
THE WHETSTONE KDF9 ALGOL TRANSLATOR
B. RANDELL

The English Electric Company Ltd., Atomic Power Division, Whetstone,
England

1. Introduction
Past experience with computers and translation schemes at the Atomic Power
Division has shown that users’ requirements of an automatic programming
scheme are to some extent conflicting. On the one hand the price paid for ease of
writing and testing in a convenient language must be small, and, particularly for
large or frequently used programs, the final running efficiency must be high. The
first objective requires extremely fast translation the second requires a large
sophisticated translator with consequent increase in translation time. Possible
solutions to this problem are, firstly, to have a compromise scheme, perhaps
capable of varying degrees of sophistication or secondly to satisfy the two
requirements with two translators.

The second solution has much to recommend it, and has indeed been chosen. A
team at the Data Processing Division is working on a large multi-pass optimizing
translator, with the aim of producing as efficient a running program possible. In
parallel a smaller translator is being developed at Whetstone, due to be ready as
quickly as possible after completion of the prototype KDF9, in which great stress
has been laid on speed of translation, and on ease of communication between
object program and programmer. This separation translators enables each scheme
to pursue its own objectives to the full, and allows the writers of the large scheme
more time to pursue their goal of run time efficiency.

Naturally the two schemes are to have complete compatibility, and should
enable a user to test a new program quickly and efficiently, and then recompile it
to get an efficient running program. Both schemes will accept full ALGOL 60,
with only the following restrictions: 1. no dynamic own arrays; 2. no integer
labels; 3. obligatory specifications for all parameters.

The Whetstone translator takes advantage of the fact that due to the high speed
of operation of the KDF9 computer, there is considerable scope for utilizing the
time spent during input of a program. This leads naturally the development of a
scheme for strict one-pass translation of an ALGOL program, so that the object
program is complete, ready to be obeyed, almost immediately after the reading of
the ALGOL ceases.

2. The KDF9 Computer
Very little mention need be made of the KDF9 computer on which this translation
scheme is being implemented. The basic machine configuration needed is an 8k
core store, paper tape input/output, monitor typewriter, and two magnetic tape
units. Each word of core storage is of 48 bits, made up of six 8-bit syllables. Only

2 B.RANDELL

within the translation routine and the subroutines that make up the run time
control routine is full use made of the rather novel nesting-store accumulator,
which thus need not be considered in this paper.
Although the KDF9 is a binary machine the normal method of preparing machine
code programs will be in User Code, an alphanumeric assembly language.
For a more complete description of the KDF9 and its User Code, see references 1
and 5.

3. The Object Program
At an early stage in the project, the author and a colleague, Mr L.J. Russell, met
Dr Dijkstra, of the Mathematical Centre, Amsterdam, who, with Mr Zonneveld,
was joint author of the extremely successful ALGOL translator for the Centre’s X1
computer. Later, at the invitation of Dr Dijkstra, a most pleasant week was spent
at the Mathematical Centre discussing translation techniques (Randell and
Russell, 1962).

The object program generated by the Whetstone translator is a development of
that of the X1 translator. Thus the object program consists of a set of operations,
with parameters where necessary, which use the remaining core storage as a stack
(Dijkstra, 1960) containing all the currently available declared quantities. The
stack system is a natural consequence both of the block structure of ALGOL and
of the fact that recursive calls can be made on procedures. The object program is
obeyed interpretively at run time by a control routine, which performs the normal
arithmetic and logical operations, dynamic storage allocation of arrays, and all the
necessary stack manipulation operations.

The requirements of parallel declarations and one-pass translation have their
effect on the design of the object program, which must be capable of being
partially generated as the ALGOL is read in, and then completed when any
previously missing declarations are found.

