
Coordinated Exception Handling in Distributed
Object Systems:

From Model to System Implementation

Jie Xu, Alexander Romanovsky and Brian Randell

Department of Computing Science
University of Newcastle upon Tyne, Newcastle upon Tyne, UK
{jie.xu, alexander.romanovsky, brian.randell}@newcastle.ac.uk

In Proceedings of the 18th IEEE International Conference on
Distributed Computing Systems (ICDCS '98) , Amsterdam, The

Netherlands, 26-29 May 1998,! ,!pp. 12-21
IEEE Computer Society Press,!1998

© 1998 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be
obtained from the IEEE.

Coordinated Exception Handling in Distributed Object Systems:
From Model to System Implementation

Jie Xu, Alexander Romanovsky and Brian Randell

Department of Computing Science
University of Newcastle upon Tyne, Newcastle upon Tyne, UK
{jie.xu, alexander.romanovsky, brian.randell}@newcastle.ac.uk

Abstract
Exception handling in concurrent and distributed programs
is a difficult task though it is often necessary. In many
cases traditional exception mechanisms for sequential
programs are no longer appropriate. One major difficulty
is that the process of handling an exception may need to
involve multiple concurrent components that are
cooperating in pursuit of some global goal. Another
complication is that several exceptions may be raised
concurrently in different nodes of a distributed
environment. Existing proposals and actual concurrent
languages either ignore these difficulties or only cope with
a limited form of them. This paper attempts a general
solution, developed especially for distributed object
systems, starting from a conceptual model, together with
algorithms for coordinating concurrent components and
resolving multiple exceptions, through to an actual
system implementation. An industrial production cell is
chosen as a case study to demonstrate the usefulness of the
proposed model and algorithms. A system that supports
coordinated atomic actions and exception resolution is
implemented in distributed Ada 95 and examined through
several performance-related experiments.

Key Words — Concurrent programs, coordinated exception
handling, distributed object systems, exception resolution,
nested atomic actions.

1: Introduction

Concurrent and distributed computing systems often
give rise to complex asynchronous and interacting
activities. The provision of exception handling and error
recovery becomes very difficult in such circumstances
[12]. One way to control the entire complexity, and hence
facilitate error recovery, is to somehow restrict interaction
and communication. Atomic actions are one way
employed in both research and practice to achieve this
goal. Most of the existing schemes for exception handling
in concurrent systems use the concept of an atomic action
as a unit of error confinement, though there is no clear
consensus on how to handle exceptions when
asynchronous activities occur [4][5][8][14].

Many new architectural developments in the area of
distributed computing systems are, to some extent, object-
based or object-oriented (OO). The OO technique, with its

modularity, flexibility and reusability features, can be
usefully exploited for handling complexity and
dependability issues of a distributed system. The concept
of Coordinated Atomic Actions (or CA actions) [16], as a
generalized form of the basic atomic action structure, has
been developed especially for distributed object systems to
provide a mechanism for the strict enclosure of interaction
and recovery activities. CA actions are a natural
structuring unit for performing complex exception
handling in distributed object systems.

Exception mechanisms used in sequential programs
cannot be applied to complex concurrent software without
appropriate change and adjustment. A distributed system
may contain many components, and several components
may be involved in a cooperative computation. Once an
exception occurs in one of these components, not only the
user of the computation, but also the other components
involved need to be informed of the exception so as to
enable a coordinated recovery activity. Moreover, different
components may raise different exceptions and the
exceptions may be raised simultaneously. This can further
complicate the process of exception handling. (A more
detailed discussion of the necessity of coping with
concurrent exceptions can be found in our previous
research [13].) The work in [4] argues that for handling
exceptions in distributed systems, a hierarchy-based
approach is essential in order to find a higher-order
exception that can “cover” all the exceptions concurrently
raised. This further requires a distributed scheme for
determining the proper recovery strategy and for involving
all the related components in the recovery activity.

In this paper we first establish a conceptual exception
model for distributed object systems, using CA actions as
a structuring unit. Two efficient distributed algorithms
(and their supporting mechanisms) are then developed for
coordinating concurrent exception handling. The
correctness of the first (major) algorithm is proved and its
communication complexity is shown to be lower than
existing proposals such as the algorithm in [4] and our
original algorithm presented in [13]. An industrial case
study is chosen to demonstrate the practical usefulness of
the proposed model and algorithms. Realistic system
implementation is provided in distributed Ada 95 and
several performance-related experiments are carried out to
assess this implementation.

2: Exception Handling and CA Actions

We consider a distributed object system consisting of
nodes connected by a communication network. The
objects that run on network nodes communicate with each
other by message passing. Exception handling is viewed
here as a general mechanism for coping with exceptional
system conditions or errors caused by hardware faults or
software faults. Hardware faults include transient faults in,
or crashes of, nodes or the communication network, while
software faults are mainly due to incorrect specification,
poor program design and implementation. From either
type of faults, erroneous information may spread through
communication channels and thus affect multiple nodes.

In principle, fault-tolerant software detects errors by
various detection mechanisms, such as executable
assertions and memory-protection checks, and employs
error recovery techniques to restore normal computation.
Forward error recovery is based on the use of redundant
data that repairs the system by analyzing the detected error
and putting the system into a correct state. In contrast,
backward error recovery returns the system to a previous
(presumed to be) error-free state without requiring detailed
knowledge of the errors.

