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Abstract

This paper presents a scheme for coordinated error recovery
between multiple interacting objects in a concurrent object-
oriented system. A conceptual framework for fault tolerance
is established based on a general object concurrency model
that is supported by most concurrent object-oriented
languages and systems. This framework integrates two
complementary concepts — conversations and transactions.
Conversations (associated with cooperative exception
handling) are used to provide coordinated error recovery
between concurrent interacting activities whilst transactions
are used to maintain the consistency of shared resources in
the presence of concurrent access and possible failures. The
serialisability property of transactions is exploited in order
to help prevent unexpected information smuggling. The
proposed framework is illustrated by means of a case study,
and various linguistic and implementation issues are
discussed.

1: Introduction

The object-oriented (OO) paradigm supports clean
structuring, simplicity of design and software reuse and it
is thus likely, if used correctly, to increase software
dependability. However, given the complexity of today's
computing systems, it is inevitable that even OO systems
may still contain residual (typically software) design faults
or “bugs”. Complementary approaches and mechanisms,
such as software fault tolerance and exception handling, are
therefore required in order to cope with software bugs and
run-time abnormal events. This is particularly the case
with complex concurrent systems because these systems
are very prone to errors.

Practical techniques for dealing with software faults do
exist, especially for sequential systems, and have been
proved successful for some applications (see for examples
the collection of papers in [35]). Comprehensive surveys of

software fault tolerance issues can be found in [27][31].
However, the majority of fault-tolerant computing systems
do not attempt to tolerate software faults, or facilitate
recovery from errors that affect both the computer system
and its environment — rather they concentrate on the
problems that arise from operational faults (typically
hardware faults). For example, many software systems that
use the concept of an atomic (trans)action to provide a
means of surviving hardware failures generally assume that
user programs are correct [10][16][20][24][29].

In this paper we discuss the problem of providing
fault tolerance in concurrent OO software systems and
propose a general framework for fault tolerance that
integrates two complementary concepts, conversations and
transactions. Our framework encompasses strategies for
dealing with hardware, software and environmental faults to
provide coordinated error recovery between a set of
interacting objects.

Our approach has the following novel and favourable
characteristics:
® It relies on an OO concurrency model that is general

enough to be able to represent the semantics of
several different concurrent OO languages, and is thus
more consistent with the realities of actual OO
languages than existing concepts and approaches
which are based on conventional process-oriented
models.

® Coordinated error recovery between a set of interacting
objects is established as a most general concept that is
able to deal with complex interactions between
application programs, external environments, and
independently-designed shared objects.

® Conversation-type schemes, cooperative exception
handling, and transactions are allowed to co-exist in
various combinations and are integrated into a
uniform framework so that the most effective scheme
can be selected to match the given application’s
requirements.



® The issue of unexpected information smuggling, (i.e.
implicit information passing via means such as shared
servers and resources) is treated carefully in order to
ensure the effectiveness of attempts at concurrent error
recovery. The serialisability property of transactions,
provided by means of appropriate concurrency control
protocols, is exploited in order to help prevent such
information smuggling.

® Means are provided for cooperative exception
handling, together with a resolution mechanism for
dealing with the problems of concurrent detection of
several different errors. These means are generally
applicable to any set of objects whether or not of the
same type.
The remainder of this paper is organized as follows.

Section 2 contains a detailed discussion of fault tolerance
issues in concurrent systems. Section 3 proposes a general
framework for fault tolerance in concurrent OO systems
that is intended to encompass both hardware and software
fault tolerance strategies. Section 4 demonstrates the
usefulness of this framework through a case study and
Section 5 discusses various linguistic and implementation
issues. Finally, Section 6 makes comparisons with related
work and provides a brief summary.

2: Fault tolerance issues in concurrent
systems

Although techniques for tolerating hardware-related
faults based on the use of atomic transactions controlling
operations on objects are widely employed in distributed
systems, there has been relatively little work on the use of
coordinated error recovery amongst concurrent programs,
especially for deliberately treating faults in the software
itself. The design of fully dependable practical computing
systems must incorporate techniques for treating both
hardware and software faults and cope adequately with the
problems caused by concurrency. In what follows, we will
use the term “fault-tolerant software” to describe software
with this property, and explore how to take advantage of
OO structuring techniques in designing and implementing
such software.

2.1: Conversations, exception handling and
transactions

The conversation scheme [25] is a canonical software
fault tolerance technique for performing coordinated
recovery in a set of communicating (and in general
cooperating) processes. A conversation generally involves
two or more processes, constitutes a two-dimensional
enclosure of recoverable activities of multiple interacting
processes and creates a “time-space boundary” that process

interactions may not cross, as shown in Figure 1(a). The
boundary of a conversation consists of a recovery line, a
test line, and two side firewalls [17]. A recovery line is a
coordinated set of recovery points for interacting processes
that are relying on backward error recovery. Such a recovery
line is established on entry to the conversation before any
process interaction occurs. A test line is a correlated set of
the acceptance tests for the interacting processes. The two
side firewalls define exclusive membership; that is, a
process inside a conversation cannot interact with a process
that is not in the conversation. The concept of a
conversation permits only strict nesting.

