
ITERATIVE MULTI-LEVEL MODELLING - A METHODOLOGY FOR COMPUTER SYSTEM DESIGN

F. W. Zurcher
B. Randell

Thomas J. Watson Research Center
Yorktown Heights, New York

Abstract: The paper presents a method of modelling a computer system design as it evolves, so that evaluation can
be made an integral part of the design process. The paper introduces the concept of concurrent existence, within
a single model, of several representations of the system being modelled, at differing levels of abstraction. Thus
important design decisions are expressed directly in terms of appropriately abstract quantities, facilitating
understanding, validation, and modification of the system design. The paper includes brief details of an
experimental implementation of the modelling technique and of the use of the technique to model both hardware
and software components of a multi-processing system.

1. INTRODUCTION

A major problem in the design of a computer
system is that many aspects of system behavior and
performance are not discovered until the system has
been built and used in its operating environment. At
that stage system modifications can be extremely
difficult and costly.

Much use has been made of simulation for
evaluating particular system components, and
for modelling completed designs which
require modification, either because of
inadequate performance or to meet changing
circumstances (see Nielsen (7)). Attempts to
use simulation to model a complete complex
system as it evolves have however been less
successful.

Some of the reasons for this are fairly
obvious. A detailed simulation model of a
complex system will soon approach the
complexity of the system being modelled.
Thus modifications to the simulation model
will be as difficult and costly as to the actual
system, and the simulation will tend to slow
down rather than assist the progress of the
design. In addition, there is always the
difficulty of interpreting the results of the
simulator and of convincing the designers that

the simulation is an accurate model of their
design.

The present paper proposes and presents a
modelling approach, which we call 'iterative multi-
level modelling', that is intended to overcome these
difficulties. Primary attention has been paid to the use
of the technique for constructing simulation models,
but many of its aspects are of relevance to the design
of analytical models, and to the design of computing
systems themselves. A designer using the modelling
technique will find himself more cognizant of the
relationships and interactions between the system
components he creates, than of the detailed structure of
individual components. In fact the system will be de
signed "from the outside inwards", since at each stage
the designer (or design team) must express what is to
take place, before getting involved in the gory details
of how it is to take place.

Thus the approach counteracts the
tendency of designers to

i) incorporate design features from
previous systems without careful
assessment of their suitability to the
new system.

ii) to assume that optimization of
individual system components will
automatically lead to optimization of
the whole system.

This goal of providing a technique to aid
design "from the outside inwards" is the same

as that expressed very well by Parnas and
Darringer (8), in their descriptions of the
SODAS system, which is primarily aimed at
the design of hardware modules. The present
technique on the other hand is designed for the
more complex situation typical of an entire
computer system consisting of software plus
hardware. (The consequences of this are given
in Section 2).

2. HIERARCHICAL MODELLING

As in several other schemes for using
simulation languages to model computer
systems(3, 8) an activity based language,
reminiscent of SOL (5, 6) and SIMULA (1) is
used, rather than an event-based language
such as GPSS (4).

Use of an activity-based language
facilitates modelling of system components in
successively greater detail. Thus. the initial
representation is in terms of an algorithms
which produces the appropriate output for a
given set of input, with the time lapse for this
activity specified by an estimate of the time
required by an actual component. The
algorithm itself thus specifies what the
component does and not how it does it. This
permits preliminary evaluation of the
contribution of the component to a larger
activity.

The next step is to replace the algorithm
with a sequenced set of calls on the next set of
designed components. The new effective
algorithm thus represents how the function of
the original component is obtained in terms of
these sub-components. The model can now be
re-evaluated to check that its behavior is still
acceptable, and in addition to obtain new
information about the activities of sub-
components. This evolutionary process is
continued as desired, yielding a hierarchical
model of the system.

Thus the modeller describes the behavior
of the system, or a system component, using a
program, constructed of a hierarchy of
procedure definitions, incorporating
statements to specify sequencing (serial or
parallel) and to indicate the passage of time.
This program models the behavior of the
system by manipulating the values of a set of

variables, these values at any moment
representing the state of the system.