2.1: Exception Handling in Concurrent and
Distributed Systems

An exception (handling) mechanism is a
programming control structure that allows programmers
to describe the replacement of the normal program
execution by an exceptional execution when occurrence of
an exception is detected [5]. For any given exception
mechanism, exception contexts are defined as regions in
which the same exceptions are treated in the same way;
often these contexts are blocks or procedure bodies. Each
context should have a set of associated exception handlers,
one of which will be called when a corresponding
exception is raised. There are different models for changing
the control flow, but the termination model is most
popular. This model assumes that when an exception is
raised, the corresponding handler copes with the exception
and completes the program execution. If the handler for
this exception does not exist in the context or it is not
able to recover the program, then the exception will be
propagated. Such exception propagation often goes
through a chain of procedure calls or nested blocks where
the handler is sought in the exception context (containing
the context that raised or propagated the exception.)

Exception handling and the provision of fault
tolerance are more difficult in concurrent and distributed
systems. For example, there would be no problem in
sequential programs if a client object tried to get data from
an empty queue — an interface exception would be
signalled by the server object. However, concurrent access
to server objects, permitted by concurrent systems, greatly
complicates such exceptional situations. If two clients
attempt to access a non-empty queue concurrently (but the

queue contains only one element), one of them may
surprisingly receive an interface exception that blames it
for the use of an empty queue! A more serious
complication is that several exceptions can be raised
concurrently in multiple concurrent activities [4][13].
Obviously, proper exception handling has to involve
multiple interacting components and additional
mechanisms for coordinating multiple objects are needed.

Exception propagation in concurrent programs may
not simply go through a chain of nested callers, but can
require an extra dimension of propagation. In the case of
nested atomic actions, an exception may need to be
propagated upward to the enclosing action from a nested
action. Since the enclosing action can involve more
components than the nested action, the exception may
therefore also need to be propagated to all the components
of the enclosing action in order to start a joint recovery
activity. Unfortunately, no known language or systems
provides appropriate support for such two-dimensional
exception propagation.

Physical distribution of computing further
complicates the coordination of multiple concurrent
components. In a distributed system, each node may
possess a separate memory; as a consequence, software
segments executing on different nodes will reside in
disjoint address spaces and so must communicate by the
exchange of messages over relatively narrow bandwidth
communication channels. The time of message passing is
not negligible and the effect caused by the communication
delay must therefore be taken into account.

2.2: Atomic Actions

Interacting activities in concurrent systems must be
controlled carefully in order to prevent erroneous
information from spreading throughout the whole system.
A structuring concept which assists the confinement of
interacting activities is that of atomic actions.

The activity of a group of components or objects
constitutes an atomic action if there are no
interactions between that group and the rest of the
system for the duration of the activity [2].

In 1986 Campbell and Randell [4] developed a
systematic approach to exception handling within an
atomic action (or conversation) that encloses interaction of
a group of processes (or execution threads) [12]. A set of
exceptions is associated with each action. Each thread
participating in the action has a set of handlers for some
or all of these exceptions. When an exception is raised,
the appropriate handlers (for the same exception in all
participating threads) will be initiated and these handlers
will be jointly responsible for recovering the system
cooperatively. This means that interacting threads
cooperate not only when they execute the normal program
functions but also when they recover the program.
Campbell and Randell introduced a mechanism for
resolving multiple exceptions raised concurrently based on

the exception tree concept — an exception tree includes all
exceptions associated with an atomic action and imposes a
partial order on them in such a way that the higher
exception has a handler that is intended to handle any
lower level exception.

The coordinated atomic action concept is a generalized
form of the basic atomic action structure and presents a
general technique for achieving fault tolerance in
distributed object systems by integrating conversations,
transactions (that ensure consistent access to shared
objects) and exception handling into a uniform structuring
framework [16]. CA actions take two kinds of concurrency
into account: cooperating and competing . Several
execution threads can be designed collectively and executed
concurrently in order to achieve certain global goal. But
they must cooperate within the boundaries of a CA action.
Competitive concurrency may also exist in such systems
since separately designed threads can compete for the same
system resources (i.e. objects). More precisely, CA
actions use conversations as a mechanism for controlling
concurrency and communication between threads that have
been designed to cooperate with each other. Shared
external objects are controlled by an integrated transaction
mechanism that guarantees the atomicity property [10]. In
other words, the transaction mechanism must ensure that
during the execution of a CA action, concurrent access to
its external objects from other actions and threads is in
effect equivalent to absence of the interactions between the
CA action and the rest of the system.

Figure 1 shows an example in which two threads
enter a CA action synchronously. Within the action the
threads communicate with each other and cooperate in
pursuit of some common goal. However, during the
execution of the CA action, an exception e is raised by
one of the threads. The other thread is then informed of the
exception and both threads transfer control to their
respective handlers for this exception H1 and H2 which
attempt to perform forward error recovery. The effects of
erroneous operations on external objects are repaired by
putting the objects into new correct states so that the CA
action is able to exit with an acceptable overall outcome.
(As an alternative to performing forward recovery, the two
participating threads could undo the effects of operations
on the external objects, roll back and then try again,
possibly using diversely-designed alternates, if the aim is
to provide means of tolerating residual design faults.)

Thread 1

Thread 2

Time

CA action

e

raised exception e
exception handler H1

abnormal control flow

suspended control flow

cooperation between
two threads return to normal

exit with success

entry points exit points

accesses repairs

exception handler H2

abnormal control flow

suspended control flow return to normal

External Objects

start transaction commit transaction

Figure 1 Error recovery performed by a CA action.

3: Coordinated Exception Handling and
Resolution: Model and Algorithms
In this section we first describe a basic model for

coordinated exception handling and then discuss the details
of a distributed algorithm for propagating exceptions
between concurrent threads and for resolving exceptions
concurrently raised. A simple algorithm is also developed
for signalling exceptions over nested actions.