Process 1

Process 2

Process 3

Process 1

Process 2

Shared Objects

conversation

transaction

nested transactions

(a)

(b)

recovery point
acceptance test
boundary

boundary

access to objects

nested conversation

Figure 1. (a) conversations and (b)
transactions.

If an exception is raised by one or several processes
within a conversation, then a coordinated error recovery
strategy between all the processes in the conversation is
required [5]. As part of this strategy a resolution scheme is
used to combine multiple exceptions into a single
exception if they are raised at the same time — the
multiple exceptions are resolved into the exception that is
the root of the smallest subtree containing all the raised
exceptions. It is important that all the participating
processes have corresponding exception handlers for a given
exception (though the use of a default exception handler
provided by the underlying system is permitted). These
handlers may either invoke appropriate recovery measures,
or signal a further exception. In the event of error recovery,
the error handlers can use a mixture of forward and
backward recovery techniques. For example, the state of a
process may be rolled back to the recovery line or actions
may be performed to correct the erroneous state. Note that
the incorporation of forward error recovery techniques into
the conversation framework provides a basis for
coordinating the recovery measures taken by the system and



its environment (which typically is incapable of simple
backward recovery).

A conversation is successful only if all of the
interacting processes within the conversation pass their
acceptance tests (and a global test if required) at the test
line. If one or more of these processes fail an acceptance
test, then an exception is raised and all of the processes
must attempt to recover. If backward error recovery is used,
the original state of each process is restored before allowing
participating processes to retry, perhaps using an alternate.
(Where the aim is merely to tolerate operational, e.g.
hardware, faults such alternates might simply perform a
“retry” rather than be of deliberately diverse design.) In
principle, if only forward error recovery is used, then there
is no need to establish a recovery line on entry to the
conversation. However such a recovery line will certainly
be needed if there is a requirement to guarantee that a failure
of the fault tolerance mechanisms within the conversation
leaves the original state of the system unchanged.

The well-established transaction concept is a logical
user action that performs a sequence of basic operations on
shared data or objects. In general, such shared objects are
designed and exist independently of the user processes. A
transaction protects shared objects by providing the well
known ACID properties — atomicity, consistency,
isolation and durability — for all the operations carried out
within the transaction [10] (see Figure 1(b), in which
interactions with and via shared objects are assumed to take
place but are not portrayed explicitly). Nested transactions
[24] extend the transaction paradigm by providing the
independent failure property for sub-transactions. Therefore,
concurrent sub-transactions may be supported within a
transaction, as illustrated in Figure 1(b). However, unlike a
conversation in which multiple processes may enter the
conversation asynchronously, concurrency between
processes is hidden inside a transaction; that is, just one
process can enter the transaction and exit later.

Transactions are usually intended to tolerate only
hardware-related failures such as node crashes and
communication failures, and most transaction mechanisms
do not deal with the possibility of software design faults
within a transaction that could also be a cause of data
inconsistency. Moreover, since transactions hide the effects
of concurrency by guaranteeing serialisability, it is not
sufficient for concurrent entities (i.e. interacting processes)
to synchronize their collective activities only according to
the ordering of their transactions and this could be an
additional source of faults.

2.2: Conversations versus transactions

Conversations provide a framework for programming
explicit cooperative concurrency amongst a set of processes

or objects that have been designed to interact with each
other. Transactions are used to deal with concurrency
implicitly by serialising accesses to objects that are shared
by independently designed actions, i.e. objects that have
simply been designed to be interacted with (typically
termed shared objects).

Because shared objects have been designed and
implemented separately from the applications (i.e. objects)
that make use of them, they thus have to be responsible for
ensuring their own integrity in the face of concurrent
updates and possible failures. In contrast, objects that have
been designed to interact with each other must be
responsible for their collective integrity. For such objects
it may well be possible to use forward error recovery since
the designer will know what progress each of the set of
objects is intended to make. Backward error recovery can be
designed without the need of such knowledge and so is the
typical form of recovery used for objects that are
individually responsible for their own integrity.

Shared objects that are under the control of a
transaction system will guarantee the ACID properties if
all the operations on them are performed from within an
atomic activity. We will describe these transactional
objects as being atomic because they provide ACID
guarantees for objects that interact with them. Interactions
via shared objects that are not atomic should occur within
the context of a conversation and will require explicit
mechanisms for concurrency control and error recovery.

