
I 

SYSTEM INTEGRATION AND THE GLOBAL 
INFORMATION INFRASTRUCTURE 

and 

HOW RELIABLE CAN WE MAKE SOFTWARE 

A Abo 

Rapporteur: Francisco Vilar Brasileiro 



I.2 



I. 3 

,g~~ 

~ 
.q:::)~ 
s·,. 

~ 
,,~cO 
Q):it ~ 

-t:: .. G) ..... ioQ 

~ 
.q: e 

.2G) 

.~ Q. 

c: 
t: G) 

~U) 

~ 
.! 
.Q .! C\. -; e 

el 
0: ; ! 

=='1:: 
~ 
;; 

0'" 

Ill. "2 

ui ~~ 
p - ~ o.!! 

t= § 

':$ 

cu! 

.gt"i "'.-0.'" 

CQ4 

8~ 



Outline 

• Business Context 

• Why is software hard? 

• The multidimensional quality of software quality 

• The software development process 

• Techniques for improving software quality 

• Challenges for the research community 

Be1lcore 
AH09.8.94 - 2 o .. ~-

.... 
~ 



\ ... 

Business Context 

• New services and technologies need to be added to the 
global information infrastructure quickly, cost effectively, 
and reliably 

AIN 
ATM 
CCS/SS7 
ISDN 
PCS 
SONET 
VDT 

Advanced Intelligent Network 
Asynchronous Transfer Mode 
Common Channel Signaling 
Integrated Services Digital Network 
Personal Communication Services 
Synchronous Optical Network 
Video Dial Tone 

Be//core 
AH09.8.94 - 3 O-~-

H 

en 



'" 

ISDN Reliability 

• Requirements for total system downtime (of a switch, all 
terminations down) = 3 min/per year (1 min scheduled, 2 
minutes unscheduled 

• Accumulated downtime for B channel circuit in an 
individual ISDN interface = 37 minutes per year 

• Requirements for field performance (hardware + 
software), reliability, downtime ... 
- requirements stated in terms of outage reports and measurements 

required by the FCC 

- comparison with actual data determines feasibility of requirements 

Belkore 
AH09.B.94 - 11 o ... ~-

H 

0-



Why ;s Software Hard? 

"The most deadly thing in software is the concept, which 
almost universally seems to be followed, that you are 
going to specify what you are going to do, and then do 
·t " I . 

"The basic problem is that certain classes of systems are 
placing demands on us which are beyond our 
capabilities and our theories and methods of design 
and production at this time." 

"The 'software gap' may not be immutable, but closing it 
will require metamorphosis in the practice of software 
production and its handmaiden, software design." 

Bellcore 
AH09.B.94 - 5 O .. e-_ 

H 

" 



II 

Why is Software Hard? 

• Immature scientific foundation for software engineering 

• Underlying problems are mathematically intractable 

• Software development involves people, technology and 
process 

• Software requires thinking 

Belkore 
AH09.8.94 - 6 O-~-

H 

<Xl 



) 

Big Changes in Last Twenty-Five Year 

Reusable Subsystems 
• operating systems 
• database systems 
• report generators 

Integrated Software Development 
Environments 

• high-level languages 
• application generators 
• configuration management 

tools 

Fewer Hardware Constraints 
• order of magnitude improvements in 

processors/memory/communication 
• graphical user interfaces 
• portability 

Better Development Processes 
• structured design 
• formal inspections 
• more experienced managers 
• observation and control of the 

software process 

Be/lcore 
AH09.8.94 - 7 O-~-

H 

-D 



Software Development Process 

Requirements 

U 
Design I System Specification I 

and DesiQn 
b' ~ 

fomponent specificatioi 
and Design 

fomponent speCifiCati°i 
and Deslon 

D ...., 

I Unit Specification I Unit Specification I and DesiQn and Design H 

~ 

o 

I Implementation I Implementation I 
Testing U U 
I Unit Test I Unit Test I 

~ p-

I Component Test J 
V 

I System Test J 
'Ii 

I Field Trial I 
Deployment Belkore 

and AH09.8.94 - 8 O ... e--
Maintenance 

--- -



":' 

Observation and Control of the Software 
Process 

Requirements 

Design 

Observe 
Coding 

Testing 

Control Measure 
~ --C? Maintenance 

~ 

Selkore 
AH0 9.8.94 - 9 o-~-

H 

.... .... 