3.1: Basic Model for Exception Handling and
Resolution

We model the dynamic structure of a distributed OO
system as a set of interacting CA actions. A CA action
provides a mechanism for performing a group of
operations on a set of objects. These operations are
performed cooperatively by one or more roles executing in
parallel within the CA action. The interface to a CA
action specifies the external objects that are to be
manipulated by the CA action and the roles that are to
manipulate these objects. In order to perform a CA action,
a group of execution threads must come together and agree
to perform each role in the CA action concurrently with
one thread per role. CA actions can be properly nested and
exceptions may be propagated over nesting levels.

Exception Declaration: For a given CA action,
there are two types of exceptions: ones that are totally
internal to the CA action and that when raised are to be
handled by its own handlers, and others that are known in
and are to be signalled to its environment (e.g. its caller or
the enclosing action).

All exceptions, e = {e1, e2, e3, ...}, that are raised
within a CA action must be declared within the action
definition. The corresponding exception handlers are
associated with respective roles that the participating
threads are to perform. The exceptions, ε = {ε1, ε2,
ε3,...}, that are signalled from a CA action to its
environment should be specified in the interface to the CA
action. These exceptions are signalled in order to indicate
that, though internal exception handling might have been
(unsuccessfully) attempted, an unrecoverable exceptional
condition has occurred within the action, and/or only
incomplete results can be delivered by the action. For a
nested CA action and its direct-enclosing action, the
definitions of e and ε are fully recursive, namely,

ε nested ⊆ eenclosing

There are two special exceptions µ and ƒ in ε. An
undo exception, µ , implies that the action has been
aborted and all of its effect have been undone. Since undo
is not always possible, a failure exception, ƒ, will
indicates that the action has been aborted but that its effect
may have not been undone completely.

Exception Handling and Propagation: When
a thread enters the action to play a specified role, it enters
the related exception context. Some or all of the
participating threads may later enter nested CA actions.

Since the nesting of CA actions causes the nesting of
exception contexts, each participating thread of the nested
action must be associated with an appropriate set of
handlers. Exceptions can be propagated along nested
exception contexts, namely the chain of nested CA
actions. Three terms are used here to clarify the route of
exception propagation: an exception ei in e is raised by a
role within a CA action, other roles of the same action are
then informed of the exception ei and, if handling the
exception within the CA action is not fully successful, a
further exception εj in ε will be signalled from a nested
action to its enclosing action (see Figure 2).

e

T1

T2

T3

T4

raise inform

inform

signal

enclosing action

nested action

Figure 2 Exception propagation over nesting levels.

There are at least two ways of signalling an exception
from a nested action to its enclosing action. One
possibility is that a “leading” role has the responsibility
for signalling an agreed exception to the enclosing action.
Another approach however adopts a more distributed
strategy: each role of the nested action is responsible for
signalling its own exception. These exceptions should be
the same but in fact might be different. Because an action
in our model is required to have the ability of handling
concurrent exceptions, the exceptions concurrently
signalled from the nested action will be handled simply as
if they are concurrently raised in the enclosing action.

Control Flow: The termination model of control
flow is used here — in any exceptional situations,
handlers take over the duties of participating threads in a
CA action and complete the action either successfully or
by signalling an exception εj to the enclosing action.

External Objects: The effect that a CA action in
our system model can be observed only through the
committed state of some external objects. Once an
exception is raised within the CA action and hence error
recovery is requested, the related external objects must be
treated explicitly and in a coordinated fashion, the aim
being to leave them in a consistent state, if at all
possible. The standard way of doing this in transaction
systems is by restoring the objects to their prior states.
However, an exception does not necessarily cause
restoration of all the external objects. (Indeed, external
objects, particularly real ones in the computers'
environment, might not be capable of state restoration.)
Appropriate exception handlers may well be able to lead
such objects to new valid states. But when it is detected
that one or more external shared objects have failed to

reach a correct state, a failure exception ƒ must be
signalled to the enclosing CA action in the hope that it
may be able to handle the situation.

Exception Resolution: If several exceptions are
raised at the same time, one simple method for resolving
the exceptions is to prioritize them. The disadvantage of
this scheme is that it does not allow representation of
situations where the concurrently raised exceptions are
merely manifestations of a different, more complicated,
exception. To provide a more general method, an
exception graph representing an exception hierarchy can be
utilized. If several exceptions are raised concurrently, then
the multiple exceptions are resolved into the exception
that is the root of the smallest subtree containing all the
raised exceptions [4]. In principle, each CA action should
have its own exception graph.

3.2: Exception Graphs

The exception tree concept (first proposed in [4]) is a
simplified form of specifying the relationship between
multiple exceptions. We have however found that in
practice an exception hierarchy often has a more
complicated form than a simple tree. We formalize a
general form below, called exception graphs.

An exception graph is a directed graph G(E, R) where
the exception set E = {e1, e2, ..., en}. Each exception ei ∈
E is represented by a node and each directed edge (ei, ej) ∈
R represents a simple relationship in which ei ∈ E is the
direct high-level node, or parent node of ej ∈ E. We define
the in-degree of node ei, din(ei), as Γ −1(ei) and the out-
degree dout(ei) as Γ(ei) , where Γ(ei) = {ej : (ei, ej) ∈ R}
and Γ−1(ei) = {ej : (ej, ei) ∈ R}. (For example, in Figure 3
din(e1) = 2 and dout(e1) = 0.)

For a given G(E, R), there may exist three types of
nodes. Nodes with dout(ei) = 0 represent primitive
exceptions that cover no other exceptions. Internal nodes
with din(ei) ≠ 0 and dout(ei) ≠ 0 represent resolving
exceptions that cover some other exceptions. The node
with din(ei) = 0, called the root of G(E, R), represents a
special universal exception. The raising of a universal
exception usually leads to the signalling of an undo or
failure exception to the enclosing action. Figure 3
shows a four-level exception graph containing three
primitive exceptions e1, e2, e3 at the level 0.

e1 e2 e3

universal exception

e1 ∧ e2 ∧ e3

e1 ∧ e2 e1 ∧ e3 e2 ∧ e3

level 0

level 3

level 2

level 1

Figure 3 Example of a four-level exception graph.

