V34 - ko

TR FRGLISH ELECTRIC COMPANY LIMITELD

il g e " =

i Pl e — . il

30th July, 1962.

THE WHETSTONE KDF9 ALGOL TRANSLATOR,

B. RANDELL M
‘ 1 s st I.l
- - 1
--l.._l-l
- P
. \l ‘h"‘x
' - -
A PERp
v [] -
¥ .,.:. "--_--. .
- x gt)
B N
X A R
UL -.,‘. ca PR
- - b 8 -
."'--f L " EJ - \‘:‘I
d =
'r‘ .‘ \. '
1 . -
. v "o
*
h"'\- .. -
[] 1
* L)
., e T

SUMMARY

The paper describes a one-pass &lgol 60 translator for the

nglish Electric KDF9 Computer. The reasons for choosing a strictly
one-pass system are detailed, and particular attention is given to the
translation techniques necessary for such a system, A final section

deals with the communication between Algol program and programmer.

INDEX

Introduction L
The KDF9 Computer 2
Tne Object Program A
Arithmetic Expressions 31
Procedures and Blocks PR
Parameters He2a
ATTAYS 4¢3
Labels and Switches 3e4
For Statements De5
The Translacion Houtine 4
The Translator Stack 4o
The Name List 4.2
The System of Chalning Aelel
State Variables 4¢3
Use of Core Storage by tne Translation noutine 4.4
Code Procedures 5
Communicatiag between Algol Program and Programmer 6
Acknowledgenments I

Raferances 8

1o LN TRODUCTION

Past experience with computers and translation schemes at the
Atomic Power Jivision has shown that user!s reguirements of an auto-
matic programming scheme are to some extent conflicting, On the one
hand the price paid for ease of writing and testing in a coavenient
language must be small, and, particularly for large or frequently used
programs, the final running efficiency must be high, The first
objective reguires extremely fast translation - the second requires a
large sophisticated translator with consequent increase in translation
time, Possible solutions to this problem are, firstly, to have a
compromlse scheme, perhaps capable of varving degrees of sophistication,
or secondly to satisfy the two requirements with two translators.

The second solution has much to recommend it, and has indeed
been chosen, A team at the Data Processing Division is working on
a large multi-pass optimising translator, with the aim of producing

as efficient a running program as possible, In parallel a smaller

translator is being developed at Whetstone, due to be ready as quickly

as possible after completion of the prototype KDF9, in which great

stress has been laid on speed of translation, and on ease of
comnunlcation between object program and programmer, This separation of
translators enables each scheme to pursue its own objectives to the
full, and aliéws the writers of the large scheme more time to pursue
their goal of run-time efficiency,

Naturally the two schemes are to have complete compatibility,
and should enable a user to test a new program gquickly and efficiently,
and then recompile it to get an efficient running program. Both
schemes will accept full Algol 60, with only the following restrictions:

1. No dynamic own arrays

2. No integer labels

e Obligatory specifications for all parameters.

The Whetstone translator takes advantage of the fact that due

to the high speed operation of the KDFG computer, there 1s considerable

scope for utilising the time spent during input of a progranm. This

leads naturally to the development of a scheme for strict one-pass
translation of an Algol progrem, so that the object program 1s
complete, ready to be obeyed, almost immediately after the reading

of the Algol ceases,

2e

THE KDFG COXPUTE

Very little mention need be made of the KDF9 computer on which
this translation scheme is being implemented. The basic machine
configuration needed is an 8k core store, paper tape input/output,
monitor typewriter, and two magnetic tape units. Bach word of core
storage is of 48 bits, made up of six 8 bit syllables, Only within
the translation routine and the sub-routines that make up the run
time control routine is full use made of the rather novel nesting-

store accumulator, which thus nced not be considered in this paper.

Although the KDF9 is a binary machine the normal method of
preparing machine-code programs will ve in User Code, an alphanumeric
assembly language.

For a more complete description of the KDF9 and its User Code,

asce references 1 and 2.