It is inherent in such a method of model
evolution that one is limited to fully nested
sets of components. This limitation is of no
consequence in modelling a system
component in which the problems of
providing the resources needed by the sub-
components are not considered. This is
typically the case in design of hardware
components, since the resources needed
(circuits, transistors, etc.) are provided when
the component is built, and exist for the
duration of its lifetime. Thus this is essentially
the method of modelling employed in SODAS
(8).

Similarly it is possible to design at least
simple software components on the
assumption that some external agency is going
to take care of the provision of resources
(storage, CPU, etc.) that will be needed when
they are to be used. However once one gets
into the realm of the operating system, one has
to design components that themselves use
system resources, and whose function is to
provide system resources for other
components. Eventually one has to resolve
such apparent paradoxes as "who allocates the
allocator? " and "who schedules the
scheduler? ".

It is implicit in the goal of designing an
entire computer system from the outside
inwards that decisions as to whether a system
component should be hardware, permanently
available software, or software which shares
system resources will be made as late in the
design process as possible. A model which
can cope with this sort of situation during its
evolution cannot be fully nested - it cannot be
thought of as consisting simply of black boxes
within black boxes, etc. It is to solve this
problem that we introduce the idea of levels of
abstraction.

3. LEVELS OF ABSTRACTION
The fundamental concept in the proposed

modelling technique is that within a model
several representations of the system being
modelled can, and can usefully, coexist. These
different representations will be at differing

'levels of abstraction'. For example the
highest, most abstract level of a model of a
computing system might just represent the
various jobs currently being processed,
indicating what major stage of their progress
has been reached. At the level below, the
existence of CPU's and a single resource
corresponding to the entirety of a storage
hierarchy and filing system could be
introduced. This level could contain
information indicating where the programs
and data connected with each job were kept,
whether the job was currently using a CPU,
etc. Further levels would represent
successively more detailed representations of
the system, with the lowest level representing
all the detailed information that had so far
been generated during the design process.

Each level of abstraction consists of a
simulation program, constructed of a
hierarchy of procedures as described in
Section 2. The program specifies the
manipulation of the values of the set of
variables which represent the system state at
this level of abstraction. The program is
essentially controlled by the program on the
level above, which is making more global
decisions based on its own variables. These
next higher level variables are an abstraction
of those on the current level, and hence are
continually updated when the values of
variables on the current level change. In turn
the basic procedures of the current level,
instead of containing algorithms for
manipuating the variables of this level directly
are in fact just providing requests for the level
below to do the work.

Thus each design decision represented in a
system model can be given at the appropriate
level of abstraction, and expressed directly in
terms of the quantities considered
fundamental to that decision. This is in
contrast to the conventional single-level
model in which all decisions, whether high-
level or almost trivial, are expressed only in
terms of the most basic quantities represented
in the model.

The resulting gain in ease of
understanding (both of the model and its
behavior), and in ease of modification to the
model to incorporate design changes is

considerable. This can be contrasted with the
situation faced when trying to make
fundamental although conceptually simple
changes to, say, a conventional operating
system or its detailed simulation. There the
high-level abstractions remain solely in the
minds of the original designer, and hopefully,
in the documentation. For example, a 'job'
may be represented by a linked structure of
task control blocks, which are represented by
blocks of words scattered about a storage
hierarchy.

Furthermore the introduction of levels of
abstraction allows one to cope with the
problems associated with system components
that share system resources, because the
nested structure of procedures is not
maintained in going from one level to the
level below. For example, the highest level
might consist of a set of parallel independent
processes, one for each job currently in the
system, and each executing a procedure which
specifies the actions performed by a job. At
this level there will be no system component
which can be cognizant of the entire set of
jobs. However in the level below one can have
a finite set of processes, representing CPU's,
each capable of executing the procedure
which represents the scheduler, and having
knowledge of all the jobs requiring
scheduling. Hence at this level dependencies
can be introduced between jobs which had
previously been regarded as completely
independent of each other - for example, that
in competition for the limited number of
CPU's short jobs have priority over long jobs.

4. RESOURCES

Also fundamental to iterative multi-level
modelling is the fact that resources can be
represented as "inactive" and "active"
resources at different levels of the model.