In Figure 3 the resolving exception e1∧ e2 at level one
will be raised when e1 and e2 are raised concurrently.
Similarly, the exception e1∧ e2∧ e3 at level two will be
raised in order to cover all the three primitive exceptions.
This resolving exception may still be handled by the
current action, or otherwise the universal exception at
level three will be further raised. In general, an (n+1)-level
exception graph can be defined with n primitive
exceptions at level 0. The first level can contain up to n ×
(n – 1)/2 resolving exception nodes. Level two could
consist of up to n × (n – 1)(n – 2)/6 nodes, and so on.
Level n-1 has only one resolving exception that covers all
the primitive exceptions when level n-2 may have at most
n exception nodes. This general definition makes the
automatic generation of an exception graph possible.
However, for an actual application a simplified exception
graph may be required from the space and performance
point of view.

3.3: Concurrent Exception Propagation and
Resolution

Assumptions and Definitions: For a given CA
action it is assumed that each participating thread knows
the set of all other threads participating in the action and
uses the same exception graph which is statically declared.
Every thread has a name list for the nested actions it is to
enter. For a specified thread the currently innermost action
is called the active CA action. Let CA-action be the
outermost (or top-level) CA action. We define GCA-action

as the group of threads {T 1, T 2, ..., T i, ..., T j, ...}
participating in CA-action, where each thread Ti has a
unique identifier and the threads are ordered (e.g. thread
names and the lexicographic ordering could be used).

During the execution of the algorithm, a thread Ti

may be in one of the following states (denoted by S(Ti)):
N = Normal, X = Exceptional (if an exception was raised in
T i), or S = Suspended (if T i has to stop normal
computation due to exceptions raised by other threads).

Let A be the active action of T i and G A be the
corresponding set of participating threads. We assume that
each Ti keeps the following data structures:

list LEi — records exceptions that have been raised,
and suspended states, S, of threads that have halted
normal computation;

stack SAi — stores names of the nested actions Ti is
currently in.

It is also assumed that application-related message
passing is treated independently, and only the following
specific messages are used in our algorithm:

Exception(A, Ti, E) is sent by thread Ti to all the
other threads of action A when an exception E is
raised by Ti;

Suspended(A, Ti, S) is sent by the thread Ti that does
not raise an exception but has received an Exception

or Suspended message from another thread, where S
indicates Ti is in the “Suspended” state;

Commit(A, E) is sent by a chosen thread in action A
to all the other threads after it completes resolution of
exceptions, where E is the resolving exception. A
corresponding handler for E will be called by each
thread after it receives this Commit message.

It is further assumed that an exception in an enclosing
action will stop or abort any activity of its nested actions
(including any nested resolution in progress and execution
of any handlers.)

In the interests of simplicity and brevity, our
algorithm is designed not to tolerate node or
communication line crashes, though a fault-tolerant
version of this algorithm would be non-trivial, especially
when addressing omissions and Byzantine faults. The
proposed algorithm attempts to handle certain forms of
software bugs, transient hardware faults and hardware
design faults, but the disastrous crash of a processing node
or a communication line must be masked at the
appropriate underlying or hardware level, e.g. by using
modular redundancy. (Our model described in section 3.1
is however general, and it is supposed to cope with
exceptions that may be caused by various types of faults.)

The Main Algorithm: Our algorithm assumes the
existence of general support mechanisms including FIFO
message sending/receiving between threads/objects and
calls to abortion handlers. In addition, “< >” indicates a
data item with one or more elements, “A*” is the active
action of thread Tj, “→” stands for “put in”, and “⇒ ”
stands for “sent to” in the description of our algorithm.

Figure 4 illustrates how the algorithm works when
two exceptions E1 and E2 are raised concurrently in several
nested CA actions. The proposed algorithm first informs
all four participating threads of the two exceptions by
message passing between those threads. Secondly, the
algorithm aborts two nested actions because of exception
E1 that occurred outside the nested actions. (During the
abortion, a further exception E3 is signalled to the
outermost enclosing action.) Finally, the algorithm
determines a resolving exception E that covers both E1 and
E3 and starts the corresponding handler for E.

E1

E2

E= Res(E1, E3)
handle E

handle E

handle E

T1

T2

T3

Normal
Computation

Passing
Exceptions

Exception
Resolution

Exception
Handling

T4
handle E

Aborting
NestedActions

(Abortion
handler
signals E3)

External
Objects

Figure 4 Exception propagation and resolution.

Algorithm:

For any Ti, S(Ti): = N; and empty LEi, SAi;
l o o p
if Ti enters A then

<A> → SAi; consume messages having arrived;
end if;
if Ti completes A then

delete last element in SAi;
S(Ti): = N if end A with success, or otherwise S(Ti): = X;
leave A; //synchronously

end if;
if Ei is raised in Ti then

S(Ti): = X; <A, Ti, Ei> → LEi;

Exception(A, Ti, Ei) ⇒ all Tj in GA;
inform external objects (used by Ti in A) of Ei;

end if;
if Ti receives Exception(A*, Tj, Ej) or
Suspended(A*, Tj, S) then
if A* contains or equals A then
<A*, Tj, Ej> or <A*, Tj, S> → LEi;

