
Annals of Mathematics and Artificial Intelligence manuscript No.
(will be inserted by the editor)

Compositional reasoning using intervals and

time reversal

Ben Moszkowski

Received: 19 April 2012 / Final revision received: 26 April 2013 /
Accepted: 29 April 2013 / Available online: 5 June 2013

This is an author-produced version of an article in Annals of Mathematics and

Artificial Intelligence (Springer), July 2014, Volume 71, Issue 1–3, pp. 175–250.
The final publication is available at Springer via

http://dx.doi.org/10.1007/s10472-013-9356-8

Abstract Interval Temporal Logic (ITL) is an established formalism for reasoning
about time periods. We investigate some simple kinds of ITL formulas which have
application to compositional reasoning and furthermore are closed under conjunc-
tion and the conventional temporal operator known both as “box” and “always”.
Such closures help us modularly construct formulas from simple building blocks in
a way which preserves useful compositional properties. The most important class
considered here is called the 2-to-1 formulas. They offer an attractive framework
for analysing sequential composition in ITL and provide the formal basis for most
of the subsequent presentation. A key contribution of this work concerns a useful
and apparently new and quite elementary mathematical theorem that 2-to-1 for-
mulas are closed under “box”. We also use a natural form of time symmetry with
2-to-1 formulas. This extends known facts about such formulas by looking at them
in reverse. An important example of this involves showing that 2-to-1 formulas
are also closed under a variant of “box” for prefix subintervals rather than suffix
ones. We then apply the compositional formulas obtained with time symmetry to
analyse concurrent behaviour involving mutual exclusion in both Peterson’s algo-
rithm and a new and more abstract one. At present, our study of mutual exclusion
mainly serves as a kind of experimental “proof of concept” and research tool to
develop and illustrate some of the logical framework’s promising features. We also
discuss how time symmetry sometimes assists in reducing reasoning in ITL to
conventional linear-time temporal logic.

Keywords Interval Temporal Logic · compositional reasoning · formal verifica-
tion · time reversal · symmetry · mutual exclusion · Peterson’s algorithm

Software Technology Research Laboratory
De Montfort University
Leicester, UK
E-mail: benm@dmu.ac.uk

2 Ben Moszkowski

1 Introduction

Intervals and discrete linear state sequences offer a compellingly natural and flexi-
ble way to model computational processes involving hardware or software. Interval
Temporal Logic (ITL) [47] is an established formalism for reasoning about such
phenomena. It has operators for sequentially combining formulas. For example,
if A and B are formulas, so are A⌢B (“chop”) and A⋆ (“chop-star”). These are
somewhat analogous to the concatenation and Kleene star operators for regular
languages and expressions. ITL can express some imperative programming con-
structs (e.g., while-loops) and has executable subsets [47].

We first summarise the primary contributions of this presentation and then
discuss them in more detail:

– Several classes of compositional ITL formulas which all share the important
property that they are closed under conjunction and the conventional temporal
operator “always” (✷).

– Various syntactic and semantic applications of time symmetry to such formulas.
– Some useful techniques for compositionally manipulating a number of suitable

sequential and parallel combinations of the formulas with others.
– A detailed application of these ideas to mutual exclusion, including the analysis

of a novel abstract algorithm as well as Peterson’s well-known concrete one [64].
– All of results are accompanied by rigorous, detailed mathematical theorems,

lemmas and associated proofs, which are moreover themselves a quite indis-
pensable part in the development of the framework.

Our main contribution concerns a novel categorisation and mathematical anal-
ysis of various simple classes of compositional formulas in Propositional ITL

(PITL) [54, 55,57] which are closed under conjunction and the conventional tem-
poral operator “always” (✷). The main class we consider consists of what we call
2-to-1 formulas (which are formally defined in Sect. 4). Briefly, a PITL formula
A is defined to be 2-to-1 if the implication (A;A) ⊃ A if valid, where “;” is a sec-
ond variant of chop. So if two portions of a system both ensure such a formula’s
behaviour, then their sequential composition is guaranteed to as well. The 2-to-1
formulas play a quite central role in almost all of the techniques presented here.
For example, we can show that for the propositional variables p and q, the conven-
tional temporal logic formula p ⊃ ✸q (“if p is true in the initial state, then q is true in

some state”) is 2-to-1. Our new closure theorem immediately guarantees that the
liveness formula ✷(p ⊃ ✸q) (“whenever p is true, q is true then or later”) is 2-to-1
as well. Such a formula is suitable for forward analysis from a state satisfying
p to one satisfying q. The many compositional properties we identify and rigor-
ously prove clearly show that further systematic research about 2-to-1 formulas
and other such classes of formulas closed under conjunction and ✷, including the
relationship between them, is compelling required.

We also propose here a second significant research contribution which exploits
the symmetry of finite linear time to transform 2-to-1 formulas for forward

analysis such as ✷(p ⊃ ✸q) into others for backward analysis from a state to its
predecessors (as described in Sects. 5 and 6). This involves a two-stage approach.
In the first stage, our mathematical framework takes some suitable 2-to-1 formulas
and views them in reverse in finite time to obtain more formulas which are 2-to-1 in
finite time. In the second stage, these formulas are then shown to even be 2-to-1 in

Compositional reasoning using intervals and time reversal 3

infinite time. The process of transforming formulas demonstrates the significance
of both syntactic and semantic forms of time symmetry.

The relationship between our use of time symmetry and some relevant earlier
work using it is primarily discussed later in Sect. 16.1. We postpone a comparison
until then in order that readers will have a better understanding of our framework.

The approach here based on 2-to-1 formulas and time symmetry further devel-
ops our ITL-based compositional techniques described in [48–51] since, for exam-
ple, it helps to systematically obtain additional properties for sequential composi-
tion. Moreover, a number of results about 2-to-1 formulas and time symmetry are
also applicable to the first-order version of ITL used in our earlier work, but we
do not delve into this further.

We will consider a variety of relevant properties and other related categories
of PITL formulas for compositional reasoning about sequential and parallel be-
haviour. The main techniques here can be summarised as Introduction, Sequential
combining, Extension leftward or rightward, Parallel combining and Iteration (see
Sect. 4.1). This is abbreviated with the shorthand ISEPI.

The 2-to-1 formulas and time symmetry are then applied (in Sects. 11–13) to
showing by means of backward analysis the correctness of a new high-level abstract
algorithm for mutual exclusion as well as the much studied one of Peterson [64].
It is first of all quite important to emphasise that the study of mutual exclusion
led us in the first place to the 2-to-1 formulas and time symmetry. However, at
present, our study of mutual exclusion mainly serves as a kind of experimental
“proof of concept”. It has significantly influenced the development of virtually all

aspects of the presentation here and moreover helps to illustrate some of the logical

framework’s promising features. Nevertheless, we do not claim that it is sufficiently
mature for practical deployment. Readers may indeed experience some difficulties
with the intuition behind some formulas. Therefore, the material on mutual exclusion

must be regarded, at least at present, as being primarily a powerful research tool for
the intriguing compositional framework’s evolving theory rather than a distinct and

independent application on its own. As such, it is for the moment indispensable for

understanding the work.

Our presentation also shows (in Sect. 14) how time symmetry can assist in
reducing satisfiability of suitable 2-to-1 formulas and some other PITL formulas to
finite-time satisfiability of formulas in lower-level point-based temporal logic. This
might help provide a way to extend the scope of some algorithms, implemented
software tools and mathematical techniques for conventional temporal logic to
eventually include suitable subsets of PITL involving 2-to-1 formulas as well.

The proofs given about PITL formulas are semantically based and so do not use
a formal axiom system. However, an analysis could in principle include deductions
in our complete axiom system for PITL with finite time [54] (see also Bowman
and Thompson [10]) and our newer one with infinite time [57].

Readers new to interval-based reasoning will find the approach quite different from

those using point-based temporal logics. This applies even to our use of a conventional
temporal logic formula such as ✷(p ⊃ ✸q), when, for example, we explain why
it is 2-to-1 or use time symmetry on it. In fact, we believe that even readers
having experience with intervals will find our presentation quite novel. They should
however keep in mind that time symmetry can be rather subtle. It requires an
investment of patience and effort to be understood.

4 Ben Moszkowski

For the particular benefit of readers unfamiliar with ITL, we now briefly men-
tion some recent publications by others which reflect current topics where ITL is
being applied. They arguably contribute to making a case for the study of ITL’s
mathematical foundations, which naturally include such issues as compositionality
and time symmetry.

The KIV interactive theorem prover [68] has for a number of years included
a slightly extended version of ITL for interactive theorem proving via symbolic
execution both by itself (e.g., for concurrent algorithms and lock-free techniques [6,
7]) and also as a backend notation which supports Statecharts [78] and UML [2].
The concluding remarks of [7] note the following advantages of ITL:

Our ITL variant supports classic temporal logic operators as well as pro-
gram operators.
The interactive verifier KIV allows us to directly verify parallel programs in
a rich programming language using the intuitive proof principle of symbolic
execution. An additional translation to a special normal form (as e.g. in
TLA [Temporal Logic of Actions [38]]) using explicit program counters is
not necessary.

The Duration Calculus (DC) of Zhou, Hoare and Ravn [85] extends ITL to
real-time. Zhou and Hansen [84] give a comprehensive presentation of various
aspects of DC and its application. They include a large bibliography of literature
on DC. Olderog and Dierks’ recent textbook [59] uses DC as the formal logic in a
framework for seamless design flow from specification to verified implementation.
This approach also includes timed automata and automata for programmable logic
controllers (PLC-automata).

Duan and his group have been investigating the theory and application of Pro-
jection Temporal Logic, an ITL extension with operators for temporal granularities
and framing [13–17] (our later Sect. 13.1 gives an explanation of framing). Some
of their recent work on applications such as the specification and verification of
asynchronous communication is described in [44] and [83].

Our presentation is a revised and greatly extended version of the earlier one
by us in [56] that readers might benefit from because of its much briefer and more
superficial format. The focus here differs from that in [56] by concentrating more
on the general compositional issues. This is because we have subsequently come to
realise that the theory of 2-to-1 formulas and related classes is much more central
than its application to time symmetry, which is nevertheless quite intriguing. As
a consequence, we have now added various definitions, explanations and other
material. The topics we consider have many interesting aspects of relevance to
compositional reasoning with and without time symmetry.

More recently, in [58] we present in a concise manner new techniques for sys-
tematically and incrementally elucidating connections between 2-to-1 formulas and
some associated compositional classes. These are a direct outcome of the research
described here and can serve as a quick introduction to the mathematics of such
classes. However, the compositional ISEPI techniques, time symmetry and appli-
cations to mutual exclusion are not discussed in [58].

Here is our presentation’s structure:

– Section 2 overviews PITL.
– Section 3 presents some important point-based subsets of PITL used later on

in our analysis.

Compositional reasoning using intervals and time reversal 5

– Section 4 introduces 2-to-1 formulas, presents various kinds of them and proves
that they are closed under conjunction, the temporal operator ✷ (“always”)
as well as the time-wise symmetric operator f✷, which concerns finite prefix
subintervals instead of suffix subintervals. As we discuss there, 2-to-1 formulas
can be used for reasoning about various safety and liveness properties. A cate-
gorisation is given of general compositional ISEPI techniques for Introduction,
Sequential combining, Extension leftward or rightward, Parallel combining and
Iteration.

– Section 5 starts our discussion about the application to 2-to-1 formulas of both
time symmetry and reductions from infinite time to finite time. It therefore
shows how to relate some of the time reversed formulas to other semantically
comparable ones expressed in a version of conventional Propositional Linear-

Time Temporal Logic (PTL) with past time because this is much better
known than PITL.

– Section 6 uses time symmetry to obtain a versatile class of 2-to-1 formulas for
backward analysis from other 2-to-1 formulas for forward analysis. Such formulas
are extensively used in all subsequent sections.

– Sections 7–10 primarily concern versions of the various ISEPI techniques suit-
able for compositionally combining 2-to-1 formulas for backward analysis:
– Section 7 provides ways to compositionally introduce such 2-to-1 formulas.
– Section 8 deals with a compositional technique for sequentially extending

the scope of the 2-to-1 formulas for backward analysis from an interval’s
prefix subinterval to the entire interval.

– Section 9 concerns the parallel combining of such 2-to-1 formulas.
– Section 10 presents techniques for compositional reasoning involving the

sequential iteration of these 2-to-1 formulas.
– Sections 11–13 concern mutual exclusion:

– Section 11 looks at an abstract mutual exclusion algorithm. The section
applies to the algorithm the results from the previous sections concerning
2-to-1 formulas for backward analysis and ISEPI techniques for sequential
and parallel composition of such formulas.

– Section 12 considers in more detail an individual process in the abstract
mutual exclusion algorithm and also its relation to a process in Peterson’s
algorithm.

– Section 13 analyses Peterson’s algorithm. This is done by formally relating
it to the abstract algorithm.

– Section 14 examines further reductions using time symmetry to transform some
PITL formulas into ones in conventional point-based temporal logic.

– Section 15 discusses various pertinent issues.
– Section 16 surveys related work.

Our view is that the separation of the underlying mathematics from the sub-
sequent application to mutual exclusion helps make the foundational theoretical
aspects of the framework clearer. One could indeed even take this a stage further
and argue that in principle the more purely theoretical material on composition-
ality in Sects. 2–10 could be studied somewhat independently of its application
to mutual exclusion in Sects. 11–13. However, in practice, our investigation of the
abstract theory and its application to mutual exclusion have been done simultane-
ously with much cross-fertilisation involving experimentation and trial and error.

6 Ben Moszkowski

As a result, the theory and application of 2-to-1 formulas for backward analysis
seem quite interrelated. Indeed, it appears virtually impossible for us to have de-
veloped either of them in isolation. We therefore believe they are best understood
and appreciated when studied together in a way which offers a more complete
picture of the approach in its current form.

The evolution of this work is moreover inextricably connected with the rigorous
construction of many theorems, lemmas and associated proofs. This also seems to
be an inseparable and quite invaluable and essential part of the exploration pro-
cess. What we present here gives a picture of the current state of the approach. It
continues to progress as we gain more knowledge about the remarkable and exten-
sive mathematical terrain of 2-to-1 formulas for forward and backward analysis.

2 Propositional Interval Temporal Logic

We now describe the version of (quantifier-free) PITL used here. More on ITL and
PITL can be found in [47, 54, 55] (see also Kröger and Merz [37], Fisher [19] and
the ITL web pages [32]).

Below is the syntax of PITL formulas in BNF, where p is any propositional
variable:

A ::= true | p | ¬A | A ∨ A | skip | A⌢
A | A⋆. (1)

The last two constructs are called chop and chop-star, respectively. The boolean
operators false, A ∧ B, A ⊃ B (implies) and A ≡ B (equivalence) are defined as
usual. We refer to A⌢B as strong chop and likewise refer to A⋆ as strong chop-

star. Weak versions are discussed shortly when we present some derived operators.
Time within PITL is modelled by discrete, linear intervals. An interval σ is

any finite or ω-sequence of one or more states σ0, σ1, . . . (which are not necessarily
distinct from one another). Each σi maps every propositional variable p to true

or false. This mapping is denoted as σi(p). Let Σ denote the set of all states. An
interval σ has interval length |σ| ≥ 0, which, if σ is finite, is the number of σ’s
states minus 1 and otherwise ω. So if σ is finite, it has states σ0, . . . , σ|σ|. If the
same state occurs twice in σ, it is counted twice for determining σ’s interval length.
Let Σ+ denote the set of finite intervals and Σω denote the set of infinite ones.
The (standard) version of PITL used here with state-based propositional variables
is called local PITL. A subinterval of σ is any interval which is a contiguous

subsequence of σ’s states. This includes σ itself.
The notation σ |= A, defined shortly by induction on A’s syntax, denotes that

interval σ satisfies formula A. Moreover, A is valid, denoted |= A, if all intervals
satisfy it.

Below are the semantics of the first five PITL constructs in (1):

– True: σ |= true trivially holds for any σ.
– A variable p: σ |= p iff σ0(p)=true (initially p).
– Negation: σ |= ¬A iff σ 6|= A.
– Disjunction: σ |= A ∨ B iff σ |= A or σ |= B.
– Skip: σ |= skip iff σ has exactly two states (i.e., |σ| = 1).

Note that an interval σ satisfies skip even if σ’s two states are identical to each
other. For natural numbers i, j with 0 ≤ i ≤ j ≤ |σ|, let σi:j be the finite subinterval
σi . . . σj (i.e., j− i+1 states). Define σi↑ to be σ’s suffix subinterval from state σi.

Compositional reasoning using intervals and time reversal 7

Below are semantics for strong chop and chop-star:

– A⌢B: σ |= A⌢B iff for some natural number i: 0 ≤ i ≤ |σ|, both σ0:i
|= A

and σi↑ |= B.
Note that in the case where |σ| = ω, we actually have i < |σ|.

– A⋆: σ |= A⋆ iff one of the following holds:
(1) The interval σ has only one state.
(2) σ is finite and either itself satisfies A or can be split into a finite number of

(finite-length) subintervals which share end-states (like chop) and all satisfy
A.

(3) |σ| = ω and σ can be split into ω finite-length intervals sharing end-states
(like chop) and each satisfying A.

Case (3) is called chop-omega and denoted as Aω.

We depict below the behaviour of variable p in a sample 5-state interval σ and
denote true and false by t and f.

σ0 σ1 σ2 σ3 σ4

p t f t f t

This interval satisfies the following formulas:

p skip⌢¬p p ∧ (true⌢¬p) (p ∧ (skip⌢skip))⋆.

For instance, the formula skip⌢¬p is true because σ0σ1 satisfies skip and σ1 . . . σ4

satisfies ¬p since σ1(p) = false. The fourth formula is true because the interval
σ’s three-state subintervals σ0σ1σ2 and σ2σ3σ4 both satisfy p ∧ (skip⌢skip). The
interval σ does not satisfy the formulas below:

¬p skip⌢p true⌢(¬p ∧ ¬(true⌢p)).

Table 1 shows useful derived PITL operators, including empty for one-state
intervals and the weak chop construct A;B which can ignore B in an infinite
interval satisfying A. We derive here ITL’s conventional weak chop-star A∗ from
the strong version, although the two are interderivable. In an infinite interval,
strong chop-star requires an infinite number of iterations each of finite length,
whereas weak chop-star also permits a finite number of iterations with the last
having infinite length. The strong variants of chop and chop-star are taken as
primitives here to simplify some of the reasoning about time symmetry. However,
we extensively use the weak versions for reasoning about possibly nonterminating
parts of programs.

We discuss in Sect. 15.4 the reason for our use of the term “empty” to describe
one-state intervals even though in language theory it refers the unique empty word
with no letters at all.

Let w and w′ denote state formulas without any temporal operators.
Table 2 contains several sample PITL formulas which are valid. For example,

the formula (w ∧ A) ≡ (empty ∧ w);A can be understood as stating that an interval
satisfies state formula w and PITL formula A iff the first state of the interval
satisfies w and the interval satisfies A. Here the first state is equally regarded as
being a one-state interval in its own right. The valid equivalence (f✷ f✷A) ≡ f✷A uses
f✷A to test the formula A in finite subintervals and uses f✷ f✷A to test A in these

8 Ben Moszkowski

©A =̂ skip⌢A Next

✸A =̂ true⌢A Eventually

✷A =̂ ¬✸¬A Henceforth (Always)

more =̂ © true More than one state

empty =̂ ¬more Only one state

finite =̂ ✸empty Finite interval

inf =̂ ¬finite Infinite interval

fin A =̂ ✷(empty ⊃ A) Weak test of final state

stable A =̂ ✷(more ⊃ (A ≡ ©A)) Stability
f✸A =̂ A⌢true Some initial finite subinterval
f✷A =̂ ¬ f✸¬A All initial finite subintervals

A;B =̂ (A⌢B) ∨ (inf ∧ A) Weak chop
i✸A =̂ A;true Some initial subinterval (even infinite)
i✷A =̂ ¬ i✸¬A All initial subintervals (even infinite)

A∗ =̂ A⋆ ∨
(
A⋆⌢(inf ∧ A)

)
Conventional weak chop-star

A+ =̂ A;A∗ One or more iterations

Aω =̂ inf ∧ A⋆ Chop-omega

A← B =̂ finite ⊃ ((fin A) ≡ B) Temporal assignment

A <∼ B =̂ A← B ∧ (stable A; skip) Padded temporal assignment

Table 1 Some useful derived PITL operators

(finite ∧ f✷A) ⊃ A skip⋆ inf ≡ ✷more

(w ∧ A);B ≡ w ∧ (A;B) A ≡ (empty ;A)

w ∧ A ≡ (empty ∧ w);A finite ⊃ (A∗ ≡ A
⋆)

f✷(A ∧ B) ≡ (f✷A ∧ f✷B) (✷ f✷A) ≡ (f✷✷A)

(f✷ f✷A) ≡ f✷A A
∗ ≡ (empty ∨ A

+)

f✸A ∧ f✸B ≡ f✸(f✸A ∧ f✸B)

Table 2 Sample valid PITL formulas

finite subintervals’ own finite subintervals. The equivalence is valid because the set
of finite subintervals contained within an interval’s finite subintervals is exactly
the same as the set of the interval’s own finite subintervals. This is related by time
symmetry to the equivalence (✷✷A) ≡ ✷A which concerns suffix subintervals and is
found even in conventional temporal logic. The last formula (f✸A ∧ f✸B) ≡ f✸(f✸A ∧

f✸B) states that two formulas A and B are each true in finite prefix subintervals
of an interval exactly if the conjunction f✸A ∧ f✸B is true in some finite prefix
subinterval (e.g., the larger of the two satisfying A and B, respectively).

