
VII

NON·TERMINATING ARGUMENTS IN
DISTRIBUTED OBJECT ARCHITECTURE

A Watson

Rapporteur: Dr P D Ezhilchelvan

VII.2

VII.3

OBJECT MANAGEMENT GROUP

Non-terminating arguments in
distributed object architecture

Andrew Watson
andrew@omg.org

VP & Technical Director, OMG

- &C). ---------

Overview

• Background
- OMG objectives
- A little on how OMG works
- How and why the discussions happen

• The arguments
- The Classical vs. Generic Object Model argument
- The Object Reference Identity argument
- The Type arguments

VIl.4

--.• --------
O UI Cl " A~"U'U Mf a, ou .

OMG beginnings

• Began in 1989 as informal cross-company workshops
- Early adopters saw promise of 00, but had almost no tools
- HP, Sun, DG, etc_ lacked resources for both tools and apps

• Objective: to set interoperability standards for object software

• OMG's technical meetings still dominated by technologists
- ... but have grown from 40 to 600 attendees

• Initially OMG focussed on using the hot new technology
- Today we realise problem is integration, distributed objects

are just a means to that end

OUI U " UMT "ou p

Sales

r.i~b-
~"" @

Shipping!
Receiving

Arguments

Integration

r.~1
~

Engineering

Inventory

Manufacturing

.1'
Accounting

Payables!
Receivables

Application integration is a common problem

Arguments
1·61p-2000

VII.S

oln e! ... HAGI ,.U" a . our

It gets worse ...

• Your partners have legacies too, and they're incompatible with
yours

• No-one is in overall charge

• No-one can impose one
technology
- No single language
- No single OS
- No single network

O tnCl ... HA OUU H T alOU f

Arguments

Heterogeneity abounds

• In programming languages
- 3 million programmers write COBOL for a living

5

- c.f. 1.6 million use Visual Basic, 1.1 million C and C++

• In operating systems
- Unix, MVS, MacOS, NT, Windows, Windows CE, PalmOS .. .
- A significant fraction of Windows installations are still 3.x
- Then there's your pager, cell phone, set-top box ...

• In networks
- Ethernet, ATM, IP, SS7, Appletalk, USB, Firewire ...
- ... and whatever links the 30-odd computers in your car

Arguments

VII.6

OI' l n ... UI " "U<I,IT ;I OU ~

Focus on interfaces

• There will not be consensus on hardware platforms

• There will not be consensus on operating systems .

• There will not be consensus on network protocols

• There will not be consensus on programming languages

• There must be consensus on interfaces and interoperability

----------------------------------~Ar;gU~m;.n;ts----77~1r---~
H._MO ~Cl'OOO.Ob:«:l M~G«Iup.AIIF\lghllr._. • 1.S"l>"2ooo

OMA Reference Model
ication Objects

Object Services Domain Interfaces

Arguments 8

VII.7

••. _0-------
0 1)1(1 ,. .. '11 .. 1'" <l I OU'

OMG background (1)

• OMG as a whole maintains overall technical architecture

• OMG groups write requirements ("RFP"), then evaluate
submissions in particular domains
- "Platform" groups handle CORBA, UML and related specs
- "Domain" groups work in healthcare, telecoms, finance etc.

• Submitters cooperate on interoperability standards
- .. . then compete selling products implementing them
- Specifications written by small teams outside OMG process

(monopoly & anti-trust laws)
- Organisation now has more users than vendors

--------------------------------~A~rg;Um;en;IS~--!9~--~-
Nlwca.lIo t.OO ~ o:!OOO, 0t>Itct MIN~1 Q,OUI'. All Rlghtl ,.. •,. 7-S.2000

O l ll(1 " .. GUU>4 1 . ~ou,

OMG background (2)

• Organisation spent 1989-90 determining technical direction
- 00 desktops? Like later OpenDoc, OLE, GNOME
- 00 databases? Group left OMG to start ODMG
- 00 analysis & design? UML effort started 7 years later
- 00 middleware CORBA: OMG's first technology

• Characterised by requirements discussions
- Desktops need fast method dispatch for performance
- Databases rely on closed-world assumption
- Distributed systems must be extensible, flexible

Arguments 10 I

VII.8

_111·.1' -------
0 1 "(1 .. A ~ I .. UI GlOI"

Architecture discussions

• In the course of setting architecture, groups of experts hammer
out requirements, discuss shared assumptions

• Today these are often about telecoms, utilities, etc., but in early
days they were about fundamental issues in object architecture

• Most architecture definitions & decisions now settled
- e.g. "What is inheritance?"