1. Arithmetic Expressions
The method of using a stack for the evaluation of an arithmetic expression is

quite straightforward, and has been described by Dijkstra (196Ia). Essentially any
necessary operands are copied from their positions in the working storage section
of the stack, into the top position of the stack, with information as to type, etc. All
arithmetic operations work on the top one or two stack positions. Stack positions
which contain a value, an address or a label, and information pertaining to the
quantity, occupy a double-word of storage, called an accumulator, whereas the
type and meaning of any quantity in working storage is always known at
translation time, and can thus be given implicitly in any operations referring to it.
The precedence of operations implied in an arithmetic expression is given
explicitly by a re-ordering of operations into ‘Reverse Polish’ in the object
program.
Example

x := i + y; (x, y of type real, i of type integer)
This is re-ordered into the Reverse Polish form

THE WHETSTONE KDF9 ALGOL TRANSLATOR 3

x, i, y, +, :=
This bears a close resemblance to the actual object program which is generated.

In fact, in the object program the above identifiers are represented by ‘Take
Result’ or ‘Take Address’ operations, each with a parameter used to find the
location assigned to the identifier.

Thus the above statement is translated into
TRA x (Take Real Address)
TIR i (Take Integer Result)
TRR y (Take Real Result)
+ (Add)
ST (Store)
(The identifiers x, i, y, here represent stack addresses).
The extent of the stack is always given by a counter AP, the Accumulator

Pointer, counting in units of one word. AP always indicates the first free store
after the end of the stack, i.e. the store into which the next quantity to be stacked
would be placed.

Then in the above example, if AP is originally, say 12, the detailed action of
the operation is:

TRA x Address of x set in Stack [12] and a bit pattern meaning
‘real address’ in Stack [13]. Two added to AP.

TIR i Value of i set in Stack [14], ‘integer result’ in Stack [15],
two added to AP.

TRR y Value of y set in Stack [16], ‘real result’ in Stack [17], two
added to AP.

+ Examines positions AP - 3, AP -1 (i.e. 15, 17) does the
necessary conversion of i in Stack [14], sets the result i + y
in Stack [14], ‘real result’ in Stack [15] and decreases AP
by two.

ST Works on top accumulator (a result) and the next
accumulator (an address) does any necessary type
conversions, performs the storage, and decreases AP by
four.

2. Procedures and Blocks
At any point during the execution of the object program the stack will contain

for each procedure: 1. an accumulator space for a resulting procedure value; 2.
link data; 3. parameters; 4. declared scalars, labels, array words; 5. array storage;
and 6. anonymous intermediate results. Apart from the procedure value
accumulator, and the parameters, a block is treated as a procedure, and in what
follows the two terms are used interchangeably.

Thus a recursive activation of a procedure will be shown by more than one
such set of stacked information. The link data performs a double purpose to
provide access to the declared variables in the last activation of every procedure,
and to provide a means of unravelling a set of nested procedure calls, through

4 B.RANDELL

every activation of each procedure. Declared variables in stacked working storage
are addressed relative to the starting position of the stack information pertaining
to the block in which they are declared (this position is called PP - the procedure
pointer). Since the amount of link data is fixed, the addresses, relative to PP, of
parameters and declared variables can be assigned at translation time. Thus the
first function of the link data (providing access to declared variables) requires a
scheme for finding the value of PP for the last activation of each procedure,
which can then be used with the relative address, to form the actual stack address
of a declared variable. The second function of the link data is performed quite
simply by maintaining a list of successive values of PP, for each activation of
each procedure. (This list is called the dynamic chain, whilst the list of PP’s for
the last activation of each procedure is called the static chain.) At any stage only
the current procedure, and its surrounding procedures, are of any interest. A Block
Number (BN), starting at one for the main program level, is allocated for each
lexicographic level of block or procedure. Thus the static chain has one value of
PP for each level of the program, up to the current level. For the sake of
efficiency the static chain is duplicated in a vector called DISPLAY. Then
reference to any declared variable is by means of a dynamic address (n, p), where
n is the lexicographic level of the block in which the declaration occurs, and p is
the stack address of the variable relative to the PP of the block. The dynamic
address is evaluated as ‘DISPLAY [n] + p’. It would be possible to find the
appropriate PP without using DISPLAY, by just working back down the static
chain in the sets of stacked link data until the right level was encountered, but this
is obviously inefficient.