Compositional reasoning using intervals and time reversal 9

3 Some important point-based subsets of PITL

We now present some point-based subsets of PITL which have been found useful
in our previous work [55, 57] and come in handy later.

3.1 Subset of PITL with only skip, next and diamond

Let PTL denote the subset of PITL formulas in conventional Propositional

Linear-Time Temporal Logic with just the (derived) temporal operators © and
✸ in Table 1. We use X, X′ and Y for PTL formulas. Various useful compositional
safety and liveness properties can be expressed in PTL. For instance, we already
presented the sample PTL formulas p ⊃ ✸q and ✷(p ⊃ ✸q) in the introduction
in Sect. 1. Note that the PITL primitive construct skip can be derived in PTL as
©¬© true (the same as © empty), so we can regard PTL as containing it as well.

We will use PTL here since it can express various compositional formulas. Fur-
thermore, it has much lower computational complexity and better tool support
than full PITL, which has nonelementary complexity (a theorem by Kozen de-
scribed in our own joint work with Halpern [45] (reproduced in [54])). Therefore,
Sect. 14 describes some potential transformations using time symmetry from PITL
to a slightly enhanced version of PTL with an until operator defined shortly in
Sect. 3.3.

3.2 Subset of PTL with just unnested next operators

We extensively use an important subset of PTL involving the operator ©:

Definition 3.1 (Next Logic) The set of PTL formulas in which the only primitive
temporal operator is © is called Next Logic (NL). The subset of NL in which no ©

is nested within another © is denoted as NL1.

For example, the NL formula p ∧ © q is in NL1, but the NL formula p ∧ ©(q ∨ © p)
is not.

The variable T denotes formulas in NL1.

All state formulas (e.g., p ∧ ¬q) are in NL1 because they contain no temporal
operators. The important derived PITL constructsmore and empty already defined
in Table 1 are also in NL1. Unlike state formulas, more and empty can detect
whether or not an interval has just one state. However, the primitive construct
skip, which tests for exactly two states, cannot be expressed in NL1 because it
requires one © within another: ©¬© true (the same as © empty).

In order to further illustrate the nature of NL1 expressiveness, we list below
some more properties which NL1 formulas cannot express, together with PTL for-
mulas not in NL1 which do capture these properties:

Property Corresponding formula not in NL1

The formula p ∧ ¬q is true in the third state ©©(p ∧ ¬q)
The interval has more than two states ©© true (same as ©more)
The interval has exactly two states ©¬© true (same as © empty)

10 Ben Moszkowski

The NL1 formulas play a significant role in the theory of PITL. We therefore
strongly encourage readers seriously interested getting a better understanding of
ITL to study our presentation in [55], where we systematically describe some nat-
ural applications of NL1 to relating point-based and interval-based temporal logic.
Our new complete axiom system for PITL with infinite time [57] likewise makes
extensive use of NL1 formulas and therefore shows how they can be profitably
employed.

3.3 PTL with until operator

Our presentation also makes use of a PTL variant called here PTLu. It has a
somewhat restricted strong version of the standard temporal operator until which
is derivable in PITL:

T until A =̂ (skip ∧ T)⋆⌢
A.

Only NL1 formulas are permitted on our restricted until ’s left side, as the definition
indicates by the use of T . This is because if the left operand is not in NL1, the
restricted until will not work properly. For example, the formula (©© p) until q
actually reduces to false. Now PTLu is more expressive than PTL (e.g., see [37]),
but reducible to it using auxiliary variables to mimic until . For example, when
considering the satisfiability of the formula p ∧ ©(p until q) ∧ ¬(p until q), we can
transform it into the formula below with an extra auxiliary variable r:

p ∧ © r ∧ ¬r ∧ ✷
(
r ≡ q ∨ (p ∧ © r)

)
∧ ✷(r ⊃ ✸q).

We make extensive use of PTLu in our recent axiomatic completeness proof for
PITL with infinite time [57]. Section 15.3 later shows an alternative way to derive
until without chop-star.

Section 5 (particularly regarding formula (13)) and Sect. 14 include reductions
from PITL to PTLu. We use PTLu because formulas in it can be more expressive
than in PTL. Nevertheless, they can be readily transformed to PTL, although, as
we noted already, this necessitates the introduction of some auxiliary variables.
When compared with PITL, the differences between PTL and PTLu are certainly
quite small.

4 2-to-1 formulas

We now discuss in more detail the 2-to-1 formulas, which were already briefly
considered in Sect. 1. These are the main class of formulas closed under conjunction
and the temporal operator ✷ in our presentation here. Such closure properties help
to modularly construct formulas from simple building blocks in a way guaranteed
to ensure that the results preserve some useful compositional properties. Many of
the properties of 2-to-1 formulas which we consider concern sequential composition.
However, parallel composition of formulas is not neglected either.

In this section we focus on formally defining 2-to-1 formulas and studying
some of their fundamental theoretical properties. The presentation mostly looks
at the relatively abstract mathematics of compositional reasoning rather than any

Compositional reasoning using intervals and time reversal 11

particular application of the formulas. We believe that the issues explored at such
a level of abstraction are themselves an important contribution to work in the area.
Nevertheless, this material provides a solid and practical basis when the formulas
are extensively used later on with time symmetry in Sects. 5 and 6 and in our
experimental analysis of mutual exclusion in Sects. 11–13.

Definition 4.1 (2-to-1 Formulas) Any PITL formula A for which the implication
(A;A) ⊃ A is valid is called a 2-to-1 formula.

For example, the state formulas true and p are 2-to-1. In the first case, true is
trivially true for any interval, so the implication (true; true) ⊃ true is valid. Here
is a proof for the case of p:

Proof (p is 2-to-1) Suppose that an interval σ satisfies p; p. We can readily show
from the PITL semantics of weak chop (see Table 1) that σ has a prefix subinterval
σ′ (perhaps σ itself) which satisfies p. Hence, the first state of σ′ also satisfies p.
Now the first states of σ and σ′ are identical, so σ itself satisfies p and consequently
also the implication (p; p) ⊃ p. Therefore, every interval satisfies this implication,
so it is indeed valid. Consequently, p is 2-to-1. ⊓⊔

In contrast to true and p, the formula skip is not 2-to-1 and perhaps even
the simplest example of this. Observe that the chop formula skip; skip is satisfied
solely by intervals with precisely 3 states, whereas skip checks that an interval has
exactly 2 states. Hence, the implication (skip; skip) ⊃ skip is not satisfied by 3-state
intervals and is consequently not valid.

As the next Lemma 4.2 shows, it does not actually matter whether we use
weak or strong chop to define 2-to-1 formulas:

Lemma 4.2 The following is an alternative way to characterise 2-to-1 formulas using

strong chop instead of weak chop:

|= (A⌢
A) ⊃ A.

Proof The chain of equivalences below demonstrates that the two implications
(A;A) ⊃ A and (A⌢A) ⊃ A are in fact semantically indistinguishable:

(A;A) ⊃ A

≡
(
(A⌢

A) ∨ (inf ∧ A)
)
⊃ A

≡
(
(A⌢

A) ⊃ A
)

∧
(
(inf ∧ A) ⊃ A

)

≡
(
(A⌢

A) ⊃ A
)

∧ true

≡ (A⌢
A) ⊃ A.

The first equivalence simply re-expresses A;A using the definition of weak chop in
Table 1 in Sect. 2. The third equivalence holds since the implication (inf ∧ A) ⊃ A

is valid for any PITL formula A and can therefore be replaced by the formula true.
Therefore the two characterisations of 2-to-1 formulas are semantically equivalent.

⊓⊔

We prefer to define 2-to-1 formulas using weak chop because it better copes with
nontermination in applications (such as for mutual exclusion in Sects. 11–13).
Hence, for consistency we will mostly stick with this convention in our presentation

12 Ben Moszkowski

here. Nevertheless, the variant with strong chop can sometimes help to slightly
shorten proofs.

Local PITL is decidable (see our earlier work with Halpern [45] (reproduced
in [54])), but it has nonelementary complexity (a theorem by Kozen presented
there). Therefore, the PITL subset consisting of 2-to-1 formulas is likewise de-
cidable. Our recent axiomatic completeness proof for PITL with infinite time [57]
ensures that a corresponding PITL theorem can be deduced for any 2-to-1 formula.

We can generalise the previous 2-to-1 example p to be any state formula w.
Any NL1 formula T (see Definition 3.1 in Sect. 3.2) is 2-to-1. Furthermore, any
formulas ✸C and i✸C are 2-to-1, where i✸C (defined in Table 1) tests that C is
true in some prefix subinterval, possibly the interval itself even if it is infinite. The
cases for NL1 formulas and i✸C can subsume the case for a state formula w because
it is in NL1 and additionally semantically equivalent to the PITL formula i✸w. Let
us now consider one lemma dealing with all these cases and another concerning
the conjunction of 2-to-1 formulas:

Lemma 4.3 All of the following are 2-to-1 formulas:

1. Any state formula w.

2. Any NL1 formula T .

3. Any PITL formula of the form ✸C.

4. Any PITL formula of the form i✸C.

5. Any PITL formula of the form w ⊃ i✸B, for any state formula w and PITL formula

B.

Proof We examine each of these separately:

– A state formula w: If an interval σ satisfies the formula w;w then the semantics
of PITL ensures that σ’s first state must satisfy w. Hence, σ does as well. As
we already noted, this case can alternatively be subsumed by either the next
one for NL1 formulas or the later one for i✸C.

– An NL1 formula T : Let σ be an interval satisfying T ; T and let σ′ be the
subinterval satisfying the left instance of T . We use case analysis to show that
the interval σ indeed satisfies T as well.
– If σ′ has only one state, then σ itself must satisfy the right-hand instance

of T .
– Otherwise, both σ and σ′ have two or more states. An NL1 formula cannot

test beyond the second state and distinguish between the intervals σ and
σ′. Consequently, if σ′ satisfies T , so must σ.

– A PITL formula of the form ✸C: This follows from the next chain of valid
implications involving the definition of weak chop in Table 1:

(✸C);✸C ⊃
(
(✸C)⌢✸C

)
∨ (inf ∧ ✸C) ⊃ (✸✸C) ∨ ✸C ⊃ ✸C.

For the purposes of comparison, here is a somewhat shorter valid chain of
implications using Lemma 4.2’s alternative characterisation of 2-to-1 formulas
based on strong chop (i.e., |= (A⌢A) ⊃ A):

(✸C)⌢✸C ⊃ ✸✸C ⊃ ✸C.

Compositional reasoning using intervals and time reversal 13

– A PITL formula of the form i✸C: Suppose an interval σ satisfies (i✸C); i✸C. Then
some prefix subinterval σ′ of σ (perhaps σ itself) satisfies the left instance of
i✸C and furthermore σ satisfies i✸ i✸C. Moreover, some prefix subinterval σ′′

of σ′ (perhaps σ′ itself) satisfies the subformula C. Now σ′′ is also a prefix
subinterval of σ, so consequently σ satisfies i✸C.
Here is a corresponding chain of valid implications:

(i✸C); i✸C ⊃ (i✸C); true ⊃ i✸ i✸C ⊃ i✸C.

– A PITL formula of the form w ⊃ i✸B: The equivalence chain below invokes the
case for i✸C to also handle any formula w ⊃ i✸B:

i✸(w ⊃ B) ≡ i✸
(
(¬w) ∨ B

)
≡ i✸(¬w) ∨ i✸B

≡ (¬w) ∨ i✸B ≡ w ⊃ i✸B. ⊓⊔

Lemma 4.4 For any 2-to-1 formulas A and B, the conjunction A ∧ B is a 2-to-1

formula as well. That is, if |= (A;A) ⊃ A and |= (B;B) ⊃ B, then also |=
(
(A ∧

B); (A ∧ B)
)
⊃ (A ∧ B).

Proof Here is a simple semantic proof with four steps:
1 |= A;A ⊃ A Assumption
2 |= B;B ⊃ B Assumption
3 |= (A ∧ B); (A ∧ B) ⊃ (A;A) ∧ (B;B) PITL
4 |= (A ∧ B); (A ∧ B) ⊃ A ∧ B 1-3, Prop.

The mention of “PITL” in Step 3 refers to some routine semantic reasoning
about intervals which we do not further justify here. However, we provide detailed
deductions for valid properties of this kind in our recent axiomatic completeness
proof for PITL with infinite time [57]. We can summarise the proof as a chain of
valid implications:

(A ∧ B); (A ∧ B) ⊃ (A;A) ∧ (B;B) ⊃ A ∧ B. ⊓⊔

The next theorem about 2-to-1 formulas appears to us to be an important, yet
previously unknown elementary mathematical property about compositionality:

Theorem 4.5 If A is 2-to-1, so is ✷A. That is, from the valid implication |= (A;A) ⊃
A follows the next one: |= ((✷A);✷A) ⊃ ✷A.

Proof Our goal is to prove the validity of the implication below for any 2-to-1
formula A:

|= (✷A);✷A ⊃ ✷A. (2)

The proof of validity is a little simpler if we use Lemma 4.2’s alternative charac-
terisation of 2-to-1 formulas involving strong chop (i.e., |= (A⌢A) ⊃ A) to establish
the validity of the next semantically equivalent implication:

|= (✷A)⌢✷A ⊃ ✷A. (3)

Let σ be an interval satisfying (✷A)⌢✷A. We now show that σ also satisfies ✷A.
The semantics of strong chop ensures that there exists at least one pair of subin-
tervals σ′ and σ′′ of σ which share a state, combine to make σ and both satisfy
the subformula ✷A. Here is a diagrammatic representation of this:

σ︷ ︸︸ ︷
(✷A)
︸ ︷︷ ︸

σ′

⌢
✷A

︸ ︷︷ ︸
σ′′

.

14 Ben Moszkowski

From the semantics of ✷ we have that every suffix subinterval of σ′ and σ′′ (in-
cluding σ′ and σ′′ themselves) satisfies the subformula A. Let us now consider an
arbitrary suffix subinterval σ′′′ of the overall interval σ. We want to show that it
satisfies A and hence σ satisfies ✷A. There are two subcases:

– σ′′′ consists of a suffix of σ′ followed by all of σ′′ (perhaps even σ

itself): Now the suffix subinterval of σ′ and the subinterval σ′′ both satisfy A.
Therefore, σ′′′ satisfies the formula A⌢A. The assumption that A is 2-to-1 and
Lemma 4.2 then yield that σ′′′ likewise satisfies A.

– σ′′′ is a suffix of σ′′ (perhaps even σ′′ itself): Hence, σ′′′ immediately
satisfies the 2-to-1 formula A.

Therefore, σ satisfies ✷A. Consequently, implication (3) is valid, as is (2), so ✷A

is indeed 2-to-1.

Observe that we can alternatively express this reasoning about the interval σ
and the formula (✷A)⌢✷A by means of a chain of valid implications starting with
(✷A)⌢✷A and ending with ✷A:

(✷A)⌢✷A ⊃ ✷
(
A ∨ (A⌢

A)
)
⊃ ✷

(
A ∨ A

)
⊃ ✷A. (4)

⊓⊔

Lemma 4.6 For any NL1 formula T and PITL formulas B and C, the following are

2-to-1 formulas:

✷T ✷✸C ✷ i✸C ✷(w ⊃ i✸B).

Proof This readily follows from Lemma 4.3 about some simple kinds of 2-to-1
formulas together with Theorem 4.5. ⊓⊔

Recall that T subsumes w, so ✷T likewise subsumes ✷w.

The 2-to-1 formulas of the form ✷(w ⊃ i✸B) can express some standard tempo-
ral liveness properties. For example, the PTL formula✸q is semantically equivalent
to i✸✸q, so consequently the conventional PTL formula ✷(p ⊃ ✸q) is in fact 2-to-1.
Indeed, its subformula p ⊃ ✸q is also 2-to-1 because the semantic equivalence of
✸q and i✸✸q ensures that the implication can be expressed as p ⊃ i✸✸q.

Let us now discuss why the following three frequently occurring formulas (all
defined in Table 1) are 2-to-1:

finite fin w inf ,

where w is any state formula. The first one finite is 2-to-1 because it denotes
✸empty , which is 2-to-1 by Lemma 4.3. The formula fin w denotes ✷(empty ⊃ w).
The subformula empty ⊃ w is in NL1, so ✷(empty ⊃ w) and fin w are 2-to-1 by
Lemma 4.6. It then follows from this that inf , which denotes ¬finite, is also 2-to-1
since it is semantically equivalent to fin false. Alternatively, inf is 2-to-1 because
it can be expressed as ✷more. Now more is in NL1, so ✷more is likewise 2-to-1 by
Lemma 4.6.

Compositional reasoning using intervals and time reversal 15

4.1 Introduction, combining and extension of 2-to-1 formulas

Our interest here is in compositionally proving the validity of implications of fol-
lowing form:

w ∧ Sys ⊃ A ∧ fin w
′
,

where w is a state formula about the initial state, Sys expresses some abstract
or concrete system’s behaviour in PITL, A is a 2-to-1 formula and w′ is a state
formula about the final state if the system terminates. Now we can build Sys

by starting with various simple formulas corresponding to individual concrete or
abstract program steps. These are then combined in different ways, such as se-
quentially (e.g., using chop) or in parallel (using logical-and). For example, Sys
could be the sequential composition Sys′; Sys′′ of two parts Sys′ and Sys′′. Suppose
we have already proved the validity of the following two implications for Sys′ and
Sys′′, respectively:

|= w ∧ Sys′ ⊃ A ∧ fin w
′′

|= w
′′

∧ Sys′′ ⊃ A ∧ fin w
′
.

The validity of the previous implication for Sys then follows from the validity of
these, in part because the two instances of the 2-to-1 formula A can be combined
into a single one.

Our mutual exclusion examples discussed later in Sects. 11–13 involve two
processes running in parallel, with each containing several sequential parts. We
first employ a technique for showing that some of the system’s individual steps
imply 2-to-1 formulas. We regard this as a way to introduce 2-to-1 formulas. These
can then be combined together (e.g., sequentially or in parallel) or extended using
some of the other techniques to obtain 2-to-1 formulas about bigger portions of the
overall system. Eventually we show that the entire system with its initial condition
implies a 2-to-1 formula.

Let us now discuss four general kinds of techniques to help compositionally
reason about 2-to-1 formulas. Each is associated with one or two valid generic
implications concerning such formulas. We later present some specific suitable
implications when we look at the four techniques individually in greater detail.
However, these implications are not meant to be exhaustive. Below is a list of the
main categories we consider:

Introduction of a 2-to-1 formula A |= A′ ⊃ A

Sequential combining of two copies of a 2-to-1 formula A |= (A;A) ⊃ A

Extension of a 2-to-1 formula A leftward or rightward |= (A′;A) ⊃ A
|= (A;A′) ⊃ A

Parallel combining of two 2-to-1 formulas A and A′ |= (A ∧ A′) ⊃ A′′.

The shorthand ISEP can be used as an abbreviation for the four parts Introduction,
Sequential combining, Extension leftward or rightward and Parallel combining. The
later Sects. 6–9 cover in detail ISEP techniques for a class of 2-to-1 formulas for
backward analysis. The basic theory of ISEP techniques can even be formalised
in PITL with just chop and skip and so without chop-star. The theory therefore
seems fairly elementary from a mathematical standpoint.

Section 10 adds a further technique for Iteration of 2-to-1 formulas for backward
analysis. The abbreviation ISEPI enlarges ISEP to include this as well. The ISEPI
techniques are later applied to mutual exclusion in Sects. 11–13.

16 Ben Moszkowski

We now illustrate how the first three ISEP techniques can be used together
to combine several sequential formulas in order to obtain from them a single 2-
to-1 formula. Let Sys be a hypothetical system with four sequential parts somehow
or another expressed in PITL as the formulas Sys1, . . . ,Sys4. We have Sys itself
denote the sequential composition of Sys1, . . . ,Sys4:

Sys =̂ Sys1; Sys2; Sys3; Sys4.

Now further assume that Sys1, . . . ,Sys4 have the associated valid implications
below, which also include five state formulas w1, . . . , w5 to serve as pre- and post-
conditions:

|= w1 ∧ Sys1 ⊃ ✷¬p ∧ fin w2

|= w2 ∧ Sys2 ⊃ (finite ∧ fin p) ∧ fin w3

|= w3 ∧ Sys3 ⊃ ✸✷q ∧ fin w4

|= w4 ∧ Sys4 ⊃ (finite ∧ fin q) ∧ fin w5.

(5)

Our goal here is to compositionally prove that the four valid implications in (5)
together ensure that Sys implies the 2-to-1 liveness formula ✷(p ⊃ ✸q) as expressed
by the next valid implication:

|= w1 ∧ Sys ⊃ ✷(p ⊃ ✸q) ∧ fin w5. (6)

It happens that all the subformulas ✷¬p, (finite ∧ fin p), ✸✷q and (finite ∧ fin q)
in (5) are in fact themselves 2-to-1. However, this point is not essential here since
our sole aim is to show the validity of implication (6) relating Sys with the 2-to-1
formula ✷(p ⊃ ✸q).