Ej ⇒ uninformed external objects (used by Ti in A*);
if A* contains A then

abort all nested actions until A*;
delete the elements in SAi until <A*>;
remove items but <A*, Tj, Ej> or <A*, Tj, S> in LEi;
if Eab is raised by the abortion handler then

S(Ti): = X; <A*, Ti, Eab> → LEi;

Exception(A*, Ti, Eab) ⇒ all Tj in GA*;

else S(Ti): = S; <A*, Ti, S> → LEi;

Suspended(A*, Ti, S) ⇒ all Tj in GA*;
end if;

e l s e if S(Ti) = N then //here A* = A

S(Ti): = S; <A*, Ti, S> → LEi;

Suspended(A*, Ti, S) ⇒ all Tj in GA*;
end if;

end if;
else retain the message until Ti enters A*;
end if;

end if;
if Ti has all Ei, or state S, of other threads within A and
Ti has the biggest identifying number among threads with
the state X then

resolve exceptions in LEi;
//find E in the exception graph
Commit(A, E) ⇒ all Tj in GA;
empty LEi and handle E;

end if;
if Ti receives Commit(A*, E) then

if <A*> = the top element in SAi then
empty LEi and handle E;

end if;
end if;
end loop

Correctness and Communication Complexity:
For a specific distributed system, we assume that the
following time elements can be bounded if no a fault

occurs. Let Tmmax be the maximum time of message
passing between two concurrent execution threads in the
system; Treso be the upper bound of the time spent in
resolving current exceptions, Tabort be the maximum
possible time for a thread to abort one nested CA action,
nmax be the maximum number of nesting levels of CA
actions (if no nesting, then nmax = 0), and ∆ max be
maximum possible time of handling a (resolving)
exception. We now show that no deadlock is possible in
our proposed algorithm. (For complete proofs, see [18].)

Lemma 1: Consider N execution threads that interact
within nested CA actions. For any thread Ti, if it
reaches the state X (exceptional) or S (suspended), it
will complete exception handling ultimately in at
most T, where

T ≤ (2nmax + 3)Tmmax + nmaxTabort +
(nmax + 1)(Treso + ∆max)

By Lemma 1, we know that any thread will complete
exception handling within a finite time bound. Therefore,
deadlock during the process of exception handling will be
impossible while executing the proposed algorithm.
However, in order to prove the entire correctness of the
proposed algorithm, we must show that any resolving
exception is a proper cover of the multiple exceptions that
have been raised concurrently so far.

Lemma 2: For a given CA action A, if no exception
is raised in any containing action of A, then no more
new exceptions will be raised within A once the
exception resolution starts.

Lemma 3: Consider N execution threads that interact
within nested CA actions. If multiple exceptions are
raised concurrently, an ultimate resolving exception
that covers all the exceptions will be generated by the
proposed algorithm.

From Lemmas 2 and 3, we know that a resolving
exception will always cover all the concurrently raised
exceptions. Any further exception will cause the abortion
of any effect of previous resolutions and trigger the new
exception resolution. Because deadlock is not possible, the
final resolving exception will be raised in the end. We
therefore have the conclusion below.

Theorem 1: The proposed algorithm is deadlock-free
and always performs correct exception resolution.

Note that the algorithm in [4] is of complexity
O(nmax × N3). Our previous algorithm in [13] could use
nmax × 3N × (N– 1) messages. Our new algorithm is less
complex and requires exactly nmax × (N2– 1) messages
because 1) the number of messages for informing
exceptions or suspended states is reduced and no reply is
required, and 2) only one thread (rather than all the threads)
resolves multiple exceptions and only one thread needs to
send the Commit message. In the interest of fault
tolerance, the algorithm can be easily extended to the use
of a group of threads that are responsible for performing

resolution and producing the Commit messages. But this
only contributes a constant factor to its total message
complexity.

3.4: Exception Signalling

The algorithm described in section 3.3 ensures that a
resolving exception er is identified and all the threads start
handling this exception by invoking the appropriate
handlers. However, such exception handling may be only
partially successful, or fail completely. In these cases a
thread must signal a further exception εj to the enclosing
CA action. Following our model introduced in section
3.1, participating threads of a nested action may signal
different exceptions, but they must signal the same
exception µ or ƒ if exception handling fails. We therefore
need a further algorithm for coordinating those exceptions
to be signalled. Let A be the active action of Ti and GA be
the corresponding set of participating threads. We assume
that each thread Ti has a list and uses a specific message:

list listSignali — records exceptions that are to be
signalled by the participating threads of action A (if a
thread is to signal no exception, φ will be recorded in
the list instead);

toBeSignalled(Ti, ε) is sent by Ti to all threads of
action A when an exception ε is to be signalled by it,
where ε ∈ {φ, ε1, ε2, ε3, ..., µ, ƒ}.

Algorithm:

//after handling the resolving exception E
For any Ti of A, empty listSignali and FALSE ⇒ undo;
l o o p
if Ti is to signal ε then

<Ti, ε> → listSignali; // ε ∈ {φ, ε1, ε2, ε3, ..., µ, ƒ}
toBeSignalled(Ti, ε) ⇒ all Tj in GA;

end if;
if Ti receives toBeSignalled(Tj, ε) then

<Tj, ε> → listSignali;
end if;
if |listSignali| = |GA| then

//received all exceptions of other threads to be signalled
switch(listSignali)

case 1: no µ or ƒ in listSignali

Ti signals ε of <Ti, ε>;
case 2: µ but no ƒ in listSignali
if undo = TRUE then

Ti signals µ;
e l s e

empty listSignali and TRUE ⇒ undo;
Ti executes appropriate undo operations;
Ti is ready to signal a new exception ε;

end if;
case 3: ƒ in listSignali

Ti signals ƒ;
end if;
end loop

The correctness of the algorithm is obvious. In the
case that neither µ nor ƒ is to be signalled by any
participating thread, no coordination will be needed; each
thread simply signals its own exception or signals no
exception at all. If a thread is to signal the exception ƒ,
other threads just ignore their own exceptions and signal ƒ
instead. In these simple cases just N × (N– 1) messages
are required where N = GA . In the complicated case that
one thread is to signal the exception µ, all the threads
must execute appropriate undo operations to ensure the
removal of previous effects. Because some undo
operations may fail, in this case ƒ, rather than µ, must be
signalled and messages must be passed again to guarantee
that all threads signal the same ƒ. However, after the
second round of message passing no more operations will
be executed and all threads will simply signal an
appropriate exception µ or ƒ. In the worst case, 2N × (N–
1) messages will be used.

