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Concurrent Exception Handling and Resolution
in Distributed Object Systems

Jie Xu, Alexander Romanovsky, and Brian Randell

Abstract—We address the problem of how to handle exceptions in distributed object systems. In a distributed computing environment,
exceptions may be raised simultaneously in different processing nodes and thus need to be treated in a coordinated manner.
Mishandling concurrent exceptions can lead to catastrophic consequences. We take two kinds of concurrency into account: 1) Several
objects are designed collectively and invoked concurrently to achieve a global goal and 2) multiple objects (or object groups) that are
designed independently compete for the same system resources. We propose a new distributed algorithm for resolving concurrent
exceptions and show that the algorithm works correctly even in complex nested situations, and is an improvement over previous
proposals in that it requires only O(npyaxN 2) messages, thereby permitting quicker response to exceptions.

Index Terms—Concurrent exeception handling, distributed systems, exception resolution, nested atomic actions, object-oriented

programming.

1 INTRODUCTION

CONCURRENT and distributed computing systems often
give rise to very complex asynchronous and interacting
activities. The provision of error recovery is an extremely
difficult problem in such circumstances [24]. In order to
control this complexity and, hence, facilitate the provision
of error recovery, some way of restricting interaction and
communication will be required. The concept of coordinated
atomicactions (or CA actions) that has been developed at
Newecastle University [29], [30], [31] is one such mechanism
for the strict enclosure of interaction and recovery activities.
A CA action coordinates error recovery between multiple
interacting objects in an object-oriented (OO) or object-
based system by integrating two complementary concepts
—conversations [24] (together with a technique for concur-
rent exception handling [5]) and transactions [19]. The work
reported in this paper is essentially a continuation of
research on CA actions, concentrating on technical details of
concurrent exception handling and resolution.

Using the CA action framework as one kind of control
abstraction, we establish an exception model that clarifies
concepts such as exception context, declarations, and
propagation in a distributed object system. We develop an
abortion mechanism in order to tackle the problem of
handling exceptional situations across nested levels of CA
actions. In a distributed computing environment, another
delicate problem is that of concurrent exceptions [5]—
different processing nodes may raise different exceptions
and the exceptions may be raised simultaneously. This can
further complicate the process of exception handling. Take
a twin-engine aircraft as an example. If just the left (or right)
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engine fails, the controls can be adjusted appropriately to
compensate for the loss of the left (right) engine. However,
if both the right and left engine fail at the same time,
handling both engine-loss exceptions separately and se-
quentially can lead to catastrophic consequences. Another
example is that of a distributed control system composed of
several components. Two exceptions, Fire_Alarm and
Gas_Leakage, may be raised concurrently by different
components. It is obvious that handling such exceptions
sequentially (in either order) is not adequate and a new
method that can handle a combined occurrence of these two
exceptions has to be developed.

There are a variety of reasons why several exceptions
may be raised concurrently. For example, in practice, it is
often difficult to interrupt the normal operations of the
other nodes immediately after an exception has been raised,
so new exceptions may be raised in these other nodes before
they are informed of the initial exception. In addition,
concurrently raised exceptions may be merely a manifesta-
tion in multiple nodes of a system-wide exception. In
Section 3.2, we present a detailed discussion of the necessity
of coping with concurrent exceptions and argue that a
hierarchy-based approach is essential in order to find a
higher-order exception that can “cover” all the exceptions
raised concurrently. This further requires a distributed
scheme for determining the proper recovery strategy and
for involving all the related nodes in the recovery activity.

In 1986, Campbell and Randell [5] introduced the first
algorithm (referred to as the CR algorithm) for concurrent
exception resolution in a process-oriented system. We
identify a number of issues involved in the CR algorithm
and present a new distributed algorithm relying on strictly
defined, practically oriented assumptions. This new, object-
oriented algorithm is of lower message complexity than the
original solution and it is formally proven and implemented
in distributed Ada 95 [1].
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2 FAULTS, ERRORS AND EXCEPTION HANDLING

In this paper, we consider a distributed system consisting of
nodes connected by a communication network. The objects
that run on network nodes communicate with each other by
message passing. The CA action framework takes both
hardware and software faults into account [29]. Hardware
faults include crashes of, or transient faults in, nodes or the
communication network. Erroneous information may
spread through communication channels. However, as
assumed by others in similar research on exceptions [8],
[12], we assume that exception handling embedded in a
CA action needs to be effective and responsible just for
some specific expected conditions, i.e., errors detected by
tests and programs running on fault-free hardware,
including those detected and signaled by hardware or by
lower level services such as file services.

2.1 Error Recovery and Exception Mechanisms

Fault-tolerant software detects errors produced by faults
and employs error recovery techniques to restore normal
computation. Forward error recovery (mostly exception
handling schemes) is based on the use of redundant data
that repairs the system by analyzing the detected error and
putting the system into a correct state. In contrast, backward
error recovery returns the system to a previous (presumed
to be) error-free state without requiring detailed knowledge
of the errors.

An exception (handling) mechanism is a (more language-
oriented) control structure that allows programmers to
describe the replacement of the normal program execution
by an exceptional execution when occurrence of an
exception (i.e., inconsistency with the program specification
and, hence, an interruption to the normal flow of control) is
detected (see [8] for rigorous and thorough discussion).
There have been some considerable efforts in developing
formal semantics of exception handling (e.g., ML [23] and
Hoare’s “s1 otherwise s2” construct). The exception
mechanism is usually considered an essential part of a
modern language (see Ada 95 [1], C++, Eiffel [22], and Java,
for example). Ideally, it should be coherent with the
language, the entire programming paradigm, and the
design methodology.

For any given exception mechanism, exception contexts
[5], namely regions in which the same exceptions are
treated in the same way, have to be declared (very often
they are blocks or procedure bodies). Each context should
have a set of associated exception handlers, one of which is
called when a corresponding exception is raised. There are
different exception models: The termination exception model
assumes that, when an exception is raised, the correspond-
ing handler copes with the exception and completes the
block execution; the resumption model assumes that the
handler recovers the program state and the program then
continues the execution from the operation following that
which raised the exception. If the handler for the raised
exception does not exist in the context or it is not able to
recover the program, then the exception will be propagated.
Such exception propagation often goes through a chain of
procedure calls or of nested blocks. The appropriate handler
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is sought in the exception context containing the context
which raised or propagated the exception.