Software Quality is Multidimensional 

Functionality 

Usability 

Reliability 

Performance 

Supportability 

[Grady '92] 

Feature Set 
Capabilities 
Generality 
Security 

Human Factors 
Aesthetics 
Consistency 
Documentation 

Frequency/Severity of Failure 
Recoverability 
Predictability 
Accuracy 
Mean Time to Failure 

Speed 
Efficiency 
Resource Consumption 
Thruput 
Response Time 

Testability 
Extensibility 
Adaptability 
Maintainability 
Compatability 
Configurability 
Serviceability 
Installability 
Localizability 

AH09.8 .94 - 10 
Be//core 0---

H 

>-' 
N 



Sources of Defects 

System Test 

3% 10% 
Multi-unit Test 

Code 
28% 

Field Use 

13% Concept Exploration 
3% 

28% 

Requirements 
15% 

Design 

BeI/core 
AH09.6.94 - 12 o-~-

H 

>-' 
W 



1. 14 

C) 
~] 

.5 ~I 

5 
CQA 

Q 
-c 
Q) ., 
E -
>- I 

.2 
., 
'" .; 

:i 
Q. cri 

...... 
Q) 0 

C 
J: « 

= C) 

~ 
c 
:; 
III 

~ 
"-0 C) 

...... 
~ 

c .-
'C 
0 

(.) 

0 
e 

c 
C) 

&.! 
'iii 
Q) 

c 

-cg. 
III -C 

c:u 
Q) 

E 

ca 
Q) ... 

c:~ 
.-
j 
0-
Q) 

0· .... 
a:: 

.~ .... .... 
u e ... 
.ens 

Q) I/) .c -E--

e~ 
;:,0; 
z LL 

= .... 0 .sCI) 



Cost of Repairing a Fault During Software 
Life Cycle 

Cost 
of 

Repairing 
a 

Fault 

Requirements Design Coding Testing Deployment 

Belkore 
AH09.6.94 - 14 0---

H 

~ 

V> 



Techniques for Improving Software Quality 

Re uirements Desi n Coding I Testing 

Formal inspections X X X 

Formal methods X X X X 

CASE tools X X X X 

Software reuse X X X X 

00 technology X X X X 
H 

~ 

a-

Prototyping 
X X 

Fault tolerance X X X X 

Groupware X X X X 

Design for testability X X 

Faultlfailure analysis X X 

Reliability modeling X X X 

Smart testing X 

Programming methodology X X Bel/core 
AH09.8.94 - 15 o .. ~-



Comparison of Defect-Removal Techniques 

TECHNIQUES 
II EFFICIENCY 

(Defects Found/Hour) 

Regular Use II .21 
H . ..... 
-.J 

Black Box II .282 

White Box .322 

Reading/Inspection 1.057 

[Grady '92] SeI/core 
AH09.8.94 - 16 o-~-



What is Smart Testing? 

• Use Program Structure to Aid Testing 
{e.g., coverage testing} 

• Use Automated Techniques Where Possible 
{e.g., test generation} 

• Use Optimized Tests Where Possible 
{e.g., test set minimization} 

• Use Most cost-effective Tests When Necessary 
(e.g., test set prioritization) 

:r 
l!J liJ 
,..------,.r- _ .. 

All 
Tests 

- - -GerTests 

-----L..-___ J-

All : best , 

AH09.B.94 _ 17 !fIeIkore ---

H -00 



[ ~ 

Smart Testing and Analysis 

Use of Automated Test Generation 

Command - line syntax 
+ 

Hand - crafted tests 

+ Fast 
Test Selection 

Oracle 
............ 