Below is a more detailed discussion which explains and motivates each ISEP
technique and relates the first three of them to our example:

– ISEP Introduction of a 2-to-1 formula: Here we show that some formula A′

concerning a system step implies the desired 2-to-1 formula A:

|= A
′ ⊃ A.

In our example (5), ISEP Introduction concerns three subformulas ✷¬p, ✸✷q

and finite ∧ fin q for which we can formalise some valid PTL implications:

|= ✷¬p ⊃ ✷(p ⊃ ✸q) |= ✸✷q ⊃ ✷(p ⊃ ✸q) |= (finite ∧ fin q) ⊃ ✷(p ⊃ ✸q).

These ways for ISEP Introduction of the 2-to-1 formula ✷(p ⊃ ✸q) provide
a means to obtain from three of the four valid implications in (5) the valid
implications below for Sys1, Sys3 and Sys4, respectively:

|= w1 ∧ Sys1 ⊃ ✷(p ⊃ ✸q) ∧ fin w2

|= w3 ∧ Sys3 ⊃ ✷(p ⊃ ✸q) ∧ fin w4

|= w4 ∧ Sys4 ⊃ ✷(p ⊃ ✸q) ∧ fin w5.

(7)

Incidentally, the justification for obtaining ✷(p ⊃ ✸q) from finite ∧ fin q can be
subsumed by the case for ✸✷q owing to the next chain of valid implications:

finite ∧ fin q ⊃ ✸✷q ⊃ ✷(p ⊃ ✸q).

The valid implications such as |= (✷¬p) ⊃ ✷(p ⊃ ✸q) for ISEP Introduction
of a 2-to-1-formula are quite important since they can provide a way to start a

compositional analysis involving this formula.

Compositional reasoning using intervals and time reversal 17

It is straightforward to check that if we have a valid implication |= A′ ⊃ A for
ISEP Introduction, then the ones below can also be used for ISEP Introduction:

|= ✷A
′ ⊃ ✷A |= f✷A

′ ⊃ f✷A.

For example, from |= ¬p ⊃ (p ⊃ ✸q) follows |= ✷¬p ⊃ ✷(p ⊃ ✸q).
– ISEP Sequential combining of two instances of a 2-to-1 formula: Here we

take two sequential instances of a 2-to-1 formula A and merge them together:

|= A;A ⊃ A.

This with the particular 2-to-1 formula ✷(p ⊃ ✸q) together provide a way to
reduce the two valid implications in (7) for Sys3 and Sys4 to the next valid one
concerning their sequential composition Sys3; Sys4:

|= w3 ∧ (Sys3; Sys4) ⊃ ✷(p ⊃ ✸q) ∧ fin w5. (8)

Theorems and lemmas about closures provide ways to obtain an instance of an
ISEP technique for Sequential combining from a simpler variant of itself. For
example, Theorem 4.5 ensures that |= (A;A) ⊃ A yields |= ((✷A);✷A) ⊃ ✷A.

– ISEP Extension of a 2-to-1 formula leftward or rightward : The previous
ISEP technique of Sequentially combining two instances of a 2-to-1 formula A

such as ✷(p ⊃ ✸q) seems quite attractive. Unfortunately, it is not always the
case that two adjacent subintervals both satisfy such a 2-to-1 formula A so that
the overall interval automatically also does. However, if one of the subintervals
satisfies A, then we can try to simplify the sequential compositions A′;A and
A;A′ involving A and some other suitable formula A′. The next two valid
implications show the two possible ways to perform the ISEP technique of
Extending leftward or rightward by merging A and A′ together into A:

|= A
′;A ⊃ A |= A;A′ ⊃ A.

Of course, the implications do not work for arbitraryA′, but we shortly consider
some actual practical instances.
Observe that the previous ISEP technique of Sequential combining of a 2-to-1

formula with itself (i.e., |= (A;A) ⊃ A) is in fact just a special case of ISEP

Extending leftward or rightward, where A′ is identical to the 2-to-1 formula A.

It seems that sequential extension can be highly dependent on the nature of
A′. The next valid implication illustrates the first case |= (A′;A) ⊃ A:

|= (finite ∧ fin p);✷(p ⊃ ✸q) ⊃ ✷(p ⊃ ✸q). (9)

Here we takeA to be the 2-to-1 formula ✷(p ⊃ ✸q) and extend it leftward by the
formula finite ∧ fin p which plays the role of A′. Implication (9) is valid because
the instance of p in the left operand of the chop ensures that p is also initially
true in the right operand’s subinterval. Therefore, the right-hand subinterval
moreover satisfies ✸q, so the prefix subintervals of the overall interval which
start before the right-hand subinterval and contain it likewise satisfy ✸q, and
hence also the 2-to-1 formula p ⊃ ✸q. We can then use valid implication (9)
to obtain from the implication for Sys2 in (5) and the later one for Sys3; Sys4
in (8) the next valid implication for Sys2; Sys3; Sys4:

|= w2 ∧ (Sys2; Sys3; Sys4) ⊃ ✷(p ⊃ ✸q) ∧ fin w5. (10)

18 Ben Moszkowski

Once again using the fact that ✷(p ⊃ ✸q) is 2-to-1, we sequentially combine
its two instances in the earlier implication for Sys1 in (5) and the other im-
plication (10) for Sys2; Sys3; Sys4 to arrive at our overall goal, the validity of
implication (6) for Sys.
Sect. 8 consider ways to obtain an instance of an ISEP technique for Extending

leftward or rightward from a simpler variant of itself (e.g., see Theorems 8.1
and 8.7).

Here is a chain of valid implications summarising of all of the ISEP transforma-
tions which we have so far applied on the sequential composition of the original
subformulas ✷¬p, (finite ∧ fin p), ✸✷q and (finite ∧ fin q) in (5):

(✷¬p)
︸ ︷︷ ︸
Sys

1

; (finite ∧ fin p); (✸✷q)
︸ ︷︷ ︸
Sys

3

; (finite ∧ fin q)
︸ ︷︷ ︸

Sys
4

Introduction
⊃ ✷(p ⊃ ✸q); (finite ∧ fin p);✷(p ⊃ ✸q);✷(p ⊃ ✸q)

︸ ︷︷ ︸
Sys

3
and Sys

4

Sequential combining
⊃ ✷(p ⊃ ✸q); (finite ∧ fin p);✷(p ⊃ ✸q)

︸ ︷︷ ︸
Sys

2
and Sys

3
;Sys

4

Extending leftward
⊃ ✷(p ⊃ ✸q);✷(p ⊃ ✸q)

︸ ︷︷ ︸
Sys

1
and Sys

2
;Sys

3
;Sys

4

Sequential combining
⊃ ✷(p ⊃ ✸q).

Underbraces indicate the subformulas reduced to the 2-to-1 formula ✷(p ⊃ ✸q)
in each step and also give the associated parts of Sys. Instead of the first step’s
reductions of each of the pair of 2-to-1 formulas✸✷q and finite ∧ fin q to ✷(p ⊃ ✸q),
we can alternatively use ISEPIntroduction to reduce finite ∧ fin q to ✸✷q, and then
invoke ISEPSequential combining on (✸✷q);✸✷q to obtain ✸✷q. We follow that by
a second application of ISEP Introduction to arrive at our goal ✷(p ⊃ ✸q). Here is
a chain of valid implications summarising this:

(✸✷q); (finite ∧ fin q)
︸ ︷︷ ︸

Sys
4

Introduction
⊃ (✸✷q);✸✷q

︸ ︷︷ ︸
Sys

3
and Sys

4

Sequential combining
⊃ ✸✷q︸︷︷︸

Sys
3
;Sys

4

Introduction
⊃ ✷(p ⊃ ✸q)

We now consider the last of the four ISEP techniques, namely ISEP Parallel

combining of two suitable 2-to-1 formulas. Consider a hypothetical system
Sys′ constructed as the conjunction Sys′1 ∧ Sys′2 of two parts Sys′1 and Sys′2, both
somehow expressed in PITL. Suppose we have the following valid implications for
Sys′1 and Sys′2:

|= w′

1,1 ∧ Sys′1 ⊃ A ∧ fin w′

1,2
|= w′

2,1 ∧ Sys′2 ⊃ A′
∧ fin w′

2,2,

Compositional reasoning using intervals and time reversal 19

Description of ISEPI technique Basis Use

Introduction (simple version): |= A′ ⊃ A (19) (62)
Introduction (with relaxed assumption): |= A′ ⊃ A (20) (63)
Sequential combining of 2-to-1 formula: |= (A;A) ⊃ A Def. 4.1 (64), (75)
Extend a 2-to-1 formula rightward : |= (A;A′) ⊃ A (25) (65)
Parallel combining of 2-to-1 formulas: |= (A ∧ A′) ⊃ A′′ (30) (50), (66)
Iteration of +-to-1 formula: |= A+ ⊃ A (34) (35)

Iteration of “almost” ∗-to-1 formula: |= w ∧ A∗ ⊃ A (40) (54)

Table 3 Examples of ISEPI-based compositional reasoning about 2-to-1 formulas

where the state formulas w′

1,1, . . . , w
′

2,2 serve as pre- and post-conditions. ISEP
Parallel combining provides a way to obtain a similar implication concerning Sys′

from these two. Here is the most straightforward such implication which is valid:

|= (w′

1,1 ∧ w
′

2,1) ∧ (Sys′1 ∧ Sys′2) ⊃ A ∧ A
′

∧ fin(w′

1,2 ∧ w
′

2,2).

However, we are particularly interested in cases where A and A′ are 2-to-1 for-
mulas and moreover their conjunction A ∧ A′ implies some formula A′′ which is
noticeably simpler than the conjunction:

|= A ∧ A
′ ⊃ A

′′
.

Here is a valid PTL formula illustrating the ISEP technique of Parallel combining:

|= ✷(p ⊃ © p) ∧ ✷(q ⊃ ©¬p) ⊃ ✷¬(p ∧ q). (11)

The following is another PTL example of ISEPParallel combining:

|= ✷(p ⊃ ✸✷p) ∧ ✷(q ⊃ ✸✷¬p) ⊃ ✷¬(p ∧ q).

ISEPParallel combining finds application in Sects. 11–13 when we want to merge
together the 2-to-1 formulas obtained for each of two parallel processes concerning
mutual exclusion. Observe that from |= (A ∧ A′) ⊃ A′′ readily follows |= ((✷A) ∧

(✷A′)) ⊃ ✷A′′. This semantic inference rule can be used to prove the validity
of the two implications just given concerning ✷¬(p ∧ q) from simpler ones about
¬(p ∧ q).

Later Sects. 6–9 will consider the ISEP techniques of Introduction, Sequential
combining, Extension and Parallel combining on a class of formulas which are suit-
able for backward analysis. For the convenience of readers, Table 3 provides an
index to various additional instances of the implications subsequently mentioned
for the various ISEP techniques. This includes two extra entries for combining
Iterations of a +-to-1 formula and an “almost” ∗-to-1 formula, which we describe
later on in Sect. 10, so in fact all the ISEPI techniques are represented in Table 3.

Remark 4.7 It is interesting to note that in our applications of the ISEPI techniques
considered above and later on, the concrete instances of all the formulas A, A′ and
A′′ found in the implications are always 2-to-1 formulas. For example, all three
✷-subformulas in implication (11), which involves ISEPI Parallel combining (i.e.,
|= (A ∧ A′) ⊃ A′′), are 2-to-1 by Lemma 4.6 because in each of them, the operand

20 Ben Moszkowski

of ✷ is in NL1. In fact, the sole exception to formulas being 2-to-1 is just the
statement of Theorem 8.7 in Sect. 8.2 for extending a 2-to-1 formula A to the
right: |= (A;A′) ⊃ A. However, even there the generic formula for A′ is in a class
called 1-to- f✷ formulas (see Definition 8.2 in Sect. 8.1) which, like the class of 2-to-
1-formulas, is closed under conjunction and the temporal operator ✷ (as stated in
Sect. 8.1 in Lemma 8.4 and Theorem 8.5). In our application of Theorem 8.7 in
Sect. 12, the concrete instance of A′ is in fact both 1-to- f✷ and 2-to-1.

4.2 2-to-1 formulas involving finite prefix subintervals

The earlier Theorem 4.5 shows that the class of 2-to-1 formulas is closed under
the operator ✷, which concerns suffix subintervals. It is natural to ask whether
time symmetry can help extend the result to prefix subintervals and the associated
operator f✷. In this section we demonstrate that this is indeed the case. The result
is needed when we later consider in Sect. 6 a class of 2-to-1 formulas suitable for
backward analysis. These 2-to-1 formulas play a central role in practically all of
the subsequent sections, including Sects. 11–13 on mutual exclusion.

Theorem 4.8 If A itself is 2-to-1 for finite time, so is f✷A for all intervals, including
infinite ones. More precisely, if |=

(
finite ∧ (A;A)

)
⊃ A, then |=

(
(f✷A); f✷A

)
⊃ f✷A.

Proof The proof is largely based on applying time symmetry to the earlier proof
for Theorem 4.5, which concerns ✷ and suffix subintervals instead of f✷ and prefix
subintervals. The earlier chain of valid implications (4) in Theorem 4.5 can be
adapted for use with f✷A in place of ✷A:

(f✷A)⌢ f✷A ⊃ f✷
(
A ∨ (A⌢

A)
)
⊃ f✷

(
A ∨ A

)
⊃ f✷A. (12)

⊓⊔

The following is a simple corollary of Theorem 4.8:

Corollary 4.9 If a formula f✷A is 2-to-1 for finite time, it is itself likewise 2-to-1 for

all intervals, including infinite ones. More precisely, if |=
(
finite ∧ ((f✷A); f✷A)

)
⊃ f✷A,

then |=
(
(f✷A); f✷A

)
⊃ f✷A.

Proof We start with (f✷A); f✷A. Now the PITL formulas f✷A and f✷ f✷A are semanti-
cally equivalent since they both inspect exactly the finite prefix subintervals. The
assumption that f✷A is 2-to-1 for finite time together with Theorem 4.8 ensures
that f✷ f✷A is 2-to-1 for all intervals. Hence, so is the equivalent formula f✷A. ⊓⊔

Remark 4.10 It is not hard to adapt the results in this section to deal with i✷A,
which is the weak version of f✷A defined in Table 1. We omit the details here.

A formula f✷A can in principle be 2-to-1 even if A itself is not 2-to-1. The
formula f✷skip is a (not especially useful) example. This is because f✷skip is seman-
tically equivalent to the 2-to-1 formula false, but the operand skip is not 2-to-1
by our earlier discussion near the beginning of this Sect. 4. At present we are not
aware of any such formulas with some practical benefits.

Compositional reasoning using intervals and time reversal 21

5 Time reversal and reflection

In this section we consider two complementary ways to exploit time symmetry.
The first is syntactic and the second is semantic.

One way to extend known facts and techniques is by interpreting them in

reverse. For example, as we discussed in Sect. 1, the 2-to-1 PTL formula p ⊃ ✸q

can be viewed as a forward analysis from a state in which p is true to one in which
q is true. For backward analysis, we in essence reverse our perspective by means of
the formula (fin p) ⊃ ✸q (“if p is true in the final state, then q is true in some state”).
This implication considers the behaviour of p in a finite interval’s last state rather
than the first one. In the two sample implications, the subformula ✸q has the same
semantic meaning in both the forward or reversed perspectives. The reversed way
of reasoning can with care provide a basis for performing backward analysis from a
situation in a state to some activities which lead up to it. For instance, an analysis
of a system fault could investigate various plausible anomalies which must precede
it. The next statement is also an example: “If I am wearing shoes, then they must
have been previously placed on my feet”.

We will look at some simple and natural syntactic transformations on formulas
which involve time symmetry and are referred to here as time reversal. These
transformations are in general limited to finite intervals, so we employ a two-

stage approach to also obtain results for infinite time. For example, we can prove
validity of suitable formulas for infinite time after using time reversal to establish
their validity for finite time. The current section includes some compositional uses
of the two-stage process on the class of 2-to-1 formulas already introduced in
Sect. 4. Various 2-to-1 formulas are then later applied to doing backward analysis
of mutual exclusion in Sects. 11–13.

For any PITL formula A, define the temporal reversal Ar by induction on A’s
syntax to act like A in reverse:

truer =̂ true pr =̂ fin p (¬A)r =̂ ¬(Ar) (A∨B)r =̂ Ar
∨Br

skipr =̂ skip (A⌢B)r =̂ Br⌢Ar (A⋆)r =̂ (Ar)⋆.

For instance, morer (the same as (skip⌢true)r) reduces to true⌢skip, which is
semantically equivalent to more in finite intervals (although not in infinite ones).
Similarly, (f✷A)r reduces to ✷(Ar).

For a finite interval σ, let σr denote the interval σ|σ| . . . σ0 which temporally
reverses σ. Observe that any such σ equals the twice reversed interval σrr. Here
are some simple lemmas concerning time reversed intervals and formulas:

Lemma 5.1 For any finite interval σ and PITL formula A, the following are equiva-

lent statements:

(a) σ |= A

(b) σr |= Ar.

Proof We do induction on formula A’s syntax. ⊓⊔

Lemma 5.2 Any PITL formula A is semantically equivalent to Arr in all finite in-

tervals. This can be expressed by the valid implication below:

|= finite ⊃ (A ≡ A
rr).

22 Ben Moszkowski

Proof We use Lemma 5.1 together with the equivalence of σ and σrr to show that
A and Arr have the same truth values for every finite interval σ:

σ |= A iff σ
r |= A

r iff σ
rr |= A

rr iff σ |= A
rr
. ⊓⊔

Lemma 5.3 For any PITL formula A, the following statements are equivalent:

(a) |= finite ⊃ A

(b) |= finite ⊃ Ar.

Proof The formula finite ⊃ A is valid iff all finite intervals satisfy A. Let (Σ+)r

denote the set of reversed finite intervals. This in fact equals Σ+. Time reversal
of the intervals creates a 1-to-1 mapping between Σ+ and itself. Furthermore,
Lemma 5.1 ensures that each finite interval σ satisfies A iff the finite interval σr

satisfies Ar. Hence, (a) and (b) are indeed equivalent statements. ⊓⊔

Note that PITL with just finite time, like some other temporal logics such as
quantified PTL, expresses the regular languages with words having one or more
letters (as we discuss in [54]). The set of regular languages for any (finite) alpha-
bet is closed under word reversal. This explains semantically why reversal cannot
increase PITL’s expressiveness.

The next semantic concept provides a further application of time symmetry:

Definition 5.4 (Reflections) A PITL formula A reflects another PITL formula
B if |= finite ⊃ (A ≡ Br). We call A a reflection of B.

For example, the state formula w ∨ w′ reflects fin(w ∨ w′). The 2-to-1 PTL formula
✸w reflects itself and so can be said to be self-reflecting.

It is important to keep in mind that time reversal and reflection both involve
time symmetry, but time reversal is a syntactic concept, whereas reflection is a
semantic one. In practice, we often employ both techniques together.

We now consider some other examples of reflection in order for readers to gain
fluency with the concept in the context of PITL. This will help when we later look
in Sect. 6 at some properties of reflections of 2-to-1 formulas. The formula (fin p) ⊃
✸q reflects the formula p ⊃ ✸q. They indeed exhibit symmetrical behaviour in finite
intervals. The first formula (fin p) ⊃ ✸q ensures that if p is true in the final state,
then some state has q true. The second formula p ⊃ ✸q ensures that if p is true
in the initial state, then some state has q true. It follows that the next formula
reflects the 2-to-1 PTL formula ✷(p ⊃ ✸q):

f✷
(
(fin p) ⊃ ✸q

)
. (13)

It is not hard to see how p is reflected to be fin p. Similarly, ✷ becomes f✷. We later
show in Sect. 6 that formula (13) is likewise 2-to-1. This formula ensures that
whenever p is true in an interval state, then q is either true in that same state or
some earlier one. Recall from Sect. 3.3 the version of PTL called PTLu and having
a strong until operator. The PTLu formula below has the same semantics as the
PITL formula (13), although we do not claim that this is obvious:

✷¬p ∨
(
(¬p) until q

)
.

The left conjunct ✷¬p deals with intervals where p is never true. In such intervals, q
does not need to be true either, so we can ignore its behaviour. The right disjunct

Compositional reasoning using intervals and time reversal 23

(¬p) until q rather opaquely ensures that if, on the other hand, q is somewhere
true, then p will stay false until the first time q is true. This suffices to guarantee
that the first instance of p cannot precede the first instance of q in the interval.

Let us now look at some trickier examples of reflection involving 2-to-1 formulas
and the operators skip and ©. The formula ✸(skip ∧ q) reflects the 2-to-1 formula
NL1 formula © q. Let us consider why this is so. For any finite interval, the formula
© q ensures that the interval has at least two states with q true in the second

state. The formula ✸(skip ∧ q) likewise ensures that the interval has at least two
states with q true in the penultimate state (i.e., the one which is next to last).
Consequently, any finite interval σ indeed satisfies one of the formulas ✸(skip ∧ q)
and © q iff the interval’s reversal σr satisfies the other. The next formula reflects
the 2-to-1 formula ✷(p ⊃ © q) and by the presentation in Sect. 6 is likewise 2-to-1:

f✷
(
(fin p) ⊃ ✸(skip ∧ q)

)
. (14)

The only tricky part of the reflection here is when we time-wise reverse the effect
of © q by reflecting it using ✸(skip ∧ q) as discussed above.