The dynamic chain is rather more complicated as it is this mechanism that
allows the stack to be restored to its original condition after exit from a procedure.
Taking an example of a block a containing a procedure call on a procedure b
declared in a block c.

When the call is made the next available accumulator (indicated by AP) is left
for a possible result from the procedure and after completion of the entry to the
procedure the stack is:

Core No.
0
1

APa, PPb: 2 PPc Static Chain
PPa Dynamic Chain

3 BNb, WPb Block Number, Working Storage Pointer
FP Formal Pointer

4 RAa Return Address
LINK User Code Link

5
6
7
8
9 1st Working Store

10 2nd Working Store

} Procedure Value Accumulator

} 1st Formal Parameter

} 2nd Formal Parameter

THE WHETSTONE KDF9 ALGOL TRANSLATOR 5

11 3rd Working Store
WPb, APb: 12

In this example of a procedure with two parameters and three working stores,
core numbers have been given arbitrarily from zero.

The ruling value of PP after entry to procedure b indicates the start of the link
data, and is equal to the value of AP before entering procedure b from procedure
a. The dynamic chain, in the second half of core 2, is the value of PP ruling
during procedure a. The block number and amount of working space of the
procedure b are known at translation time, and are given as parameters to the
object program operation which performs the entry to the procedure for storage in
the link data. The static chain is the PP of the block containing the procedure b,
i.e. of the one with a block number one less than that of b. This could be found by
working down through the chained link data, but in fact can be obtained directly
from the vector DISPLAY. The new value of PP is added to DISPLAY at the
position given by the block number of b. The formal pointer is originally set to
indicate the first formal parameter accumulator, and is used in processing the
parameters at a procedure call. The remaining link data consists of a return
address and a User Code link. When a procedure is left the return address is used
to reset the object program counter. The User Code link indicates the place within
the control routine from where a procedure was called. Control is returned to this
point, to finish any necessary functions of the control routine before calling for
the next object program operation (as given by the reset object program counter).

This system for using a stack for procedures, possibly recursive, is fairly
straightforward - the main complication is in ensuring that DISPLAY always
contains a copy of the static chain. Whenever the validity of DISPLAY is in doubt
it must be checked against the actual static chain given in the sets of stacked link
data. This must be done on all formal procedure calls, and on leaving any
procedure, normally or by a go to statement.

Example
begin integer i;

procedure Q;
Ql : begin real x;

.
Q2: begin real y;

.
y: = 0;
.

end;
.

end;
.

P1: begin real a;
.

P2: begin real b;

6 B.RANDELL

.
P3: begin real C;

.
C: = 0; Q

end
end

end
end

In this example, where dots indicate further statements, indentation has been
used to show the various levels. Each block has been labelled, so as to indicate the
level at which the label occurs, and the fact of being part of procedure Q or of the
main program. It should be noted that a procedure whose body is itself a block
only causes a single change in level.

The system of dynamic and static chaining, and the associated vector DISPLAY
are illustrated using the above labels. For this purpose the main program is
assumed to have the label PROGRAM.

i. At the assignment of zero to C only the blocks labelled PROGRAM, PI, P2
and P3 have been activated. The static and dynamic chains coincide, chaining
together the four sets of link data in the stack, which correspond to the above four
activations of blocks. Four entries have been made in display.

DISPLAY [1] = PROGRAM
DISPLAY [2] = P1
DISPLAY [3] = P2
DISPLAY [4] = P3
Here the labels in fact indicate stack addresses - the values of PP for each

activation of each block.
ii. However, at the assignment of zero to y, in the call of procedure Q in block

P3, the situation is more complicated. Six blocks have been activated, but only
three (PROGRAM, Q1 and Q2) are currently valid, in the sense of having
declarations which could pertain to the situation at the statement ‘y : = 0’. Thus
the stack must still contain activations of blocks P1, P2 and P3, hidden under the
activations of blocks Q1 and Q2.