It is important to note that there are many dual aspects
of conversations and atomic transactions (which are
identified carefully in [30]). The duality leads to a deeper
understanding of various fault-tolerant structures and helps
the development of new techniques. However, since they
also have many independent and respective characteristics
(as discussed previously), conversations and transactions are
best viewed as complementary rather than as alternative
approaches for a given application — indeed, we would
argue that fault-tolerant concurrent software should
combine both mechanisms in order to resolve the problems
caused by hardware and software faults in the presence of
both shared objects and concurrent entities.

2.3: Prevention of information smuggling

The original paper on conversations [25] clearly
explained that process interactions could be performed via
any means of communication between concurrent
processes, such as explicit message passing, or merely
reference to common variables and objects. Somewhat
surprisingly, much of the subsequent work on
conversations concentrated on the recovery line (e.g. using
the recovery cache mechanism) and the issue of the test line
(e.g. local and global acceptance tests). Little attention has



been paid to the “side firewalls” that isolate the set of
processes within a conversation from other activities. It is
usually assumed that these side firewalls can readily be
provided by some conventional protection mechanism.
Unfortunately, this is not the case in practice. There are
many means by which information may break through the
side firewalls and thus defeat the effect of error recovery —
this problem is known as “information smuggling” [17].

In an OO system a set of cooperatively defined
concurrent objects forming a conversation may need to
interact with one or more independently designed objects
(e.g. various kinds of server) that provide their own
mechanisms for error recovery and fault tolerance. If such
service objects can be concurrently accessed by objects in
other conversations then implicit information transfers can
occur, thus causing unexpected information smuggling
between conversations. The problem of controlling
information smuggling has proved difficult. For example,
servers may become in effect trapped within a conversation,
and dynamic object creation/destruction may result in
difficulties during backward recovery [12]. In Section 3 we
discuss various solutions to this problem and describe a
mechanism for coordinated error recovery that allows
independently designed service objects to be implicit
participants in more than one conversation at once. We
also address the use of forward error recovery to deal with
objects for which backward error recovery is inappropriate
or infeasible, including for example ones which are outside
the computer system.

2.4: Coping with complexity

Concurrent systems are often very complex, and ill-
considered strategies for performing coordinated error
recovery may greatly increase their complexity. The issue
of complexity control is therefore central to the design of
effective fault tolerance mechanisms. We, like other
researchers, view it as crucial for practical reasons to
support fault tolerance for selected critical components,
rather than just for the system as a whole. A framework for
fault tolerance that is based on (sub)components rather than
the whole system will assist the application programmer in
making appropriate tradeoffs between dependability,
complexity, flexibility, and performance. This is also
consistent with the idea of controlling complexity by
structured system design.

Our starting points in considering the structuring of
fault-tolerant systems are the concepts of idealized fault-
tolerant components [19] and of recursive system
structuring [26]. These concepts form the basis of the OO
scheme for incorporating design diversity into programs
that we described in [37]. In considering the recursive
structuring of a system into a collection of components,

we mainly concern ourselves with the ways in which a
system can itself be sub-divided, i.e. its static structure.
However, the pattern of interactions between components
of a system is, as pointed out above, quite complex, and
can be either explicit or implicit. Such patterns of
interaction relate to the identification of the system’s
dynamic structure. The concept of an atomic action can be
used to structure such interactions.

Atomic actions could be defined in different ways.
(For example, in a database context the term atomic action
is sometimes used as an alternative to transaction.) We will
use the definition in [4][19][21]. An atomic action is an
activity between a group of components with the property
that no interactions occur between that group and the rest
of the system for the duration of the activity. If a group of
components are asynchronous (i.e. concurrently active) and
interacting, atomic actions are useful in imposing
constraints on the flow of information within the system.
A conversation and a transaction are in nature two concrete
instances of the notion of an atomic action.

The OO paradigm fits closely with the idea of
idealized components. In the recursive system structuring
scheme, a component can conveniently be thought of as an
object [19]. Like components, objects have a well-defined
external interface that provides operations to manipulate an
encapsulated internal state. Design redundancy can readily
be supported — different implementations can be provided
for the same interface and combined together to tolerate
software design faults. In practice, design diversity can be
incorporated into fault-tolerant OO software at different
levels of granularity — diverse operations (or parts of an
operation), or diverse objects of a specific class, or diverse
objects from different classes [37].

3: Coordinated error recovery in concurrent
OO software

The purpose of this section is to describe a framework
for fault tolerance in concurrent OO programs that
integrates conversations, transactions and exception
handling, thus supporting the use of both forward and
backward error recovery techniques to tolerate hardware and
software design faults, and also environmental faults (i.e.
faults that exist in or have affected the environment of the
computing system).