Consider what kind of finite intervals are satisfied by formula (14). First of
all, a finite interval satisfies the subformula (fin p) ⊃ ✸(skip ∧ q) in (14) iff the
propositional variable p is false in the interval’s last state or the interval has at
least two states and the propositional variable q is true in the interval’s penultimate
state. So if p ends up in the last state being true, then the interval has two or more
states and the last one is immediately preceded by another with q true. The effect
of the subformula (fin p) ⊃ ✸(skip ∧ q) is therefore to make the overall formula (14)
test that within each finite prefix subinterval of an interval, if p is true in the final
state, then the subinterval has at least two states and q is true in the one just
before the final state. This is identical to testing that any state in the overall
interval with p true is immediately preceded by another state with q true. The
PTL formula below has the same semantics as PITL formula (14):

¬p ∧ ✷
(
(more ∧ ¬q) ⊃ ©¬p

)
.

We now demonstrate that every formula has a reflection:

Lemma 5.5 For any PITL formula A, the formula Ar is a reflection of A. In fact,

the formulas A and Ar reflect each other.

Proof Lemma 5.2 ensures for any PITL formula A the valid implication |= finite ⊃(
A ≡ Arr). Therefore, by Definition 5.4 about reflections, the formula A is a
reflection of Ar. In addition, we have the trivially valid implication |= finite ⊃(
Ar ≡ Ar). From this and Definition 5.4 about reflections, the formula Ar is a
reflection of A. Consequently, the formulas A and Ar indeed reflect each other. ⊓⊔

It also follows from our discussion that A reflects B iff B reflects A. Reflect-
ing can sometimes aid in avoiding redundant finite-time proofs in two directions.
Instead, we try to do a proof in one time direction and then with care reflect the
result to apply the other way around. For example, later on in Sect. 6 we reflect
some syntactic classes of 2-to-1 formulas to obtain further classes of 2-to-1 for-
mulas. Sect. 14 discusses how reflection can help reduce reasoning involving f✷ to
simpler PTL-based reasoning.

24 Ben Moszkowski

Here is another example of reflecting based on the previously mentioned chains
of implications (4) and (12), which concern the closure of 2-to-1 formulas under ✷

and f✷, respectively:

(✷A)⌢✷A ⊃ ✷
(
A ∨ (A⌢

A)
)
⊃ ✷

(
A ∨ A

)
⊃ ✷A

(f✷A
r)⌢ f✷A

r ⊃ f✷
(
A
r
∨ (Ar⌢

A
r)
)
⊃ f✷

(
A
r
∨ A

r) ⊃ f✷A
r
.

Remark 5.6 We can alternatively define Ar to be a primitive operator in a variant
of PITL called PITLr. However, it seems at present simpler to work in conventional
PITL.

5.1 PTL with past time

In our later application of time symmetry to compositional reasoning with 2-to-1
formulas, we sometimes compare PITL formulas to others in a version of PTL with
past time, denoted here as PTL−. It is not a subset of conventional PITL because
that does not have past time. Our experience is that even readers with previous
experience with ITL will find the unfamiliar processes of viewing formulas in re-
verse and interval-based backward analysis somewhat challenging. Consequently,
it seems beneficial to compare PITL formulas obtained using time symmetry with
semantically quite similar formulas in a more widely known formalism such as
PTL−.

Time is modelled in PTL− as being linear and discrete (like for PITL and
PTL) but having a bounded past. The syntax of PTL is modified to include the
two additional primitive operators −©X (read previous X) and −✸X (read once X).
The semantics of a PTL formula X is now expressed as (σ, k) |= X, where k is
any natural number not exceeding |σ|. The purpose of k is to indicate the present

state. For example, the semantics of −© and −✸ are as follows:

(σ, k) |= −©X iff k > 0 and (σ, k − 1) |= X

(σ, k) |= −✸X iff for some j : 0 ≤ j ≤ k, (σ, j) |= X.

Consider the sample formula below:

p ∧ −©¬p ∧ ✸q ∧ −✸r.

This is satisfied by any pair (σ, k) with k ≥ 1 where p is true in the state σk, false
in the previous one σk−1, q is true in the state σk or after it, and r is true in the
state σk or before it.

The derived PTL− operator first is defined as follows to test for the first state
of an interval:

first =̂ ¬−©true .

We later use the operator first to help us relate formulas in PITL with others in
PTL−. For example, the following two examples in PTL− and PTL, respectively,
are satisfied by the same intervals:

first ∧ ©(p ⊃ −©q) more ∧
(
(© p) ⊃ q

)
.

More precisely, for any interval σ, the pair (σ, 0) satisfies the left-hand PTL−

formula iff σ satisfies the right-hand PTL formula. The PTL− formula expresses

Compositional reasoning using intervals and time reversal 25

that there are at least two states and the first one, which is the present state, has
no past. Furthermore, if p is true in the second state, q is true in its predecessor,
the first state. The second formula is in PTL and expresses that the interval has
at least two states (with no past), and if p is true in the second one, then q is true
in the first. So both formulas concern the same kind of behaviour.

A PTL− formula X is defined to be satisfiable iff (σ, k) |= X holds for some
pair (σ, k) with k ≤ |σ|. The formula X is valid iff (σ, k) |= X holds for every pair
(σ, k) with k ≤ |σ|.

Duan [13, 14] and Bowman et al. [9] present versions of ITL with past-time
constructs (see also Gomez and Bowman [22]). So in principle, PTL− can be
regarded as a subset of PITL with past time.

6 2-to-1 formulas for backward analysis

Recall Theorem 4.8 in Sect. 4.2 which establishes that if a PITL formula A is 2-to-1
for finite intervals, then the PITL formula f✷A is 2-to-1 for all intervals, including
even infinite ones. Let us now consider a significant class of such f✷-formulas which
are shown to be 2-to-1 with the help of time symmetry. They offer a natural
compositional framework for backward analysis. The previously mentioned PITL
formula f✷

(
(fin p) ⊃ ✸q

)
is an example.

The PITL formula f✷
(
(fin w) ⊃ ✸B

)
is a generalisation of f✷

(
(fin p) ⊃ ✸q

)
and

tests that in any finite prefix interval where w ends true, it is preceded by B. The
subformula B therefore represents some activity observable (non-strictly) prior to
any state where w is true. Such formulas provide a way to do backward analysis
when we want to reason about what must have preceded a state with w true. They
will be extensively investigated and applied in our presentation.

Below is an informal graphical representation of a 10-state interval containing
some finite 8-state prefix subinterval which satisfies (fin w) ⊃ ✸B and ends with w

true:

States:
B

w

✸B
The role which the 2-to-1 formula f✷

(
(fin w) ⊃ ✸B

)
plays here is similar to the

one for formulas in the past-time variant PTL− of PTL (see Sect. 5.1) having the
form ✷(w ⊃ X), where the only temporal operators in the PTL− formula X are
past-time ones.

Perhaps the most important result we need is the following one about a key
property of the PITL formula f✷

(
(fin w) ⊃ ✸B

)
:

Theorem 6.1 For any state formula w and PITL formula B, the following formula

is 2-to-1:
f✷
(
(fin w) ⊃ ✸B

)
. (15)

Proof The operand (fin w) ⊃ ✸B can be reflected to obtain the formula w ⊃ i✸Br,
which is 2-to-1 by our previous Lemma 4.3. Hence, the formula (fin w) ⊃ ✸B is itself

26 Ben Moszkowski

2-to-1 for finite intervals. It follows from this and Theorem 4.8 that f✷
(
(fin w) ⊃

✸B
)
is 2-to-1 for all intervals.

There is also an alternative proof involving the reflection of ✷. We can reflect
f✷
(
(fin w) ⊃ ✸B

)
to be ✷

(
w ⊃ i✸Br

)
. By Lemma 4.6, this ✷-formula is 2-to-1.

Hence, the formula f✷
(
(fin w) ⊃ ✸B

)
is 2-to-1 for finite intervals. By Corollary 4.9,

this formula is 2-to-1 for all intervals, including infinite ones. ⊓⊔

Let us now consider the next instance of f✷
(
(fin w) ⊃ ✸B

)
:

f✷
(
(fin p) ⊃ ✸(skip ∧ q)

)
. (16)

We already mentioned formula (16) as (14) when previously defining and explain-
ing the concept of reflecting formulas. It is true for intervals when each state with
p true is immediately preceded by one with q true. This is because the formula
ensures that any finite prefix subinterval ending with p true in the subinterval’s
last state has q equal true in the subinterval’s penultimate state. So any state with
p true must be immediately preceded by one with q true.

We explained when previously discussing the earlier instance of (16) as for-
mula (14) that it is a reflection of the 2-to-1 PTL formula ✷(p ⊃ © q).

Let us now relate formula (16) to one in PTL−, the version of PTL with past
time previously discussed in Sect. 5.1. We believe that this will help readers better
familiarise themselves with our approach. Formula (16) is comparable to the next
PTL− formula with the standard past-time operator −© for examining the previous
state:

first ∧ ✷(p ⊃ −©q). (17)

By “comparable”, we mean here that an interval σ satisfies the first formula (16)
iff the pair (σ, 0) satisfies the second formula (17). Our use of the PTL− derived
construct first in formula (17) ensures that the second subformula ✷(p ⊃ −©q) only
considers intervals with no past. This is in order to conform to the time model for
PITL which, unlike PTL−, lacks past time.

It can be useful to consider the simple case where the interval σ has just one
state. Observe that σ satisfies the first formula (16) iff p is false in that state.
Similarly, the pair (σ, 0) satisfies the PTL− formula (17) iff p is false in σ’s single
state. If σ has exactly two states, then either p is false in both of them or else the
initial state has p false and q true and the second one has p true.

Pnueli [66] and Lichtenstein, Pnueli and Zuck [41] give early accounts about
how to formalise safety properties for mutual exclusion using past-time formulas of
the form ✷(w ⊃ X), where the temporal formula X only concerns past states and
perhaps the current state, but not future ones. We later look at such approaches
in more detail in Sect. 16.2.

Here is another example of a f✷-formula which is an instance of (15) and hence
2-to-1 by Theorem 6.1:

f✷
(
(fin p) ⊃ ✸¬p

)
. (18)

This is analogous to the next PTL− formula with the past-time variant −✸ of ✸:

first ∧ ✷(p ⊃ −✸¬p).

Compositional reasoning using intervals and time reversal 27

Introduction |= A′ ⊃ A Sect. 7
Sequential combining |= (A;A) ⊃ A Sect. 6
Extension rightward |= (A;A′) ⊃ A Sect. 8
Parallel combining |= (A1 ∧ A2) ⊃ A′ Sect. 9

Iteration |= A+ ⊃ A, |= (w ∧ A∗) ⊃ A Sect. 10

Table 4 ISEPI compositional techniques for a 2-to-1 formula for backward analysis

7 ISEPI introduction of 2-to-1 formulas for backward analysis

Recall the ISEPI techniques previously described in Sect. 4.1. A large part of this
Sect. 7 and the subsequent Sects. 8–10 concerns the ISEPI techniques for 2-to-1
formulas for backward analysis, including iteration of such formulas. The 2-to-1
formulas and their ISEPI techniques will also be extensively used for backward
analysis when we formally study mutual exclusion in Sects. 11–13.

Table 4 gives a summary of our presentation of ISEPI techniques in the previ-
ous, current and next sections concerning 2-to-1 formulas for backward analysis. In
this section we consider the ISEPI technique of Introduction for use with backward
analysis. It can provide a way for a 2-to-1 formula A to be implied from another
one A′ (i.e., |= A′ ⊃ A).

We now discuss two simple valid implications to do the ISEPI technique of
Introduction with the 2-to-1 formula f✷

(
(fin w) ⊃ ✸B

)
. As we already mentioned in

Sect. 4.1, such implications can be quite important since they provide a way to start
a compositional analysis involving the 2-to-1 formula. Therefore, readers should
make sure that they understand the material here. Instances of the implications
are later used in our analysis of mutual exclusion in Sects. 11–13.

The first valid implication for ISEPI Introduction considered here concerns
situations where the state formula w is everywhere false. The implication provides
a way to introduce from a quite simple 2-to-1 formula ✷¬w in PTL the much more
complicated 2-to-1 PITL formula f✷

(
(fin w) ⊃ ✸B

)
:

|= ✷¬w ⊃ f✷
(
(fin w) ⊃ ✸B

)
. (19)

Proof (Validity of (19)) This follows from the fact that if in an interval the state
formula w is always false, then the PTL formula fin w is false in every finite subin-
terval. Hence, for such an interval the implication (fin w) ⊃ ✸B is trivially true in
all finite subintervals. It also follows that the details of B are irrelevant. ⊓⊔

We can alternatively show the validity of implication (19) by observing that the
formula ✷¬w is equivalent to f✷fin ¬w (i.e., |= ✷¬w ≡ f✷fin ¬w). Now f✷fin ¬w is
semantically equivalent to f✷¬fin w and in addition, simple propositional reasoning
ensures that ¬fin w implies (fin w) ⊃ ✸B in each finite prefix subinterval.

The next valid implication is an example of (19) and its simple form of ISEPI
Introduction:

|= ✷¬p ⊃ f✷
(
(fin p) ⊃ ✸q

)
.

This can be interpreted as stating that if p is always false, then every state with
p true is (non-strictly) preceded by a state with q true.

28 Ben Moszkowski

Below is a variant of (19) for ISEPI Introduction which relaxes the requirement
in finite intervals that w is everywhere false. Instead, w only has to be false in all
states except for perhaps the last one:

|= ✷(more ⊃ ¬w) ∧ (inf ∨ ✸B) ⊃ f✷
(
(fin w) ⊃ ✸B

)
. (20)

Observe that if the subformula B is in PTL, so is the antecedent of (20).

Proof (Validity of (20)) We consider the two cases for finite and infinite intervals
separately. The case for infinite ones is easier, so we look at it first.

– For any infinite interval σ, the formula more is true for each of σ’s suffix subin-
tervals (including σ itself). As a result, the formula ✷(more ⊃ ¬w) is semanti-
cally equivalent to ✷¬w. Therefore, the previous valid implication (19) ensures
that σ also satisfies f✷

(
(fin w) ⊃ ✸B

)
.

– On the other hand, suppose σ is a finite interval which satisfies the antecedent
of (20). Hence, σ satisfies ✷(more ⊃ ¬w), so in each proper prefix subinterval
σ′ of σ, the PTL formula fin w is false. This in turn ensures that (fin w) ⊃ ✸B

is true in all such σ′. In addition, σ itself satisfies ✸B, so it likewise satisfies
the implication (fin w) ⊃ ✸B. Hence, each prefix subinterval of σ, including σ

itself, satisfies (fin w) ⊃ ✸B. Therefore, σ also satisfies f✷
(
(fin w) ⊃ ✸B

)
. ⊓⊔

Below is a simple valid instance of (20) and the relaxed form of ISEPI Introduction:

|= ✷(more ⊃ ¬p) ∧ (inf ∨ ✸q) ⊃ f✷
(
(fin p) ⊃ ✸q

)
.

In the later Sects. 11–13 on mutual exclusion, the first simpler variant (19)
of ISEPI Introduction will be used when a process is not in its critical section.
The second relaxed version (20) finds application for the process step in which a
request is made to enter the critical section.

8 ISEPI extension of 2-to-1 formulas rightward for backward analysis

We have so far presented the 2-to-1 formulas for backward analysis and looked
at associated ISEPI techniques for Introduction and Sequential combining. Here is
an example of the ISEPI technique for Extending rightward already discussed in
Sect. 4.1:

|= (¬p ∧ ✷q);✷q ⊃ ¬p ∧ ✷q. (21)

Below is a proof using a chain of valid implications showing that the 2-to-1 formula
¬p ∧ ✷q is extended rightward by the 2-to-1 formula ✷q:

(¬p ∧ ✷q);✷q ⊃ ¬p ∧ (✷q;✷q) ⊃ ¬p ∧ ✷q.

We later use implication (21) in Sect. 8.2 when we illustrate how to incrementally

obtain another variant of the ISEPI technique for Extending rightward a 2-to-1
formula.

The earlier Theorem 4.8 in Sect. 4.2 concerns 2-to-1 formulas being closed
under f✷. The next Theorem 8.1, which naturally generalises Theorem 4.8, provides
an incremental way to adapt the ISEPI technique of Extending rightward a formula
A using another one A′ to Extending rightward the formula f✷A using f✷A′.

Compositional reasoning using intervals and time reversal 29

Theorem 8.1 For any PITL formulas A and A′, we have the semantic inference rule

below:
|=

(
finite ∧ (A;A′)

)
⊃ A ⇒ |=

(
(f✷A); f✷A

′
)
⊃ f✷A. (22)

Proof The reasoning in Theorem 4.8’s proof can be readily adapted for application
to (22) by simply using two formulas A and A′ instead of just one. For example,
here is a chain of valid implications which generalises the earlier one (12):

(f✷A)⌢ f✷A
′ ⊃ f✷

(
A ∨ (A⌢

A
′)
)
⊃ f✷

(
A ∨ A

)
⊃ f✷A. ⊓⊔

Theorem 8.1 is later used in Sect. 8.2 in Theorem 8.7’s proof. Incidentally, a
symmetric variant of Theorem 8.1 to generalise Theorem 4.5 using ✷ instead of
f✷ is possible (i.e., |= (A′;A) ⊃ A ⇒ |= ((✷A′);✷A) ⊃ ✷A). This can facilitate
adapting the ISEPI technique of Extending leftward a formula A using another one
A′ to Extending leftward the formula ✷A using ✷A′.

8.1 A class of formulas for use with ISEPI extending rightward

There are various classes of formulas which, like the 2-to-1 formulas, are closed
under conjunction and ✷. Our presentation now considers one for use in the next
Sect. 8.2 with the ISEPI technique for Extending rightward the 2-to-1 formula
f✷
(
(fin w) ⊃ ✸B

)
for backward analysis. This material finds later application in

our analysis of mutual exclusion in Sects. 11–13 when we merge some sequential
steps of a process together.

Definition 8.2 (1-to- f✷ formulas) Any PITL formula A for which the implication
A ⊃ f✷A is valid is called a 1-to- f✷ formula.

A 1-to- f✷ formula therefore has the property that if it is true in an interval, then
it is also true in all the interval’s finite prefix subintervals. The 1-to- f✷ formulas
include all state formulas and f✷-formulas as well as the formula finite because the
next three implications are all valid:

|= w ⊃ f✷w |= (f✷B) ⊃ f✷ f✷B |= finite ⊃ f✷finite.

The NL1 formula more is not 1-to- f✷ since any one-state interval falsifies the im-
plication more ⊃ f✷more. However, we have the next lemma for a general syntactic
class of NL1 formulas involving more:

Lemma 8.3 For any NL1 formula T , the NL1 implication more ⊃ T is a 1-to- f✷

formula.

Proof We consider two cases for intervals with just one state and with more than
one state. In each case, we show that the intervals indeed satisfy the following
implication:

(more ⊃ T) ⊃ f✷(more ⊃ T). (23)

If an interval σ has just one state, then the PTL formula more is false, so the
interval satisfies more ⊃ T . Furthermore, in a one-state interval, any PITL formula
A is semantically equivalent to f✷A. Therefore, the interval σ satisfies the PITL
formula f✷(more ⊃ T) and hence also implication (23).

30 Ben Moszkowski

Now consider an interval σ which has more than one state and satisfies the NL1

implication more ⊃ T . It follows that the interval also satisfies more and therefore
the NL1 formula T as well. The formula T , like any NL1 formula, can only test at
most the first two states of an interval, so all of σ’s finite prefix subintervals with
two or more states also satisfy T . It follows that every finite prefix subinterval of σ,
including the initial one-state one, satisfies the implication more ⊃ T . Therefore,
σ itself satisfies the f✷-formula f✷(more ⊃ T) and hence also implication (23). ⊓⊔

Lemma 8.4 The 1-to- f✷ formulas are closed under conjunction. That is, if |= A ⊃ f✷A

and |= B ⊃ f✷B, then also |= (A ∧ B) ⊃ f✷(A ∧ B).

Proof Here is a simple semantic proof with four steps:
1 |= A ⊃ f✷A Assumption
2 |= B ⊃ f✷B Assumption
3 |= f✷A ∧ f✷B ≡ f✷(A ∧ B) PITL
4 |= A ∧ B ⊃ f✷(A ∧ B) 1-3, Prop. ⊓⊔

Theorem 8.5 below for 1-to- f✷ formulas is somewhat analogous to the earlier
Theorem 4.5 concerning closure under ✷ for 2-to-1 formulas:

Theorem 8.5 If A is 1-to- f✷, so is ✷A. That is, from the valid implication |= A ⊃ f✷A

follows the next one:
|= ✷A ⊃ f✷✷A.