As a result the dynamic chain links together, in order,
PROGRAM, PI, P2, P3, Q1 and Q2
(this list, read from right to left, gives the complete set of blocks to be

unravelled by working out through the various end’s),
whilst the static chain only links together
PROGRAM, Q1 and Q2
Therefore at this time DISPLAY, which must mirror this static chain contains

only three entries
DISPLAY [1] = PROGRAM
DISPLAY [2] = Q1

THE WHETSTONE KDF9 ALGOL TRANSLATOR 7

DISPLAY [3] = Q2

3. Parameters
On entry to a procedure the parameter operations in the object progran are

processed to set up the formal parameter accumulators in the stack following the
link data. For instance an actual parameter which is just a real variable is
translated into a parameter operation with its dynamic address. At the procedure
call this causes the corresponding formal parameter accumulator to be set up with
the evaluated dynamic address together with an identifying bit pattern. The
evaluation of the dynamic address is done before any adjustments to DISPLAY.

Of more interest is an expression as actual parameter corresponding to a formal
parameter called by name. An implicit subroutine of object program operations is
generated, with a parameter operation giving the address of this subroutine. At a
procedure call this parameter operation causes the formal parameter accumulator
to be set up with the address of the subroutine, and the PP ruling at the time of the
procedure call.

A call on this parameter causes the subroutine to be entered in much the same
way as a procedure is entered, stacking vital information such as PP, AP, etc.,
during operation of the subroutine. Before completing entry to the subroutine, the
value of PP in the formal parameter accumulator is used to set up DISPLAY in the
state it had at the procedure call – this enables correct evaluation of the
expression, as it is written in terms of declarations valid at procedure call. After
the subroutine has completed the evaluation of the expression the normal
mechanism for leaving a procedure resets conditions to those pertaining before
entering the subroutine, but with the result of the expression in the top
accumulator, just as if it had been placed there by a ‘Take Result’ operation.

4. Arrays
The organization of arrays in the Whetstone translator is fairly conventional. A

word is set aside in working storage for each array, to contain the base address of
the array, the starting address of the array, and the address of the storage mapping
function of the relevant array segment. After entry to a block, operations are
obeyed for each array segment, to set up the mapping function (the coefficients of
a polynomial for evaluating the address of a subscripted variable), the array
words, and space for the arrays, and to increase the working space, as indicated by
the stacked working space pointer, to include the mapping function and the arrays.

Arrays as formal parameters are dealt with by handing on the address of the
relevant array word. In the case of an array called by value the array is copied into
the stack, after the current working space, and a suitably adjusted copy of the
array word set up in the formal parameter accumulator.

5. Labels and Switches
Labels are allocated space in the working storage of their block. This space is

set up with the appropriate value of the object program counter, and the current
value of PP. These labels can then be manipulated in designational expressions,

8 B.RANDELL

and handed on, perhaps repeatedly, as formal parameters, the value of PP being
used if necessary to adjust DISPLAY when the label is actually used.

A switch can be thought of as a ‘label procedure’, which delivers the result of
one of a set of designational expressions. Entry to a switch is like entry to a
procedure, and thus can go recursive in a similar fashion. The end product is a
label in the top accumulator, ready for the operation generated from the go to
statement.

6. For Statements
A for statement is organized by a portion of the control routine (the for routine)

which uses sections of the object program, for evaluating the various arithmetic
and Boolean expressions, and the address of the controlled variable, as
subroutines. This is done by stacking a User Code link to be found by a special
object program operation at the end of each subroutine, which then returns to the
appropriate point in the for routine. The system of making the expressions and
controlled variable into subroutines allows each one to be translated once, in the
order in which they appear, even for the step-until element, which has to simulate
an expanded ALGOL version with repeated reference to these quantities.

A for statement is automatically made into a block, and thus sets up the normal
stack positions for link data, etc. Then at any point where an interruption of the
work of the for routine can occur, all relevant information is kept in the stack.
Such an interruption will occur when the controlled statement involves a for
statement (explicitly, or within some procedure call) or when evaluation of an
expression in a for list element, or of the address of the controlled variable, calls
on a function designator which involves a for statement.