3.1: Object-oriented concurrency

Computations are carried out in concurrent systems by
the cooperation of several separate (or asynchronous)
execution threads. Features for supporting concurrency may
be added as an extra layer on top of the OO features, or may
be fully integrated with an OO language. We will



concentrate on the latter because such solutions encompass
the concepts of object and process into a single abstraction.
There are essentially two basic techniques for achieving
concurrency in the context of OO programming:
asynchronous operation execution and active objects [1].
With the first technique, a new execution thread is
generated to execute the body of an operation in response to
an invocation request. Concurrency is provided at the level
of individual operations (which may be associated with a
single object or several different objects). Typical examples
include Hybrid [23] and the Actor languages [38]. With the
second technique, instead of generating a separate execution
thread for each operation invocation, a permanent thread is
associated with the whole object, so that the object is
regarded as an active (but sequential) process. This
technique is used in POOL and Concurrent Smalltalk [38],
for example.

Our proposed framework for coordinated error recovery
in concurrent OO languages is based on an abstract model
of concurrent OO computation from which the concrete
model used in a particular language may be derived as a
special case. In our model, a concurrent OO system is
defined as a collection of interacting objects. Concurrent
execution threads correspond to executions of operations on
a group of objects. What we are actually concerned with is
concurrent executions of operation bodies and coordinated
error recovery between a set of such executions.
Consequently, there is no need to distinguish between
active and passive objects at this level of abstraction.
Furthermore, since a general error recovery mechanism
should make no assumptions about the synchronization
mechanism that is being used, our model will not specify
this mechanism. To avoid extra complexities, we assume
in the model that an object must execute just one of its
operations at a time. It is therefore conceptually correct by
this model to consider objects, rather than individual
operations, as participants of a coordinated activity.

3.2: Coordinated atomic actions

We use the term “coordinated atomic action” (or CA
action) to characterize an activity between a group of
interacting objects that combines some properties of both
conversations and transactions and integrates exception
handling. Objects that are involved in a CA action and not
shared concurrently with other CA actions are called
participating objects of the CA action; objects that can be
shared concurrently with more than one CA action are
called external objects and must be atomic.

A CA action has the following basic properties:
® A CA action that relies on backward error recovery

must provide a recovery line in which the recovery
points of the objects participating in the action are

properly coordinated so as to avoid the domino effect
[25].

® CA actions must provide a test line consisting of a set
of acceptance tests, one for each participating object,
and a global test for the whole.

® All the objects accessed by a CA action must invoke
appropriate forward and/or backward recovery measures
cooperatively once an error is detected inside the
action, in order to reach some mutually consistent
conclusion.

® Error recovery for participating objects in a CA action
requires the use of explicit error coordination
mechanisms within the CA action; objects that are
external to the CA action and can be shared with other
actions concurrently must be atomic and provide their
own error coordination mechanisms (in order to
prevent information smuggling).

® Nesting of CA actions is permitted.
On entry to a CA action, a participating object

establishes a recovery point if backward error recovery is
required and, thereafter, may only communicate with other
objects participating in the action and with external objects
that are atomic. Note that the participating objects in a
particular CA action may enter the action asynchronously.
Accessing an external atomic object (or a group of such
objects) from within a CA action in effect involves starting
some kind of transaction. If all the current participants
complete and pass the acceptance tests, then any recovery
points taken on entry are discarded, transactions involving
external atomic objects are committed and the CA action is
exited. If, for any reason, some participating object fails to
complete or to satisfy its acceptance test, appropriate
recovery measures must be invoked. For this purpose, a
CA action is organized as several CA action attempts. The
first attempt is the normal activity that results from
executions of the primary alternates of cooperative
participating objects. Subsequent attempts either consist of
the activity of the set of exception handlers, or of the
activity of doing backward recovery followed by the next
set of alternates. Transactions involving external atomic
objects must be aborted during backward error recovery.
(Note that new transactions started by subsequent attempts
may involve different sets of external objects by reason of
diverse design.) The concept of a CA action thus suggests a
quite general solution where both forward and backward
recovery techniques can be used in a complementary or
combined manner.

Through the use of appropriate protocols it is possible
to have a CA action whose participating objects are held in
various of the different computers forming a distributed
computing system. Indeed users in the environment of a
computing system can also be viewed as objects
participating in a CA action if they adhere to appropriate



protocols — the practicality of this possibility is greatly
enhanced by the fact that a CA action can provide a
structure and strategy for forward error recovery. For
example, the system could send compensatory messages to
users in order to correct earlier messages that were later
discovered to have been erroneous. (Detailed discussion and
more examples of “unrecoverable” objects can be found in
[19].) In this way, a CA action can effectively deal with
cooperative activities between application programs and
environments that cannot be rolled back, using forward
error recovery.