Proof Here is a short semantic proof:
1 |= A ⊃ f✷A Assumption
2 |= ✷A ⊃ ✷ f✷A 1, PTL
3 |= ✷ f✷A ≡ f✷✷A PITL
4 |= ✷A ⊃ f✷✷A 2, 3, Prop. ⊓⊔

Now for any NL1 formula T , the implication more ⊃ T is also in NL1. So we
already have by Lemma 4.6 that the PTL formula ✷(more ⊃ T) is 2-to-1. It follows
from Lemma 8.3 and Theorem 8.5 that ✷(more ⊃ T) is also 1-to- f✷. This includes
the PTL formula stable p defined in Table 1. The operator stable frequently occurs
in applications of ITL, so it is convenient that a formula such as stable p is both
2-to-1 and 1-to- f✷. The PTL formulas w, ✷w and finite are likewise 2-to-1 and
1-to- f✷. The formula ✷q already mentioned in the sample valid implication (21) is
an example. We shortly make use of the formula ✷q being 1-to- f✷.

Remark 8.6 Another simple example of formulas which are closed under conjunc-
tion and ✷ is the set of 1-to-✷ formulas for any A for which A ⊃ ✷A is valid.
These are to a degree time-wise symmetric versions of the 1-to- f✷ ones. We do not
further discuss here the theory of the 1-to-✷ formulas but briefly encounter them
later in Sect. 13.3 (when we analyse formula (92)).

8.2 Incremental version of ISEPI technique to extend a 2-to-1 formula rightward

We now provide an application of the 1-to- f✷ formulas just presented in Sect. 8.1.
The main result here is Theorem 8.7, which provides a way to do the ISEPI

Compositional reasoning using intervals and time reversal 31

technique of Extending rightward the 2-to-1 formula f✷
(
(fin w) ⊃ ✸B

)
for back-

ward analysis. Theorem 8.7 concerns a semantic inference rule for ensuring that
if B is Extended rightward by a suitable PITL formula C, then the 2-to-1 formula
f✷
(
(fin w) ⊃ ✸B

)
, which contains B as a subformula, is itself Extended rightward by

the conjunction w ∧ C.

Theorem 8.7 Let B be a PITL formula, C be a 1-to- f✷ formula and w be a state

formula. Then the following semantic inference rule is sound:

|= (B;C) ⊃ B ⇒ |=
(
(f✷B

′); (w ∧ C)
)
⊃ f✷B

′
, (24)

where f✷B′ is simply the 2-to-1 formula f✷
(
(fin w) ⊃ ✸B

)
.

The second implication in the semantic inference rule is identical to the following
one which does not abbreviate f✷

(
(fin w) ⊃ ✸B

)
as f✷B′:

(
f✷
(
(fin w) ⊃ ✸B

))
; (w ∧ C) ⊃ f✷

(
(fin w) ⊃ ✸B

)
. (25)

Here is now the proof of Theorem 8.7:

Proof (Theorem 8.7) If we have the valid implication |= (B;C) ⊃ B, then the
following instance of the same ISEPI technique for Extending rightward is also
valid:

|=
(
(fin w) ⊃ ✸B

)
; (w ∧ C) ⊃

(
(fin w) ⊃ ✸B

)
. (26)

Here is a chain of valid implications to justify this from its sole required assumption
|= (B;C) ⊃ B:

(
(fin w) ⊃ ✸B

)
; (w ∧ C) ⊃

((
(fin w) ⊃ ✸B

)
∧ fin w

)
;C

⊃ (✸B);C ⊃ ✸(B;C) ⊃ ✸B ⊃
(
(fin w) ⊃ ✸B

)
.

(27)

From implication (26) and Theorem 8.1 then follows the validity of the next im-
plication that is a variation of (26):

|=
(

f✷
(
(fin w) ⊃ ✸B

))
; f✷(w ∧ C) ⊃ f✷

(
(fin w) ⊃ ✸B

)
. (28)

The formula f✷(w ∧ C) can be re-expressed as w ∧ f✷C. This and our assumption
that C is 1-to- f✷ permit us to obtain the next chain of valid implications:

w ∧ C ⊃ w ∧ f✷C ⊃ f✷(w ∧ C).

Consequently, the next implication is valid:

|=
(

f✷
(
(fin w) ⊃ ✸B

))
; (w ∧ C) ⊃

(
f✷
(
(fin w) ⊃ ✸B

))
; f✷(w ∧ C).

This together with the earlier one (28) ensures the validity of implication (25) and
therefore the desired soundness of semantic inference rule (24). ⊓⊔

32 Ben Moszkowski

Like the semantic inference rule in the previous Theorem 8.1, semantic in-
ference rule (24) provides an incremental way to obtain an instance of an ISEPI
technique from a simpler variant of it.

We illustrate the use of Theorem 8.7 by taking as examples of w, B and C the
propositional variable p, and the two PTL formulas ¬p ∧ ✷q and ✷q, respectively.
Here is the associate instance of |= (B;C) ⊃ B:

|= (¬p ∧ ✷q);✷q ⊃ ¬p ∧ ✷q.

This was already presented as implication (21) at the beginning of this section
to provide a simple example of the ISEPI technique of Extending rightward. It
was furthermore shown there to be valid. The formula ✷q is 1-to- f✷ (and 2-to-1).
Implication (21) can therefore serve as the first implication required by Theo-
rem 8.7’s semantic inference rule (24) to obtain the sample instance below of
implication (25) for the ISEPI technique of Extending rightward the 2-to-1 formula
f✷
(
(fin p) ⊃ ✸(¬p ∧ ✷q)

)
:

|=
(

f✷
(
(fin p) ⊃ ✸(¬p ∧ ✷q)

))
; (p ∧ ✷q) ⊃ f✷

(
(fin p) ⊃ ✸(¬p ∧ ✷q)

)
.

The particular instance of C we later use in our analysis in Sect. 13 of mutual
exclusion for Peterson’s algorithm is the conjunction (70) of two formulas each of
form ✷(more ⊃ T), where T is in NL1. Such formulas are conveniently both 2-to-1
and 1-to- f✷, as we already noted above in Sect. 8.1. The PTL formulas w, ✷w and
finite are also 1-to- f✷ (and additionally 2-to-1), so they can likewise be included in
such conjunctions which serve as instances of C.

9 ISEPI parallel combining of 2-to-1 formulas for backward analysis

The next Lemma 9.1 involves an instance of the ISEPI technique already discussed
in Sect. 4.1 for the Parallel combining of two suitable 2-to-1 formulas. It will be
needed later on to obtain Corollary 11.1 in Sect. 11.2.3. That lemma concerns
mutual exclusion and gives a way to establish that two processes operating in
parallel are not simultaneously in their critical sections. We consider here the
conjunction of two 2-to-1 f✷-formulas each of the form f✷

(
(fin w) ⊃ ✸B

)
:

Lemma 9.1 For any state formulas w and w′ and PITL formulas B and B′, suppose

the following implication is valid:

|= ✸B ∧ ✸B
′ ⊃ inf . (29)

Then the next implication for use with ISEPI Parallel combining and backward anal-

ysis is also valid:

|= f✷
(
(fin w) ⊃ ✸B

)
∧ f✷

(
(fin w

′) ⊃ ✸B
′
)
⊃ ✷¬(w ∧ w

′). (30)

The assumption (29) states that the formulas B and B′ cannot both occur in suffix
subintervals of any finite interval.

Compositional reasoning using intervals and time reversal 33

Before proving Lemma 9.1, we discuss some illustrative examples of implica-
tions (29) and (30), respectively:

|= ✸(skip ∧ q) ∧ ✸(skip ∧ ¬q) ⊃ inf (31)

|= f✷
(
(fin p) ⊃ ✸(skip ∧ q)

)
∧ f✷

(
(fin p

′) ⊃ ✸(skip ∧ ¬q)
)
⊃ ✷¬(p ∧ p

′). (32)

The first implication (31) expresses that a finite interval with two or more states
cannot have the propositional variable q being both true and false in the penul-
timate state (i.e., the one next to last). Observe that the antecedent of implica-
tion (31) is actually unsatisfiable, so the implication is vacuously true. The second
implication (32) involves backward analysis to specify that any state with p true
is immediately preceded by one with q true, and similarly each state with p′ true
is immediately preceded one with q false. This implication is comparable to the
valid PTL− formula below:

|= ✷(p ⊃ −©q) ∧ ✷(p′ ⊃ −©¬q) ⊃ ✷¬(p ∧ p
′).

By “comparable”, we mean here that an interval σ satisfies the PITL implica-
tion (32) iff the pair (σ, 0) satisfies the PTL− formula.

Proof (Lemma 9.1) Here is a proof in steps which assumes the validity of (29):

– The next implication is valid by the assumed validity of (29) together with
propositional reasoning:

|= ¬inf ∧
(
(fin w) ⊃ ✸B

)
∧

(
(fin w

′) ⊃ ✸B
′
)
⊃ (¬fin w) ∨ (¬fin w

′).

This contains the subformula ¬inf in the antecedent and so concerns behaviour
in finite intervals.

– We then have the following chain of valid implications involving PTL-based
reasoning about the operator fin:

(¬fin w) ∨ (¬fin w
′) ⊃ (fin ¬w) ∨ (fin ¬w′)

⊃ fin(¬w ∨ ¬w′) ⊃ fin ¬(w ∧ w
′).

The valid implication below, which is suitable for ISEPI Parallel combining,
subsequently results from combining the previous one and this chain:

|= ¬inf ∧
(
(fin w) ⊃ ✸B

)
∧

(
(fin w

′) ⊃ ✸B
′
)
⊃ fin ¬(w ∧ w

′).

– The following implication for ISEPI Parallel combining, which is about finite
prefix subintervals, is consequently valid:

|= f✷¬inf ∧ f✷
(
(fin w) ⊃ ✸B

)
∧ f✷

(
(fin w

′) ⊃ ✸B
′
)
⊃ f✷fin ¬(w ∧ w

′).

This is because for any PITL formulas A1, . . . , An and A′, if the implication
(A1 ∧ · · · ∧ An) ⊃ A′ is valid, so is

(
(f✷A1) ∧ · · · ∧ (f✷An)

)
⊃ f✷A′ (and indeed

also
(
(✷A1) ∧ · · · ∧ (✷An)

)
⊃ ✷A′).

– The subformula f✷¬inf is trivially true because ¬inf is semantically equivalent
to finite and therefore true in all finite intervals. Furthermore, the subformula
f✷fin ¬(w ∧ w′) and the PTL formula ✷¬(w ∧ w′) are semantically equivalent.
This is because for any interval σ, the set of the final states of σ’s finite prefix
subintervals (which f✷ fin ¬(w ∧ w′) examines) and the set of σ’s states (which
✷¬(w ∧ w′) examines) are identical. Hence, the previous valid implication is
semantically equivalent to our goal (30), which is therefore also valid. ⊓⊔

34 Ben Moszkowski

10 ISEPI iteration of 2-to-1 formulas for backward analysis

We now define some natural variants of 2-to-1 formulas which involve the iterative
constructs chop-star and chop-plus instead of chop. It turns out that the 2-to-1
formula f✷

(
(fin w) ⊃ ✸B

)
for backward analysis has special connections with such

variants. The associated ISEPI technique for Iteration finds application in our
analysis of mutual exclusion in Sects. 11–13 when we consider multiple requests
by a process to a shared resource.

Definition 10.1 (∗-to-1 formulas) Any PITL formula A for which the implica-
tion A∗ ⊃ A is valid is called a ∗-to-1 formula.

Definition 10.2 (+-to-1 formulas) Any PITL formula A for which the implica-
tion A+ ⊃ A is valid is called a +-to-1 formula.

Here is a brief summary of the three classes of formulas we have defined for
sequential composition:

2-to-1 formulas |= (A;A) ⊃ A

∗-to-1 formulas |= A∗ ⊃ A

+-to-1 formulas |= A+ ⊃ A.

The three categories are all closed under conjunction and ✷ (e.g., see Lemmas 10.4
and 10.5 below for +-to-1 formulas). It is not hard to see that any formula A which
is +-to-1 is 2-to-1:

Lemma 10.3 Every +-to-1 formula is also 2-to-1.

Proof Observe that for any PITL formula A, we have that A;A implies A+: |=

(A;A) ⊃ A+. Now if A is +-to-1, then A+ in turn implies A. Hence, by transitivity,
the formula A;A implies A as well, so the formula A is indeed 2-to-1.

Here is a corresponding chain of two valid implications:

A;A ⊃ A
+ ⊃ A. ⊓⊔

Likewise, any formula which is ∗-to-1 is also 2-to-1 and +-to-1 as well because of
the valid PITL implications |= (A;A) ⊃ A∗ and |= A+ ⊃ A∗, which respectively
yield the following two chains of valid implications:

A;A ⊃ A
∗ ⊃ A

A
+ ⊃ A

∗ ⊃ A.

However, the three categories are by no means identical. Below are sample formulas
which illustrate this point:

2-to-1 ∗-to-1 +-to-1
finite X

p X X

empty X X X

Compositional reasoning using intervals and time reversal 35

The reason not every 2-to-1 formula is also +-to-1 is because of the situation
in infinite time. Consider the 2-to-1 formula finite. Any infinite interval satisfies
finite+ but not finite. The same reasoning holds if we replace finite+ by finite∗, so
the formula finite is therefore also not ∗-to-1.

All 2-to-1 f✷-formulas are also +-to-1 as is later shown in Theorem 10.7. Fur-
thermore, the f✷-formulas of the form f✷

(
(fin w) ⊃ ✸B

)
, which we already consid-

ered for backward analysis, are subsequently shown in a meaningful formal sense
to be nearly members of the class of ∗-to-1 formulas. Certain instances of such
formulas can then be profitably used in our analysis of mutual exclusion when
we want to compositionally analyse the behaviour of a process making multiple
requests to a shared resource.

Let us now discuss further properties of 2-to-1 and +-to-1 formulas. We make
some use of ∗-to-1 formulas as well and later mention in Sect. 15.5 their connection
with our earlier work on compositionality in ITL.

Lemma 10.4 For any +-to-1 formulas A and B, their conjunction A ∧ B is +-to-1

as well. That is, if |= A+ ⊃ A and |= B+ ⊃ B, then also |= (A ∧ B)+ ⊃ (A ∧ B).

Proof The formula (A ∧ B)+ implies both A+ and B+ and consequently also their
conjunction A+

∧ B+. Our assumption that A and B are both +-to-1 then guar-
antees that this implies A ∧ B. Here is a corresponding chain of valid implications:

(A ∧ B)+ ⊃ A
+

∧ B
+ ⊃ A ∧ B. ⊓⊔

Lemma 10.5 If A is +-to-1, so is ✷A. That is, if |= A+ ⊃ A, then also |= (✷A)+ ⊃
✷A.

Proof Let σ be an interval which satisfies (✷A)+. Our proof will check that each
suffix subinterval of σ, including σ itself, satisfies A+ and hence also A. Therefore,
σ satisfies ✷A. There are two cases to consider which depend on whether the
number of iterations is finite or infinite:

– The chop-plus involves a finite number of sequential iterations of ✷A: It
follows that σ satisfies the PITL formula (✷A)⋆⌢

✷A containing strong versions
of chop and chop-star. Each of σ’s suffix subintervals can then be shown to
satisfy A+ and so also A, since A is +-to-1. Hence, σ satisfies ✷A.

– The chop-plus involves ω sequential iterations of ✷A (so the interval is

infinite): We can readily check that each suffix subinterval σ′ of σ satisfies
Aω and hence also A+. Therefore, σ′ satisfies A itself because A is +-to-1.
Consequently, σ satisfies ✷A. ⊓⊔

The next theorem is the converse of Lemma 10.3, but necessarily restricted to
finite intervals for reasons given shortly:

Lemma 10.6 If A is 2-to-1, then it is +-to-1 for finite time, that is, the implication

below is valid:

finite ⊃ (A+ ⊃ A). (33)

Proof Let σ be a finite interval satisfying A+. We want to show that σ satisfies
A as well. Now for some natural number k ≥ 1, σ satisfies k instances of A se-
quentially combined with k− 1 chops between then. For example, if k is 3, then σ

satisfies A;A;A. Note that in finite intervals, strong and weak chop have the same

36 Ben Moszkowski

semantics. We do induction on the number of chops in the formula A; . . . ;A and
employ the assumption that A is 2-to-1 to demonstrate that σ satisfies A itself.
Therefore, A is indeed +-to-1 for finite-time intervals and hence implication (33)
is valid. ⊓⊔

We already pointed out above that the formula finite is an example of a 2-
to-1 formula which is not +-to-1 in infinite time. This explains Lemma 10.6’s
requirement about finite time. However, the next Theorem 10.7 demonstrates that
all f✷-formulas which are 2-to-1 formulas are also +-to-1 even for infinite time. Such
formulas are moreover later used in our analysis of mutual exclusion in Sects. 11–13
for multiple requests by a process to a shared resource.

Theorem 10.7 Any 2-to-1 formula f✷B is also +-to-1 for all intervals, including in-

finite ones:
|= (f✷B)+ ⊃ f✷B. (34)

The proof of Theorem 10.7 is given shortly.
Note that in contrast to a 2-to-1 f✷-formula, a 2-to-1 ✷-formula, which looks at

suffix subintervals rather than the prefix ones examined by f✷, is not necessarily
+-to-1. We can take the formula ✷finite to serve as an example of this. It is
semantically equivalent to finite, which we already pointed out is not +-to-1 in
infinite intervals.

We use Theorem 10.7 to provide an ISEPI technique for Iteration with chop-
plus. This has the form |= A+ ⊃ A. The theorem ensures that the implication is
indeed valid if we take A to be the 2-to-1 formula f✷

(
(fin w) ⊃ ✸B

)
for backward

analysis:

|=
(

f✷
(
(fin w) ⊃ ✸B

))+

⊃ f✷
(
(fin w) ⊃ ✸B

)
. (35)

Before proving Theorem 10.7, we present a lemma which concerns a semantic
inference rule used in the proof:

Lemma 10.8 For any PITL formulas C and C′, the next semantic inference rule is

sound:
|= (finite ∧ C

+) ⊃ f✷C
′ ⇒ |= C

⌢
C
⋆ ⊃ f✷C

′
. (36)

Proof We start by assuming the validity of the implication (finite ∧ C+) ⊃ f✷C′.
Our goal is to show from this that any interval σ which satisfies C⌢C⋆ also satisfies
f✷C′. Let σ′ be any finite prefix subinterval of σ (including σ itself if it is finite). Our
proof will show that any such σ′ satisfies C′ and hence σ itself satisfies f✷C′. Now
σ satisfies C⌢C⋆, so σ′ is contained in a finite prefix subinterval σ′′ which likewise
satisfies C⌢C⋆ and so also both C+ and finite ∧ C+. Hence by the assumption,
σ′′ also satisfies f✷C′, so its prefix subinterval σ′ satisfies C′. It follows that all of
the finite prefix subintervals of σ indeed satisfy C′, and therefore σ itself satisfies
f✷C′. ⊓⊔

We now supply Theorem 10.7’s proof:

Proof (Theorem 10.7) Case for finite time: Lemma 10.6 ensures that (33) is valid
for finite time for any 2-to-1 formula, so the next instance of (33), which is moreover
a variant of (34), is valid as well:

(
finite ∧ (f✷B)+

)
⊃ f✷B.

Compositional reasoning using intervals and time reversal 37

Case for infinite time: Our goal here is to show the validity of the next implica-
tion: (

inf ∧ (f✷B)+
)
⊃ f✷B.

Let A denote f✷B. We re-express inf ∧ A+:

|= inf ∧ A
+ ≡ (inf ∧ A

⋆) ∨
(
A
⋆⌢(inf ∧ A)

)
.

The subformula A⋆⌢(inf ∧ A) is re-expressible as inf ∧ (A⋆⌢A), so our semantic
proof can be divided into two parts:

|= inf ∧ (A⋆⌢
A) ⊃ A (37)

|= inf ∧ A
⋆ ⊃ A. (38)

Subcase for (37): We already have A+ ⊃ A valid for finite time. Therefore, the
chain of implications below is valid since A is 2-to-1 and A⋆ occurs in the finite
left of ⌢:

A
⋆⌢

A ⊃ (empty ∨ A
+)⌢A ⊃ (empty⌢A) ∨ (A+⌢

A)
⊃ A ∨ (A⌢

A) ⊃ A ∨ (A;A) ⊃ A ∨ A ⊃ A.

Hence, formula (37) is valid.
Subcase for (38): Recall that A denotes here the f✷-formula f✷B. Furthermore,

the PITL equivalence f✷B ≡ f✷ f✷B is valid (much like the valid PTL equivalence
|= ✷p ≡ ✷✷p). Hence, we have |= A ≡ f✷A. Lemma 10.8 permits us to take an
instance of the sound semantic inference rule (36) with C and C′ both A:

|= (finite ∧ A
+) ⊃ f✷A ⇒ |= A

⌢
A
⋆ ⊃ f✷A.

We then replace each f✷A by A using |= A ≡ f✷A:

|= (finite ∧ A
+) ⊃ A ⇒ |= A

⌢
A
⋆ ⊃ A.

We already have the validity of
(
finite ∧ (f✷B)+

)
⊃ f✷B from the case for finite

time. This is re-expressed using A instead of f✷B to obtain |= (finite ∧ A+) ⊃ A.
The semantic inference rule then yields that the implication A⌢A⋆ ⊃ A is also
valid. In infinite time, A⋆ and A⌢A⋆ are semantically equivalent, so our goal (38)
is valid.