- However, some repeatedly re-surface

- New participants bring them back in like old email viruses

- Seem to reflect a general lack of consensus Out There

Arguments 11

_·IIl·S" -------
O i licr "."A OU tl NI ilIOU'

The Non-terminating arguments

• " Generic" vs. "Classical" object model

• Object Reference equality tests

• Type-related arguments

• Multiple interface arguments (if we have time)

VII.9

- • · • . IM· - -------

Argument the First

Classical VS. Generic Object models

I Arguments 13 I

• · •. IM· -------
Generic VS. Classical model

• "Classical" object model is the one everyone knows today
- Implemented by Smalltalk (pure form), C++ (slightly

debased), CORBA
- Object = encapsulated data + methods operating on them
- Data only manipulated via methods
- Every invocation directed to one object
- Every method associated with just one object class

• Typical non-LISP syntax: pr.name(p1, p2, p3)

Expression that J I ~ Parameters
yields object ref Name of method to run passed

I Arguments 14 I

VILlO

- 11-"'" - ---- - - --
Generic function model (1)

• Appears to have originated with Lisp 00 extension syntax

• Typical non-OO LISP syntax: (fn p1 p2 p3)

Expression that J ~ Parameters
yields function passed

• Typical 00 LISP syntax: (name obj p1 p2 p3)

Name of method to run ~ f ~ Parameters
E.xpresslC;ln that passed
Yields object ref

• At some point someone (who?) asked "What's special about
obi's parameter position?"

I Arguments 15 I
7&11·2000

11-"-'" ---- ---
OIJl ct N " . .. U .. ou ,

Generic function model (2)

• Generic model LISP syntax: (gf obj1 obj2 obj3)

Expression that ___ J ~
yields generic function Multiple target objects

• Semantics now change radically
- All expressions evaluated - first yields generic function
- Types of obj1 .. 3 are determined at run time, used to look up

method in generic function
- Selected method runs, directly manipulating concrete

representations of obj1 .. 3

I Arguments 16 I

VII. 11

0 111(1 M.~"GUUIOT •• OU~

Generic function model (3)

• Implemented by Common Lisp Object System, IRIS database, a
couple of experimental languages (e.g. Cecil)

• New terms, and old terms given new meanings
- Object: A pure record with no associated code
- Method: Pure code able to operate on multiple objects
- Generic function: A collection of methods, one of which is

selected based on invocation parameter types

• Example CLOS Generic Function:

(defmethod distance «pl cartesian) (p2 cartesian» • •)

(defmethod distance «pl polar) (p2 polar»

Arguments 17

Are these really objects?

• Much early OMG discussion of "What is an object?"

• By my definition, Object systems must have three properties
- Encapsulation
- Run-time instantiation
- First-class object references

• Generic Function model doesn't encapsulate
- Methods know concrete representation of multiple "objects"
- "Objects" can be operated on by multiple methods

• Too put it another way - what is the Unit of Distribution?

VIl .12

GIIHI O U. IIIT 'U OU ,

Unit of distribution?