Exception handling and the provision of error recovery
are extremely difficult in concurrent and distributed
systems. Much previous work has focused on the con-
currency aspect of such systems (see the subsequent
discussion) without addressing the other important aspect
—distribution. Note that each node in a distributed system
may possess a separate memory; as a consequence, software
segments executing on different nodes will reside in disjoint
address spaces and so must communicate by the exchange
of messages over relatively narrow bandwidth communica-
tion channels [2]. The time of message passing is therefore
not negligible. Obviously, implementing coordinated re-
covery in a loosely coupled distributed system is a more
difficult problem than designing similar schemes under
either a uniprocessor or a multiprocessor environment with
common memory. Special protocols must be designed in
order to ensure timely response to exceptions and coordi-
nated error recovery in spite of physical distribution.

2.2 Conversations and Concurrent Exception
Handling

The concept of conversations was first proposed in [24] and
intended to provide joint backward error recovery of
concurrent processes that have been designed to cooperate
by exchanging information. Each process participating in
such a conversation must save its state on entering it. While
inside a conversation, a process can only communicate with
other processes in the same conversation. If any process
fails its acceptance test, then every participating process
will roll back to the saved state and retry, perhaps using an
alternate algorithm. Processes can enter a conversation
asynchronously, but (at least notionally) must leave it at the
same time once the acceptance test in each process has been
satisfied. This general idea has been extended in several
different ways in later research (see [20] for comprehensive
discussion).

A systematic approach to concurrent exception handling
is developed in [5] by integrating an exception mechanism
into the conversation scheme and extending the well-
known atomic action paradigm [14]. A set of exceptions is
associated with each action (i.e., each conversation). Each
process participating in an action has a set of handlers for
all or some of the predefined exceptions. When any of these
exceptions is raised in any process, appropriate handlers
(for the same exception in all processes) will be initiated in
all action participants. The notion of exception resolution
and the resolution mechanism proposed in [5] are critical
while considering multiple concurrent exceptions. The
exception tree structure introduced in [5] has advantages
over simple exception priorities for resolving these excep-
tions. (An exception tree consists of all exceptions asso-
ciated with the action and imposes a partial order on them
so that a higher exception has a handler which is intended
to handle any lower level exception.) However, the
identification of exceptions and the establishment of
exception trees are not a simple task for an actual
application. The developer of the application has to analyze
typical abnormal situations to define exceptions and the
exception tree based on application-specific characteristics,
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Fig. 1. Two methods for treating nested actions while an exception is raised.

fault assumptions, and available resources. The work
reported in [31] demonstrated how these issues were
addressed in an industrial case study.

The nesting of actions (or conversations) presents new
problems not normally encountered in nonnested circum-
stances. For example, an exception may be raised in a
process that has not yet entered a nested action, although
some participants of the same containing action where the
exception is raised have entered this nested action. The
authors of [5] suggested two methods for overcoming this
difficulty. The first method is to wait until the nested action
is completed—a natural decision because the execution of
the nested action is invisible and indivisible for the
containing action (see Fig. 1a, where P1, P2, and P3 are
participating processes). An alternative method is to raise
an abortion exception in all participants of the nested action
in order to abort the nested action completely, as shown in
Fig. 1b. (One can implement an abortion handler in each
participating process of a nested action or let the underlying
support mechanism handle any abortion exception.) The
second method seems to be more practical. First of all, it can
be the case that a process detecting an error is expected to
enter the nested action but will never be able to, so other
processes in the nested action would wait forever for it to
continue execution. Second, for real-time systems, it would
be more predictable to abort the nested action than to wait
for its completion [5].

There has been relatively little work on implementations
of coordinated error recovery in a distributed system.
Implementations of distributed process-oriented conversa-
tions are discussed in [13], [32]. Of these, [32] focused on
two particular conversation schemes (i.e., the name-linked
recovery block and the abstract data type) and addressed
various implementation issues which are specific to the
chosen conversation structures. The work in [13] discussed
a distributed implementation of the conversation scheme
using broadcasts, assuming that all processes will enter
each conversation simultaneously. Neither approach can be
used directly to implement the CA action scheme because
they focus on some particular schemes, with no support for
forward error recovery and for OO systems. The Arche
language introduced in [12] allows the application pro-
grammer to implement a function that can resolve the
exceptions propagated from several objects (i.e., different
implementations) of the same type. The resolution function
takes all exceptions that have been raised and not handled
in those objects as input parameters and returns the only
“concerted” exception that will be handled in the context of

the calling object. Although the Arche approach is object-
oriented, it cannot be used for CA actions since it supports
only a limited kind of concurrency, which relies heavily on
the underlying multifunction call feature. As a result, it can
be used for NVP-type schemes [3], but is not suitable for
cooperative concurrency and recovery of several objects
with different types. Moreover, parameterized exceptions,
though suitable for Arche, cannot be used directly for
CA actions because the handler for an exception which was
not raised may be still called once exception resolution is
required.

2.3 Exception Mechanisms in Realistic
OO0 Languages

In reality, exceptions in OO languages can be declared
either as classes, objects, or strings [10], [26], while
exception handlers can be declared and attached to the
level of statements, methods, classes, or objects. Some
languages, such as C++, Modula-3, and Arche [12], only
allow exception handlers to be attached to statements and
others, such as Lore [10], Eiffel [22], Guide [4], extended
C++ [21], and extended Ada [9], permit exception handlers
to be attached to methods and objects or classes. Such
flexible attachment has numerous advantages:

1. a clear separation of an object’s abnormal behavior
from its normal one, in accordance with the concept
of an idealized fault-tolerant component [14];

2. object/class recovery provided at the object level;

exceptions associated with types; and

4. software layering which facilitates the design of
fault-tolerant systems.

et

There is evidence from practice [9] as well: The use of object
exception handlers can decrease program complexity and
facilitate program design, maintenance, and reuse.

Object/class exception propagation is another important
topic. Lore, Eiffel, and Guide propagate exceptions through
the call chain; the exception context is associated not only
with the method execution, but also with the object/class
itself. In extended Ada, exceptions cannot be passed out of
class handlers, whereas extended C++ propagates the class
exception along the object creation chain (which may or
may not coincide with the call chain).