Figure 2 shows an example that combines different
forms of error recovery into a single CA action in which
object 1 uses the exception handler H to do forward
recovery while object 2 is rolled back and then tries its
second attempt that may not need to communicate with
object 1 again. The effects of operations on external atomic
objects are undone completely when the first attempt of the
CA action fails.

Object 1

Object 2

External
Atomic Objects

Time

CA action

e

raised exception e
exception handler H

abnormal control flow
suspended control flow

try second attemptprimary attempt

primary attempt

restore
checkpoint

return to
normal

exit with
success

take        
checkpoint

discard    
checkpoint

undo all  
effects

Figure 2. Combined forms of coordinated
error recovery.

The transaction mechanism that supports atomic
objects is independent of the mechanism used to implement
CA actions, and atomic objects can be used by different CA
actions concurrently. Atomic objects generally contain no
design redundancy, but may have their own mechanisms for
concurrent access control and fault treatment. Each
execution of a CA action, in a sense, behaves like a
transaction with respect to the external atomic objects it
accesses, and each CA action attempt during execution may
be thought of as a nested transaction. Since any effect that
a CA action has on external atomic objects shared
concurrently with other CA actions only becomes visible if
the CA action terminates successfully, unexpected
information smuggling between CA actions via external
shared objects can effectively be avoided.

CA actions can be nested. A nested CA action is still
atomic during its execution (even with respect to its parent
and sibling actions). When it completes successfully, its
results can be only revealed within its parent action. All

the effects of the nested CA action can thus be undone by
its parent if the need arises and appropriate recovery points
have been taken. Concurrent nested CA actions behave like
nested transactions with respect to external atomic objects
involved in transactions with their parent action. Thus,
although they may be allowed to use the external atomic
objects held by their parent action, they must compete for
them in a strictly controlled manner. Nested CA actions
may also acquire some external atomic objects that are not
held by the parent action. However, these external atomic
objects cannot be simply released — they should be passed
onto the parent action so as to enable possible error
recovery. Within a CA action, new objects may be created
and then destroyed. If it is indeed necessary to keep the
newly created objects after the completion of the creating
CA action, availability of the newly created objects will be
strictly limited to the parent action.

Finally, it is worth mentioning that both a
conversation and a transaction are really restricted forms of
a CA action. For example, when a CA action consists of
just a single execution thread accessing one or more atomic
objects, it will be in fact an ordinary transaction, as shown
in Figure 3(a). If a CA action involves several participating
objects, i.e. multiple execution threads enter the action
asynchronously, it will constitute a conversation of
objects, as shown in Figure 3(b) and (c). Notice that if
these participating objects interact only through external
atomic objects, the CA action is equivalent to what is
called a “shared transaction” in the database world. In its
full generality however, a CA action also encompasses the
provision of coordinated error recovery by objects that are
directly invoking each other’s operations, and the use of
forward error recovery as well as backward error recovery.

Object 1

External
Atomic  Objects

 transaction

(a)

Object 1

Object 2

general CA actions

(c)

Object 1
 shared transaction or conversation

(b)

Object 2

Object 3

External
Atomic  Objects

External
Atomic  Objects

Figure 3. Examples of coordinated atomic
actions.

3.3: Exception handling in CA actions



In OO systems it is appropriate for exceptions to be
represented by instances of classes and therefore have a type
[6][18]. This makes it possible to use inheritance to group
exceptions together and to define a single handler to cope
with a group of related exceptions.

It should be noticed that different participating objects
in a CA action may raise different exceptions at the same
time. The exception tree proposed by Campbell and
Randell [5] is an appropriate mechanism for combining the
multiple exceptions into a single exception. For a given
exception, the corresponding exception handlers may either
invoke appropriate recovery measures, or signal a further
exception. Similarly, transactions involving external
atomic objects must be either aborted; or else, if practically
possible, forward error recovery mechanisms must be used
to make selective corrections to any erroneous updates they
have made to external atomic objects.

To ensure the proper combination of forward and
backward recovery, the CA action structure will guarantee
that an exception is raised if the acceptance test fails or a
run-time error is detected before the acceptance test is
reached. CA actions must be coordinated so as to either
produce a result agreeable to all the participating objects or
(if at all possible) to restore all objects changed by the CA
action to their prior states. Thus, the default exception
handler will typically simply use backward error recovery
to terminate the current CA action attempt.

4: Case study

We now present a brief case study to illustrate the
application of CA actions to a simple sales control system,
based on the system considered in [1]. Although many
necessary features of the system have been omitted in the
interests of simplicity and brevity, the example should be
sufficiently detailed to illustrate the mechanisms for
coordinated error recovery and fault tolerance provided by a
CA action.