This simple algorithm can be easily extended to cope
with crashes of nodes or communication lines. The
corrupted message or lost message can be simply treated
as a failure exception and ƒ is then recorded in
listSignali. Therefore all the threads that run on fault-free
nodes can still signal correct, coordinated exceptions to the
enclosing action or the calling thread.

4: Case Study: A Production Cell
Many practical systems that interact with their

environments are typically incapable of simple backward
recovery. Exception handling and forward error recovery
are the major means of improving the reliability of such
systems. An industrial production cell model, taken from
a metal-processing plant in Karlsruhe, Germany, was
specified (and a controllable graphical Tcl/Tk simulator
provided) as a challenging case study by the FZI in 1993
[9], within the German Korso Project. This case study has
attracted wide attention and has been investigated by over
35 different research groups and universities. At
Newcastle, [20] used CA actions as a structuring tool to
design a control program for the model and implemented it
in Java. The developed control program was then run
against the simulator, demonstrating a good guarantee of
functional and safety-related requirements.

The production cell consists of six devices: two
conveyor belts — feed belt and deposit belt, an elevating
rotary table, a press and a rotary robot that has two
orthogonal extensible arms equipped with electromagnet
(see Figure 5). These devices are associated with a set of
sensors that provide useful information to a control
program and a set of actuators through which the control
program can have control over the whole system. The task
of the cell is to get a metal blank (or plate) from its
“environment” via the feed belt, transform it into the
forged plate by using a press, and return it to the
environment via the deposit belt.

More precisely, the production cycle for each blank is
as follows: 1) if the traffic light for insertion shows green,

a blank may be added, e.g. by the blank supplier, to the
feed belt from the environment, 2) the feed belt conveys
the blank to the table, 3) the table rotates and lifts to the
position where the robot can magnetize the blank, 4) the
arm_1 of the robot picks the blank up and places it into
the press, 5) the press forges the blank, 6) the arm_2
picks up the forged plate and places it on the deposit belt,
and 7) if the traffic light for deposit is green, the deposit
belt carries the plate forward to the environment where a
container may be used, e.g. by the blank consumer, to
store the forged pieces.

deposit belt

traffic light for deposit

traffic light for insertion

robot

arm_1

arm_2

feed belt elevating
rotary
table

press

sensor

blank

e
v
i
r
o
n
m
e
n
t

Figure 5 Production cell (top view).

The entire control program can be organized as a set
of CA actions that coordinate the concurrent activities of
the various devices. Figure 6 shows a set of nested CA
actions for coordinating the activities of the table, the
robot and the press.

concurrent threads Table_Press_Robot CA action

Table

Robot

PressSensor

Press

unload table

pressing remove plate

move unloaded table back

turn table &
move table up

turn table & move it down

retract
arm_1

grab
plate
from
table

extend
arm_1

move down & up

turn
robot &
extend
arm_2 grab

plate
from
press

retract
arm_2

External
object: Blank act upon

RobotSensor

TableSensor
move loaded table

Figure 6 The Table_Press_Robot action.

For each (enclosing or nested) action, various
exceptions are defined and an exception graph for
resolution is declared. Take the Move_Loaded_Table
action as an example: it may contain internal exceptions
such as v m _ s t o p (vertical table motor stops
unexpectedly), rm_stop (rotation table motor stops),
vm_nmove (vertical motor can't move), rm_nmove (rotation
motor can't move), s_stuck (sensor(s) stuck at 0),
l_plate (lost plate), cs_fault (control software fault(s)),
l_mes (lost or corrupted message) and rt_exc (run time
exceptions like underflow or overflow). An exception
graph for this action is shown in Figure 7, permitting no
more than two exceptions to be concurrently raised. For
example, when both vertical and rotation motors fail, the

exception graph will be searched and the resolving
exception dual_motor_failures will be raised. Three or
more concurrent exceptions as well as other undefined
exceptions will not be resolved and will simply lead to the
raising of the universal exception.

dual motor
failures

table & sensor
failures

sensor failure
or/and l-plate

two unrelated
exceptions

other undefined
exceptions

universal exception

vm_stop rm_stop vm_nmove rm_nmove s_stuck l_plate cs_fault l_mes rt_exc

Figure 7 Exception graph for action Move_Loaded_Table.

Some internal exceptions can be handled within an
action while other more serious exceptions are signalled to
the enclosing action. For the Move_Loaded_Table action,
four types of exceptions may be signalled to the
Unload_Table action: L_PLATE (lost plate), NCS_FAIL
(non-critical sensor failure), µ (undo) and ƒ (failure
without undo). These exceptions and the exceptions raised
by the action Unload_Table, with exceptions signalled
by actions Extend_Arm1, Grab_Plate_from_Table and
Retract_Arm1, constitute the internal exceptions of the
action Unload_Table . An exception graph can be
structured in the form similar to the graph of Figure 7.
Certain exceptions can be further signalled from the action
Unload_Table to the action Table_Press_Robot action,
including T_SENSOR (non-critical table sensor failure) and
A1_SENSOR (arm_1's sensor failure), in the hope that the
outermost action may handle them.