4. The Translation Routine
The translation routine operates on the ALGOL program as it is read in, generating
the object program in the core storage. The re-ordering of operations is performed
using a translator stack and a system of priorities. This handles precedence of
arithmetic operators, etc., and is used also for the bracket structure of ALGOL. A
name list is used to contain details of identifiers encountered in the current and all
the surrounding blocks. As there is no opportunity to scan the ALGOL program a
set of state variables is used to differentiate between different uses of the same
delimiter. The basic system is to read the ALGOL program until a delimiter is
found, noting if an identifier or a constant has been read in. Each delimiter has its
own routine, which has at its disposal a set of general subroutines for performing
the various tasks common to two or more delimiters.

The need for strict one-pass translation necessitates being able to proceed with
the generation of object program when lacking declarations of identifiers, and in
fact never being able to use any non-local declarations until the end of a block is
reached.

The arbitrary order of declarations can cause difficulties. For example,
declarations for non-local variables to a procedure can appear after the procedure
declaration. The context in which an identifier is used is not always helpful – in
particular the case of use as an actual parameter to a procedure. The name list is

THE WHETSTONE KDF9 ALGOL TRANSLATOR 9

used to contain declaration information, if available, or the sum total of
information garnered from the various uses of an identifier.

Being able to proceed with object program generation is facilitated by
designing the object program so that the operations generated from a given use of
an identifier take a similar form no matter what kind of declaration is
subsequently found. For instance, what appears to be a subscripted variable in an
actual parameter list may in fact turn out to be a switch designator.

1. The Translator Stack
By assigning priorities to certain of the ALGOL delimiters the translator stack

can deal very simply with questions of arithmetic precedence, bracket structure,
conditional statements, etc. Essentially the stack is used as a holding store, and is
used to re-order the ALGOL into Reverse Polish, which is the form of the object
program, as described in Section 3. The basic system can be illustrated on a
simple arithmetic expression

A + B ¥ (C – D / (E + F ¥ G))↑ H
This input string is read from left to right, and symbols can be transferred to

the output string, or can go into the stack (used simply as a last in – first out
store). Each operator has a priority; this is compared with the priority of the
operator at the top of the stack, and determines the action to be taken. 1. Operands
are transmitted straight to the output. 2. Left parenthesis is stacked with a priority
zero. 3. Right parenthesis causes operators to move from stack to output until a
left parenthesis is uncovered. This is then removed. 4. The remaining operators
each have a priority. As each operator is met, its priority is checked against the
priority at the top of the stack, and operators are moved from the stack to the
output until an operator with a priority less than the priority of this current
operator is encountered. The input operator is then itself placed in the stack.

The priorities are +, – 2
¥, / 3
 ↑ 4

(Unary ‘+’ and ‘-’ are not dealt with in this simple system.) Right parenthesis
is essentially controlling unloading of the stack with a priority of one, and hence
must uncover its matching left parenthesis.

By this means the above expression would be re-ordered into
A, B, C, D, E, F, G, ¥, +, /, –, H, ↑, ¥, +

However, the system can be greatly extended by using a double priority
system, to deal with conditional expressions and statements, statement brackets,
etc. The double priority is necessary because certain delimiters perform what is
essentially a double function. For example then can be used to terminate a
Boolean expression and to precede a statement. In general each delimiter is given
a ‘stack priority’ and a ‘compare priority’. As their names suggest, the stack
priority accompanies a delimiter when placed in the stack, and the compare
priority is used to control unloading of the stack.

10 B.RANDELL

Thus then must unstack through a Boolean expression, which could be
conditional, to its corresponding if, and until must unstack through an arithmetic
expression to the delimiter step, etc.

Some delimiters, such as opening parentheses, begin, etc., go straight into the
stack without doing any unstacking. Where necessary the translator stack is used
to store away certain of the state variables with the current delimiter.