The sales control system consists of a database, a set
of control points and a set of sales points, as illustrated in
Figure 4. Its main function is to maintain a database
describing all the products to be sold so that many
distributed sales points can obtain the correct prices of the
items selected by the customers. Several control points
provide interfaces that allow the human managers of the
system to update the product information in the database at
run time. We assume that such updating is regarded as a
very critical activity and consequently, to guard against
fraud, the policy is that two human managers, one of
whom is at a senior level, have to be involved in and agree
to any such updating. Thus, it will be necessary to update
the data cooperatively from the control points and this will
require the use of coordinated actions.  Such updates must

also be atomic with respect to sales points that may be
querying the database at the same time. Hence, an item is
not really deleted or added to the database unless the
corresponding action commits successfully.

Control 
Point B

Control 
Point A

Sales Points
Database

Manager A

Manager B

Figure 4. Components of a sales control
system.

Several abstract data types are established for the
above components. The DataBase class models the database
of product information and provides operations that can be
used from both sales points and control points. For
example, an add operation can be used from a control point
to add a new product descriptor to the database whilst the
retrieve operation can be used by a sales point to discover
the price of a product. Objects stored in the database can be
accessed concurrently from different activities and must
therefore be atomic. All sales points are modelled as a class
named SalesPoint. Each sales point is just an instance of
the SalesPoint class and is allowed to retrieve the required
data from the database. The control points are defined by
two classes, ManagerA and ManagerB which have differing
functions. Instances of the ManagerA class provide means for
junior managers to update the product information in the
database, whilst instances of the ManagerB class provide
means for senior managers to monitor and, if necessary, to
correct the updates made by ManagerA objects. Thus, updates
to the database could be naturally organized as a coordinated
atomic action involving a ManagerA object and a ManagerB
object, and the effect of these updates must be atomic with
respect to concurrent price queries from multiple SalesPoint
objects. In order to specify such a coordinated update
activity, a CA action named CoUpdate is declared. The
CoUpdate action contains a global acceptance test to perform
the final validation at the end of the CA action. In addition,
an exception resolution function is identified in the
CoUpdate declaration to handle the situation in which
exceptions are raised concurrently.

Figure 5 shows the CA action CoUpdate that results
from asynchronous invocations of update(..) and
monitor(..) operations from two different manager objects.
Note that fault tolerance in this system is achieved through
the combined use of forward and backward error recovery. If
an exception is raised within the CA action, coordinated
error recovery will be performed. As illustrated in Figure 5,



the exceptions e1 and e2 are raised by the ManagerA and
ManagerB objects at the same time. Thus the primary
attempt of the CoUpdate action is abandoned and the
transaction involving the external atomic object Shared_DB
is aborted. Meanwhile, the exception resolution mechanism
determines that the combined exception e3 should be raised
within this action. The ManagerA and ManagerB objects then
execute the corresponding exception handlers handle_A3()
and handle_B3()  for the update(..)  and monitor(..)
operations to do forward error recovery. It is important to
notice that before the completion of forward recovery,
SalesPoint1 would still get the unchanged price. However,
once the CoUpdate action terminates with successful error
recovery, updated prices will be available immediately for
all sales points.

ManagerA

ManagerB

SalesPoint1

Shared_DB

CA action CoUpdate

forward recovery

backward recovery
undo effects

e1

e2

handle_B3()

handle_A3()

exception  
resolution

e3

read read
update update

raise exceptions

Figure 5. CA actions in the sales control.

5: Linguistic and implementation issues

The framework we have introduced for coordinated
error recovery could be used to support CA actions in
practical concurrent OO languages. However, language
design issues are rather complex and in the limited confines
of this paper we only outline some of the principal
possibilities. Similarly, there are many ways of
implementing the CA action concept and here we will only
discuss a few major issues that must be faced by any
implementation.

5.1: Linguistic issues

In general, support for CA actions can be provided by
either embedding the support into a new language or by
extending an existing language. The former approach offers
powerful linguistic constructs and provides a fine degree of
control because of its tight integration with the underlying
language. An example is the Argus language which
provides language constructs for the creation of top-level

and nested transactions [20]. But a new language may have
difficulty in finding practical acceptance. Providing library
objects to support CA actions is the simplest approach to
implementation — for example, the Arjuna system [29]
uses this approach to provide a transaction-based toolkit for
writing reliable distributed programs in C++. However, the
disadvantage of an approach based on the use of library
classes is that it does not offer a good degree of control for
coordinated actions because there is no linguistic link
between the start and end of an action. The language cannot
prevent an action’s thread of control from running outside
the boundaries of the action unless a set of programming
conventions is followed strictly. In the interests of software
reliability, it would be better if the language
implementation rather than the application programmer
was responsible for enforcing such constraints. Thus, a
good compromise would be to extend an existing, popular
language by adding support for CA actions.