There are only a few concurrent OO languages, such as
Java, Ada 95 [1], Arche, and Guide, known to us that have
exception handling features. Java has a C++-like exception
mechanism, without specially coping with concurrency-
related (or multithreaded) issues. Ada 95 allows handlers to
be called in several concurrent tasks when an exception has



4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11,

NO. 10, OCTOBER 2000

entry CA action exit

raised exception €

exception handler H1

primary attempt

abnormal control flow
return to normal
suspended control flow y _

Object 1 y

exception handler H2

primary attempt

Object 2 v e

exit with success
abnormal control flow

return to normal

» -

suspended control flow

|
. ¢ accesses
|

External Atomic Objects

-
|
N 1
¢ repairs |
|

start transaction

commit transaction

Fig. 2. Forward error recovery in a CA action.

been raised in one of them. This language has a limited
form of concurrent-specific exception propagation—an
exception will be propagated to both calling and called
tasks if it is raised during the rendezvous. Arche permits
user-defined resolution of concurrent exceptions among a
group of objects that belong to different implementations of
a given type, which, unfortunately, is not generally
applicable to the coordination of multiple interacting objects
with different types. For our purposes, we need an
exception model applicable to any group of interacting
objects whether or not of the same type.

3 CA AcTIONS: CONCURRENCY, COORDINATION,
AND EXCEPTION RESOLUTION

The CA action scheme presents a general technique for
achieving fault tolerance in concurrent and distributed
OO software by integrating conversation-type structures,
transactions, and concurrent exception handling into a
uniform conceptual framework [29]. This technique allows
complex OO software to be designed in a disciplined and
structured way. CA actions take two kinds of concurrency
into account: cooperating and competing [14]. Several objects
can be designed collectively by different programmers (or
teams) and invoked concurrently in order to achieve certain
joint and global goals. But, these objects must cooperate
within the boundaries of a CA action. Competitive
concurrency may also exist in such systems since two or
more separately designed objects can compete concurrently
for the same system resources (i.e., objects). More precisely,
CA actions use conversations as a mechanism for control-
ling concurrency and communication between objects that
have been designed to cooperate with each other (referred
to as participating objects of the CA action). Shared external
objects are controlled by the associated transaction mechan-
ism that guarantees the ACID properties (atomicity,
consistency, isolation, durability [19]). In particular, objects
that are external to the CA action, and can hence be shared
with other actions and objects concurrently, must be atomic
and individually responsible for their own integrity.

Fig. 2 shows an example in which two participating
objects enter a CA action in order to play the corresponding
roles. Within the CA action, two concurrent roles commu-
nicate with each other and manipulate the external objects
cooperatively in pursuit of some common goal. However,

» Time

during the execution of the CA action, an exception e is
raised by one of the roles. The other role is then informed of
the exception and both roles transfer control to their
respective exception handlers, Hy and H» for this particular
exception, which attempt to perform forward error recov-
ery. The effects of erroneous operations on external objects
are repaired by putting the objects into new correct states so
that the CA action is able to exit with an acceptable
outcome. Two participating objects leave the CA action
synchronously at the end of the action. (As an alternative to
performing forward error recovery, the CA action could
undo the effects of operations on the external objects, roll
back, and then try again, possibly using diversely designed
software alternates.)

In principle, exception handling (or forward error
recovery in general) can and should be integrated into the
CA action framework. But, this cannot be achieved before
we find appropriate solutions to three fundamental
problems: exception model, exceptions in nested actions,
and exception resolution—it is these problems that are the
focus of this paper.

3.1 Exception Model for CA Actions

To be generally applicable, our model assumes that
exceptions may be declared in any of the ways discussed
in Section 2.3. The exceptions that can be raised within a
CA action must be declared, together with the action
declaration, and exception handlers must be associated
with participating objects of the CA action. Thus, when a
participating object enters the action, it enters the corre-
sponding exception context. A subset of these participating
objects may further enter a nested CA action, which has all
the properties of a nested transaction in terms of atomic
objects. Note that an exception is raised within a CA action,
but signaled from a nested action to its containing action.
Since the nesting of CA actions causes the nesting of
exception contexts, it must thus be guaranteed that each
participating object of the nested action is associated with
an appropriate set of handlers. In practice, such association
could be done either statically or dynamically. Once the
association is provided, clear semantics of exception
propagation can be enforced easily. Exceptions can be
propagated along nested exception contexts, corresponding
to the chain of nested CA actions.
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Fig. 3. Error recovery in external atomic objects. (a) Forward error recovery. (b) Backward error recovery.

However, the issue of how handlers are associated
correctly with the exception context depends upon the
particular way objects enter a CA action and upon
peculiarities of the target OO system. If an object enters
an action through an operation call and stays in it until that
operation is completed, then operation-level exceptions
would be appropriate for the required association. Other-
wise, only object/class level exceptions can be used if the
exception context cannot be changed dynamically. Here, we
simply adhere to the termination model of exceptions—in
any exceptional situations, handlers take over the duties of
participating objects in a CA action and complete the action
either successfully or by signaling a failure exception to the
containing action.

Because a CA action may cope with two kinds of
concurrency, external shared objects must be treated
explicitly when forward error recovery is requested. We
do not impose strict rules on the use of atomic objects
during forward recovery, but require that these atomic
objects should be always left to be in a consistent state
immediately after recovery. It is particularly important to
notice that an exception raised within the CA action does
not necessarily cause restoration of all the atomic objects to
their prior states. The appropriate exception handlers may
well be able to lead them to new valid states (see Fig. 3a,
where O1 and O2 are participating objects).

If any of the external shared objects fails to reach a
correct state, a failure exception must be signaled to the
containing CA action. A CA action can start a new attempt
after backward error recovery has been performed on the
external objects, as illustrated in Fig. 3b. A new associated
transaction will be then issued [29]. In principle, object
programmers have the freedom of choosing appropriate
policies in order to guarantee the consistency of external
atomic objects. There would be a wide spectrum of
application-specific strategies: from simple correction of
the erroneous states through handlers to the “bottom line”
of relying on undoing all previous modifications.