De THE OBJECT PROGREM

At an early stage in the project, the author and a colleague,
Mr., L. fussell, met Dr. Dijkstra, of the Mathematical Centre,
Amsterdam, who, with Mr. Zomneveld, was Jjoint author of the extremely
successful ALGOL translator for the Centre!s X1 computer. Later, at
the invitation of Dr., Dijkstra, a most pleasant week was spent at the
Mathematical Centre discussing translation techniques (Reference 3).
The Object Program generated by the Whetstone Translator 1is
a development of that of the X1 translator. Thus the <(bject
program consists of a set of operations, with parsngters where necessary,
which use the remaining core storage as & stack (Ref, 4) containing all
currently available declared quantitiss. The stack system is a

natural conseguence botn of the block structure

of Algol, and c¢f the fact that recursive calls can be mzde on
procedures. The object program is obeyed interpretively at run-time
by a Control Routine, which performs the normal axithmetic and logical
operations, dynamic storage allocation of arrays, and all the necessary
stack manipulation operations.

“he requirenents of parallel declarations and one-pass translation
have their effect on the design of the object program, which must be
capable of being partially generated as the Algol is read in, and then
completed when any previously missing declarations are found,

5.1 Arithmetic Expressions

The method of using a stack for the evaluation of an arithmetic
expression 1s quite straightforward, and has been described in Ref. 5.
Essentially any necessary operands are copied from their positions in
the working storage section of the stack, into the top position of the
stack, with information as to type, etc. All arithmetic operations
work on the top one or two stack positions, Stack positions which
contain a value, an address or a label and information pertaining to
the quantity, occupy a double-word of storage, called an accumulator,
whereas the type and meaning of any gquantity in working storage is
always knomn at trenslation time, and can thus be given implicitly in
any operations referring to it. The precedence of operations implied
in an arithmetic expression is given explicitly by a reordering of

operations into 'Reverse Polish'! in the object program,

Exanple

+ "k T Slle. B g - Ty

X 3= i + ¥ (x, ¥ of type real, i of type im:eger-)

Thie is reordered into the ‘Reverse Polish! form

Lo 1y Yy 4y =

This bears a close resemblance to the actual object program
which- is generated. In fact, in the object program the above identifiers
are represented by 'Take Result'! or 'Take Address! operations, each
vith a parameter used to find the location assigned to the identifier,

Thus the above statement is translated into

TeR. A, X (Pake Real Address)
T,I.R, i (Take Integer Result)
T, R.R, ¥ (Take Real Result)

+ (Ad4)

ST (Store)

(The identifiers x, i, y, here represent stack addresses).

The extent of the stack is always given by a counter AP, the
accumalator Pointer, counting in units of one word. AP always
indicates the first free store after the end of the stack, 1i.e.
the store into which the next quantity to be stacked would be placed,

Then in the above example, if AP is originally, say 12, the
detailed action of the operaticns is:

T.R.A, x Address of x set in Stack [12] and a bit pattern

meaniﬁg 'real address! in Stack (13] . Two added

to AP.

T, I.R. i Value of i set in Stack [14] , linteger result! in
Stack [15] y vwo added to AP,
T.R.R. y Value of y set in Stack [16] , 'real resultt! in

Stack [17] , two added to AP.

+ Examines positions AP-3, AP~1 (i.e. 15, 17,) does
the necessary conversion of i in Stack |[14] y Sets
the result i 4+ y in Stack [1i4] , 'real result! in
Stack [15] and decreases AP by two.

ST Works on top accumulator (a result) and the next
accumulator (an address) does any necessary type

conversions, performs the storage, and decreases

AP by four.
5.2 Procedures and Blocks
At any point during the exescution of the object program the
stack will contain for each procedure

1 An accumulator space for a resulting procedure value.

2o Link data.

3o Parameters,

4. Declared scalars, labels, array words.

5 Array Storage.

6. Anonymous intermediate results.

Apart from the procedure value accumlator, and the parameters,
a block is treated as a procedure, and in what follows the two terms
are used interchangeably.