C:=AddGF~~ __ __

File, String

String Stream I to----File
I .----
I
.. ----
I

~ - - - - .. . _---
Arguments 19

•. ,..,.. -------
G I IH I U UM ' CU O U'

Multi-methods and subtyping

• If "objects" can be subtyped, method selection a nightmare
Horribly complex rules to cope with cases like:

(defclass subl (superl) <slots>)

(defclass sub2 (super2) <slots>)

(defmethod wombat «x subl) (y super2» <code>)

(defmethod wombat «x superl) (y sub2» <code>)

(wombat (make-instance subl) (make-instance sub2)

- Include multiple class inheritance, and it gets really complex
Makes closed world assumption, knowledge of "all " types

Arguments 20

VII. 13

..... -------

Argument One Conclusion

• "Classical" object model provides encapsulation

• "Generic" object model doesn't
- And so (by my definition) isn't an object model
- Cannot be distributed

• Ironically, CL05 programmers very rarely use multi-methods
- 50 wouldn't notice if they went back to a "classical" model

• After much early discussion, this argument now rarely heard

Arguments 2'

- ----- ----
olnn , ... MAounM' . l OU '

Argument the Second

Object reference comparison

~~----------------~---------fAA;rgU~m.;nl;S--~2~2 r---__
N"'~ 9.'00 Cop)'t\QIII 02000. 0I>jcK1 M gtmef>I Gtou\> RlQIIlt rc:I. 7-8'9-2000

.,

VII. 14

.".jJ' -------

A Scenario

• My Java function maps file descriptor to file name, as a string
- Clients use function to find multiple access to the same file

• One day I modify implementation to copy file name before
returning it
- Results look the same, are equal via string.equalsO

• Some clients break
- What happened?

--------------------------------~A~~~um;en;,ts~--2:23~r_-----
N~ aIOO CopyriQhI o:!OOO, Ob!ecI MANp«I*\I GtoJp. ~ ~'''_. • 7·Sep-2000

., jJ. -------

Java language manual 1.0 (excerpt)
15.20.3 Reference Equality Operators == and !=

At run time, the result of == is true if the operand values are both
null or both refer to the same object or array; otherwise, the result ·
is false.

While == may be used to compare references of type String, such
an equality test determines whether or not the two operands refer
to the same String object. The result is false if the operands are
distinct String objects, even if they contain the same sequence of
characters. The contents of two strings sand t can be tested for
equality by the method invocation s.equals(t) (§20.12.9). See also
§3.10.5 and §20.12.47.

Arguments 24 I

VII.l5

....... _--- ---
0 11 "1 ClUllllT CI~O U t

To paraphrase ...

• Two Java strings can be completely identical in every string
related respect, and behave identically under all string
operations, yet test as different using ==

• You can use == on strings if you like, but it won't tell you
anything useful

• == isn't really a "reference equality test", it's an object instance
location test
- Two object instances can behave identically but be in

different places

~~------------~~--~--~----~~Ar~gU~me~nt;s---:2;5l------
N""",uU.tIOO ~1C2000. 0tIj1Cl "'~ GlOUjI. ~ RlQo'ul ,._. 7.s.p·2000

O I JUI 0 1 .. 1 .. 1 O I OU '

CORBA 2.3.1 spec (excerpt)
4.3.6.2: Equivalence Testing

boolean is_ equivalent (in Object other_object);

The is_equivalent operation is used to determine if two object
references are equivalent, so far as the ORB can easily determine.
It returns TRUE if the target object reference is known to be
equivalent to the other object reference passed as its parameter,
and FALSE otherwise.

If two object references are identical, they are equivalent. Two
different object references which in fact refer to the same object
are also equivalent.

ORBs are allowed, but not required, to attempt determination of
whether two distinct object references refer to the same object.

Arguments 26

VII.16

To paraphrase (again) ...

• A valid CORBA implementation can return FALSE for all calls
to is_equivalent, including:

a.is_equivalent(a)

• This all seems unusually unhelpful - why can't CORBA have a
"real" object equivalence test like Java, C++, etc.?

Arguments 27

....... -------

What is ==?