The combination of (37) and (38) ensures (34) is valid for infinite intervals.
Our proof’s two cases for finite and infinite intervals then yield (34)’s validity

for all intervals. ⊓⊔

Remark 10.9 Let us briefly note without proof some interesting facts not needed
here. Recall from Lemma 4.3 that any formula w, T or i✸C is 2-to-1. They are
in fact also +-to-1 even for infinite time. Also, if B is 2-to-1, so are the two
formulas w ⊃ (B ∧ fin w) and ✷

(
w ⊃ (B ∧ fin w)

)
. Reflection helps ensure that

f✷
(
(fin w) ⊃ (B ∧ w)

)
is as well. This f✷-formula is +-to-1 even for infinite time.

Furthermore, if the formula B∗ ⊃ B is valid (i.e., B is ∗-to-1), then so is C∗ ⊃ C,
where C is any of these three formulas.

38 Ben Moszkowski

10.1 Zero or more sequential iterations of a 2-to-1 formula

When we later compositionally analyse how a process can make multiple accesses
to a shared resource, it is natural to include the case where no accesses are per-
formed. So it would be convenient in such circumstances to use for backward anal-
ysis some ∗-to-1 formulas introduced in Definition 10.1 at the beginning of this
Sect. 10. Now every f✷-formula f✷

(
(fin w) ⊃ ✸B

)
has already been shown to be 2-

to-1 (Theorem 6.1) and therefore also +-to-1 (Theorem 10.7 and implication (35)).
However, we now show that f✷

(
(fin w) ⊃ ✸B

)
is unfortunately not necessarily ∗-

to-1. Nevertheless, we offer a workaround which is nearly ∗-to-1 and quite suitable
for using as an ISEPI technique for Iteration when we look at mutual exclusion in
Sects. 11–13.

Let us now present two lemmas concerning the relationship between instances
of the f✷-formula f✷

(
(fin w) ⊃ ✸B

)
for backward analysis and the class of ∗-to-1

formulas:

Lemma 10.10 Not every formula f✷
(
(fin w) ⊃ ✸B

)
is ∗-to-1.

Proof We exhibit such a f✷-formula and an interval which satisfies the weak chop-
star of the formula but not the formula itself. Consider the previous f✷-formula (16),
which is reproduced below:

f✷
(
(fin p) ⊃ ✸(skip ∧ q)

)
.

Let σ be a one-state interval with the propositional variable p true. We show that
σ falsifies the next implication:

(
f✷
(
(fin p) ⊃ ✸(skip ∧ q)

))∗
⊃ f✷

(
(fin p) ⊃ ✸(skip ∧ q)

)
. (39)

Now σ, like every one-state interval, trivially satisfies any weak chop-star formula
A∗. Therefore, σ satisfies (39)’s antecedent. In a one-state interval, the consequent
of implication (39) reduces to the PTL formula p ⊃ (skip ∧ q). However, the interval
σ, which sets p to true, cannot satisfy the subformula skip since that requires at
least two states to be present. ⊓⊔

The earlier sample f✷-formula (18) is also not ∗-to-1. This is because in a one-state
interval, f✷

(
(fin p) ⊃ ✸¬p

)
simplifies to p ⊃ ¬p, which is falsified if the interval sets

p to true.
The next lemma shows how instances of the f✷-formula f✷

(
(fin w) ⊃ ✸B

)
can

always be regarded as “almost” ∗-to-1 if we require w to initially equal false:

Lemma 10.11 For any formula f✷
(
(fin w) ⊃ ✸B

)
, the next implication is valid:

|= ¬w ∧

(
f✷
(
(fin w) ⊃ ✸B

))∗
⊃ f✷

(
(fin w) ⊃ ✸B

)
. (40)

Proof Let C denote f✷
(
(fin w) ⊃ ✸B

)
. We already used Theorem 10.7 to show that

C is +-to-1 (i.e., see the earlier valid implication (35)). Therefore, we have the
following:

|= C
+ ⊃ C. (41)

Compositional reasoning using intervals and time reversal 39

This is the ISEPI technique of Iteration for chop-plus, as we previously mentioned
with regard to (35). We can also show the following:

|= empty ∧ ¬w ⊃ C. (42)

This is because in a one-state interval any formula f✷A is semantically identical to
its operand A. In particular, C is identical to (fin w) ⊃ ✸B, which in a one-state
interval further simplifies to w ⊃ B. So a one-state interval which satisfies ¬w also
satisfies C.

Let us now look at merging the two implications (41) and (42) into a single
one from which we can later on obtain that C is “almost” ∗-to-1:

|= C
+

∨ (empty ∧ ¬w) ⊃ C. (43)

Simple propositional reasoning ensures that the conjunction ¬w ∧ (empty ∨ C+)
implies the antecedent C+

∨ (empty ∧ ¬w) in (43):

|= ¬w ∧ (empty ∨ C
+) ⊃ C

+
∨ (empty ∧ ¬w).

We can then combine this and (43) using further straightforward propositional
reasoning:

|= ¬w ∧ (empty ∨ C
+) ⊃ C.

The PITL equivalence A∗ ≡ (empty ∨ A+) is valid for any formula A. We use
it to simplify empty ∨ C+ to obtain the next valid implication:

|= ¬w ∧ C
∗ ⊃ C.

This is in fact identical to our goal (40). ⊓⊔

For the convenience of readers, Table 5 lists the ISEPI techniques presented in
Sects. 6–10 specifically for use with the 2-to-1 formulas for backward analysis. The
table can be used for reference when we apply the techniques to mutual exclusion
in the next three Sects. 11–13.

11 Analysis of an abstract mutual exclusion algorithm

In this section and the next two, we consider how to apply compositional backward
analysis and the previously introduced 2-to-1 formulas of the form f✷((fin w) ⊃ ✸B)
to mutual exclusion and Peterson’s algorithm [64]. These have provided us with a
rich and stimulating initial testing ground for developing and experimenting with
our ideas about backward analysis in ITL. They together also serve as a proof-
of-concept of the approach and at least at present are a rather inseparable part
of our exploration of time symmetry. We certainly do not claim that our research
has reached a stage where it is ready to be deployed in practical problems.

Figure 1 shows a version of Peterson’s algorithm. One reason for looking at
it is because it is a quite elegant and popular example of mutual exclusion and
seems to serve as a kind of benchmark for formal techniques. We will have much
more to say about Peterson’s algorithm in Sect. 13 where we formalise in PITL
a version of it with two concrete processes P0 and P1. However, our analysis
of mutual exclusion initially mostly focuses on a more abstract and higher-level

40 Ben Moszkowski

Introduction (first variant): Formula (19) in Sect. 7:

|= ✷¬w ⊃ f✷
(
(fin w) ⊃ ✸B

)
.

Introduction (second variant): Formula (20) in Sect. 7:

|= ✷(more ⊃ ¬w) ∧ (inf ∨ ✸B) ⊃ f✷
(
(fin w) ⊃ ✸B

)
.

Sequential combining: (See Theorem 6.1)

(
f✷
(
(fin w) ⊃ ✸B

))
; f✷

(
(fin w) ⊃ ✸B

)
⊃ f✷

(
(fin w) ⊃ ✸B

)
.

Extending rightward: Formula (25) in Sect. 8.2:

|=
(

f✷
(
(fin w) ⊃ ✸B

))
; (w ∧ C) ⊃ f✷

(
(fin w) ⊃ ✸B

)
,

where C is a 1-to- f✷ formula and extends B rightward (i.e., |= (B;C) ⊃ B).

Parallel combining: Formula (30) in Sect. 9:

|= f✷
(
(fin w) ⊃ ✸B

)
∧ f✷

(
(fin w

′) ⊃ ✸B
′
)
⊃ ✷¬(w ∧ w

′),

where |= (✸B ∧ ✸B′) ⊃ inf .

Iteration (version for +-to-1 formula): Formula (35) in Sect. 10:

|=
(

f✷
(
(fin w) ⊃ ✸B

))+

⊃ f✷
(
(fin w) ⊃ ✸B

)
.

Iteration (version for “almost” ∗-to-1 formula): Formula (40) in Sect. 10.1:

|= ¬w ∧

(
f✷
(
(fin w) ⊃ ✸B

))∗
⊃ f✷

(
(fin w) ⊃ ✸B

)
.

Table 5 Summary of ISEPI techniques for 2-to-1 formulas for backward analysis

algorithm with two abstract processes Q0 and Q1. It contains shared aspects of
several algorithms and proofs. This is in part because our study of compositionality
in Peterson’s algorithm has helped us see benefits of applying time symmetry to
formalising in PITL some abstract issues arising in mutual exclusion. In the future
we would of course like to gain more experience by considering other applications
and also a range of modelling assumptions, but our research has not yet progressed
to this stage.

Let us now review the notion of mutual exclusion. It is one way to ensure that
multiple processes safely access a shared resource. Examples of it include cash
machines accessing a single bank account and processes utilising a shared printer.

Compositional reasoning using intervals and time reversal 41

Process P0 Process P1

1. noop0; 1. noop1;
2. flag0 := 1; 2. flag1 := 1;
3. turn := 1; 3. turn := 0;
4. await(flag1= 0 ∨ turn = 0); 4. await(flag0= 0 ∨ turn = 1);
5. noop0; (critical section) 5. noop1; (critical section)
6. flag0 := 0; 6. flag1 := 0;
7. noop0 7. noop1

Initially flag0= flag1= 0. The starting value of turn is unimportant.

Each statement noopi denotes a “no-operation” which does no assignments.

Fig. 1 A version of Peterson’s algorithm with two concrete processes P0 and P1

Here is the general structure of a single access by one abstract process:

(a) Noncritical section;
(b) Request exclusive right to resource;
(c) Critical section with exclusive access;
(d) Release exclusive right to resource;
(e) Noncritical section.

(44)

Taubenfeld’s textbook [76] gives English-language proofs of mutual exclusion for
various algorithms, starting with Peterson’s (as is indeed often the case in text-
books). Unlike mutual exclusion proofs in conventional point-based temporal logic
such as those by Pnueli [66] and Kröger and Merz [37], ours does not use a com-
prehensive set of labels for all relevant program steps. This reflects the quite dif-
ferent nature of point- and interval-based approaches, which can be respectively
referred to as endogenous and exogenous. We have more to say about this later on
in Sect. 15.2.

The abstract processes Q0 and Q1 and the associated analysis capture some
general features of mutual exclusion which apply to many concrete algorithms, not
just Peterson’s. A major benefit of the abstract framework is that it involves a fairly

direct application of the ISEPI techniques for 2-to-1 formulas for backward analysis

presented earlier in Sects. 6–10.

At first glance, it might seem easier to formalise something specific and tan-
gible such as the processes P0 and P1 in Peterson’s algorithm than to formalise
the more abstract processes Q0 and Q1. However, before we can reason about the
concrete Peterson processes P0 and P1 in PITL, their individual statements need
to be expressed as PITL formulas. This requires some further explanation and jus-
tification about the modelling assumptions used for concurrency and so is deferred
until later in Sect. 13. Furthermore, any analysis dealing just with the concrete
processes P0 and P1 in Peterson’s algorithm is of course much more limited than
an analogous one about a higher-level framework for abstract processes Q0 and Q1

which can be adapted to many algorithms, including Peterson’s. In distinct con-
trast to the situation with modelling and reasoning about Peterson’s algorithm in
PITL, our ISEPI techniques for 2-to-1 formulas presented in Sects. 6–10 can be
almost immediately used to provide a fairly concise and high-level analysis of the
abstract processes Q0 and Q1.

42 Ben Moszkowski

Nevertheless, it can be confusing to work just with the abstract algorithm
without having any motivation provided by a concrete one. Therefore, Fig. 1 shows
our processes P0 and P1 for Peterson’s algorithm. We will only discuss certain
aspects of them here which help with understanding the abstract processes Q0

and Q1 and the associated correctness formulas.
The concrete processes P0 and P1 in Fig. 1 together have three program vari-

ables flag0, flag1 and turn with values in {0, 1}. To stay propositional, let 0, 1 and
= stand for false, true and ≡, respectively. Both flag0 and flag1 are initialised to
0, but turn ’s starting value is unimportant. The statements noop0 and noop1 are
simply “no-operations” or “no-ops” during which time the processes do not assign
their respective variables values. Real processes would likely examine and modify
other variables besides flagi and turn , but we ignore them here. The PITL seman-
tics of noopi and other statements in each concrete process Pi are given in Sect. 13.
We do not need to know their details in our analysis of the abstract processes Q0

and Q1.

11.1 Model with the abstract processes Q0 and Q1

The abstract processes Q0 and Q1 are modelled as executing together with ini-
tialisation, and expressed as

∧
i∈{0,1}(initi ∧ Qi). Here initi is some state formula

for initialising Qi’s variables. The analysis assumes that each process Qi has an
auxiliary boolean variable csi true exactly when Qi is in its critical section and
that initi sets csi to false:

|= initi ⊃ ¬csi. (45)

Section 13 gives a concrete instance P ′

i in (71) for each abstract process Qi. We use
P ′

i to serve as a variant of Peterson’s algorithmwith additional formulas describing
the behaviour of csi. In Sect. 13 we likewise define in (76) the concrete version
piniti of initi to be the state formula flag i = 0 ∧ ¬csi. As is already noted in Fig. 1,
the initial value of the shared writable variable turn is not important. For our
analysis of the abstract algorithm, we need for each initi that the implication (45)
is valid. This is certainly the case with the concrete formula flagi = 0 ∧ ¬csi, as
the next valid implication demonstrates:

|= flagi = 0 ∧ ¬csi ⊃ ¬csi.

Our goal here is to have two general Abstract Assumptions which together
with the valid implication (45) (i.e., |= initi ⊃ ¬csi) suffice to ensure that the
abstract processes Q0 and Q1 are never simultaneously in their critical sections
(line (c) in (44)). The Abstract Assumptions will be shortly introduced in Table 6
in the next Sect. 11.2.

We now briefly summarise our goal concerning mutual exclusion. Our aim is
to prove ¬(cs0 ∧ cs1) is always true, as stated in the next implication:

|=
∧

i∈{0,1}

(initi ∧ Qi) ⊃ ✷¬(cs0 ∧ cs1).

The Abstract Assumptions will indeed be shown in Sect. 11.2 to be sufficient to
guarantee the validity of this.

Compositional reasoning using intervals and time reversal 43

First Abstract Assumption for each i ∈ {0, 1}

|= initi ∧ Qi ⊃ AbsSafei ∧ fin initi, (46)

where AbsSafei is defined as f✷((fin csi) ⊃ ✸Di) for some Di.

Second Abstract Assumption

|= ✸D0 ∧ ✸D1 ⊃ inf (47)

Table 6 The first and second abstract assumptions

Our abstract analysis can also be generalised to multiple accesses to the shared
resource by processes as is discussed later in Sect. 11.3. Properties besides mutual
exclusion such as freedom from deadlock are not considered here, but they could be
shown with our compositional techniques for liveness [50,51] using 2-to-1 formulas
for forward analysis such as ✷(p ⊃ ✸q).

11.2 Basic mutual exclusion for the abstract processes

We now introduce the two Abstract Assumptions (46) and (47). They concern
mutual exclusion for the abstract processes Q0 and Q1 and describe some tempo-
ral behaviour. Table 6 shows these Abstract Assumptions, which are individually
referred to as the First Assumption (46) and the Second Assumption (47). The
following 2-to-1 formula AbsSafei is used in the First Assumption (46) to describe
a safety property for Qi:

AbsSafei =̂ f✷((fin csi) ⊃ ✸Di). (48)

This formula AbsSafei is an instance of the 2-to-1 formula f✷((fin w) ⊃ ✸B) intro-
duced in Sect. 6 for compositional backward analysis. Our experience is that many
readers have trouble grasping the intuition behind the Abstract Assumptions (46)
and (47) and in particular the role of the abstract formulas Di and AbsSafei. We
therefore first discuss concrete instances of Di and AbsSafei and only then give
a general explanation of the Abstract Assumptions. One aim here is to preview
some aspects of our analysis of Peterson’s algorithm in Sect. 13.

11.2.1 Justification of the first abstract assumption

As already noted above in Sect. 11.1, we later on define a variant process P ′

i of
each process Pi in (71) in Sect. 13 (more precisely, in Sect. 13.2). The purpose of P ′

i

is to ensure that the auxiliary variable csi is indeed true exactly when the process
Pi is in its critical section. The later definition of process P ′

i in (71) is reproduced
below for the convenience of readers in order to assist in our explanation of Di

and AbsSafei:
P ′

i =̂
(
Pi’s lines 1–3 ∧ stable csi

)
;(

Pi’s line 4 ∧ csi <∼ true
)
;(

Pi’s line 5 ∧ csi <∼ false
)
;(

Pi’s lines 6–7 ∧ stable csi
)
.

44 Ben Moszkowski

Recall the derived constructs stable and padded temporal assignment (<∼) given
in Table 1. The actual concrete instance of Di defined and used in Sect. 13.3 for
our analysis of Peterson’s algorithm is the formula Ei given below (see (73)):

Ei =̂ flagi = 1 ∧ turn = 1− i ∧ ✸(flag1−i = 0 ∨ turn = i) ∧ nochange i.

Here nochange i is defined later in Sect. 13.1 as part of the PITL semantics of
the statements in Peterson’s algorithm. The formula nochangei specifies that the
process Pi is not assigning any values to flag i and turn . Further details about
nochangei are not needed for the moment.

Let us consider a concrete formula PeteSafei which summarises some key
behaviour observable when process P ′

i is its critical section. We later formally
define PeteSafei as (74) in Sect. 13.3 to be a concrete version of AbsSafei with
the concrete instance Ei of the abstract formula Di. The definition is reproduced
below for the convenience of readers:

PeteSafei =̂ f✷((fin csi) ⊃ ✸Ei).

We now informally show that if the first state of an interval σ satisfies the
initialisation formula flagi = 0 ∧ ¬csi for process P ′

i and the interval σ itself
satisfies the formula P ′

i , then each finite prefix subinterval σ′ of σ satisfies the
next concrete formula, and hence σ satisfies PeteSafei:

(fin csi) ⊃ ✸Ei.

Here is the main goal expressed as an implication which the overall interval σ

satisfies:

flagi = 0 ∧ ¬csi ∧ P
′

i ⊃ f✷
(
(fin csi) ⊃ ✸Ei

)
.

Suppose the finite prefix subinterval σ′ of σ satisfies fin csi. It follows that csi is
true in the last state of σ′ and hence process P ′

i is in its critical section during
this state. Inspection of our definitions of P ′

i and Pi reveal that whenever the
variable csi is true, this is preceded by the execution of the following sequence of
statements in Pi:

flagi := 1; turn := 1− i; await(flag1−i= 0 ∨ turn = i).

In the state immediately after the first two of these statements, the formula flagi =
1 ∧ turn = 1−i is true. That state in fact marks the start of some suffix subinterval
σ′′ in σ′ which satisfies Ei. This is because when the process manages to enter its
critical section following the execution of the await statement, the test flag1−1=
0 ∨ turn = i must have succeeded. So the state with csi = 1 will be preceded by
a state with flag1−1 = 0 ∨ turn = i. That state is itself preceded by a state with
flagi = 1 ∧ turn = 1−i. Furthermore, from the moment that flagi = 1 ∧ turn = 1−i
is true in that state until when the process leaves its critical section, the process
does not assign either flagi or turn , so the formula nochange i holds. Therefore,
the suffix subinterval σ′′ of σ′ (itself a finite prefix of σ) satisfies the following
formulas:

flagi = 1 ∧ turn = 1− i ✸(flag1−1= 0 ∨ turn = i) nochangei.

Compositional reasoning using intervals and time reversal 45

Consequently, σ′′ satisfies Ei, which is simply the conjunction of these, and σ′

itself satisfies ✸Ei and hence also (fin csi) ⊃ ✸Ei. It follows that the overall in-
terval σ satisfies the formula f✷

(
(fin csi) ⊃ ✸Ei

)
, which is the same as PeteSafei.

Therefore, the following concrete instance of the First Assumption (46) for the
concrete instance P ′

i of the abstract process Qi is valid:

|= flagi = 0 ∧ ¬csi ∧ P
′

i ⊃ f✷
(
(fin csi) ⊃ ✸Ei

)
∧ fin(flagi = 0 ∧ ¬csi).

(49)
The formula f✷

(
(fin csi) ⊃ ✸Ei

)
is identical to the concrete version PeteSafei of

AbsSafei. In (49) we also mention the concrete formula fin(flagi = 0 ∧ ¬csi) about
the last state if the process P ′

i terminates. This formula, which is a concrete
version of the formula fin initi in the First Assumption (46), is easy to check
from the behaviour of P ′

i . In our analysis of Peterson’s algorithm in Sect. 13, we
let the concrete instance piniti of the abstract initialisation formula initi denote
this conjunction flagi = 0 ∧ ¬csi (as already noted in Sect. 11.1).

The First Assumption (46) is an abstracted version of implication (49), where
we leave the fine points of Qi, Di and the 2-to-1 formula AbsSafei largely unspec-
ified. The formula fin initi in the First Assumption later helps to iterate Qi using
Q∗i in Sect. 11.3 when we compositionally reason about multiple requests to access
a shared resource. This concludes our motivation for the First Assumption (46).