Linguistically, a CA action is like a multi-threaded
procedure call and has some similarities to the proposal for
a multi-function made in [3]. The programming language
Arche [14] has a construct that supports N-version
programming [2] called a multi-operation which is a
simplified form of a multi-function. However, unlike a CA
action, a multi-operation call is a mechanism by which a
single object can invoke the same operation on a set of
objects that implement it in different ways. A CA action
allows several different objects to cooperate in performing a
task by coming together. Each participating object plays a
different role in the CA action; in other words, each object
executes a different operation. These roles should be
declared somehow as part of the specification of the CA
action since the complete set of participating objects in a
CA action must be known at run-time to ensure a
synchonized exit. Note that a CA action is a mechanism by
which a group of otherwise unrelated threads can
rendezvous. The syntax and semantics for specifying a call
to a CA action must thus make it possible to identify a
particular instance of such an action because, unlike a
conventional procedure call, a single invocation of a CA
action is made up of several different calls. CA actions
should also be parameterized allowing them to be bound to
different objects on each invocation. A further complication
is the way in which variants of the different operations
within the CA action should be specified. These language
design considerations are the subject of on-going research
— they are therefore not discussed further.

5.2: Implementation issues

The most important implementation issue is the
mechanism for coordinating the activity within a CA
action. One approach would be to introduce a “CA action



manager” object whose basic functions would be: (1) to
register asynchronous entries of the participating objects;
(2) to manage the transactions used to access external
atomic objects; (3) to synchronize the exit of all
participants; and (4) to enforce the correct nesting of CA
actions.

On invocation of a CA action, i.e. when one or more
objects begin to participate in the action, a globally unique
identifier for the action must be generated. As each
participating object enters the CA action, its identifier is
passed onto the manager and recorded in the Current-
Participant-List of the CA action. Whenever a CA action
accesses an external atomic object (that hence is potentially
visible to other CA actions executing concurrently), the
manager must ensure that this access is recoverable,  for
example, by ensuring that atomic objects are only accessed
from within transactions. If backward error recovery is
being used, the manager is also responsible for establishing
a recovery point for each participating object as the object
enters the CA action. If the action completes successfully,
any such recovery points are discarded; otherwise the
previous states of the participating objects are restored and
some recovery measures are invoked. The CA action may
terminate with a failure exception despite the use of its
own fault tolerance capabilities. Since CA actions can be
nested, a failure exception of a sub-CA action will simply
cause termination of the current attempt of the enclosing
CA action. The outer CA action will then invoke
appropriate recovery.

External atomic objects may be accessed concurrently
by different CA actions and must have the semantics of
atomic data types [36]. Both optimistic and pessimistic
concurrency control policies can be used to implement
atomic data types [13][36]. The simplest approach is to
lock all atomic objects exclusively for use only within a
single CA action. This can be relaxed somewhat by
allowing concurrent access to external atomic objects from
several CA actions provided that none of them tries to
modify such objects. Allowing concurrent updates to
external atomic objects requires type-specific knowledge
about the semantics of the atomic data type to prevent
conflicts. However, note that concurrency control and error
recovery for external atomic objects is the responsibility of
those objects and not the CA actions that access them.

If exception handling is used to implement forward
error recovery, a participating object may raise an exception
during the execution of its operation or if it fails its
acceptance test. In this case, all the participating objects in
the CA action should stop their normal computation and
the process of exception resolution must be started. Any
such exception must be first caught by the manager object
which will then inform other participating objects that an
exception has occurred so as to stop other normal

computations. If several exceptions are raised concurrently,
a resolution function is used to decide which single
exception covers the entire set. Appropriate steps are then
taken to handle that exception.

Participating objects in a nested CA action may access
external atomic objects that have already been held by their
parent CA action, but this must be done in a strictly
controlled way in order to prevent information smuggling.
A set of rules must be designed carefully, enforced and
checked by the action manager. For example, once these
external atomic objects are passed by the parent CA action
onto the nested CA action, the parent action will not be
able to access them until the nested action terminates.

Finally, it is worth notice that the choice between a
centralized implementation of the action manager and a
decentralized solution may have a significant effect on the
system performance and the effectiveness of fault tolerance.
In order to analyze and evaluate the effect, experimental
work and field experiences are of great importance.

6: Conclusions

We have introduced a framework for the provision of
general fault tolerance in concurrent OO systems that
provides coordinated error recovery within an atomic action.
Conversations and transactions are integrated into this
single abstract structure so as (i) to protect both concurrent
objects and globally-accessible shared data and (ii) to cope
with both hardware-related failures and software design
faults. The proposed framework allows the controlled usage
of both backward and forward error recovery techniques (e.g.
involving compensatory messages to external activities
that may have been affected by erroneous output from the
system). This could be very valuable for systems that
interact with environmental objects that cannot be simply
backed up.