• Most non-distributed OOPLs have something like it

• Hard to explain semantics
- So most textbooks and language specifications don 't try
- Common Lisp spec explains lists in terms of [car, cdr, cons]

abstraction - but watch the authors wriggle explaining "eq"

• Easy to explain implementation
- Most authors appeal to machine-level explanation
- Bitwise comparison of short (32 bit?) pointer
- Runs like greased lightening

~~----------------------------~A~rg;um;en~'s----2128~----~
N-.~ QIOO Copyright 02000. OOjtel M ~ ~. ". Aig/lll ~ 7·Sop-2«O

VII.I7

•· r---___ _
Reference comparison breaks encapsulation

• Encapsulation prevents client knowing anything about an
object that the object chooses not to tell it

But == isn't under the control of the object
- Abstraction bypassed, allowing client to discover an

implementation detail (address of instance)
- Like any encapsulation violation, limits ability to substitute

equivalent implementations for existing objects

• It's possible to design == into the abstraction
- LISP symbols are strings that are "interned" to collapse all

instances of equal strings into == symbols
- Implies ability to search whole string space (closed world)

Arguments 29

Oil'" ".111 .. ' G l OU'

Reference comparison and distribution

• In non-distributed environment, one = = ref is a copy of the
other, or they're both copies of a common ancestor

• Even these semantics break down in a distributed environment
- Distributed object references aren't simple pointers
- Copying and moving them can change representation
- .. . as can relocating, monitoring or debugging object ...
- ... and novel implementations (e.g. groups)

Arguments 30

VII .18

.... ,.._- -----
CORBA object relocation (1)

Client A passes object reference to client B

Client A

Client B

- ,.. -------
0 11"1 "''' OU UNI • • ou,

CORBA object relocation (2)

Object migrates, leaving forwarding pointer. Client B invokes
object and learns new location.

< Moved 1 ... - - -

~ ... , ' , ' , ' , ' , ' , ' , ' , '
'--. '~

Client A
L--__ ----'

Client B

VII.19

. �@1. -------
0 ' /1(1 " "QUU'" a.o y,

CORBA object relocation (3)

Client B sends updated reference back to A, which compares
them, but does not discover they were originally copies.

< Moved 1-.. ---
'---------'

Client A

Client B

Copy"gIU C2OOO. 0bjecI MI~ O,.,.,p. All R1II/lI' t "' .

Arguments 33

..... 1@1.-------

Groups implement objects

• Fault tolerant CORBA implements object abstraction as
replicated groups of objects

• Behind the object abstraction, client object reference is
"really" a list of references to distributed replicas
- Client maintains replicas to avoid single point of failure
- Population can change as replicas die, are replaced
- Lazy update protocols, not all clients h~ve same group list

Similar problem to relocation case arise

• Interposition for debugging, monitoring suffers same problem

Arguments 34

••

VIL20

Aside: What does "same" mean?

• My, there's a slippery word

• Leibniz's Identity of Indiscernibles usually stated as follows:

If, for every property F, object x has F if and only if object y
has F, then x is identical to y.

• "Objects are equal iff each of their attributes are equal"
- Essentially the "Deep Equality" test (equal or equalp) in Lisp

• IMHO "same" is one of the most dangerous words in the
designer's lexicon

• .• .• 1'---,....------

What to do?

• Designers should include application-level equality tests in
their abstractions
- System can't provide universal application equality test

• It means a round-trip invocation delay to establish equality
- This will always be slower
- But why should "equal" be different from "add"?

• Possible research topic to design controlled access to == test,
so it can be used only where application programmer allows?
- Full disclosure: my example objects lack updateable state

Arguments 36

VII.21

•· ... fJ· -------
o i lle T .. " GU. IIIT OI OU'

Argument 2: Conclusion

• Pointer comparison easy & efficient in non-distributed systems
- Even though it's not clear what the semantics are

• Impossible to provide in realistic distributed environments
- ... but non-distributed programmers continually ask for it

• Unrestricted pointer comparison breaks encapsulation

• Designers should include equality test as part of abstraction
- As Java string designer did

• Access to == should be blocked to users
- Though system implementers need to manipulate obj ref

~~--------~~~~--~~----~rkAr~gu~me~nl;S---:3~7 l------
Newc:UIle 9/00 CopyrIo/II 02000, Ob;.cl Ma ... II""' 1 G,oup. AI Righi. , 11(1. 1·S~·2000

•· ... fJ· -------
O IU(T '''' 1 .. 1 0 1 QU '