11.2.2 Justification of the second abstract assumption

We now turn to motivating the Second Assumption (47) in Table 6. Let us consider
the undesirable situation where both processes P ′

0 and P ′

1 in Peterson’s algorithm
somehow end up simultaneously in their critical sections. Suppose the processes
are running in an interval σ. Therefore, the concrete instance (49) of the First
Assumption (46) ensures that σ satisfies PeteSafe0 and PeteSafe1. Furthermore,
the failure of mutual exclusion means that σ has a state satisfying cs0 ∧ cs1. Let
σ′ denote the finite prefix subinterval of σ ending with that state. It follows that
σ′ satisfies fin(cs0 ∧ cs1). The combination of the fact that σ satisfies PeteSafe0
and PeteSafe1 together with the definition of PeteSafei moreover ensures that σ′

must satisfy the concrete implications (fin cs0) ⊃ ✸E0 and (fin cs1) ⊃ ✸E1. Here
is a summary of this:

σ
′ |= fin(cs0 ∧ cs1) σ

′ |= (fin cs0) ⊃ ✸E0 σ
′ |= (fin cs1) ⊃ ✸E1.

Hence, σ′ also satisfies the two formula ✸E0 and ✸E1. Consequently, if we can
somehow prove that in fact the conjunction (✸E0) ∧ (✸E1) is not satisfied by any
finite interval (such as σ′), it follows from a proof by contradiction that σ′ does
not exist. Instead, all finite prefix subintervals of σ satisfy fin ¬(cs0 ∧ cs1), so σ

itself satisfies f✷fin ¬(cs0 ∧ cs1), which is semantically equivalent to ✷¬(cs0 ∧ cs1).
This demonstrates that mutual exclusion is achieved. Indeed, we later show in
Sect. 13.3 (Lemma 13.9) the validity of following implication about ✸E0 and ✸E1

not being simultaneously satisfiable in a finite interval:

|= ✸E0 ∧ ✸E1 ⊃ inf .

The Second Assumption (47) in Table 6 is simply a much more abstract version of
this implication which can capture behaviour in many mutual exclusion algorithms.
This concludes our motivation for the Second Assumption.

46 Ben Moszkowski

11.2.3 Proof of mutual exclusion from the two abstract assumptions

Lemma 11.2 shortly establishes that the First and Second Assumptions together
suffice to ensure mutual exclusion for the abstract processes Q0 and Q1 as stated
in the following implication:

|=
∧

i∈{0,1}

(initi ∧ Qi) ⊃ ✷¬(cs0 ∧ cs1).

Let us also point out that we already encountered in Lemma 9.1 the implica-
tion (29) which serves as an assumption and is moreover exactly like the Second
Assumption (47). Now Lemma 9.1 concerns the ISEPI technique for Parallel com-

bining (i.e., |= (A1 ∧ A2) ⊃ A′) of two suitable 2-to-1 formulas such as AbsSafe0
and AbsSafe1 which are intended for backward analysis. Recall that Lemma 9.1
states that if the implication (✸B ∧ ✸B′) ⊃ inf is valid, then so is the implication
below (which reproduces formula (30) in Lemma 9.1’s statement):

|= f✷
(
(fin w) ⊃ ✸B

)
∧ f✷

(
(fin w

′) ⊃ ✸B
′
)
⊃ ✷¬(w ∧ w

′).

The Second Assumption (47) |= (✸D0 ∧ ✸D1) ⊃ inf for abstract processes Q0 and
Q1 is indeed just a straightforward instance of the assumption |= (✸B ∧ ✸B′) ⊃
inf . Therefore, a version of Lemma 9.1 can be specialised to deal with AbsSafe0,
AbsSafe1, cs0 and cs1:

Corollary 11.1 Suppose the Second Assumption (47) in Table 6 holds. Then it en-

sures that the abstract safety formulas imply mutual exclusion as expressed by the valid

implication below which combines two instances of the 2-to-1 formula AbsSafei in par-

allel:

|= AbsSafe0 ∧ AbsSafe1 ⊃ ✷¬(cs0 ∧ cs1). (50)

Corollary 11.1 helps in a simple proof of the next Lemma 11.2 concerning
mutual exclusion for the abstract processes Q0 and Q1:

Lemma 11.2 The First Assumption (46) and Second Assumption (47) together en-

sure that two abstract processes can achieve mutual exclusion as formalised in the valid

implication below:

|=
∧

i∈{0,1}

(initi ∧ Qi) ⊃ ✷¬(cs0 ∧ cs1). (51)

Proof The Second Assumption (47) and Corollary 11.1 together ensure the valid
implication (50). We then use simple propositional reasoning to combine this impli-
cation with the First Assumption (46) to obtain the desired valid implication (51),
thus ensuring mutual exclusion for the abstract processes Q0 and Q1.

Below is a chain of valid implications which capture the main reasoning:

∧
i∈{0,1}(initi ∧ Qi) ⊃ AbsSafe0 ∧ AbsSafe1 ⊃ ✷¬(cs0 ∧ cs1). ⊓⊔

Compositional reasoning using intervals and time reversal 47

11.3 Multiple accesses by a process to a shared resource

Let us now consider a lemma showing that the two Abstract Assumptions (46)
and (47) ensure validity of an implication which describes mutual exclusion for
multiple accesses to the critical sections expressed with weak chop-star:

Lemma 11.3 If Assumptions (46) and (47) in Table 6 hold, then the next formula

concerning multiple requests for a shared resource is valid:

|=
∧

i∈{0,1}

(initi ∧ Q
∗
i) ⊃ ✷¬(cs0 ∧ cs1). (52)

Proof Recall the First Assumption (46):

|= initi ∧ Qi ⊃ AbsSafei ∧ fin initi.

This has the form |= (w ∧ A) ⊃ (B ∧ fin w). Our earlier work on compositional
reasoning (e.g., [48–51]) discusses semantic inference rules for various combinations
of such formulas. Here is a version of one from [48] which is quite suitable for our
purposes here:

|= (w ∧ A) ⊃ (B ∧ fin w) ⇒ |= (w ∧ A
∗) ⊃ (B∗ ∧ fin w).

For example, we can prove this for finite time by doing induction on interval length.
The rule yields from the First Assumption (46) a valid generalisation to multiple
exclusive accesses by one process:

|= initi ∧ Q
∗
i ⊃ (AbsSafei)

∗
∧ fin initi. (53)

The formula AbsSafei, which has the form f✷((fin w) ⊃ ✸B), is “almost” ∗-to-1
by Lemma 10.11 in Sect. 10.1. This is formalised by a valid implication for the
ISEPI technique of Iteration (see also the valid implication (40) and Table 5 in
Sect. 10.1):

|= ¬csi ∧ (AbsSafei)
∗ ⊃ AbsSafei. (54)

As noted earlier, we assume that initi implies ¬csi (see implication (45)), so we
can replace ¬csi in (54) by initi:

|= initi ∧ (AbsSafei)
∗ ⊃ AbsSafei. (55)

Propositional reasoning then permits us to combine implications (53) and (55)
into the following one:

|= initi ∧ Q
∗
i ⊃ AbsSafei ∧ fin initi. (56)

The Second Assumption (47) together with Corollary 11.1 about the conjunction
AbsSafe0 ∧ AbsSafe1 and some further propositional reasoning then yields our
goal (52).

Below is a chain of valid implications to capture the main reasoning:

∧
i∈{0,1}(initi ∧ Qi) ⊃

∧
i∈{0,1}

(
¬csi ∧ (AbsSafei)

∗
)

⊃ AbsSafe0 ∧ AbsSafe1 ⊃ ✷¬(cs0 ∧ cs1). ⊓⊔

48 Ben Moszkowski

|= initi ∧ Qi ⊃
(
(✷¬csi);Ri; (csi ∧ D

′

i);✷¬csi
)

∧ fin initi (58)

|= D
′

i ⊃ f✷D
′

i (59)

|= Di;D
′

i ⊃ Di (60)

where Ri is defined as follows:

Ri =̂ ✷(more ⊃ ¬csi) ∧ (inf ∨ ✸Di). (61)

Table 7 The third abstract assumption

12 Correctness of an individual abstract process

Recall that the First Assumption (46) in Table 6 in Sect. 11.2 states that a single
abstract process Qi ensures that the 2-to-1 formula AbsSafei is true:

|= initi ∧ Qi ⊃ AbsSafei ∧ fin initi.

The rather abstract First Assumption gives no details about how Qi achieves this.
We shortly define what we call the Third Abstract Assumption or more briefly the
Third Assumption. This contains some sufficient conditions concerning the overall
structure of the sequential behaviour of Qi. Later in this section’s Lemma 12.1,
these conditions are shown to indeed ensure the validity of the First Assumption
for a single abstract process. Subsequently in Sect. 13.3 we prove that an individual
process in Peterson’s algorithm fulfils the Third Assumption (see Theorem 13.4).
Therefore, Lemma 12.1 guarantees that it fulfils the First Assumption as well.

For the convenience of readers, we reproduce below our earlier informal outline
of an abstract process previously given as (44) at the start of Sect. 11:

(a) Noncritical section;
(b) Request exclusive right to resource;
(c) Critical section with exclusive access;
(d) Release exclusive right to resource;
(e) Noncritical section.

(57)

Table 7 shows some formulas (58)–(61) which collectively make up the Third

Abstract Assumption (also referred to as the Third Assumption) about the be-
haviour of abstract process Qi’s steps. As we already noted, the Third Assumption
is meant to precisely model the informal description in (57).

It is important to observe that we have fashioned the individual formulas in
the Third Assumption in Table 7 so that they are readily suitable for use with
the compositional ISEPI techniques already presented in Sects. 6–10 for backward
analysis with 2-to-1 formulas. Table 8 lists several ISEPI techniques for the 2-to-1
formula AbsSafei which are all instances of the ones in the previous Table 5 in
Sect. 10.1. The various formulas found in the Third Assumption in Table 7 find
application with most of the entries for ISEPI techniques in Table 8.

Let us now consider each of the Third Assumption’s parts individually:

– Third Assumption’s implication (58):

|= initi ∧ Qi ⊃
(
(✷¬csi);Ri; (csi ∧ D

′

i);✷¬csi
)

∧ fin initi.

Compositional reasoning using intervals and time reversal 49

Introduction (first variant): Instance of formula (19) in Sect. 7:

|= ✷¬csi ⊃ AbsSafei. (62)

Introduction (second variant): Instance of formula (20) in Sect. 7:

|= ✷(more ⊃ ¬csi) ∧ (inf ∨ ✸Di) ⊃ AbsSafei. (63)

Sequential combining: (See Theorem 6.1)

|= AbsSafei;AbsSafei ⊃ AbsSafei. (64)

Extending rightward: Instance of formula (25) in Sect. 8.2:

|= AbsSafei; (csi ∧ D
′

i) ⊃ AbsSafei, (65)

where D′

i is a 1-to- f✷ formula and extends Di rightward (i.e., |= (Di;D
′

i) ⊃
Di).

Parallel combining: Instance of formula (30) in Sect. 9:

|= AbsSafe0 ∧ AbsSafe1 ⊃ ✷¬(cs0 ∧ cs1), (66)

where |= (✸D0 ∧ ✸D1) ⊃ inf .

Iteration (version for +-to-1 formula): Instance of formula (35) in Sect. 10:

|= (AbsSafei)
+ ⊃ AbsSafei.

Iteration (version for “almost” ∗-to-1 formula): Instance (54) in Sect. 13.3
of formula (40) in Sect. 10.1:

|= ¬csi ∧ (AbsSafei)
∗ ⊃ AbsSafei.

Table 8 Summary of ISEPI techniques with the 2-to-1 formula AbsSafe
i

This primarily ensures that process Qi achieves four sequential phases cor-
responding to lines (a), (b), (c) and the pair of lines (d)-(e) of the abstract
process in (57). A feature of the Third Assumption’s first implication (58) is
that it is abstract and compositional enough to not need a detailed labelling of
individual program steps in Qi. We instead sequentially compose them using
the chop operator in PITL. Implication (58) asserts that when Qi operates with
the state formula initi initially true, then the steps are sequentially performed
and also initi is true in the last state if there is one. Here are the lines in the
abstract process in (57) and the corresponding individual steps:

(a) (b) (c) (d)-(e)
✷¬cs i Ri csi ∧ D′

i ✷¬csi.

The first and fourth of the abstract steps are both the formula ✷¬csi. This
concerns a period of time when Qi is not in its critical section and does not
even try to enter it. The second formula Ri is for when Qi has succeeded or

50 Ben Moszkowski

failed to enter the critical section in line (b) in the abstract process in (57).
The formula Ri’s definition (61) is discussed shortly.

– Third Assumption’s implications (59) and (60):

|= D
′

i ⊃ f✷D
′

i
|= Di;D

′

i ⊃ Di.

These together restrict the formulaD′

i to being a 1-to- f✷ formula (Definition 8.2
in Sect. 8.1) and also ensure that it extends Di rightward. We require the two
assumptions so that we can invoke Theorem 8.7 (found in Sect. 8.2) for the
ISEPI technique of Extending rightward a 2-to-1 formula for backward analysis
using a 1-to- f✷ formula. Table 8 includes an instance (65) of the ISEPI technique
for Extending rightward the 2-to-1 formula AbsSafei. This is obtained using
Theorem 8.7.
We illustrate Di and D′

i with a simple contrived example. If Di is the formula
pi ∧ ✸p′i ∧ stable pi, then D′

i could be the formula stable pi, which is in fact both
1-to- f✷ and 2-to-1 (as discussed in Sect. 8.1 after Theorem 8.5). The chain of
valid implications below shows the ISEPI technique of Extending rightward the
formula pi ∧ ✸p′i ∧ stable pi (which serves as Di) using the formula stable pi:

(pi ∧ ✸p
′

i ∧ stable pi); stable pi ⊃ pi ∧ ✸p
′

i ∧ (stable pi; stable pi)
⊃ pi ∧ ✸p

′

i ∧ stable pi.

These sample Di and D′

i are only for illustrative purposes since they are unlikely

to properly ensure mutual exclusion.

– Third Assumption’s definition of Ri in (61):

Ri =̂ ✷(more ⊃ ¬csi) ∧ (inf ∨ ✸Di).

This concerns the step in line (b) of (57) when the process awaits entry into
its critical section. The definition captures the idea that the process waits
infinitely long in vain to enter the critical section or succeeds with the formula
Di true in some suffix of the interval associated with Ri. We can immediately
use this formula as an instance of the earlier valid implication (20) in Sect. 7
for the ISEPI technique of Introduction of AbsSafei. Implication (63) in Table 8
corresponds to this.

The next Lemma 12.1 formally states that the conditions in the Third As-
sumption suffice to imply the First Assumption:

Lemma 12.1 For any formulas initi, Qi, Di, D
′

i, if all three implications (58)–(60)
in the Third Assumption are valid, then so is the First Assumption (46).

Proof We first prove the validity of the next formula (67) and make use of the
valid implications (62)–(65) in Table 8 concerning ISEPI techniques for AbsSafei:

|= (✷¬csi);Ri; (csi ∧ D
′

i);✷¬csi ⊃ AbsSafei. (67)

1 |= ✷¬csi ⊃ AbsSafei (62) [ISEPI]
2 |= ✷(more ⊃ ¬csi) ∧ (inf ∨ ✸Di) ⊃ AbsSafei (63) [ISEPI]
3 |= Ri ⊃ AbsSafei 2, Def. of R
4 |= AbsSafei; (csi ∧ D′

i) ⊃ AbsSafei (65) [ISEPI]
5 |= Ri; (csi ∧ D′

i) ⊃ AbsSafei 3, 4, PITL
6 |= (✷¬csi);Ri; (csi ∧ D′

i);✷¬csi ⊃ AbsSafei;AbsSafei;AbsSafei 1, 5, PITL
7 |= AbsSafei;AbsSafei ⊃ AbsSafei (64) [ISEPI]
8 |= AbsSafei;AbsSafei;AbsSafei ⊃ AbsSafei 7, PITL
9 |= (✷¬csi);Ri; (csi ∧ D′

i);✷¬csi ⊃ AbsSafei 6, 8, Prop.

Compositional reasoning using intervals and time reversal 51

This can be summarised as a chain of valid implications clearly showing our appli-
cation to AbsSafei of the ISEPI techniques discussed in Sects. 6–8 for Introducing,
Sequential combining and Extending rightward such 2-to-1 formulas for backward
analysis. We underline the parts of formulas which get reduced to AbsSafei:

(✷¬csi);Ri; (csi ∧ D
′

i);✷¬csi ⊃ AbsSafei;Ri; (csi ∧ D
′

i);AbsSafei
⊃ AbsSafei;AbsSafei; (csi ∧ D

′

i);AbsSafei
⊃ AbsSafei;AbsSafei;AbsSafei ⊃ AbsSafei.

It then follows from implication (58) in the Third Assumption together with im-
plication (67) that the Third Assumption indeed suffices to ensure the First As-
sumption (46)’s validity. ⊓⊔

Suppose we instead let the abstract process Qi itself be defined to be the
following:

(✷¬csi);Ri; (csi ∧ D
′

i);✷¬csi.

Then the Third Assumption’s first formula (58) can be simplified as shown below:

|= initi ∧ Qi ⊃ fin initi.

13 Analysis of Peterson’s algorithm

Before showing mutual exclusion for Peterson’s algorithm (given earlier in Fig. 1
in Sect. 11), we capture the processes’ behaviour in PITL. Varying concurrency
assumptions can be made. We discuss one possible way which illustrates some
compositional techniques and time symmetry, and furthermore serves as an initial
proof-of-concept. This follows the practice of Pnueli [66], Barringer, Kuiper and
Pnueli [5] and many other researchers over the years who have used Peterson’s
algorithm as a sort of canonical benchmark for studying mutual exclusion. Peter-
son’s algorithm also serves this purpose in the recent textbooks by Aceto et al. [1],
Taubenfeld [76], Herlihy and Shavit [29] and Kröger and Merz [37]. As we already
noted at the beginning of Sect. 11, Taubenfeld’s discussion about mutual exclusion
using Peterson’s algorithm [76] has a special significance for our approach because
it helped inspire us to see the potential of time symmetry.

13.1 Expressing Peterson’s algorithm in PITL

One of the main issues with modelling Peterson’s algorithm in temporal logic
involves the semantics of assignment statements. In imperative programming lan-
guages, when one variable is assigned, the values of others normally do not change.
On the other hand, in temporal logic, a formula which only mentions the dynamic
behaviour of some variables gives absolutely no indication about what happens
with other variables not occurring in the formula. For example, the PTL formula
skip ∧

(
(© p) ≡ ¬p

)
can be regarded as setting the next value of the propositional

variable p to the negation of its current value. This tells us nothing about the be-
haviour of q and other propositional variables. Such a phenomenon is an instance
of the frame problem given prominence by McCarthy and Hayes [43] (see also

52 Ben Moszkowski

Shanahan [72]). If we want variables to remain unchanged during an interval, some
explicit formula or semantic mechanism for this must be in place. The simplest
solution is to add a formula such as stable q (defined in Table 1 in Sect. 2) for each
relevant variable. Hale [24] initiated the study of framing variables in ITL. Duan
has also investigated this issue [13–17].

The presentation here shows one way formulas which are 2-to-1 and 1-to- f✷ can
be used to handle framing issues.

Our illustrative formulation in temporal logic of each process Pi in Peterson’s
algorithm needs to ensure that the variable flagi is always being framed or assigned
using :=. We handle framing for flagi by modelling process Pi as having exclusive

write access to this variable. Therefore, the definitions of statements for the process
Pi which do not change flag i (i.e., all statements except the ones of the form
flagi := j) can simply include the formula stable flag i.

On the other hand, in Peterson’s algorithm the two processes must have shared

write access to the variable turn . This significantly complicates framing turn . A
process cannot simply frame turn by asserting stable turn because this would pre-
vent the other process from changing the variable’s value. However, observe that
process P0 only uses := to assign the variable turn the value 1, and similarly P1

only uses := to assign turn the value 0. So if for example turn = 0, then only
process P0 is interested in possibly changing it to 1. We can therefore adopt the
convention that if a process Pi wants to frame turn , the process only needs to
do so between the pairs of adjacent states with turn = i in the first one. When
turn = 1 − i, the other process has the responsibility for framing. The temporal
formula frameturni defined below formalises this approach in our modelling of
process Pi:

frameturni =̂ ✷
(
(more ∧ turn = i) ⊃ © turn = i

)
. (68)

Process Pi just has to include frameturni instead of stable turn in the statements
which do not change turn (i.e., all of the statements except turn := 1 − i). This
is an acceptable solution to framing in Peterson’s algorithm. For example, no
logical inconsistency occurs if say process P0 is assigning turn the value 1 while
at the same time process P1 is partially framing turn to prevent it from changing
whenever it already equals 1. Also, if both processes simultaneously frame turn ,
then the combination of activities is logically equivalent to stable turn as expressed
by the following valid PTL formula:

|= stable turn ≡ frameturn0 ∧ frameturn1. (69)

We now define another PITL formula nochangei. It is used as a part of
statements in Peterson’s algorithm which frame both flagi and turn . The for-
mula nochangei describes any finite or infinite period when P0 changes neither the
variable flagi nor the variable turn :

nochangei =̂ stable flagi ∧ frameturni. (70)

We later need in Sect. 13.3 (in Lemma 13.5) the next Lemma 13.1 concerning
nochange0:

Lemma 13.1 The formulas frameturni and nochangei are 2-to-1 and 1-to- f✷.