Test which 
improve 

coverage 

keep 

Test which 
don't 

improve 
coverage 

Example result for the Unix sort function. 

discard 
Coverage with automatically 

generated tests: 
basic blocks decisions 

95% 83% 
p-uses 

74% 
all-uses 

78% AH09.8.94 - 18 
Belkore 
o ... ~-

H 

>-" 
-0 



Smart Testing and Analysis 

blocks 
75% 

Replace all tests with a minimized set of tests. 
Replace all tests with a small, highly cost - effective subset. 

• The cost of running and maintaining a test suite is proportional to the 
size of the test suite. 

• Given the 80/20 rule, a very small subset of tests will have a very high 
cost benefit. 

• For example, a 12 KLOC module of ATAC has 377 tests: 

blocks decisions p-uses all-uses 

377 \-
..... "- . ...-:::--- -_ .... - 75% 65% 38% 44% 

42% of tests with 
100% of the coverage 

decisions p-uses all-uses 

~ 
blocks decisions p-uses all-uses 

65% 38% 44% Tests 62% 52% 30% 37% 

5% of tests with 
85% of the coverage BeI/core 

AH09.8.94 - 19 o ... ~-

H 

N 
o 



Smart Unit Testing Reduces System Test Faults 
... t ----------- ---1------ ----_. --t----_ .. -_. _. --t -_. -_. -_. ----t -_. -----------1----------_. --t-· -, 

1.00 ~. ~ 

~ 
~ ~ 0.90 -+ • 

....... ~ :. 
~~ : 
._ t") : • 

s:: ?-. : 
:s t") 0 80 .... : 

~ . . 
?-.-
~ 0() : • s:: : 
""\::$ • - 0 : ~ t") .70 ~ • l... : 
~ ~ : . 
;:>.~ • 
C) & 1 
~ t") 0.60-+ 
t")~ :1 
~~ : 
S:::S 1. 
~~ : 
~ C) 0.50"t 
~ ~ : 
~'"'" . ....... -v . 
t") ~ 0.40-+ 

""'---:.... . 

• 
• • 
• 
• 
• • 
• 

• • 
• 

• 

&C) 1 

~~ : . 
0.30 "t.. :-

:. ·1··········· ... t·······------t ---_. -----_. -·1-·· _. ----- -. --1-· -- _. --------t _. -------_. --t-·_: 
0.00 1.00 2.00 3.00 4.00 5.00 6.00 

number of faults found in system tests 



Fault Prediction 
1. Cumulative Code Plot 

I r 

11 I Software modules come 

~II I to system test in batches. 
0 
z 

~ H 
~ 

I I 
H . 
N 

o -i • N 

I , 
0 100 1000 1100 2CIOO Z!iOO 

Staff Oays 

2. ModeJ Fit 

D i --------
" ~ , 

~§ New statistical models :::I 
CIS 

accurately predict rate ';1 
~ at which faults will be 
~, found during system test. E 
:::I 
01 

• , , i i , • . 
A - .- .- 200II Z!iOO 



" 

Fault Prediction 
3. Additional Testing lime 

~ 

~ 
(I) 

§ >-as 
0 

§ :t: as ... en § 

~ 

0 , -, , , 
0 IIGO ,- llGO 2000 JIOO 

Staff Days 

A 4. Faults Found and Predicted 
§ 

'It,.. I 

i ""'" ~------------.J -'--' -----.. -v ---
~ " 
~ " ..... ,. 

CII ._._ •• ... § .-
S ..-
as ...- "',t:, 
lL ' II .. / ot,"cT 
CD 101 : 
> .: ., i 
as II .: 
S '4 / 

E / 
::J R ! 
o It / 

o ~ •..•. 
r-

__ ....... tll'lll xn:J: 2!IDO 

Model predicts additional 
amount of testing needed 
to attain quality goals. 

Ship code when quality 
goals are met. 

H 

N 
W 



1. 24 

... 
Q) 11/ 
.c -e--0::S 
::s 111 
Z U. 

-C 
GI 
E 
~ 
Q. 