End of lecture one

Arguments 38

VII.22

0 "' (1 IO "U .. IIII CUOU ,

Argument the Third

Type compatibility

(and a few words on versioning)

Arguments 39 I
7·S.."aOOO

. 1"---- ---

What is a "type"? (1)

• Another interesting question to look up in textbooks
- In non-OO languages, types classify data by representation

• For objects, encapsulation is a fundamental property
- Separates interface from implemetation
- To preserve encapsulation, two objects with same interface

should be interchangable, regardless of how implemented

• So objects can have two, almost- orthogonal classifications
- By impementation
- By interface

Arguments 40 I

VII.23

What is a "type"? (2)

• In Smalltalk, implementation types are called "classes"
- Objects from different classes can have same interface
- Basis of inclusion polymorphism we find so useful
- "If interface includes print, it's printable"

• For now, let's just talk about interface types

• Interface types can be defined in two ways
- Extensional Type is a name for a collection of objects
- Intensional Type is a predicate
- Theoretically these are duals

Arguments 41

•· ... fi·---- ---
OIli er 14 ... 01001141 OIOU '

Extensional view

• Typically used in Object databases
- Assume complete knowledge of extension of a type
- "Give me the complete set of objects with this property"

• Implicit closed world assumption
- Impossible to implement in large distributed systems
- Population may change faster than information about

population can cross system

N ca.U. 9,'00
Arguments 42

H'ep·2000

-.

vn.24

0 " te1 ,.">1' , .ou .

Intensional view

• Classically, define types as a predicates
- For every type x, there exists a function:

is_oUype_x(object) -> boo I
- Some OOls with run-time types provide such predicates

• Since substitutability is the raison d'etre for interface types,
better formulation uses substitutabilty function
- is_substitutable(object, object) -> boo I

• If predicates make you happy, curry the function
- Substitutability function has fewer concepts
- Occam's Razor

Arguments 43

&I' •. &C1' - ----- -
O l lieT n 1101"

Which substitutability relation?

• Strict equality
- Not very helpful - no inclusion polymorphism

• Extension
- Create subtype by extending base type's list of operations
- Must not redefine any of the base type's operations
- Advantages: Easy to implement and understand
- Disadvantages: Still excludes some safe substitutions
- Usally implemented via inheritance on interfaces

VII.25

0 111(' ,UM AOIIl IlI1 nov .

Aside - conformance

• Weakest (least restrictive) substitutability relationship to
guarantee static type safety
- Used in Emerald by Black et al
- Not generally found in commercial statically-typed OOls

• Informally defined via "no surprises" rule
- Caller must not invoke any operation object doesn't support
- Object must not return any exception caller doesn't handle
- Apply recursively to parameter and result object references

• Conformance has a property called "contravariance"
- Parameter types conform in opposite direction to results

--------------------------------~A~rg;um~en;.ls----~45~-----
Ntwcn u. 9IOO CopyrIgh' 02OOO. Ob:.c1 M'n.I~ml'l'\l Group. All RIgIU. r. -' 7·Sep-2OOQ

Oll tel ' 101111 CH OU ,

A conformance example

• Consider these types:

A = type (p(F): (Boolean»

B = type (p(G):(Boolean)

q() : (Boolean))

F = type (r():(»

G = type (r():()

s():(»

• Plainly, G conforms to F, but does B conform to A?
- No: If object of type B substituted for object of type A, client

may try to invoke p(F}; object (of type B) thinks it has been
passed parameter of type G, may try to invoke operation s

Arguments 46

I

VII.26

.1ltl·81· - - - - ---
Oll"' .. """,, .. ,," . I OUP

Back in the distributed world ... stubs

- . ·Iltl·81· --- - - --- -
O Il IC' <lI." .. ' GIOU'