Thus a recursive activation of a procedure will be shown by moxre
than one such set of stacked information. The link data performs a
double purpose - to provide access to the declared variables in the
last activation of every procedure, and to provide a means of
unravelling a set of nested procedure calls, through every activation
of each procedure. Declared variables in stacked working storage
are addressed relative to the starting position of the stack information
pertaining to the block in which they are declared (this position
is called PP - the procedure pointer). Since the amount of link
ata 18 fixed, the addresses, relative to PP, of parameters and declared
variables can be asgssigned at translation tine, Thus the first function

of the link data (providing access to declared variables) requires a

scheme for finding the value of PP for the last activation of eacn
procedure, which can then be used with the relative address, to form
the actual stgack address of a declared variablz, The second function
of the link data is performed gquite simply by naintaining a list of
successive values of PP, for each activation of each procedure. (This
1ist is called the dynamic chain, whilst the list of PP's for the last
activation of each procedure is called the static chain). At any stage
only the current procedure, and its surrounding procedures are of any
interest. A Block Number (BN), starting at one for the main progran
level, is allocated for each lexicographical level of block or procedure.
Thus the stvatic chain has one value of PP for each level of the progran,
up to the current level, For the sake of efficiency thestatic chain
1s duplicated in a vector called DISPLAY, Then reference to any de-
clared variable is by means of a dynamic address (n, p), where n is

the lexicographic level of the bloeck where the declaration occurs, and
p 1s the stack address of the variable relative to the PP of the block.
The dynamic address is evaluated as DISPLAY [n] + p. It would be
possible to find the appropriate PP without using DISPLAY, by Just
working back down the static chain in the sets of stacked jink data
until the right level was encountered, but this is cbviously
inefficient.

The dynamic chain is rather nore complicated as it is this
mechanism that allows the stack to be restorsd to ifts original condition
after exit from a procedure,

Taking an exanple of a block 'al' containing a procedure call on
a procedure !'b! declared in a block 'c¢t,

When the call is made the next available accumulator (indicated
by AP) is left for a possible result from the procedure and after

completion of the entry to the procedure the stack is:

wl

Core No.
0)
1 g Procedure Value Accumulator
4Pa, PPb: 2 Pre otatic Chain

PPa, Dynamic Chain

3 - Bib, WFb Block Number, Working Storage Pointer
B Formal Pointer

4 Ria Return Address
LINE User Code Link

>

18t Formal Paranmeter

2nd Formal Paraneter

—
o T R S BT N, W

8

9 - 18t Working Store

10 - 2nd working Store

11 - 5rd orking Store
WPb, APb: 12

In this example of a procedure with two paramcters and three
working stores, core numbers have been glven arbitrarily from zero.

e ruling value of PP after entry to procedure b indicates the
start of thg_iink daia, and 1s equal to the value of AP before entering
procedure b from procedure a., The dynamic chain, in the second half
of core 2 is the value of PP ruling during procedure a. The block
number and anount of working space of tho procedure b are known at
translation time, and are given as paranmeters to the object progranm
cperation which performs the entry to the procedure for storage in the
link data. The static chain ig the PP of the block containing the
procedure b, i,e. of the one with a block number one less than that of
b, This could be found by working down through the chained link data,
but in fact can be obtained directly from the vector DISPLAY. The new
value of PP is added to DISPLAY at the position given by the block number
of b, The formal pointer is originally set to indicate the first formal

paraneter accummlator, and is used in vrocessing the parameters at a

T

procedure cali. The remaining link data consists of a retain
address and & user-code link, iwthen a procedure is left the return
address is used to reset the object program ccunter, The user-code
link indicates ﬁhe place within the control routine from where a
procedure was called. Control is returned to this point, to finish
any neceassary functions of the control routine before calling for the
next obiecct program operation (as given by the reset object progran
counter).

This system for using a stack for procedures, possibly recursive,
is fairly straightforward - the nain complication is in ensuring that
DISPLAY always contains a copy of the static chain. Whenever the

validity of DISPLAY is in doubt it must be checked against the actual
static chaln given in the sets oif stacked link data. This must be

done on all formel procedure calls, and on lesving any procedure,

nornally or by a go to statenment.

1

-
L=

begin inbeger i ;

procedure Q

Q]

- 2-)

begin real x ;

T e s

4 2 8 @ &

LT FRH

Q2 ¢ D»egin real ¥

et
It
-

end

L=k

St [1

" % O w ¥

a & o & B

P2 begin real b
LI B -
P ¢ hegin real €

& 2 % &

end

- w e

=T

LT

)

In this example, where dots indicate further statemoents, indentation
has been used to show the various levels,. Lach block has been labelled,
s0 a8 to indicate the level at which the label occurs, and the fact of
being part of procedure ¢ or ¢f the main progran. It should be noted that
a procedure whose body 1is itselfl a block only causes a single change in
level,

The system of dynamic ﬁnd:static chaining, and the associated vector
DISPLAY are illustratod using the above labels. For this purnose the
nain prograi 1s assumed to have the label PROGRAN.
1e At the assignment of zero to C only the blocks labelled PROGRAM, P1,
P2, P3 have been activated,. The static and dynamic chains coincide,
chaining together the four sets of link data in the stack, which correspond
to the above four activations of blocks. Four entrics have been made

in display.

