large. Dr Kramer replied
that he agrees with the notion of different levels of software architectures, however
what he was showing was a suitable way to configure a particular level. He continued
by saying that his approach might be suitable for some other level, but he was not
claiming by any means that his approach was adequate to all different levels.

Dr Aho made a comment that Donald Knuth in his book "Literate Programming"
mentions that it was very hard to write about software so that others could understand.
Then he asked why in the approach presented, some kind of the description of the
software was not included in the exoskeleton in order to make it much easier to
understand the software so that it could automatically be transformed into its executable
code. Dr Kramer replied that the key point for understanding software was its
architecture because it was through the architecture that one is able to walk through the
code of somebody else. He concluded by saying that it is a good thing to do to keep an
explicit architecture description of the software.

Professor Randell asked whether there exists a language that documents what the
system does' besides describing its structure. Dr Kramer replied that what the system is
expected to do is just an attribute of the program and not part of the language, and it
exists only for documentation purposes.

Dr Aho commented that in the approach presented it was clear how a system is put
together, but nothing was mentioned how to capture its semantics in order to modify
and maintain the system. Dr Kramer replied that presently he relies on individuals to
check whether the semantics are correct, mainly because the approach is not
widespread. At the moment, the documentation provided is very informal in order to
check, at the design level, whether a particular combination of components satisfies the
requirements imposed on the system. He also emphasised that without adequate tools
nobody will use the exoskeleton.

IlL 11

Professor Tienari asked how scaleable was the approach. Dr Kramer replied that
currently nothing exists in terms of Darwin and he could not affirm whether Darwin
was the right language to write very large systems of the scale of million lines of code,
perhaps it could be used for systems of a hundred thousand of lines.

III. 12