IDL defines interfaces

• Used to generate the stub (marshalling) code
• " IDL compiler" generates marshalling code for particular

language and patform
• Provides language & data representation independence

• Compiled stubs linked with user code
• IDL author does not control with exactly what code

interface examplel
{ float op (in int argl,

in string arg2)
}

Argumen ts 48

VII.27

Using IDL

IDL definitions Client stubs Compile & link

i)¢V¢@J¢V¢
prepr~~~SSing ~ Client program

@J
Client source

Arguments 49

•· r-------
Inheritance

• Interfaces can be derived from other interfaces by extension
- Rules are specified so this extension creates a subtype

An interface can be derived from multiple ancestors - but
illegal if operation names conflict

- CORBA calls this derivation "interface inheritance"

interface A {void f {in float x}}

interface B {long g {in long x}}

interface C: B, A {void h {in long x}}

A B

,/
C

- Object of interface C can be used where client wants A or B

Arguments 50

VII.28

.·,..SI· -------
The question

Is interface inheritance a necessary, or
merely a sufficient, condition for

object substitutabilty?

Arguments 51

.-"-Sl· -------
OII I CT QU , ClIOU'

Is this the right room for an argument? (1)
To : orbos@omg.org
Subject: Type Equivalence in CORBA
Date: Fri, 14 Jun 1996 14:29:07 +1000
From : Kerry Raymond <kerry@dstc.edu.au>

One of the issues that keeps cropping up on various OMG
mailing lists is the issue of equivalence of interface
definitions.

Look at the following examples and answer the question
"is X equivalent to Y?":

Example 1:

interface X { void A (); };
interface Y { void A (); };

Arguments 52

VII.29

Is this the right room for an argument? (2)
Example 2:

interface X { void A ()j void B ()j } j

interface y { void B ()j void A ()j } j

Example 3 :

interface z { void A ()j } j

interface X Z { void B ()j } j

interface y { void A ()j void B ()j } j

Arguments 53

The discussion

• Many assert that inheritance is a necessary condition
- i.e Objects whose interfaces appear compatible should not

be substitutable unless one interface inherits from other

• Arguments seem to revolve around unwritten semantics that
author associates with an interface with a particular name
- If names & signatures should "accidentally" match,

substitutability should (apparently) still be prevented
- ... even though Smalltalk programmers have been doing this

for decades

• "Accidental Conformance" argument

Argum ents 54

I

VII.30

- ., --------
O ' JlH " A ~"OllilN I • ~ Ol"

"Accidental Conformance" argument

interface Policeman

{void draw 0 O interface Polygon

{void draw 0

}

void shoot (in victim x) ,,/ }

void move (in float x,
(in float y)

?
•

interface Wombat

{ void draw 0 }

Arguments 55 I

How do we find objects?

• "Accidental conformance" is an advantage, not a disadvantage
• Allows more flexible versioning

• Could be a problem if we search for objects solely by type
• An unbel ievably silly idea
• Types don 't denote semantics in local code, why here?

• Traders, name servers locate objects by name or other criteria
· Types tell us if invocation is safe, not if its meaningful

• CORBA IDL authors have no direct control over semantics of
code linked with stubs generated from their IDL

Arguments 56

VII.3 J

0 11"1 ,. 11 ." .. ' <l l OU '

Aside - type evolution and versioning

• Inclusion polymorphism provides some scope for evolution
- New operations can be added to a server, but old clients

needn't care .

- Contravariance (if available) permits altering parameter
types in controlled ways

- BUT semantics of the 'old' operations must be unchanged

• What if new version isn't a structural subtype?
- i.e. lots of implementation code in common, but no

substitutability between interfaces

Arguments

Multiple interfaces (1)

• Separate two functions of object
- Encapsulation
- Provision of abstraction

• Allows one object to present multiple abstractions
- When they have unrelated types

57

- ... or when they have operations with clashing names
- ... or even when they are structurally identical (multiple

interfaces of same type)

Arguments 58

...

VII.32

• · •.• f-------
Oi llel .U'U "IOI1"T ".O ~ .

Multiple interfaces (2)
interface queue interface queue

{ void add (in int x)
int get 0

{ void add (in int x)
int get 0

} }

Client 1

Arguments

-.· •. eJ·
O IJl(f , .. U OU.