DISPLAY {1] = 'PROGRAM!
DISPLAY (2] = P!
DISPLaY [3] = P2
DISPLAY [4] = 1P3!

Here the labels in fact indicote stack addresses - the values of
PP for each activation of each block,
2. However at the assignment of zero to y, in the call of mrocedure
@ 1n block P35, the situation is nore couaplicated. 51X blocks have been
activated, but only threce (PROCRAM, Q1 and Q2) are currently wvalid, in the
sense of having declaraticons which could pertain to the situation at the

statement 'v: 0 T, Thus the stack rmst still contain asctivutions of

!

blocks P1, P2 a2nd P35, hidden under the activations of blocks @1 and Q2.
3 a result the dynamic chain links together, in order,
PROGRAM, P11, P2, P3, Q1, and Q2
(this list, read ggm?ight to lefft, gives the complete set of blocks
to be unravelled by working out through the various gggﬁ),

whilst the static chain only links together

PROGRAM, Q1. and Q2.

R

Therefore at this time DISPLAY, which mmst mirror this static

chain,; contains only three cntries

DISPLAY | 9] = ' PROGRAR

DISPLAY {2] 1077

DISPLAY [3] = 1go!
3.2.1 Parancters

On entry toc a procedure the parameter operations in the object
progran are processed to set up the formal paraneter accumuisiors
in the stack, following the link data. for instance an actual
paraneter whith ls just a real variable is translatsd into o paraveter
operation with its dynamic address. At the procedure csll this causes
the corresponding formal paramcier accurmulator to be sat up with the
evaluated dynamic address togefher with an identifying bit pattern.

The evaluation of the dynamic address is done before any adjustments
to DISPLAY,

Of morxe interest is an expression as actual narancter corresponding
to a formal parametcr called by name. Aan lmplicit sub-routine of
object programn operatiocns is generated, with = paramater operation
giving the address cf this sub-routine. at procedure call this
parameter operatisn causes the formal paramster accwmlator to be set np

with the address of the sub-routine, and the PP ruling at the tine of

the procedure call,

A call on this paraneter causes tho sub-routine to be entered
in much the same way s a procedurc is entered, stacking vital information
such as PP, 4P, etc. during operation of the sub-routine. Before
completing entry to the sub -routine, the voluz of PP in the formal
paraneter accumulator is used to set up DISPLAY in the state it had ot the
procedure call - this enables correct evaluation of the expression, as
1t is written in terms of declarationsvalid =t vrocedure eall, after
the sub-routine has complcoted the zvelnation of the oxpression the
normal mecnanisnm for leavinge a preocadure resets conditions to those
pertaining before entering the sub-routine, but with the result of the
expression in the top accumlator, just as if it had been placed there by

a 'Take Result! operation.

Y.

%¢3. Arrays

The organisation of arrays in the Whetstone translator is fairly
conventional, A word is set aside in working storage for each array, to
contain the base address of the array, the starting address of the array,
and the address of the storage mapping function of the relevant aArray
segnment, After entry to a block operations are obeyed for sach array
segment, to set up the mapping function (the coefficients of a poly-
nonial for evaluating a subscripted address), the array words, and
space for the arrays, and to increase the working space, as indicated
by the stacked working space pointer, to include the mapping function
and the arrays.