The decision as to which of these two
modelling techniques should be used depends
primarily on what is being investigated at the
current stage of evolution of the model. We
model a resource in the active form when we
wish to account for the fact that something is
needed to transform a description of what is to
be done into action. The inactive form is used

when we are solely concerned with the
finiteness of the resource, and the
dependencies this finiteness will introduce
into otherwise independent processes. For
example at some stage it might be sufficient to
model CPU's as inactive resources, perhaps
using for each CPU a pair of variables which
indicate whether it is executing a program or
not, and if so the name of the program. On the
other hand, storage would probably be
modelled as an active resource only when the
design has reached the stage of being
concerned with the mechanisms involved in
accepting, retaining and disgorging bits of
information.

An inactive resource is represented by the
values of one or more of the variables which
are manipulated by the simulation program (e.
g. a counter might represent core storage by
indicating how many words of core storage
are currently unused). On the other hand, an
active resource is modelled by one of the
sequential processes which are defined by the
simulation program at a given level. Such
processes, and hence active resources, can be
created and destroyed by executing special
program statements.

In some cases a fixed set of active
resources is created as part of the initialization
of the simulation (e. g. a set of 16 CPU's).
Alternatively, processes may be created and
destroyed during the running of the simulation
(e. g. the 'virtual computers' that users obtain
by signing on at a terminal).

5. COMMUNICATION BETWEEN LEVELS
Two aspects of communication between

levels, namely communication of control and
communication of information, must be
considered, although space limitations
preclude detailed discussion.

The specification of communication of
control involves replacing the statements
which manipulate variables on a given level
by statements which request action on the
level below. These requests will be added to
the list of requests which are being serviced
by the processes which model active resources
on this lower level.

The communication of information is
needed to keep variables up-to-date with
respect to those on lower levels of which they
are an abstraction. A flow of information may
be needed in the opposite, downwards,
direction when only some of the system
resources have been modelled in greater detail
on the level below.

6. EVOLUTION OF A MODEL

At as early a stage as possible in the
design of a computing system, a single-level
model, consisting of a simulation program
using a hierarchical procedure structure, is
constructed and used to validate the initial
design. The program is then expanded, as was
described in section 2, as the design develops,
until the designers wish to consider design
features which are not amenable to
introduction into the current model structure.

Assuming that the existing simulation
program is still of value in the way in which it
models the fundamental working of the
system, it will be retained, and a second,
lower, level of abstraction will be introduced.
This will involve defining the set of variables
which represent the system at this level of
abstraction, and defining their relationship to
the original set of variables. A program
operating upon these variables, and controlled
by the upper level program, is then
constructed.

The second program will again be
developed in a hierarchical fashion until it in
turn becomes inadequate. In this way a set of
levels will be constructed until the design has
been expressed at the final level of detail
required. This might be in terms of the
instruction set of an already existing hardware
system, or in terms of both software and
hardware components.

In practice of course there may be many
false starts, caused by decisions, both in the
design of the system, and in the setting up of
the model, which later prove unsatisfactory. A
main function of the multi-level structuring of
the model and the hierarchical structuring
within each level, is to localize the effort
involved in changing the model when this
occurs. In many cases only one or more of the

lowest levels will have to be modified, and
often a, quite significant change can be made
at an upper level, without having to modify
lower levels. The extent to which this happens
depends on the care which has gone into the
decisions as to what are, and will remain,
valuable levels of abstraction worthy of
retention in the model.

When the design and its representation (i.
e. the model) have been completed we wish to
use it to produce the actual system. One way
of doing this, and conceptually the simplest
and most elegant, is to replace the basic
algorithms in the lowest level of abstraction,
and the facilities which are provided by the
simulation system for interpreting program
text, storing program variables, etc., by the
real-life mechanism from which the system is
to be built.

This is best demonstrated by an example.
A particular system might be designed and ,
modelled using two levels of abstraction, in
the knowledge that it is to be made completely
of software, though partly programmed and
partly micro-programmed. The system is then
placed on some already existing hardware
which has facilities for storing and executing
microprograms, thus producing an extended
machine which can store and execute
programs. Thus a two-level model is used to
produce a two-level system.