3.2 Necessity of Concurrent Exception Resolution
One of the most basic questions as to the importance of our
work concerns whether it is necessary to deal with
concurrent exceptions; there may be a very low, negligible
probability that multiple exceptions arise in a system at the
exactly same time. However, after a careful examination of
the problem, we argue the necessity of coping with
concurrent exceptions for the following reasons:

e It is, in practice, difficult to interrupt the normal
operations of all participating objects immediately
after one of them has raised an exception. The
probability that new exceptions are raised in other
objects before they are informed of this exception is
much higher in a distributed system than in a uni- or
multiprocessor system with common main memory.

e Because no error detection tools are perfect, the
latent period of an error is not negligible and, so,
erroneous information can be spread within the
boundaries of a CA action; thus, several errors
occurring concurrently in different objects can be the
symptoms of a different, more serious fault [5].

e Due to the nesting of CA actions and the time
interval, which may be lengthy, between the first
occurrence of an exception in a nested action and the
end of that nested action (which may lead to further
exceptions), several successive exceptions raised in
different containing and nested actions can be, in
effect, concurrent.

e Different participating objects can be involved in
nested CA actions at different levels so that their
exception contexts may be different.

e In distributed systems, the overall hardware-related
failure probability is relatively higher and they are
more difficult to program without design faults than
centralized systems [7].

e Finally, very often there is a correlation between
errors so that they happen in a very short period of
time in different participating objects. On one hand,
due to hardware-related operational errors, several
nodes can be affected by the same bad conditions or
by a channel through which traffic between several
nodes can be damaged. On the other hand, because
participating objects of a CA action were designed
cooperatively from a given specification, an error in
the specification or cooperative misunderstanding
during the design could affect several or all of the
participating objects.

When exceptions are raised concurrently, we cannot
simply handle them sequentially in some order. A tradi-
tional priority-based method is not adequate, either. Recall
the aircraft example in the Introduction section. The
exceptions raised concurrently in two engines must be
handled cooperatively and at the same time. A hierarchy-
based approach is therefore needed in order to find a single
higher-order exception that can “cover” all the exceptions



raised concurrently. This further requires a distributed
resolution scheme for determining the correct recovery
strategy and for involving all the participating objects in the
recovery activity.

3.3 Concurrent Exception Resolution: Issues and
Difficulties

There are three sources of exceptions defined in [5]. The
first source is of exceptions that are raised during the
execution of the application code; the second is of
exceptions signaled by the nested action; the third is of
exceptions that are raised because participants of the atomic
action received information about an exception raised in
some other participant, but have no handler for it, so they
have to examine the exception tree and find and raise a new
appropriate exception (for which there is a handler). This is
mainly because not all of the exceptions declared in the
action declaration will necessarily have associated handlers
in each participant of the action (although each participant
could contain the use of the default handler). In [5], each
participant knows only a reduced local tree of exceptions
with specific handlers and has to look through it after
raising each exception and after each resolution. However,
repeated search of the local tree could cause a kind of
“domino effect”; in certain cases, the CA action will fail in
spite of there being several handlers implemented in
respective participating objects. This could happen if the
exception tree is organized as a directed chain: Consider an
action A which has the exception tree TA and two
participating objects O7 and O, with two reduced trees
(i.e., sets of exceptions with specific handlers) TO1 and TO2,
respectively.

TA:el——>e2——>e3——>ed——>eb—-——>¢eb
—— >el7——>e8

TOl:el——>e3——>eb——>¢e7

TO2 : e2——>e4d— —>eb6—— > e8

Note that if exception e8 is raised in O and Oj is
informed of it, then Oq has to find the appropriate exception
to raise (in this example it is e7). When O5 is informed of
e7, it has to raise the further exception e6, in which case e5
will be raised in O1, and so on. Therefore, in this example,
any exception will always lead to further exceptions until
the root of the exception tree is reached. To solve this
problem, we will assume in our new mechanism that each
participating object has handlers for all exceptions declared
in a given action. It is, we argue, a natural assumption since
participating objects are implemented cooperatively and all
of them should be involved in any activity of exception
handling.

Another important issue is how to raise an abortion
exception in nested actions. The CR algorithm relies heavily
on such abortion, but assumes that the related operations
can be provided by the underlying system. However, we
found that this is not a trivial problem. Consider four
concurrent objects, O1, Oy, O3, and Oy, in several nested
atomic actions (see Fig. 4). If O; detects an error and thus
raises an exception, Op, O3, and O4 will be informed
subsequently of the exception. Since O1 may know nothing
about nested actions Ay and Az, Op, O3, and Oy are
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responsible for actual abortion of these actions. Several
problems (which were not adequately discussed in [5]) are
as follows:

1. Ajs should be aborted before A,;

2. 0y, O3, and Oy are responsible for aborting Aj;

3. If O was supposed to enter A, and A3 but failed to
do so due to an error (O is thus a belated participant
for Ay and As), Oy, O3, and O4 could wait for it to
complete the abortion of A, and A3 (so abortion
handlers must be used that have been implemented
in a very special way in order to avoid deadlocks);

4. If O, raises an exception as well, all A3 participants
(maybe including O as a belated participant, see the
reason above) must participate in error recovery; any
lower level resolution performed by O should be
ignored when the resolution is started by O7 within
A1 (however, since belated participants can partici-
pate in the resolution only when they enter the
nested action, the entire protocol execution for
resolution has to be delayed); and

5. To abort nested actions, only abortion handlers
should be executed because the execution of other
handlers would not guarantee correct abortion.

Hence, all exceptions signaled by abortion handlers in a
nested action have to be ignored unless the action is nested
directly in the action where an exception was raised (e.g., all
signaling from within the nested action A3, but not from Ay,

will be ignored for the resolution performed by Action Aj).
In fact, from the point of view of a single object that

cooperates with other objects in a distributed system, our
exception model can be described in the following way: If
an exception is raised in the object, it is guaranteed that a
handler for the exception or for an exception with a higher
order in the resolution tree will be executed. An object may
be interrupted at any time and forced to perform an
exception handler even if it did not encounter any problem
of its own. This includes the situation in which the current
action the object participates in is aborted and the object is
thus forced to execute its corresponding abortion handler.
We shall describe a new algorithm for exception resolution
below, based on a set of carefully defined assumptions,
which allow us to overcome all the above-mentioned
problems.
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4 DISTRIBUTED ALGORITHM FOR EXCEPTION
RESOLUTION

According to our model, objects may enter a CA action
asynchronously. A (centralized or decentralized) manager
of CA actions has 1) to guarantee that all participating
objects will wait for each other on the acceptance test line
while using backward error recovery or 2) to invoke
exception handlers for the same exception in these objects
in order to provide coordinated forward error recovery.