Arrays as formal parameters are dealt with by handing on the address
of the relevant array word. In the case of an array called by value the
array 1s copied into the stack, after ths current working space, and &

sultably adjusted copy of the array word set up in the formal parameter

accunulator,
Sed Labels and Switches

Labels are allocated space in the working storage of their block.
This space is set up with the appropriate value of the object program
counter, and the current value of PP. These labels can then be
manipulated in designational expressions, and handed on, perhaps repeatedly,
as formal yaéameters, the value of PP being used if nscessary to adjust
DISPLAY when the label is actually used,

A switch can be thought of as a label procedure, which delivers
the result of one of a set of designational expressions. Entry to a
switch is like entry to a procedure, and thus can go recursive in a
similar fashion, The end product is a label in the top accumulator,
ready for the operation generated from the go to statement.
3¢5 For Statenents

A fD; statement is organised by a portion of the control routine

(the For Routine) which uges sections of the object program, for

~15-

evaiuating the various arithmetic and Boolean exXpressimms, and the
addrese of the controlled variable, as sub-routines. This is done by
stacking a user-code link to be found by a special object program
cperatlion at the end of each sub-routine, which thon returns to the
appropriate point in the For Routine, The systenm of making the
expressions and controlled variable intc sub-routines allows each one to
be translated once, in the order in which they appear, ¢ven for the
step-until-elezient, which has to simulate an expanded Algol version
wlth repeated reference to théss guantities.

A for statement is automatically made into a block, and thus scts
up the normal stack positions for link data, etc. Then at any point
where an interruption of the work of the For Routine can occur,
all relevant information is kept in the stack. ouch an interruption
¥1ll occur when the controlled statement involves a for staterent
(explicitly, or within some procedure call) or when evaluation of an
oxpression i1n a for list element, or the address of the controlled
variable, calls on a function designator which involves a for statement.

de THE TRLNSLATTICN BOWPTHR

Eeduaentl sl ST e LT o o ey B Y R

The translation routine operates on the Algcl progroz as it is read
in, generating the object program in the core storage. The reordering of
operations ig performed using & translator stack and = system of priorities,
This handles precedence of arithnetic operators,; ete., and is used also for
the bracket structure of Algol, A name 1ist is used to contain detoils
of identifiers encountered in current snd all surrounding blocks, As
there is no opportunity to scan the Algol vprogram a set of state varicbles
1s used to differentiatce between different uses of the same delimiter.
The basic system is to read the Algol program until a delimiter is found,
noting if an identifier or a constant has been read in. #ach delimiter has
1ts own routine, whichh has at its disposal a set of general sub-routines
for performing the various tasks common to two or more delimiters,

The need for strict one pass translation necessitates being able to
proceed with the generation of object progran when lacking declaratiors of
ldentifiers, and in fact never being able to use any non-local declarations

until the end of a block is reached,

The arbitrary order of declarationscan cansc difficultles, Fox
exanple, declarations for non-local variakics to a proceaure can appear
after the procedure declaration. The context in which an identifier is
used is not always of zse - in particular the case of usz as an actual
paramcter to a procedure, The name list is used to contain declaration
informetion, if availsble, or the sum total of information garnered fron
the various uses of an identifier.

Being able to proceed with cobject program generation is facilitated
by designing the object program sc that the operctions generatoed fron
a given use of an identifier teke sinilar form no matter what declaration
18 subsequently found. For instance, what appears to be & subscripied
variable in an actual parameter list may in fzct turn out to be a switch

designhatfor,

4, Tee Translator Stack

i, i e

By assigning priorities to certaein of the Algol delimiters the
translateor stack can deal very sinmply with guestions of arithmetic
precedence, bracket structure, conditional statements, etc. wssentially
the stack is used 2s a holding store, and is used to re-order the algol
into 'Reverse Polisl:!, which is the form of the Object Progran, as
degseribed in szaction 5.1,

The [late iic system can be illustrated on a simple arithmetic exprcssion

A+Bx(c-ﬁ/(E+FxG))$H

This input string is read from left to right, and symbols can be
transferred to the output string, or can go into the stack (used simply as a last
in - first out store)}. Each operatcr has a priority, this is compared
with the priority of ths operator at the top of the stack, znd determines
the action to be taken

1. Operands are transmitted straight to the output.

24 Left parenthesis is stacked with priority O,

Se Right parenthesis causes operatcrs to meve from stack 1o
output until a left parenthesis is uncoversd. This is
then removed,

4. The remaining operators cach have a priority.

T =

A8 guch an Gpefatur is met, its priority is checked against the
priority at the top of the stack, and operators are moved from the stack
to the output until an operator with a priority less than the priority
of this current operator is encountered, The input operator is then

1tself placed in the stack.

The priorities axre by = 2
x, / 3
|

(Uhary' '+ and '-1 are not dealt with in this simple system.)