5: Implementation and Experimentation

We have recently accomplished a prototype
implementation of the resolution mechanism and the
related CA action supporting system in Ada 95 [1] (with
the standard features of the Distributed Annex) in order to
identify and tackle implementation and performance-related
issues. We chose Ada 95 (the GNAT Ada 95 compiler,
public release 3.04, on SunOS 5.4) because it is one of
the few standard OO languages that have features for
distributed programming. In addition, its elaborate features
for concurrent programming, such as protected objects,
asynchronous transfer of control and conditional entry
calls, simplify the task of programming the run time
support for CA actions and ensuring data consistency.

5.1: Prototype System Architecture

For a given CA action, each participating thread is
located in its own node (or partition in the Ada 95
terminology), as shown in Figure 8. A portable
subsystem for message passing is implemented that uses
asynchronous remote procedure calls (without out
parameters). Messages are first kept in the cyclic buffer of
the receiver and then processed afterwards. A distributed

run-time system that supports CA actions is then
established on the top of the message passing subsystem.
Every partition has a copy of the run-time system,
including the subsystems for exception handling and
resolution where our new algorithms are realized. This
basic CA action support offers the main CA action
features: (nested) action entrances and exits, raising and
signalling of exceptions, abortion of (nested) actions and
calls to handlers. A protocol is also implemented for
participating threads to leave a CA action synchronously.

message passing system

distributed CA action
run time system

application code

(one action participant)

node I node J

exception
handling &
resolution
protocol

synchronous
action exit
protocol

cyclic buffer

message passing system

distributed CA action
run time system

application code

(one action participant)

exception
handling &
resolution
protocol

synchronous
action exit
protocol

cyclic buffer

Figure 8 Prototype system architecture.

An exception may interrupt the normal computation
or cause the abortion of the nested actions. We use the
Ada 95 asynchronous transfer of control (ATC) to
interrupt the action execution; the exception context of
each CA action consists of the ATC blocks of its
participating threads. The exception context in a thread has
an abortion handler and a set of exception handlers. Every
partition has a copy of the exception graph so as to ensure
that the handlers for the same exception are called in all
participating threads. The types common to all
participating threads are declared in package Pure, which
is used in compiling all packages; it includes names of all
the exceptions, lists of all participating threads of each
action, types declaring all object states and types of
messages.

This prototype shows that the developed protocol fits
well with the structure of modern distributed systems and
is easy to implement: the entire implementation consists
of about one thousand lines of code, 800 of which form
the partition executive, and only 300 of those deal with
exception handling and resolution. It demonstrates how to
extend the basic CA action executive by just adding new
functionalities to it. Our implementation method is
general and can be easily applied to other systems, perhaps
with minor adjustment to performance enhancement.

5.2: Performance Analysis

A simple application system was also developed for
our experimental evaluation in which three threads take
part in a CA action and two of them enter a further nested
action. This system was executed in a loop (20 times) and
the execution time measured. One of the experimental
scenarios was as follows: one thread of the containing
action raises an exception and the nested action has to be
aborted. Another exception is raised by the abortion

handler and the resolving exception (covering both
exceptions) is then raised in all the threads. We varied
three parameters, Tmmax, Tabort and Treso, in order to
examine the sensibility of the application execution time
with respect to communications and exception handling.
For example, let Tmmax = 0.2s, Tabort = 0.1s, and Treso =
0.3s; the execution of the system will take about 94.36s.
In the tables of Figure 9 we present some of the
experimental results with varying Tmmax and varying Treso

values.

Tmmax Total Execution Time Treso Total Execution Time

0.2 94.361391 0.3 94.361391

0.4 98.586050 0.5 98.352511

0.6 102.150904 0.7 102.547776

0.8 106.774196 0.9 107.164660

1.0 110.984972 1.1 110.338507

1.2 125.078084 1.3 114.729476

1.4 140.826807 1.5 118.928022

1.6 161.766956 1.7 122.483917

1.8 188.284787 1.9 127.117187

2.0 214.519403 2.1 131.816326

2.2 226.543372 2.3 135.123453

2.4 237.934833

2.6 249.744183

2.8 261.768559

Figure 9 Results of performance-related experiments.

0
T
(seconds)

Total Execution Time
(seconds)

1.0 2.0 3.0

varying Tmmax

varying Tabort

varying Treso

200

100

Figure 10 Effect on the total execution time.

The experimental data obtained are essentially
consistent with the theoretical analysis presented in the
previous sections. Figure 10 shows effect on the total
execution time of the application system. When Tmmax is
limited within 1.0s, the cost of message passing has a
minor impact on the total execution time. However, the
execution time will increase dramatically once the time of
message passing becomes longer than one second. On the
other hand, with an increase in Treso or Tabort, the total
execution time has a very gentle and linear change. This
demonstrates, at least in our prototype implementation,
that the cost of message exchanges is still of the major
concern, while concurrent exception handling does not
introduce a high run-time overhead. (Another set of our
experiments was performed in order to compare the CR
algorithm in [4] with our algorithms. The related details
can be found in [18].)

6: Conclusions

This paper has focused on the topic of exception
handling in concurrent and distributed object systems. Our
solutions are intended to be applicable to a wide set of OO
languages and to practical systems that interact with their
environments (e.g. the production cell application); such
systems typically are incapable of simple backward
recovery. The OO exception model developed in this paper
extends and improves the models which may be found in
sequential OO languages, and the non-concurrent models
used in some concurrent OO languages.