4.1 Assumptions and Definitions

It is assumed that, for a given CA action, each participating
object knows all other participating objects of the same
action and has the same exception tree (which is statically
declared). Each object also has a name list of the nested
actions it participates in. The currently innermost action for
the object is called the active CA action (for that object).
Again, note that nested actions can end their executions by
signaling an exception to the containing CA action.

In order for action A; to abort a nested action, an abortion
exception must be raised within the nested action and any
activity of the nested action stopped (including any nested
resolution in progress and execution of any handlers). Each
object in this nested action then starts the corresponding
abortion handler. In general, when an object in its active
action A;; needs to take part in the abortion of a chain of
the nested actions Aj;1 (the outermost), A;.p, ..., Ajsx (the
innermost), it must execute abortion handlers in the order
@i+k),(G+k=-1),.., @G+ 1), ignoring any exception which
may be signaled to a containing action. During the process
of abortion, only the exception signaled by abortion
handlers of directly nested action A;.; is allowed to be
raised in the containing action A;. This is simply because
any handler for a specific exception cannot be called in
those actions which have to be aborted.

An object transits from the normal state to the abnormal
state when 1) an exception is raised within the object or 2) it
receives the message concerning an exception in one or
more other objects. Again, it is important to notice that an
object in the exceptional state, of action A; may raise a
further exception which is signalled by abortion handlers of
the nested action A;,1. However, we assume that only one
such exception can be raised within action A;. The handler
for the exception is intended to perform the simple
“last-will” recovery (see the discussion in [5]). We allow
for the possibility that the abortion handlers of the nested
action A;.1 signal different exceptions to the containing
action A; (though, in accordance with [5], we believe that, in
practice, the same exceptions should be signaled from all
participating objects of action Aj;1). If there exists any
belated participating object of action Aj;q, the abortion
handlers of other participating objects will not have to wait
for it in order to carry out abortion promptly.

Let CA-action be the outermost CA action. We define
G A-action as the group of all participating objects {O1, O, ...,
O, ..., Oj, ...}, where each object O; has a unique number and
all objects are ordered (e.g., object names and the lexico-
graphic ordering could be used). Such ordering helps to
dynamically identify a unique object among objects that
raised exceptions and the chosen object will be responsible

for performing actual exception resolution. Let A be the
active action of O; and G4 be the corresponding set of
participating objects. We assume that each object O; has the
following data structures:

list LE;—records exceptions that have been raised or
suspended states of objects that have halted normal
computation;

stack SA;—stores the exception context and the exception
tree corresponding to each of the nested CA actions.

In the interests of simplicity and brevity, we assume that
application-related message passing is treated indepen-
dently. In our algorithm, only the following specific
messages are used:

Exception(A, O;, E) is sent by object O; to all participating
objects of action A when an exception E is raised within O;;

Suspended(A, O;, S) is sent by each object O; that does not
raise any exception, but has received Exception or
Suspended messages from the others;

Commit(A4, E) is sent by a chosen object in action A to all
participating objects after it completes resolution of
exceptions, where E is the resolved exception. A
corresponding handler for E will be called by each object
once it receives this Commit message.

4.2 The Algorithm

Our algorithm is based on the general support provided by
the underlying system, including FIFO message sending/
receiving between objects and calls to abortion handlers.
During its execution, a participating object O; may be in one
of the following states (denoted by S(O;)): N = Normal, X =
Exceptional (if an exception was raised in O;), and S =
Suspended (if O; has to stop the normal computation due to
the exceptions raised in other objects). In addition, “— ”
stands for “put in” and “= " for “sent to” in the description
of our algorithm. (For a possible implementation, a
“process” running this algorithm may be associated with
each pair (O;, A) of objects and CA actions.)

Algorithm 1:
For any O;,5(0;): = N; and empty LE;, SA;;
loop
if O; enters A then
<A> — SAj; consume messages having arrived;
end if;

if O; completes A then
delete the top element in SA;;
S(0;) : =N if A ends with success or S(O;) : = X if A ends
with failure;
leave A (synchronously)
end if;

if E; is raised in O; then

S(0)) : =X; <A, O;, E> — LE;;
Exception(A4, O;, E;) all O]- in Gy;
exception information = external objects (used by O;
within A);

end if;
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if Oj receives Exception(A*, O, Ej) or
Suspended(A*, Oj, S) then
if A* contains or equals A then //<A> is the top element
in SA;
<A*, O]', E]'> or <A¥, O]', S> LE;;
exception information = uninformed external objects
(used by O; within A*);
if A* contains A then
abort all nested actions until A*;
delete the elements in SA; until <A*>;
delete all elements except <A*, O]-, E]-> or <A*, O]-, S>
in LE;;
if E;p is raised by the abortion handler then
S(0j): = X; <A*, O;, E;p> — LEj;
Exception(A®, O; Egp) = all Ojin G4%
else S(O)): = S; <A*, O;, S> = LE;;
Suspended(A*, O;, S) = all O]- in G4%
end if;
else if S(O;) = N then
S5(0)) : =S; <A* O;, S> — LEj;;
Suspended(A*, O;, S) = all O]' in G4%
end if;
end if;
else retain the Exception or Suspended message till
O; enters A%
end if;
end if;

if O; has all states, X or S, of other objects within A
//<A> is the top element in SA;
and O; has the biggest number among objects with the
state X then
resolve exceptions in LE;  //find E in the exception tree
Commit(A, E) = all objects in G4 - {Oj};
empty LE; and handle E;
end if;

if O; receives Commit(A*, E) then
if <A*> = the top element in SA; then empty LE;
and handle E;
end if;

end if;

end loop

4.3 Two Examples

Before we present the proof of the algorithm, let us consider
two examples which demonstrate how our algorithm
works.