Right parenthesis is essentially controlling unloading of the stack
with a priority of 1, and hence must uncover its matching left parenthesis.

By this means the above cxpression would be re-ordered into

4 B, C, D, B, B, G, %, +, /, -, E,P, x, +

However, the system can be greatly extended by using a double
priority systém, to deal with conditional cxpressions and atatenments,
statenent brackets, etc, The double pricrity is necessary becsuse
certain delimiters perform what is essentizally a double function. For

exanple then can be used to terminate a Boolean expression and to

precede a statenent, in general each delimiter is given a stack
pricrity and a compare priority. As their names suggest the stack
priority accompanies a delimiter when placed in the stack, and the
compare priﬁrity 1s used tc contrel unlosding of the stack.

Thus then must unstack through a Boolean expression which could be
conditional, to its corresponding if, until must unstack through an
arithmetic expression to the delimiter step, etc.

Some delimiters, such as opening brackets, begin, etc. go straight into
the stock without doing any. unstaciing, Where necessary the trans-
lator stack is used to store away certain of the state variables with
the current delimiter, for resctting later, This avoids using

explicitly recursive sub-routines for dcaling with, for instarce, arithmetic

expressions in a subscript in an arithnetic expression,

N -

Syliable counters are stored with some delimiters, to permit later
completion of the object program. For example at then, an incomplete

implicit jump is generated, and the syllable number of its position

stacked with the then. TWhen the corresponding clse finds this in the

stack the implicit jump around the expression or statement following the

then can be completed.

1t is necessary to differentiate between the then and else used

in conditional expressions and in conditional statements, and this is done
by using the state variables, oimilarly the various uses of comma, for
lnstance, in subscript lists, for clauses, switch lists, etc., must be
differentiated,

Example

The re-ordering performed using a stack and a double priotiiy system

can be illustrated on the following Algol siatcment.

if b then W[if A= B then C + A x Beglse D] =& + B> C

else go o L ;

is reordered into

Tl A e o . - e

r o Mgl gl v T

S : Here else indicates an unconditional jump,
if indicates a jump conditional on the

top accumulator being false,

and] an indexing operation, which

-t:im+Htti?I=ﬂll-'*E! WPE;F"D‘
= H o

f " | |

i_g) t forms the address of a subscripted
A i
£ 1
B : variable,
: |
o !
bt

_.eglse i

L é*‘ﬁhmﬁ-ﬁﬁr“* gy

i go 1o

i —3 :

19~

4,2 Tae Name Ligty

The name list is used to contain information
about each identifier in the current block, and in all surrounding
blocks, Thus the name list like the translatcr stack, can
fluctuate in size,

in entry is made in the name lisgt at the declaration of an
identifier or at the use of an identifier, which does not
appear in the part of the list pertaining to the current
block, Thus entries congist of the uetuol idontifier, ¢ bit pattern
specifying type or expected type, no. of dimensions or sub-
scripts if applicable, some merkers concerned mainly with
checking, and either the dynsmic address which has been
assigned to the identifier or chaining information.
Chaining 1s used to link together incomplete object program
operations which are generated for calls on an undeclared
identifier, Because of parallel declarations and the
systen of chaining it i1s only ever necessary 1o search
through the section of the name list pertaining to the
current block, rather than through the complete list
whenever an identifier 1s encountercd,
Adas The System of Cheining

Al]l object program operations concerned with calls
on identifiers consist of a one-syllable operation code
and a two-gyllable address. Only whon an identifier
appears as a '"declared! enitry in the name 1ist for the
current block can a use of the identifier be transiated
fully., If a set of Ancomylcte operations have td be
e?ained together the two syllsasbles left for the address are

used to contain a link of the chain, and the single

syliable for an indication of the type of use being made of the idertifier,
Then when the relevant declaration is found the chain is scanned, replacing
the single syllable by the appropriate operation code, and the link by

the address of the ldent{ifier, Kach use of an identifier is checked
against information gained from previous uses, which is kept in the name
iist, By the time the declaration is reached the name list will contain
the 'logical sum' of all the information krown about the identifier, and
this is checked against the deciaratimn information,

The chailning system is basically zs follows:-

e e . Ll ol el AL ol el s Y el

The name list for the current block is searched, It it contains a
'aeclafed‘ eniry for this identifier thern this is used, and no
chalning 1s necessary.

tf there 1s no entry a 'used' entry is added to the name list
accompanied by two syllable counters, both set to indicate the
position of the space left in the object program for the address of
the i1dentifier. These syllable counters, called CS and CF, indicate
the start and finish of the chain for this identifier.