Multiple interfaces (3)

• We implemented it in full at ANSA in late 80s
- Just call me smug

• Microsoft COM/DCOM has limited form

Client 2

59 I

- Only allows object to present one interface of each type
- Used purely for versioning

• CORBA Component Model also now implements it
- Again for versioning

Arguments 60 I

VII.33

OIJlCl .. "'M AQI"IHT O. OU ~

Argument 3: Conclusion

• Structural type compatibility is anathema to many
- They don't like it, even though they can't quite explain why
- Wrapped up in the (ludicrous) belief that structure of an

interface, interface names etc somehow encode semantics

• Some CORBA implementers apparently haven't noticed that
spec forces them to implement structural compatibility
- Client can sidestep stubs and dynamically build invocation
- ... so can invoke any operation of that name on any object

• Most fiercely argued of the non-terminating arguments
- And the most relevant one for building scalable systems

Arguments 61

O I lier .U"AOllOl,., • IO U '

Overall Conclusion

• Things I wish people understood better before coming to OMG:

• Closed World Assumption
- As touched on here

• End-to-end argument
- Not discussed here
- Read: J.H. Saltzer, D.P. Reed, D.O. Clark,

"End-to-End Arguments in System Design"
ACM Transactions on Computer Systems,
Vol 2, N. 4, P 277-288, Nov 1984

- ... or at hUp:llweb.mit.edu/Saltzer/www/publicationsl
Arguments 62

VII.34

"

.-

VU.35

DISCUSSION

Rapporteur: Dr P D Ezhilchelvan.

Lecture One

While the speaker was presenting the Oeneric model, he pointed out that the methods can
be aware of the concrete representation of the multiple objects on which they operate.
Professor Sloman was of the view that representation can be hidden; the speaker
indicated instances where methods can know the representation.

When the system property encapsulation was being discussed, Professor Henderson
wondered whether too much flexibility is being admitted in assuming that the boundary
of encapsulation can be known. The speaker replied in the affirmati ve.

When the speaker pointed out that permitting object sub-typing and multiple class
inheritance increases the complexity of method selection, Mr Peine opined that the
algorithm for method selection is in general complex, even in C++. Dr Waldo believed
selection can be simplified by rel ying on 'globally unique ' identifiers. The speaker
refuted such a notion by saying that 'global uniqueness' exists only with 'closed world '
assumption - a mentality that must be shed off in the OMO's sphere of activities.

As the differences between '==' and '=' were being discussed, Dr Waldo observed that
the former is a system notion and the latter an object notion. The speaker reiterated his
point that the application designers should be left with a clear idea of what equality
means between objects.

Lecture Two

When the speaker was asseI1ing that every new language that has emerged recently has
C++ syntax, Professor Henderson observed that visual Basic is an exception.

While the speaker was dwelling on the question of finding the objects, he saw no
apparent benefits in using types for that search. The reason was that types (names) say
little about the semantics. Professor Randell had the impression that the names generally
do canoy much semantic information. The speaker explained that names calTY semantic
information - only small enough to help remember them, but not large enough to allow
the entire semantics to be derived. Dr Thompson observed that if types were to reveal
more information on the behaviour of the objects, this would compromise on the
principle of encapsulation. The speaker emphasized the need to have good description of
objects; he recalled interfaces being described in mUltiple spheres and here he is focusing
only on type based descriptions which he believed could be enriched by experts. Dr
Thompson likened the interfaces attached with descriptions of themselves, to proof
canoying codes.

Dr Waldo refelTed to the example the speaker used to explain the problem of 'accidental
confOlmance', and wondered whether the problem was truly as problematical as it was
made out to be. The speaker put forward further convincing arguments and re-expressed
his view that the issue of what an interface means should be addressed, perhaps treating
interfaces as objects themselves. DrThompson wondered whether languages like Java
permit interfaces to be treated as objects, and the speaker replied positively.

At the end of the discussions, Professor Randell sought the speaker's (by extension
OMO's) view on the rule for sequencing of calls on methods. The speaker replied that
this is one of the issues being investigated.

VIl.36

I