Example 1. Assume that three objects, O1, Oy, and O3,
participate in the action A. If exceptions E1 and E; are
raised in O7 and Oj concurrently, then the three objects
will undertake the following steps:

O1: sends Exception to Oy and Os. Later on, O] may
receive Exception from Op and Suspended from Os. It
then waits for the Commit message. Once it receives
Commit(A, E), it will start handling the resolving
exception E.

Oy: sends Exception to O7 and Os. Later on, it may
receive Exception from O and Suspended from Ojs.
O, then resolves the exceptions Ei and Ep (because
name(Op) > name(O1)), finds the resolving exception E,
sends Commit(A, E) to O; and Osz, and starts handling E.

Os3: receives Exception from O or Op (no matter
who arrived first) and sends the Suspended message to
O1 and O; while suspending any normal computation.
Once O3 receives Commit(A, E) from O, it will start
handling E.

Example 2. Assume that four objects, O1, Oy, O3, and Oy,
participate in a set of nested CA actions (see Fig. 4). If
two errors are detected in both O and O; and, hence,
exceptions E1 and Ej are raised simultaneously, then the
four objects will undertake the following steps, respec-
tively (this example demonstrates how a resolution
started in the nested action A3 is eliminated by the
resolution performed by the containing action Aj):

Oq: sends Exception to Oy, O3, and Oy4. Later on, it
receives suspended from O3 and O4 and Exception(A,
Oy, E3) from O; (assuming that an exception E3 was
signaled by the abortion handler in Oy within Action Aj).
O1 then waits for Commit message (because name(Oy) >
name(0Oq)). Once O1 receives Commit (A1, E) from Oy, it
will start handling E.

Oj: sends Exception to Oz (but O3 is a belated
participant for Action A3z in Fig. 4) and waits for some
message(s) from Ojz. Because O3 is not yet in A3, this
Exception message cannot reach O3. When O; receives
Exception from O, it has to abort nested CA actions A3
and Aj. Since the abortion handler in A signals a further
exception E3 to A1, Oy will send Exception(Aj, Oy, E3)
to O1, O3, and O4. During or after the abortion process it
should receive Suspended from O3 and O4. O, then
resolves the exceptions Ej and Ej3 (because name(O2) >
name(0O1)), finds the resolved exception E, sends
Commit(Aj, E) to O1, O3, and Oy, and starts handling E.

Os3: receives Exception from Oq and has to abort Aj.
We assume no further exception is signaled by the
abortion handler in Os. Thus, O3 sends Suspended to
01, Oy, and Oy. It should also receive Suspended from
O4 and Exception(Aj, Oy, E3) from O;. Once O3
receives Commit(Aj, E) from Oy, it will start handling E.

Oy: takes the action similar to that of O3, but it is not a
belated participant for Action Az. Once O4 receives
Commit(Aj, E) from Oy, it will start handling E.

4.4 Correctness and Complexity

In order to prove the correctness of our algorithm, we
restate the following assumptions:

Assumption 1. Dependable communication between objects is
guaranteed, i.e., no message loss or corruption.

Assumption 2. FIFO message passing between objects is
supported by the target system, i.e., two messages from object
O; will arrive at object Oj in the same order as they were sent.

For a specific distributed system, let T, be the
maximum time of message passing between two objects in
the system, T,,5, be the upper bound of the time spent in
resolving current exceptions, T,py+ be the maximum
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Fig. 5. State changes of a participating object.

possible time for an object to abort one nested CA action,
Nmax be the maximum number of nesting levels of CA
actions (if no nesting, then 1y, = 0), and A,,, be
maximum possible time of handling an (resolved) exception.

The correctness criteria for the proposed algorithm are
two-fold: 1) There is no deadlock and 2) the resolved
exception does cover all the exceptions raised concurrently
within the outermost action. The no deadlock property will
guarantee that the algorithm will produce a result even-
tually and the second criterion will ensure that the
delivered result by the algorithm is actually the intended
result. To further facilitate the understanding of our proofs,
Fig. 5 shows a simple state transition diagram that
illustrates possible state changes of a participating object.

We now show that no deadlock is possible in our
proposed algorithm.

Lemma 1. Consider N objects that interact within nested CA
actions. For any object O;, if it reaches the state X (exceptional)
or S (suspended), it will complete exception handling
ultimately in at most T, where

T S (ana,.r + 3)TmmarTnb0rt + (nma,.r + 1)(Treso + Ama.r)-

Proof. In order to prove the above bound, let us consider
the worst case, i.e., an object that raises an exception is in
the innermost CA action and each time the abortion of a
nested action occurs right at the end of exception
handling within that nested action.

Without loss of generality, assume that an object O; in
the innermost action raises an exception and changes its
state into X. It will send the exception message to all the
other objects, by Assumption 1, which will arrive at them
in Tymax- Since there are no further nested actions within
the innermost action, any message from the other objects
about an exception or suspended state would come to O;
in at most 2T ;4. Note that actual exception resolution
may take Tyeg,. Therefore, O; will receive a resolved
exception and then complete exception handling in at
most (3T ymax + Treso + Amax)-

If O; has not yet left the innermost action, but a further
exception occurs in its direct containing action, then the
abortion of the innermost action will be required. After
the abortion, O; will send either an abortion exception or
suspended message to other objects, which will arrive at
them in (Tport + Trmax)- O; will then receive the resolved
exception (or resolve the exceptions by itself) in at most
(Treso + Tmax) and complete exception handling within

a. the object raises an exception

b: the object is suspended by another object
¢: error recovery is successful

d: error recovery or abortion operation fails

Apax- The whole process costs at most (21,0x + Taport +
Treso + Amax)-

In the worst case, the above process could be repeated
Ny times until the outermost CA action is reached.
Totally, the repeated process will cost at most
a2 T mmax + Taport + Treso + Amay). Adding the time
spent in the innermost action, we thus have that

T < (2nma£ + 3) (Trnmar + nmaz'TabU'rt
+ (nmafr: + 1)(7—‘7950 + Amaz)7

namely, object O; will complete exception handling
ultimately and leave the outermost CA action. O

By Lemma 1, we know that any object will complete
exception handling within a finite time bound. Therefore,
deadlock during the process of exception handling will be
impossible while executing the proposed algorithm. How-
ever, in order to prove the entire correctness of the
proposed algorithm, we must show that any resolved
exception is a proper cover of the multiple concurrent
exceptions that have been raised so far.