If there is already a 'used entry' the value . of €S contained
in 1t 1s placed in the object program in the space left for the
address of this identifier, and then C5 is replaced by the syllable
counter o this address space,

(0%, At declaration of an identifier

il el —— [e ST RTW TR] T

The name list for the current block is searched, and if there
is no entry a normal 'declared! entry is added. If there is already
a 'declared! entry, a failure indication is given,

It there is a 'used! entry the chain must be followed to finish
the various incomplete object program operations. This is dore by
stariing at the position in the obJect program given by CS. Each
address space contains the syllable counter of iis successor, the end
of the chain being marked by a blank address space, Finally the 'used!

entry is replaced by a 'declered! entry.

Py S At the end of a block

At the end of a block the section of the nane
list for this block is collapsed by deleting any !declared!
eniries, combining any fused' entries with corresponding
entries in the containing block, or adding tused! entries
on to the list of the containing block.

Combining entries will either cause a chain to be
followed through, as described above, when the

containing block contains a 'declared! entry, or
will cause two chains of ‘'used! entries to be Jjoined,
This is done by putting the C3 of the entry in the
containing block in the address space indicated by the
CF of the eatry in the inner block, and replacing thils
CS by the €5 from the inner block entry. The inner block
entry for this identifier is then deleted,

This basic system is slightly complicaved by the
need to check that exprsssions in the bound peir list of
array declarations contain no local identifiers,
4.3 .State Variables

As has been mentioned above, state variables are used
where necessary, to differentiate between the various
possible uses of a delimiter and for counters, etc.

For instance the variable V is set to zerc at begin,
to one at declarations, and to two at statements. This
is usad to differentiate between blocks and compound statements,
snd alsoc to check out theocourrcnce of declarations amongst
statements.,

A counter L is used for the number of declared identifiers
assigned a working-gpace position in the current block, and
NL is set to indicate the start of the current scetion of

name l1ist.

AT the beginning of a block, a procedure block,or a for statement
block, V,L and NL are stacked with the begin., Then a new L can be started,
NL can be set up for use inside the new block, and V zerced, with the
knowledge that translation can resume correctly for the outer block by
uns tacking thelgggig‘ and restoring the V,L and NL when the end of the new
hlock is reached,

Other important state variables are L, which is 0 for expressions,

1 for statements, and TE which is a bit pattern used in exXpressions to
indicate the type of identifiers expected. E and TE are stacked with if
for example, allowing E to be zeroed and TE to be set to 'algebraic!
(iﬁcurﬁaratés.zggl, integer and Boolean) for the Boolean expression that

must follow, On reaching the corresponding then, the stacked value of E

indicates whether it is to be taken as then S or then E (conditional

statement or conditional expression, respectively), and for then E,

T indicates the type of expression in which the‘igﬁ occurred, Since
types are determined, and checked, dynamically at run-time, the translator
does not perform a full check on compatibility of types. Similarly checks
on the compatibility of actual parameters with the specificationsof their
corresponding formal parameters are performed at run time,

Other state variables are used to mark progress through a for clause,
to mark the fact of being within an actual parameter list, etc,

One important exception to the system of separate routines for delimiters,
state variables, etc,, is the translation of the heading of a procedure
declaration. This uses no recursive definitions, and hence can be translated
by its own special routine, which sets up parameter lisis, information about
value ané specification parts, etc. Thus there need be no confusion
between real, array, etc., used in declarations and as specifiers,

4e4 Use of Core Storage by the Translation Routine,

During. translation space is reguired in the core storage for the

translation routine itself, the object program being generated, the translator
stack and name-ligt, and a small fixed amount for the constants, state

variables, etc,

Ignoring the fixed amount of storage required, space is thus needed
for an cbject program which grows steadily in size, and for the name
List and stack whose size varies continually, but ends up as zero., The
systenm evolved is for the object program to start immediately after the
translation routine, and for the name list to start at the other end of the
storage, 'pulsating!' towards the object program, The translator stack
is placed in the centre of the store, to pulsate towards the name list,
If the object program reaches the s tart of the stack or if the name list
and stack reach each other the stack is moved, say 32 places, in the
appropriate direction. If this would cause yet another clash translation
is%nntfpossihle and a failure will be indicated. This system allows
maximum use of core storage, whetherbeing used up by virtue of the size or

of the complexity of the Algol program, and is illustrated in Fig. 1.