Example
The re-ordering performed using a stack and a double priority system can be

illustrated on the following ALGOL statement.
if b then W [if A = B then C + A ¥ B else D] : = A + B > C

else go to L;
is re-ordered into

b
if
W
A
B
=
if
C
A
B
¥
+
else
D
]
A
B
+
C
>
:=
[
else
L
go to
;

for resetting later. This avoids using explicitly recursive subroutines for dealing
with, for instance, arithmetic expressions in a subscript in an arithmetic
expression.

Syllable counters are stored with some delimiters, to permit later completion of
the object program. For example at then, an incomplete implicit jump is
generated, and the syllable number of its position stacked with the then. When the

Here else indicates an unconditional jump,
if indicates a jump conditional on the top
accumulator being false, and’]’ an indexing
operation, which forms the address of a
subscripted variable.

THE WHETSTONE KDF9 ALGOL TRANSLATOR 11

corresponding else finds this in the stack the implicit jump around the expression
or statement following the then can be completed.

It is necessary to differentiate between the then and else used in conditional
expressions and in conditional statements, and this is done by using the state
variables. Similarly the various uses of comma, for instance, in subscript lists, for
clauses, switch lists, etc., must be differentiated.

2. The Name List
The name list is used to contain information about each identifier in the current

block, and in all surrounding blocks. Thus the name list, like the translator stack,
can fluctuate in size.

An entry is made in the name list at the declaration of an identifier or at the use
of an identifier which does not appear in the part of the list pertaining to the
current block. Thus entries consist of the actual identifier, a bit pattern specifying
type or expected type, number of dimensions or subscripts if applicable, some
markers concerned mainly with checking, and either the dynamic address which
has been assigned to the identifier or chaining information. Chaining is used to
link together incomplete object program operations which are generated for calls
on an undeclared identifier. Because of parallel declarations and the system of
chaining it is only ever necessary to search through the section of the name list
pertaining to the current block, rather than through the complete list whenever an
identifier is encountered.

3. The System of Chaining
All object program operations concerned with calls on identifiers consist of a

one-syllable operation code and a two-syllable address. Only when an identifier
appears as a ‘declared’ entry in the name list for the current block can a use of the
identifier be translated fully. If a set of incomplete operations have to be chained
together the two syllables left for the address are used to contain a link of the
chain, and the single syllable for an indication of the type of use being made of
the identifier. When the relevant declaration is found the chain is scanned,
replacing the single syllable by the appropriate operation code, and the link by the
address of the identifier. Each use of an identifier is checked against information
gained from previous uses, which is kept in the name list. By the time the
declaration is reached the name list will contain the ‘logical sum’ of all the
information known about the identifier, and this is checked against the declaration
information.

The chaining system is basically as follows.
i. At use of an identifier
The name list for the current block is searched. If it contains a ‘declared’ entry

for this identifier then this is used, and no chaining is necessary.
If there is no entry a ‘used’ entry is added to the name list accompanied by two

syllable counters, both set to indicate the position of the space left in the object
program for the address of the identifier. These syllable counters, called CS and
CF, indicate the start and finish of the chain for this identifier.

12 B.RANDELL

If there is already a ‘used entry’ the value of CS contained in it is placed in the
object program in the space left for the address of this identifier, and then CS is
replaced by the syllable counter of this address space.

ii. At declaration of an identifier
The name list for the current block is searched, and if there is no entry a normal

‘declared’ entry is added. If there is already a ‘declared’ entry, a failure indication
is given.

If there is a ‘used’ entry the chain must be followed through to finish the
various incomplete object program operations. This is done by starting at the
position in the object program given by CS. Each address space contains the
syllable counter of its successor, the end of the chain being marked by a blank
address space. Finally the ‘used’ entry is replaced by a ‘declared’ entry.

iii. At the end of a block
At the end of a block the section of the name list for this block is collapsed by

deleting any ‘declared’ entries, combining any ‘used’ entries with corresponding
entries in the containing block, or adding ‘used’ entries on to the list of the
containing block.