How to correctly cope with nested CA actions in
exceptional situations is a significant and delicate
problem, especially in a distributed computing
environment. In [4] the authors presented just a draft of
their resolution algorithm, without discussing conditions
and assumptions under which the algorithm may work.
We have developed a mechanism that coordinates recovery
measures used in both participating threads of nested
actions and external atomic objects. New distributed
algorithms have been designed and implemented to handle
multiple exceptions raised concurrently and to signal
exceptions over nested actions.

There has been relatively little work on
implementations of coordinated error recovery in a
distributed system. Implementations of distributed
process-oriented conversations are discussed in [7][19].
The Arche language introduced in [6] allows the
programmer to implement a resolution function. Such
resolution is however only suitable for a limited form of
concurrency. Wellings and Burns [15] have recently shown
how Ada 95 can be used to implement atomic actions, but
without addressing exceptions concurrently raised. There
are only a few concurrent OO languages, such as Ada 95,
Java and Guide [3], known to us that have exception
handling features. Ada 95 has a limited form of
concurrent-specific exception propagation — an exception
will be propagated to both calling and called tasks if it is
raised during the rendezvous. Exception handling in Java
is similar to that in C++ without specially coping with
concurrency-related (or multi-threaded) issues. Guide has
one of the most object-oriented exception mechanisms
among existing languages but its concurrency model is
completely separated from the exception mechanism.

Future research directions would be in three primary
areas. The first is the introduction of an appropriate
linguistic mechanism for specifying nested CA actions in
a distributed environment. Secondly, the exception graph
concept requires more formal research into graph
(automatic) generation, simplification, and efficient
search. Finally, it is necessary to further implement a
mechanism for supporting forward and backward error
recovery of external atomic objects.

Acknowledgements

This work was supported by the ESPRIT Long Term Research Project
20072 on Design for Validation (DeVa), and has been benefited
greatly from discussions with a number of colleagues within the
project, in particular R.J. Stroud, I. Welch, and A.F. Zorzo at
Newcastle, A. Burns, S. Mitchell, and A. Wellings of the University of
York, and J. Vachon of EFPL, Switzerland.

References
[1] “Ada. Language and Standard libraries” ISO/IEC 8652:1995(E),

Intermetrics Inc., 1995.

[2] T. Anderson and P. A. Lee. Fault Tolerance: Principles and
Practice, Prentice-Hall International, 1981.

[3] R. Balter, S. Lacourte, and M. Riveill, “The Guide language,”
Computer J. 37(6), pp.521-530, 1994.

[4] R.H. Campbell and B. Randell, “Error Recovery in
Asynchronous Systems,” IEEE Trans. Soft. Eng., SE-12(8),
pp.811-826, 1986.

[5] F. Cristian, “Exception Handling and Tolerance of Software
Faults,” In Software Fault Tolerance (ed. M. Lyu), Wiley, pp.81-
107, 1994.

[6] V. Issarny, “An Exception Handling Mechanism for Parallel
Object-Oriented Programming: Towards Reusable, Robust
Distributed Software,” Journal of Object-Oriented
Programming, 6(6), pp.29-40, 1993.

[7] P. Jalote, “Using Broadcast for Multiprocess Recovery,” In
Proc. IEEE ICDCS-6, pp.582-589, 1986.

[8] P. Jalote and R.H. Campbell, “Atomic Actions for Software Fault
Tolerance Using CSP,” IEEE Trans. Soft. Eng., SE-12(1), pp.59-
68, 1986.

[9] C. Lewerentz and T. Lindner. Formal Development of Reactive
Systems: Case Study “Production Cell”, LNCS-891, Springer-
Verlag, Jan. 1997.

[10] N.A. Lynch, M. Merrit, W.E. Wehil, and A, Fekete. Atomic
Transactions, Morgan Kaufmann, 1993.

[11] R. Miller and A. Tripathi, “Issues with Exception Handling in
Object-Oriented Systems,” in Proc. ECOOP'97 , pp.85-103,
Finland, 1997.

[12] B. Randell, “System Structure for Software Fault Tolerance,”
IEEE Trans. Soft. Eng., SE-1(2), pp.220-232, 1975.

[13] A. Romanovsky, J. Xu, and B. Randell, “Exception Handling and
Resolution in Distributed Object-Oriented Systems,” in Proc.
IEEE ICDCS-16, pp.545-552, Hong Kong, 1996.

[14] D.J. Taylor, “Concurrency and Forward Recovery in Atomic
Actions”, IEEE Trans. Soft. Eng., SE-12(1), pp.69-78, 1986.

[15] A.J. Wellings and A. Burns, “Implementing Atomic Actions in
Ada 95”, IEEE Trans. Soft. Eng., 23(2), pp.107-123, 1997.

[16] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud, and Z.
Wu, “Fault Tolerance in Concurrent Object-Oriented Software
through Coordinated Error Recovery,” In Proc. IEEE FTCS-25,
pp.499-508, Pasadena, 1995.

[18] J. Xu, A. Romanovsky, and B. Randell, “Coordinated Exception
Handling in Distributed Object Systems: from Model to System
Implementation,” Tech. Report, Dept. of Comput. Sci., Univ. of
Newcastle, no.612, 1997.

[19] S.M. Yang and K.H. Kim, “Implementation of the Conversation
Scheme in Message-Based Distributed Computer Systems,”
IEEE Trans. Parallel and Distributed Sys., 3(5), pp.555-572,
1992.

[20] A.F. Zorzo, A. Romanovsky, J. Xu, B. Randell, R. Stroud, and I.
Welch, “Using Coordinated Atomic Actions to Design Complex
Safety-Critical Systems: The Production Cell Case Study,” to
appear in Software—Practice & Experience, John Wiley & Sons.