5, CODE PROGEEDURE,

L= W T L RS —

A scheme for including procedures whose bodies are in user code in

an Algol program, has besn devised, and is to be implemented on both

translators for the KDF9, 3Iriefly this allows a noraal procedure hea&‘ing,

with only the specifiers procedure, <typé)‘pracedure and switch being

excluded, and then a procedure body in user~code bracketted by the symbols

KDF9 and ALGOL., Within the user-code of the procedure body access is allowed

to the parameters by permitting pseudo-instructions calling on the formal

parameters. All other communication with the surrounding Algol program is

expressly disallowed., The rules for the inclusion of user-code procedures

are in fact the required expansion of section 4,7.8 of the Algol Report (Ref,6).
The scheme is gquite powerful, allowing for instance, calls by name

on arithmetic expressions, the use of Jensen's device (Ref.7) etc. The main

reasons for designing such & scheme are 1o ensure compatibility between the

two translators even for programs including code procedures, and to minimise

duplicatiqn of effort between the two translator projects in providing

input/mutput procedures, etc., Natwrally casual use of this Tacility

would impair ease of communication of programs and will be discouraged,

D24~

The implementation of procedures in uwser-code on the Whetstone
ITranslator nas produced some interesting problems. In particular the
method of communication at run-time betwsen an interpretied object program
and a user-code procedure is of some interest but will not be discussed
here, as being outside the scope of this paper.

6. COMMUNICATION BRIVEEN #LGOL FROGR/M AND PROGRIIGG'R

An important feature of the Vthetstone Algol translator is the stress
placed on egse of communication between Algol program and programner, Thus
it should be possible to check-out and test an Algol program with no
knowledge of the generated object program,

The first problem is that of indicating to a programmer the point at
which an error in his Algol program has become apparent to the translator,
This is done by printing out the next 100 characters, or two lines, of the
Algol (counting only non-trivial information), The line number, and the
last label and last procedure identifier declared will also aid identification
or the offending Algol, This information will be accompan= @ Dy a messsege
describing the error (or rather inconsistency).

It will be possible to continue, and search for further arrors, only
on the basis of making some reasonable estimate as to ihe cause of the ine
consistency.

Error print-outs a2t run-time will arise from two anuscs, Firstly,
further checks on the validity of the Algol which are not easily checked at
translation time are performed at run-time (for example compatibility of
formal and actual parameters). Secondly actual errors in the program,
resulting in numbers becnﬁﬁé’invalid, subscript bounds being exceed ¢d ete,
Brror print-outs are formed using a tfailure tape! which has been set up at
translation time, As any section of the name-list is collapsed (see section
4.2;1) a copy of the section is made on magnetic tape. This will include
detalls of the block being collapsed (type of block, level number, line number
at start of block ete.) and information about every identifier in the block,
The failure tape also includes, for each block, o table giving details of
line number against object program counter. %Thus using this feilure tape,

error print-outs can be made giving o description of the failure, the position

~D5n

where 11 occurred, and details of the c¢urrent block, This tape could aiso

be uvsed for irace~routines, post-mortems etc.

To CKRUDTBIGANINLS

A large meazsure of any credit for the Vhetstone Algel Translator
must go to kKr, L, Russell, who with the author, is jointly responsible
for the design and implementatiqn Qf the translator, and who has assisted
1n the preparation oi this paper,

The authors indebtednsss to Dr. H.W, Dijkstra, and alsc

Prof. A.V. Wiingaarden, and Mr, Z.A. Zonneveld, will be cbviocus to anyone
familiar with the Algol Translator for the XI Computer at the Mathematical
Centre, Amsterdem,

The zuthor also wishes to thank The English mlectric Compony Limited

for permission to publish this paper,

Tranelstor; fi.m:]. slora &2 0]3‘ ect Prog. > Stack

e

—

A

Name list

BiSk

> |

Variable

F:'51 LayouT of OTorAGE Duming JRANSLATION.