In fact in these circumstances, there is no
room for designers to say that they do not
believe that the model is a true representation
of the system they have designed - it is the
system.

However it is not necessary to accept that
just because it was found convenient to design
a multi-level model, the actual system should
have the same number of levels, or even have
more than one level. Instead one uses the
multi-level model until the design is complete,
and then successively removes levels by
replacing the sequencing which is defined by
a simulation program on one level by
sequencing in terms of the more detailed
variables on the level below. On the other
hand Dijkstra (2) has shown clearly that there
are significant advantages to having an actual
multi-level system.

7. PRESENT STATUS
Our first experimental implementation of

the iterative multi-level modelling technique
is based on FORTRAN but involves a
distinctly ad hoc set of programming
conventions. A set of utility routines (some
written in assembly language) provide
facilities for specifying parallelism and the
passage of time, and for communication of
control between levels. However the
specification of information flow between
levels has to be coded explicitly at points
where requests are made in one level for
action by the program at the level below.

By means of an extensive series of
iterations a model has been constructed of a
multiprocessing system incorporating a set of
CPU's and I/O processors, a storage hierarchy
and a set of I/O channels. The model currently
consists of three levels. The first level
represents the system as a set of independent
jobs, without regard for limited system
resources. The second level introduces the
CPU's and I/O processors, and the storage
hierarchy. On this level the operating system
strategies which control contention for
processors and storage are modelled.

However it is only on the third level that
contention for channels, both for information
transfer within the storage hierarchy, and to
and from I/O devices, is introduced. The
current implementation is intended to give us
some experience in the use of multilevel
modelling. It is hoped later to embark on a
more ambitious implementation, in which
much more care will have been paid to
programmer convenience, to efficiency of
model execution, and to provisions for
building very large models. In particular we
hope to develop a form of generalized
dynamic equivalence mechanism for
specifying information flow between levels.

8 CONCLUSIONS
The present paper has concentrated on

describing the motive for, and the basic
concepts of, iterative multi-level modelling.
Due to limited space, it has been possible to
discuss only briefly the various problems
associated with translating these concepts into

a useful design tool, and the present use being
made of our first experimental
implementation. Nevertheless, it is hoped that
readers will have obtained an understanding of
the possible benefits to be gained from a
modelling technique that can be used during
the evolution of a system design, whose
implementation will utilize both hardware and
software.

9. ACKNOWLEDGMENTS

The authors have been greatly aided in
their work on the iterative multi-level
modelling technique by C. J. Kuehner, E
Zweig and A. Boutross (the latter two being
largely responsible for the detailed design of
the experimental implementation). We are
also pleased to acknowledge many helpful
discussions with L. A. Belady, M. Lehman
and H. P. Schlaeppi.

Thanks are also due to Mrs. J. Galto for
her part in the preparation of the manuscript.

REFERENCES
(1) O. J. Dahl, and K. Nygaard, SIMULA - an

Algol-Based Simulation Language.
Comm. ACM 9, 9 (1966) pp 670-678

(2) E. W. Dijkstra, The Structure of the T. H.
E. Multi-programming System. ACM
Symp. on Operating System Principles,
1967

(3) D. Fox, and J., Kessler, Experiments in
Software Modelling. AFIPS Conference
Proceedings Vol 31, 1967 FJCC.
Thompson, Washington D. C. (1967) pp
429 -436

(4) H. Herscovitch and T. H. Schneider, GPSS
III - An Expanded General Purpose
Simulator. IBM Systems J. 4, 3(1965) pp
l74-183

(5) D. E Knuth and J. L. McNely, SOLA
Symbolic Language for General Purpose
Systems Simulation IEEE Trans. EC-13, 4
(1964) pp 401-408

(6) D. E. Knuth and J. L. McNely, A Formal
Definition of SOL. IEEE Trans. EC-13, 4
(1964) pp 409 -414

(7) N, R. Nielsen, Computer Simulation of
Computer System Performance. Proc.
1967 ACM Nat. Conf. pp 581-590

(8) D. L. Parnas, J. A Darringer, SODAS and
a Methodology for System Design. AFIPS
Conference Proceedings Vol 31, 1967
FJCC. Thompson, Washington D. C.
(1967) pp 449-474