~ 

Cl 
c 
'6 
8 



Closing the Loop 

r 

Requirements Formal Product 
Specification Generator 

Test 
Generator 

Product 

Test 
Script 

AH09.8.94 - 24 

, 

I 

I 
I 

I 

Belkore 
o .... ~-

H 

tV 
en 

" 



1. 26 



li 

Formalizing and Automating Test Script 
Generation 

Formalization 

SOL: 

• GraphicallTextual 
• Formal syntax 
• Formal semantics 

Automation 

Bel/core 
AH09.B.94 - 26 o .. ~-

H 

N 
-..) 



'/ . 

Qualities of a World-Class Software 
Organization 

1. Clear Vision, Goals and Roles 

2. Customer Focus 

3. Cost Effectiveness 

4. Pervasive Quality Program 

5. Agility in Achieving Time to Value 

6. Standard, Advanced Development and Delivery Processes 

7. Responsive Customer Service 

8. Highly Automated Development Environment 

9. Talented people Skilled in Application Domain and Software 

10. Aggressive Technology Development and Application 
Belkore 

AH09.8 .94 - 27 O_c-_ 

H 

N 
<Xl 



., 

Parting Challenge 

How to improve software quality by a factor of: 

-1 to 2 

- 2 to 10 

- 10 or better 

Belkore 
AH09.B.94 - 28 o-~-

H 

N 

"" 



Bellcore 
@Bell Communications Research 

How Reliable Can We Make 
Software? 

Copyright e 1994, Bellcore 
AU Rights Reserved 

Alfred V. Aho 
Morristown, NJ - USA 

September 8, 1994 

H 

W 
o 



I. 3 ~ 

DISCUSSION 

Rapporteur: Francisco Vilar Brasileiro 

Lecture One 

Dr Sventek referred to the R&D research agenda with which Dr Aho finished his talk, 
and asked which points would be more likely to provide the solutions to the problems 
of the global information infrastructure. Dr Aho replied that probably multimedia, and 
personal communications will be the main drivers of such solutions. 

Professor Brailsford pointed out that the traffic in the Internet is steadily increasing, and 
raised concerns on how the service would be charged. Dr Aho reminded that this is the 
same kind of problem that the providers of telephone services experienced in the past, 
and suggested that an analogous solution could be applied for the case of network 
service providers. Mr. Ainsworth asked if this problem was not going to become more 
serious, since Internet looked cheap mainly because of its inter-elasticity, which may be 
much lighter in the future. Dr Aho replied that new technologies that are coming about 
will help to reduce traffic. He mentioned a project that tries to avoid unwanted 
information reaching the user, so that instead of having the user looking for the 
information, the pertinent information would go to the user. 

Lecture Two 

Dr Sventek remarked that the development of both hardware, and software systems 
required people, process, and technology, nevertheless hardware development had been 
much more successful. Professor Randell raised the issue of scale, which largely 
differentiates the aims of the two development processes. 

Professor Morrison asked if it was proper to expect that the requirements of software 
systems would not change during the development process, specially when 
governments are the clients. Dr Aho replied that the problem is not in having the 
requirements changed while the developing process is in progress, but in failing to re­
negotiate the effects of such changes, in the cost, and delivery expectation of the 
project. He remarked that the re-negotiation process is easier to be realised when the 
client is not the government. Mr. Ainsworth pointed out that normally if the 
development process takes more than one year, there will be fundamental changes in 
the requirements which could not be foreseen when the initial contract was firmed. So, 
the real issue is how to live with this situation. 

Professor Randell remarked that there are several techniques for developing redundant 
software, which can be cost-effective. 

Professor Marneffe asked if the inspection of the software is performed by reading the 
source code. Dr Aho replied that inspection involves reading the code and seeing if it 
matches the specification, but it is normally restricted to critical sections of the code. 
He also remarked that inspection can achieve very good results if performed by 
experienced people. 

Professor Randell remarked that it is not code quality that must be measured, but the 
implied system reliability. 

Professor Ercoli remarked that there is a big semantic gap between what one means by, 
and what one understands by, and therefore what is needed is to teach people to express 
themselves better. 



I.32 