Combining entries will either cause a chain to be followed through, as
described above, when the containing block contains a ‘declared’ entry, or will
cause two chains of ‘used’ entries to be joined. This is done by putting the CS of
the entry in the containing block in the address space indicated by the CF of the
entry in the inner block, and replacing this CS by the CS from the inner block
entry. The inner block entry for this identifier is then deleted.

This basic system is slightly complicated by the need to check that expressions
in the bound pair list of array declarations contain no local identifiers.

4. State Variables
As has been mentioned above, state variables are used where necessary, to

differentiate between the various possible uses of a delimiter and as counters, etc.
For instance the variable V is set to zero at begin, to one at declarations, and to

two at statements. This is used to differentiate between blocks and compound
statements, and also to check out the occurrence of declarations amongst
statements.

A counter L is used for the number of declared identifiers assigned a working
space position in the current block, and NL is set to indicate the start of the current
section of name list.

At the beginning of a block, a procedure block, or a for statement block, V, L
and NL are stacked with the begin. Then a new L can be started, NL can be set up
for use inside the new block, and V zeroed, with the knowledge that translation
can resume correctly for the outer block by unstacking the begin and restoring the
V, L and NL, when the end of the new block reached.

Other important state variables are E, which is set to 0 for expressions, 1 for
statements, and TE which is a bit pattern used in expressions to indicate the type
of identifiers expected. E and TE are stacked with if, for example, allowing E to
be zeroed and TE to be set to ‘algebraic’ (incorporates real, integer and Boolean)

THE WHETSTONE KDF9 ALGOL TRANSLATOR 13

for the Boolean expression that must follow. On reaching the corresponding then,
the stacked value of E indicates whether it is to be take as thenS or thenE
(conditional statement or conditional expression, respectively), and for thenE, TE
indicates the type of expression in which the if occurred. Since types are
determined, and checked, dynamically at run time, the translator does not perform
a full check on compatibility of types Similarly checks on the compatibility of
actual parameters with the specifications of their corresponding formal parameters
are performed at run time.

Other state variables are used to mark progress through a for clause, to mark
the fact of being within an actual parameter list, etc.

One important exception to the system of separate routines for delimiters is the
translation of the heading of a procedure declaration. This uses no recursive
definitions, and hence can be translated by its own special routine, which sets up
parameter lists, information about value and specification parts, etc. Thus there
need be no confusion between real, array, etc., used in declarations and as
specifiers.

5. Use of Core Storage by the Translation Routine
During translation, space is required in the core storage for the translation

routine itself, the object program being generated, the translator stack and name
list, and a small fixed amount for the constants, state variables, etc.

Ignoring the fixed amount of storage required, space is thus needed for an
object program which grows steadily in size, and for the name list and stack
whose size varies continually, but ends up as zero. The system evolved is for the
object program to start immediately after the translation routine, and for the name
list to start at the other end of the storage, ‘pulsating’ towards the object program.
The translator stack is placed in the centre of the store, to pulsate towards the
name list. If the object program reaches the start of the stack or if the name list
and stack reach each other the stack is moved, say 32 places, in the appropriate
direction. If this would cause yet another clash translation is not possible and a
failure will be indicated. This system allows maximum use of core storage,
whether being used up by virtue of the size or of the complexity of the ALGOL
program, and is illustrated in Fig. 1.

0 8129

 Translator; fixed storage Object Prog. Stack Name List

 Variable
Fig. 1. Layout of storage during translation.

5. Code Procedures
A scheme for including procedures whose bodies are in User Code in an

ALGOL program has been devised, and is to be implemented on both translators
for the KDF9. Briefly this allows a normal procedure heading, with only the
specifiers procedure, <type> procedure and switch being excluded, and then a

14 B.RANDELL

procedure body in User Code bracketed by the symbols KDF9 and ALGOL.
Within the User Code of the procedure body access is allowed to the parameters
by permitting pseudo-instructions calling on the formal parameters. All other
communication with the surrounding ALGOL program is expressly disallowed.
The rules for the inclusion of User Code procedures are in fact the required
expansion of section 4.7.8 of the ALGOL Report (Ref. 6).