Lemma 2. For a given CA action A, if no exception is raised in
any containing action of A, then no more new exceptions will
be raised within A once the exception resolution starts.

Proof. Assume that, to the contrary, a new exception
message arrives at the resolving object after it has
started the resolution. Note that, from the proposed
algorithm, the resolving object must know all the states
(X or 8S) of the participating objects in A before it can
begin any actual resolution. Hence, by Assumption 2,
the only possibility is that the newly arriving exception
is caused by an abortion event, namely, A, must be
aborted by some containing action, contradicting the
assumption that no exception is raised in any contain-
ing action of A. O

Lemma 3. Consider N objects that interact within nested
CA actions. If multiple exceptions are raised concurrently,
an ultimate resolved exception that covers all the exceptions
will be generated by the proposed algorithm.

Proof. An exception that is raised in the containing
CA action will abort any effect the nested action may
have made or be making (even if a resolved exception for
the nested action has been identified and the correspond-
ing exception handling has been in operation). Note that,
however, the number of nesting levels is finite and
bounded by nmax. Abortion will be no longer possible if
the current active action A is the outermost CA action. By
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Fig. 6. Architecture for a prototype implementation.

Lemma 2, the exception resolution will start finally and
no more new exceptions will be raised. ]

From Lemmas 2 and 3, we know that a resolved
exception will always cover all the currently existing
exceptions. Any further exception will cause the abortion
of any effect of previous resolutions and trigger the new
exception resolution. Because deadlock is not possible, the
final resolved exception will be raised in the end. We
therefore have the conclusion below.

Theorem 1. The proposed algorithm is deadlock-free and always
performs correct exception resolution.

Without the nesting of CA actions, it is obvious that the
message complexity of our algorithm is O(N2) messages,
where N is the number of the objects participating in the
outermost CA action. More precisely,

1.  When only one exception is raised and there are no
nested actions, thenthenumber of messagesis (N +1) x
(N-1),i.e.,(N-N)Exceptions, (N-1)2Suspendeds,
and (N — 1)Commit messages;

2. When all N objects have the exceptions raised
simultaneously, then the number of messages is still
(N+1) x (N-1),i.e, N x (N-1)Exceptions and
(N - 1)Commit messages.

From the proposed algorithm, we can see that the
number of messages is, in fact, independent of the number
of concurrent exceptions, which is a great improvement
over our previous algorithm in [26]. Taking the nesting of
actions into account, we have the theorem below.

Theorem 2. [n the worst case, our proposed algorithm requires
exactly Nyg, x (N2 — 1) messages.

Note that the CR algorithm [5] is of complexity O(1,, ¥
N3). Our previous algorithm in [26] could use 71,5, % 3N x
(N — 1) messages. Our new algorithm is less complex
because only one object (rather than all the objects) resolves
multiple exceptions and only one object needs to send the
Commit message. In the interest of fault tolerance, the
algorithm can be easily extended to the use of a group of
objects that are responsible for performing resolution and
producing the Commit messages. This only contributes a
constant factor to its total complexity.

OS: Operating System

4.5 Implementation and Performance-Related
Analysis

In order to implement the resolution algorithm and support
reliable message passing, a practical way could be to use
group communication and a group membership service
[16]. Participating objects in a CA action could be treated as
members of a closed group which multicasts service
messages to all members. Another way would be the use
of reflection and meta-objects [21]. The algorithm can be
programmed as a meta-protocol connecting a set of meta-
objects: one for each CA action participant. Exceptions,
handlers, exception contexts should be first class objects.
Such implementation would allow the dynamic change of
different resolution algorithms (e.g., centralized or decen-
tralized) to be transparent to the application programmer.
We can use Open C++ [6] as a testbed which offers
ObjectCommunities as a group communication feature
and simplifies transactions as a particularly practical system
for small experiments. Practical experiments of using this
language to implement distributed replicated objects have
been very successful [11].

We have recently implemented a prototype of the
resolution mechanism and the CA action supporting system
in Ada 95 [1] (with the standard features of the Distributed
Annex) in order to identify and tackle implementation and
performance-related issues. We have chosen Ada 95 (the
GNAT Ada 95 compiler, public release 3.04, on SunOS 5.4)
because it is one of few standard OO languages that have
features for distributed programming. Besides, its elaborate
features for concurrent programming, such as protected
objects, asynchronous transfer of control, and conditional
entry calls, greatly simplify the task of programming the
run time support and ensuring the data consistency.

Fig. 6 shows the system architecture for our prototype
implementation. For each given CA action, its participating
objects, called roles, are located on separate computing
nodes. Communication and interaction between these roles
are supported by a message passing subsystem (MPS).
Received messages are first kept in a cyclic buffer before
being consumed. A run-time system (caaRTS) that supports
the execution of CA actions is established, together with
MPS. This support system is decentralized in the sense that
every distributed node has a copy of caaRTS. This basic CA
action support offers the main CA action features: (nested)
action entry points and exits, raising and signaling of
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TABLE 1
Performance-Related Results

Message Total Execution Abortion Total Execution || Resolution Total Execution

Passing Time Time Time Time Time
0.2 94.361391 0.1 94.361391 0.3 94.361391
04 98.586050 0.3 98.991825 0.5 98.352511
0.6 102.150904 0.5 101.939318 0.7 102.547776
0.8 106.774196 0.7 106.150075 0.9 107.164660
1.0 110.984972 0.9 110.154827 1.1 110.338507
1.2 125.078084 1.1 113.937682 1.3 114.729476
1.4 140.826807 1.3 118.147893 1.5 118.928022
1.6 161.766956 1.5 122.573297 1.7 122483917
1.8 188.284787 1.7 128.461646 1.9 127.117187
2.0 214.519403 1.9 130.362452 2.1 131.816326
2.2 226.543372 2.1 134.165025 2.3 135.123453

exceptions, abortion of (nested) actions, and calls to
handlers. In addition, we have also implemented a basic
protocol for participating objects to leave a CA action
synchronously.