To be adequate for recovery in real concurrent systems,
the proposed approach has been designed with the general
characteristics of most concurrent OO languages in mind
— explicit concurrency between objects within a CA
action; implicit concurrency via atomic objects shared
between CA actions. Such facilities can provide, we
believe, a more practical resolution of the conflicts between
basic concepts of fault tolerance and the realities of actual
concurrent languages than has been available to date.

6.1: Related work

The concept of a conversation [25] was aimed at
controlling the domino effect and coping with design faults
in concurrent processes. It was later improved and extended
with various syntactic proposals, such as conversations
based on monitors [17], FT-actions [15] and Dialogs and



Colloquys [11]. All of these proposals were limited to
discussing general ideas and were designed more or less
separately from the other facilities of actual programming
languages [12]. None of these proposals is based on an OO
language model or could be used in a concurrent OO
system.

The notion of an atomic action was originally
introduced in the context of database systems, it was then
explored as a method of process structuring [4][21]. In [5],
the conversation scheme was extended to form a general
framework for fault tolerance in concurrent process systems
that allows the construction of systems employing both
forward and backward error recovery supported by nested
atomic actions. The work in [15] provided a syntax for this
framework based on the CSP language. Though these
proposals are very process-oriented, they were extended in
[14] to the definition of programming notations in the
Arche language — a distributed OO language. Compared
with our work, the Arche approach only allows a limited
form of coordination for groups of objects called a multi-
operation.

Transactions are now a well-known paradigm for the
construction of reliable distributed applications [10]. Nested
transactions [24] extend the transaction notion by providing
the independent failure property for sub-transactions. A
recent proposal for extending the SQL 2 database query
language to support real-time transactions [9] introduces a
means of naming and initiating transactions together with a
scheme of pre- and post-conditions by means of which
concurrent transactions can be synchronized and user-defined
correctness criteria specified.

Many systems have been developed that successfully
combine transaction processing with the OO programming
methodology — for example Argus [20] and Arjuna [29].
But such research is mainly directed towards data
consistency problems and hardware-related failures. Work
exists in the distributed computing area on tolerance to
failures in concurrent processes that may share data, such as
many checkpointing-based schemes for supporting process
resiliency [16]. Although most such schemes are similar to
conversations (some of them in fact used the idea of a
conversation to deal with the domino effect), they are
usually based on the assumptions that process failures are
only caused by node failures and nodes are fail-silent.

While transactions require techniques for protecting
concurrent processes like the conversation scheme in order
to be effective in actual systems, such coordinated actions
need in turn to treat implicit interactions deliberately,
especially between shared resources. In [32], a proposal is
made for dividing a heterogeneous system into two
subsystems using conversations and transactions
respectively. Within the context of OO languages and
systems, our work instead offers a means of integrating the

two mechanisms, thereby reducing the complexity of the
design of fault-tolerant software for a concurrent system.

6.2: The way forward

The work that led to the scheme presented here is a
continuation of long-term research into the impact of OO
structuring mechanisms on software fault tolerance at
Newcastle. One of the starting points for this research was
the idea of developing a library of reusable components that
could support the construction of fault-tolerant applications
without requiring modifications to either the programming
language or its underlying run-time system. The idea was
to separate the functionality of a fault-tolerant application
from the mechanisms it uses to achieve fault tolerance,
using a variety of OO mechanisms to achieve this
separation. Towards this end, we have specified a set of pre-
defined classes that could be used to provide a general
framework for fault tolerance in [37] and shown how to
implement both forward and backward error recovery in
C++ within the context of sequential programs in [28].
This work demonstrates how various forms of object
diversity can be programmed in OO languages and shows
how to build reusable OO components that encapsulate
particular fault tolerance mechanisms using OO
mechanisms such as inheritance, delegation, type
parameterization and reflection. Our goal now is to develop
a further similar set of mechanisms for supporting CA
actions in a concurrent OO language.

We believe that the techniques of reflection [22] and
meta-level programming based on the use of a meta-object
protocol will allow us to achieve a better separation of
concerns between the functional part of an application and
the non-functional part (e.g. the part concerned with fault
tolerance measures) by extending the semantics of the
underlying programming language transparently without
unduly complicating the application-level program [33].
We have been experimenting with a reflective
implementation of C++ called Open C++ [7] that provides
a limited form of computational reflection. Collaborative
work between LAAS and Newcastle within the PDCS
project has developed several case studies and prototypes
using Open C++ to implement fault-tolerant applications
[8]. The use of meta-object protocols to implement atomic
objects is presented in [34]. We intend to implement the
semantics of a CA action using a CA action manager
created at the meta level — this topic is however well
beyond the intended scope of this paper.
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