The scheme is quite powerful, allowing for instance, calIs by name on
arithmetic expressions, the use of Jensen’s device (Dijkstra, 1961b), etc. The main
reasons for designing such a scheme are to ensure compatibility between the two
translators even for programs including code procedures, and to minimize
duplication of effort between the two translator projects in providing input/output
procedures, etc. Naturally casual use of this facility would impair ease of
communication of programs and will be discouraged.

The implementation of procedures in User Code on the Whetstone translator
has produced some interesting problems. In particular the method of
communication at run time between an interpreted object program and a User
Code procedure is of some interest but will not be discussed here, as being outside
the scope of this paper.

6. Communication between ALGOL Program and Programmer
An important feature of the Whetstone ALGOL translator is the stress placed on

ease of communication between ALGOL program and programmer. Thus it should
be possible to check-out and test an ALGOL program with no knowledge of the
generated object program.

The first problem is that of indicating to a programmer the point at which an
error in his ALGOL program has become apparent to the translator. This is done
by printing out the next 100 characters, or two lines, of the ALGOL (counting only
non-trivial information). The line number, and the last label and last procedure
identifier declared will also aid identification of the offending ALGOL. This
information will be accompanied by a message describing the error (or rather,
inconsistency).

It will be possible to continue, and search for further errors, only on the basis
of making some reasonable estimate as to the cause of the inconsistency.

Error print-outs at run time will arise from two causes. Firstly, further ‘ checks
on the validity of the ALGOL which are not easily checked at translation time are
performed at run time (for example compatibility of formal and actual
parameters). Secondly, actual errors in the program can result in numbers
becoming invalid, subscript bounds being exceeded, etc. Error print-outs are
formed using a ‘failure tape’ which has been set up at translation time. As any
section of the name list is collapsed (see Section 4) a copy of the section is made
on magnetic tape. This will include details of the block being collapsed (type of
block, level number, line number at start of block, etc.) and information about
every identifier in the block. The failure tape also includes, for each block, a table
giving details of line number against object program counter. Thus using this
failure tape, error print-outs can be made giving a description of the failure, the

THE WHETSTONE KDF9 ALGOL TRANSLATOR 15

position where it occurred, and details of the current block. This tape could also
be used for trace routines, post-mortems, etc.

7. Acknowledgements
A large measure of any credit for the Whetstone ALGOL Translator must go to

Mr L. J. Russell, who with the author, is jointly responsible for the design and
implementation of the translator, and who has assisted in the preparation of this
paper. The author’s indebtedness to Dr E. W. Dijkstra, and also Professor A. van
Wijngaarden, and Mr J. A. Zonneveld, will be obvious to anyone familiar with the
ALGOL Translator for the X1 computer at the Mathematical Centre, Amsterdam.
The author also wishes to thank The English Electric Company Limited for
permission to publish this paper.

REFERENCES
1. G. M. DAVIS (1960). The English Electric KDF9 Computer System. Computer Bull. 4,

119-120.
2. E. W. DIJKSTRA (1960). Recursive Programming. Numerische Mathematik 2, 312-

318.
3. E. W. DIJKSTRA (1961a). An ALGOL 60 Translator for the X1. ALGOL Bull. Suppl. 10

(Translated by M. Woodger from the German in MTW 2, 54-56 and MTW 3,115-
119).

4. E. W. DIJKSTRA (1961b). Defense of ALGOL 60. Comm. A.C.M. 4, 502-503.
5. English Electric (Data Processing and Control Systems Division) publication. KDF9

Programming Manual.
6. P. NAUR (1960). Report on the Algorithmic Language ALGOL 60. Comm. A.C.M. 3,

299-314, and Numerische Mathematik 2, 106-136.
7. B. RANDELL and L. J. RUSSELL (1962). Discussions on ALGOL Translation at

Mathematisch Centrum. English Electric Report W/ AT 841.