Note that an exception may interrupt the normal
computation or cause the abortion of the nested actions.
We use the Ada 95 asynchronous transfer of control (ATC)
to interrupt the action execution; the exception context of
each CA action consists of the ATC blocks of its participat-
ing objects. The exception context in a participating object
has an abortion handler and a set of action handlers. Every
partition has a copy of the resolution function and of the
resolution tree so as to ensure that the handlers for the same
exception are called in all participating objects. The types
common to all participating objects are declared in package
Pure, which is used in compiling all packages; it includes
the names of all exceptions, the lists of participants of all
actions, the types declaring all object states, and all types of
messages.

This prototype shows that the protocol is easy to
implement: The entire implementation has about 1,000
lines of code, 800 of which form the partition executive
and only 300 of those deal with exception handling and
resolution. The protocol fits well with the structure of the
modern distributed systems. It demonstrates how to
extend the basic CA action executive by just adding
new functionalities to it. The implemented protocol is
general and can be easily moved to other distributed
systems, perhaps with minor adjustment as to perfor-
mance enhancement.

A simple application using nested CA actions was run
on the prototype implementation. The application program
was executed in a 20 times loop and the execution time
measured (in seconds). One of the experiment sets was set
up as follows: One role of a containing action raises an
exception and its nested actions have to be aborted. A
further exception is raised by the abortion handler. A high-
order exception (covering both exceptions) is then identified
and raised in all the roles. We varied three parameters,
T imaxs Tavort, and Thego, in order to examine different effects
of these factors on the execution time (where T,y;;,.y is the

maximum time of message passing between two concurrent
execution threads in the system, T,p,+ is the maximum
possible time for a thread to abort a nested action, and Ty
is the upper bound of the time spent in resolving multiple
exceptions).

The values for these three parameters in our experiments
are chosen based on two main considerations: 1) their
reality and 2) our ability to analyze the overheads
introduced by exception resolution by varying the para-
meters. The values chosen for Ty, correspond well to
several types of practical distributed systems. The interval
of values for T,po+ is decided based on the fact that the
abortion of atomic actions in practice requires some
access to discs in order to restore the state of affected
objects. The values for parameter Tpo+ are chosen for the
situations in which exception trees have a fairly large size
so that any search in them can take a considerable time.
For example, let Typax = 0.25, Typore = 0.1s, and Tpesp =
0.3s; the execution of the application will take about
94.36s. Table 1 presents some typical data with varying
values of Tymav, Tavort, and Tyeso-

The experimental data obtained are essentially consistent
with the theoretical analysis presented previously. Fig. 7
illustrates effect on the total execution time of the applica-
tion system. When T4 is limited within 1.0s, the cost of

Total Execution Time

(seconds)
A
200
A varying T, ..«
w00 F O varying T,
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1 1 L 1 » T
0 1.0 2.0 3.0

(seconds)

Fig. 7. Effect on total execution time.
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Fig. 8. Performance-related comparison of Algorithm 1 and the CR algorithm.

message passing has a minor impact on the total execution
time. The execution time will increase dramatically once the
time of message passing becomes longer than one second.
On the other hand, with an increase in Tyeso OF Typort, the
total execution time has a very gentle and linear change.
This demonstrates, at least by this given prototype im-
plementation, that the cost of message exchanges is still of
the major concern, while concurrent exception handling
does not introduce a high run-time overhead.

Another set of our experiments is to compare
Algorithm 1 with the original CR algorithm developed
in [5]. The CR algorithm was implemented by modifying
our algorithm appropriately and the same application
program was used to collect the related data. The total
execution time was then measured with respect to
different Tjesp and Tyuax- Fig. 8 demonstrates the major
change of the total execution time when varying Ty max
with Ty = 0.3s and when varying Tyesp With Ty =
1.0s. A big difference in the execution time can be
observed even with a fixed N (N = 3 in our case). In
particular, the difference becomes more obvious with an
increase of the time of message passing (see Fig. 8a). The
procedure for exception resolution is called N x (N - 1)
x (N = 2).

5 CONCLUSIONS

The concept of CA actions offers a general and convenient
framework for designing distributed and concurrent
OO software. This paper has focused on important technical
details of concurrent exception handling and resolution
under the CA action framework (though the results are
generally applicable to other atomic action schemes). Our
solutions are intended for a wide set of OO languages and
for practical systems that interact with their environments;
such systems typically are incapable of simple backward
recovery. The OO exception model developed in this paper
extends and improves the models which may be found in
sequential OO languages and the nonconcurrent models for
some concurrent OO languages.

How to correctly cope with nested CA actions in
exceptional situations is a significant and delicate problem,
especially in a distributed computing environment. In [5],
the authors presented just a draft of their resolution
algorithm, without discussing assumptions under which

the algorithm may work. The semantics of the operation of
raising abortion exceptions in nested actions and of the
resuming/suspending mechanism in such nested actions
were not addressed clearly. We have developed an abortion
mechanism that coordinates recovery measures used in
both participating objects of nested actions and external
atomic objects. A new distributed algorithm for exception
resolution has been designed to handle concurrent raising
of multiple exceptions in interacting objects.

We have applied our approach to realistic industrial
applications by developing robust software to control
different types of production cells. A production cell model,
based on a metal-processing plant in Karlsruhe, Germany,
was first created by the FZI (Forschungszentrum Informa-
tik) in 1993 [15] in order to evaluate different formal
methods and to explore their practicability for industrial
applications. Since then, this case study has attracted wide
attention and has been investigated by over 35 different
research groups. In 1996, the FZI presented the specification
of two extended models, called the Fault-Tolerant Produc-
tion Cell [17] and Real-Time Production Cell [18]. We have
recently designed and implemented two control software
systems for these case studies [27], [31]. Analytical and
experimental results have demonstrated the feasibility of
our approach to concurrent exception handling and showed
that the approach makes it possible to reason about
complex exceptional behaviour of a system in a very
disciplined and structured way.

Future research directions would be in two primary
areas in terms of the further development of the CA action
concept. The first is the introduction of an appropriate
linguistic mechanism for specifying (nested) CA actions in a
distributed environment. Second, it is important to inves-
tigate the implementation-related issues with CA action’s
run-time support mechanisms.
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