Compositional reasoning using intervals and time reversal 53

noop0 =̂ nochange0 ∧ finite

flag0 := c =̂ (stable flag0
⌢skip) ∧ fin(flag0 = c)

∧ frameturn0

turn := 1 =̂ (frameturn0
⌢skip) ∧ fin(turn = 1)

∧ stable flag0
await(flag1= 0 ∨ turn = 0) =̂(

finite ≡ ✸(flag1= 0 ∨ turn = 0)
)

∧ nochange0.

Table 9 Semantics of individual statements in process P0 in Peterson’s algorithm

Proof We consider each of the formulas individually:

– frameturni: Observe that frameturni (defined in (68)) has the form ✷T , where
T is in NL1. Therefore, Lemma 4.6 ensures that frameturni is 2-to-1. Further-
more, frameturni can be re-expressed to have the form ✷(more ⊃ T ′), where T ′

is also in NL1:

|= frameturni ≡ ✷
(
more ⊃ (turn = i ⊃ © turn = i)

)
.

Recall from Sect. 8.1 that all such ✷-formulas (e.g., stable flagi) are 1-to- f✷ (see
the earlier Lemma 8.3 and Theorem 8.5).

– nochangei: This is defined in (70) to be the conjunction of stable flagi and
frameturni. Each of these is both 2-to-1 and 1-to- f✷. In addition, the 1-to- f✷ for-
mulas, like the 2-to-1 formulas, are closed under conjunction (see Lemmas 4.4
and 8.4). Hence, nochange i is 2-to-1 and 1-to- f✷. ⊓⊔

An alternative and perhaps more general and intuitive approach to framing
turn in each Pi can employ interleaving controlled by an additional auxiliary vari-
able. This variable determines which process has write access to turn . Therefore, a
process has write access and is responsible for framing exactly at such times. That
process can then either choose to assign a value to turn or frame it. We would like
in future work to look at such an approach and formally compare it with the one
used here.

13.2 Semantics of one process in Peterson’s algorithm

Table 9 shows the semantics of the individual statements of the concrete process
P0 in Peterson’s algorithm. Note that flag0 := c is also definable as (flag0 <∼ c) ∧

frameturn0 ∧ finite using the padded temporal assignment operator <∼ (defined in
Table 1 in Sect. 2). We define await to terminate iff the wait condition is eventually
true. Termination might not be immediate. Process P1 has analogous definitions.

Remark 13.2 Some readers will wonder why the definition of flag0 := c requires a
skip subformula. This is needed so that the variable flag0 remains stable except
perhaps in the very last state when it might change. If we omit the skip, then
the variable flag0 will always be stable and unable to change value. This is because
the definition of stable flag0 in Table 1 in Sect. 2 specifies that the variable’s value
remains unchanged between all adjacent pairs of states. Hence, for any proposi-
tional variable p, the formula stable p is semantically equivalent to the conjunction

54 Ben Moszkowski

(✷¬p) ∨ (✷p). For example, the following formula concerning a change from 0 to
1 is unsatisfiable in finite intervals:

¬p ∧ stable p ∧ fin p.

One can however dispense with the skip in flag0 := c by replacing stable flag0
⌢skip

with the formula finite ∧ padded flag0 containing the derived PITL construct
padded . The formula padded A is defined to keep the formula A stable except
for perhaps in the last state:

padded A =̂ ✷(more ⊃ ¬A) ∨ ✷(more ⊃ A).

However, the formulas stable A and padded A are semantically equivalent in infinite
intervals.

Our analysis uses a version of Pi called P ′

i (previewed in Sect. 11.2.1) with the
auxiliary boolean variable csi to track Pi’s critical section:

P ′

i =̂
(
Pi’s lines 1–3 ∧ stable csi

)
;(

Pi’s line 4 ∧ csi <∼ true
)
;(

Pi’s line 5 ∧ csi <∼ false
)
;(

Pi’s lines 6–7 ∧ stable csi
)
.

(71)

We ultimately prove the validity of the next implication which formalises mu-
tual exclusion for Peterson’s algorithm:

|=
∧

i∈{0,1}

(piniti ∧ P
′

i) ⊃ ✷¬(cs0 ∧ cs1). (72)

This is a concrete instance of the earlier formula (51) for abstract mutual exclusion.
The state formula piniti for initialisation denotes the conjunction flagi = 0 ∧ ¬csi
and is later formally defined as formula (76), but it was already previewed in
Sect. 11.1.

13.3 Mutual exclusion for Peterson’s algorithm based on the abstract one

We now consider how the properties we showed for an abstract model of a single
process can be employed to reason about Peterson’s algorithm. This will save us
from having to do a detailed analysis specifically for Peterson’s algorithm. Such
an analysis would require us to first use ISEPI techniques to prove that various
parts of process P ′

i with suitable pre-conditions each imply some 2-to-1 formula
or a related one and then to combine them to get a 2-to-1 formula for P ′

i . Instead,
we only need to show something weaker about Peterson’s algorithm. This then
ensures that a concrete instance of the 2-to-1 formula AbsSafei for backward anal-
ysis holds as well. Furthermore, various other properties of the abstract algorithm
automatically apply to Peterson’s algorithm (e.g., formula (52) in Lemma 11.3 for
multiple accesses).

Our main goal here is the validity of concrete instances for Peterson’s algorithm
of the Second Assumption (47) and the Third Assumption (implications (58)–(60)
in Table 7 in Sect. 12). As we previously noted, the Third Assumption is meant
to precisely model the informal description in (57) of an abstract process.

Compositional reasoning using intervals and time reversal 55

Let PeteSafei denote a concrete instance of AbsSafei. We already discussed
PeteSafei in a preliminary manner in Sects. 11.2.1 and 11.2.2 in order to motivate
our use of the abstract processes Qi, the associated 2-to-1 formula AbsSafei and
the two associated Abstract Assumptions (46) and (47) in Table 6. The concrete
instance of Di used in PeteSafei is the following conjunction, which we denote as
Ei:

Ei =̂ flagi = 1 ∧ turn = 1− i ∧ ✸(flag1−i = 0 ∨ turn = i) ∧ nochange i.

(73)
Recall that the formula nochangei previously defined in (70) specifies that Pi does
not alter either of the variables flagi and turn . The formula Ei is based on the
values of flagi and turn after process Pi’s lines 2–3 together with the behaviour
of lines 4–5. This was already overviewed in Sect. 11.2.1 but is now summarised
again. The relevant phase of process operation concerns requesting entry into the
critical section, at which time flagi = 1 and turn = 1− i, and then either succeeding
with flag1−i = 0 or turn = i or alternatively forever waiting in vain. The formula
Ei contains the subformula ✸(flag1−i = 0 ∨ turn = i) and so deals with the case
when the request is successful.

Lemma 13.3 The formula Ei is 2-to-1.

Proof This follows from Ei being the conjunction of formulas which are themselves
2-to-1 (using Lemmas 4.3 and 13.1 and then Lemma 4.4). ⊓⊔

Lemma 13.3 is invoked later on in Lemma 13.6’s proof.
We can in principle use noopi (defined in Table 9) instead of nochangei in Ei’s

definition. However, the analysis with nochangei is slightly simpler because it omits
the subformula finite in noopi.

The use of the formula Ei as a concrete instance of Di results in the concrete
instance of AbsSafei which we denote as PeteSafei:

PeteSafei =̂ f✷((fin csi) ⊃ ✸Ei). (74)

Another possibility for Ei in PeteSafei is the weak chop of Pi’s lines 2–5 in Sect. 11’s
Fig. 1. We can denote this portion of Pi as Pi,2−5.

The formula PeteSafei is 2-to-1 because it is a concrete instance of AbsSafei,
and we therefore have the next instance of the valid implication (64) in Table 8 in
Sect. 12:

|= PeteSafei;PeteSafei ⊃ PeteSafei (75)

In addition to formulas PeteSafei and Ei, we also define piniti, ptesti and
ptest ′i to each be a state formula as described below:

piniti =̂ flagi = 0 ∧ ¬csi (76)

ptest i =̂ flagi = 1 ∧ turn = 1− i (See line 3 of Pi in Fig. 1) (77)

ptest ′i =̂ flag1−i = 0 ∨ turn = i (See line 4 of Pi in Fig. 1). (78)

Therefore, the following equivalence relating the formula Ei (defined in (73)) with
ptest i, ptest

′

i, and nochangei is valid:

|= Ei ≡ ptest i ∧ ✸ptest ′i ∧ nochangei. (79)

56 Ben Moszkowski

Part P ′

0,− Pre-condition pre0,− Post-condition post0,−

P ′

0,1−3 flag0 = 0 ∧ ¬cs0 flag0 = 1 ∧ turn = 1 ∧ ¬cs0
P ′

0,4 flag0 = 1 ∧ turn = 1 ∧ ¬cs0 flag0 = 1 ∧ cs0
P ′

0,5 flag0 = 1 ∧ cs0 flag0 = 1 ∧ ¬cs0
P ′

0,6−7 flag0 = 1 ∧ ¬cs0 flag0 = 0 ∧ ¬cs0.

Table 10 Pre- and post-conditions for parts of P ′

0

We need concrete instances of the formulas initi (found in the First Assump-
tion (46) in Table 6 and Third Assumption in Table 7) and D′

i (found in the Third
Assumption in Table 7) which are suitable for Peterson’s algorithm. Let us take
initi to be piniti and D′

i to be nochange i. Here is a summary of the various abstract
formulas and corresponding concrete instances:

Abstract formula: initi Di D′

i AbsSafei
Concrete formula: piniti Ei nochangei PeteSafei.

Alternatively, Di can be Pi,2−5 (the weak chop of Pi’s lines 2–5) or even Pi,2−4

and D′

i can be noopi.
In addition, we use a concrete version Si of the formula Ri defined in the Third

Assumption in Table 7. The two formulas are given below to facilitate comparison:

Abstract formula Ri : ✷(more ⊃ ¬csi) ∧ (inf ∨ ✸Di)

Concrete formula Si : ✷(more ⊃ ¬csi) ∧ (inf ∨ ✸Ei)

We now turn to showing that Peterson’s algorithm indeed obeys the require-
ments imposed on the abstract algorithm to guarantee mutual exclusion. Our pre-
sentation first considers the Third Assumption in Table 7, which by Lemma 12.1
implies the First Assumption (46), and then deals with the Second Assump-
tion (47). These suffice to show that all of the mutual exclusion properties we
established for the abstract algorithm also apply to Peterson’s concrete one.

Owing to symmetry, our analysis only needs to consider process P0 in Pe-
terson’s algorithm. For clarity, we typeset in boldface references to the version
P ′

0, which was defined in (71) in Sect. 13.2 and includes the behaviour of cs0.
Let us first re-express the formula P ′

0 as the semantically equivalent formula
P ′

0,1−3;P
′

0,4;P
′

0,5;P
′

0,6−7 and look at the behaviour of the four primary sequen-

tial parts P ′

0,1−3, P
′

0,4, P
′

0,5 and P ′

0,6−7. Our analysis shows that each of these
combined with a suitable pre-condition implies a corresponding part in the formula
given below:

(✷¬csi);Si; (csi ∧ nochangei);✷¬csi.

This is a concrete instance of a subformula of the Third Assumption’s first for-
mula (58). Every primary sequential part with its pre-condition furthermore also
implies the associated post-condition in the final state when there is one.

State formulas for the pre- and post-conditions for the parts of P ′

0 are fairly
straightforward. Table 10 shows one possible approach. For example, pre0,4 refers
to the pre-condition flag0 = 1 ∧ turn = 1 ∧ ¬cs0 for part P ′

0,4. Observe that
normally the post-condition for each part is actually the pre-condition of the next

Compositional reasoning using intervals and time reversal 57

one. In the case of P ′

0,6−7, which is the last part, the post-condition can be taken

to be the pre-condition pre0,1−3 for P ′

0,1−3. We therefore only need to refer to
the formulas for pre-conditions and do not actually need separate names for the
post-conditions.

Note that pre0,1−3 is identical to pinit0 (i.e., both denote flag0 = 0 ∧ ¬cs0;
see (76)).

Theorem 13.4 The concrete instances of all of the Third Assumption’s three impli-

cations (58)–(60) for our version of Peterson’s algorithm are valid.

The proof is deferred until after we first state and prove Lemmas 13.5–13.7 for
the concrete instances of the Third Assumption’s three implications (58)–(60) for
Peterson’s algorithm. Since the proof of Lemma 13.7 for the first one (58) is the
most complicated, we save it for last.

Lemma 13.5 (Validity of instance of Third Assumption’s implication (59))
The next concrete instance of the abstract algorithm’s implication D′

i ⊃ f✷D′

i is valid:

|= nochangei ⊃ f✷nochange i.

Proof This follows immediately from the earlier Lemma 13.1 in Sect. 13.1, thus
ensuring that nochangei is 1-to- f✷. ⊓⊔

Lemma 13.6 (Validity of instance of Third Assumption’s implication (60))
The next concrete instance of the abstract algorithm’s implication (Di;D

′

i) ⊃ Di is

valid:

|= Ei; nochangei ⊃ Ei. (80)

Proof Recall from Lemma 13.3 that Ei is 2-to-1. The proof of the validity of (80)
involves a routine use of the ISEPI technique of Extending rightward such a 2-
to-1 formula. We employ the equivalence (79) to express Ei as the conjunction
ptest i ∧ ✸ptest ′i ∧ nochange i. Here is chain of valid implications which make use of
the fact that nochange i is 2-to-1 as well (Lemma 13.1):

Ei; nochangei
⊃

(
ptest i ∧ ✸ptest ′i ∧ nochangei); nochangei

⊃ ptest i ∧ ✸ptest ′i ∧ (nochangei; nochangei)
⊃ ptest i ∧ ✸ptest ′i ∧ nochangei
⊃ Ei.

Hence, Ei can indeed be Extended rightward with nochangei, and so implication (80)
is in fact valid. ⊓⊔

Lemma 13.7 (Validity of instance of Third Assumption’s implication (58))
For each process P ′

i , the following concrete instance of the Third Assumption’s impli-

cation (58) is valid:

|= piniti ∧ P
′

i ⊃
(
(✷¬csi);Si; (csi ∧ nochange i);✷¬csi

)
∧ fin piniti. (81)

58 Ben Moszkowski

Proof We will only deal with P ′

0, but the proof easily generalises to P ′

1. State
formulas used for the lines’ pre- and post-conditions are found in the previously
presented Table 10. Each of the four main parts of P ′

0 in (71), that is P ′

0,1−3,

P ′

0,4, P
′

0,5 and P ′

0,6−7, contributes one of the chop operands in implication (81)’s
subformula (✷¬cs0);S0; nochangei;✷¬cs0. Here are the associated implications,
which are shortly proven to be valid:

|= pre0,1−3 ∧ P
′

0,1−3 ⊃ ✷¬cs0 ∧ fin pre0,4 (82)

|= pre0,4 ∧ P
′

0,4 ⊃ S0 ∧ fin pre0,5 (83)

|= pre0,5 ∧ P
′

0,5 ⊃ cs0 ∧ nochangei ∧ fin pre0,6−7 (84)

|= pre0,6−7 ∧ P
′

0,6−7 ⊃ ✷¬cs0 ∧ fin pre0,1−3. (85)

We structure the rest of Lemma 13.7’s proof as four steps. Let us first look at
a summary of them:

– Step 1, case for P ′

0,1−3 and P ′

0,6−7: We show the validity of the associated
implications (82) and (85).

– Step 2, case for P ′

0,4: We show the validity of the associated implication (83).
– Step 3, case for P ′

0,5: We show the validity of the associated implication (84).
– Step 4, case for P ′

0: We show the validity of the associated implication (81).

Step 1, case for P ′

0,1−3 and P ′

0,6−7 to show the validity of implica-

tions (82) and (85): Validity readily follows from the associated pre-conditions
which set cs0 to equal false together with the temporal formulas in the following
parts of our definition (71) of P ′

0 corresponding to P ′

0,1−3 and P ′

0,6−7:

P
′

0,1−3 :
(
Pi’s lines 1–3 ∧ stable csi

)
P

′

0,6−7 :
(
Pi’s lines 6–7 ∧ stable csi

)
.

Below are versions of the two implications (82) and (85) with the various formulas
replaced by their definitions for easier checking:

|= flag0 = 0 ∧ ¬cs0 ∧ (noop0; flag0 := 1; turn := 1) ∧ stable csi
⊃ ✷¬cs0 ∧ fin(flag0 = 1 ∧ turn = 1 ∧ ¬cs0)

|= flag0 = 1 ∧ ¬cs0 ∧ (flag0 := 0; noop0) ∧ stable csi
⊃ ✷¬cs0 ∧ fin(flag0 = 0 ∧ ¬cs0).

Step 2, case for P ′

0,4 to show the validity of implication (83): Recall that
the Third Assumption’s definition of Ri in Table 7 is the conjunction ✷(more ⊃

¬csi) ∧ (inf ∨ ✸Di), so Si is the concrete instance ✷(more ⊃ ¬csi) ∧ (inf ∨ ✸Ei).
Here is an expanded version of implication (83):

|= flag0 = 1 ∧ turn = 1 ∧ ¬cs0 ∧ await(flag1= 0 ∨ turn = 0) ∧ cs0 <∼ true

⊃ ✷(more ⊃ ¬cs0) ∧ (inf ∨ ✸E0) ∧ fin(flag0 = 1 ∧ cs0).
(86)

From ¬cs0 and cs0 <∼ true readily follows ✷(more ⊃ ¬cs0). The main remaining
portion of the proof of implication (86)’s validity involves showing that (86)’s
antecedent implies the consequent’s subformula inf ∨ ✸E0. Recall from (73) that
Ei has the following definition:

Ei =̂ flagi = 1 ∧ turn = 1− i ∧ ✸(flag1−i = 0 ∨ turn = i) ∧ nochange i.

Compositional reasoning using intervals and time reversal 59

Below is a proof first showing that the pre-condition pre0,4 and P ′

0,4 together imply
inf ∨ E0, from which readily follows that they imply inf ∨ ✸E0. For conciseness in
the proof, we use ptest0 and ptest ′0 to denote the state formulas flag0 = 1 ∧ turn = 1
and flag1 = 0 ∨ turn = 0, as previously defined in (77) and (78), respectively.

1 |= await(ptest ′0) ≡

(finite ≡ ✸ptest ′0) ∧ nochange0

Def. of await

2 |= (finite ≡ ✸ptest ′0) ⊃ inf ∨ ✸ptest ′0 PTL
3 |= ptest0 ∧ await(ptest ′0)

⊃ ptest0 ∧ (inf ∨ ✸ptest ′0) ∧ nochange0

1, 2, Prop.

4 |= ptest0 ∧ (inf ∨ ✸ptest ′0) ∧ nochange0
⊃ inf ∨

(
ptest0 ∧ ✸ptest ′0 ∧ nochange0

) Prop.

5 |= ptest0 ∧ await(ptest ′0)
⊃ inf ∨ (ptest0 ∧ ✸ptest ′0 ∧ nochange0)

3, 4, Prop.

6 |= ptest0 ∧ await(ptest ′0) ⊃ inf ∨ E0 5, Def. of E0

7 |= inf ∨ E0 ⊃ inf ∨ ✸E0 PTL
8 |= ptest0 ∧ await(ptest ′0) ⊃ inf ∨ ✸E0 6, 7, Prop.

Step 3, case for P ′

0,5 to show the validity of implication (84): This is fairly
straightforward from the definitions of noop0 and cs0 <∼ false. Here is a version of
implication (84) with pre0,5, P

′

0,5 and pre0,6−7 replaced by their definitions:

|=
flag0 = 1 ∧ cs0 ∧ noop0 ∧ cs0 <∼ false

⊃ cs0 ∧ nochange0 ∧ fin(flag0 = 1 ∧ ¬cs0).

Step 4, case for P ′

0 to show the validity of implication (81): The formulas
pinit0 and pre0,1−3 are identical (i.e., both denote flag0 = 0 ∧ ¬cs0; see (76)).
Consequently, the initial process state ensures that pre0,1−3 is true. The four valid
implications (82)–(85) for P ′

0,1−3, P
′

0,4, P
′

0,5 and P ′

0,6−7 can then be sequentially

combined to obtain the validity of the implication (81) for P ′

0. ⊓⊔

Recall that Theorem 13.4 states that concrete instances of the Third Assump-
tion’s three implications (58)–(60) (shown in Table 7 in Sect. 12) for our version
of Peterson’s algorithm are valid. The proof of Theorem 13.4 now readily follows:

Proof (Theorem 13.4) The previous Lemmas 13.5–13.7 together establish that the
concrete instances of all three implications (58)–(60) are indeed valid. ⊓⊔

We now use Theorem 13.4 to show that Peterson’s algorithm has suitable
instances of the First Assumption:

Lemma 13.8 The next concrete instance of the First Assumption (46) for each pro-

cess P ′

i in our version of Peterson’s algorithm is valid:

|= piniti ∧ P
′

i ⊃ PeteSafei ∧ fin piniti. (87)

Proof Lemma 12.1 yields from the Third Assumption the First Assumption (46).
In addition, Theorem 13.4 demonstrates that each process P ′

i in Peterson’s algo-
rithm fulfils an associated concrete instance of the Third Assumption. The com-
bination of these then guarantees that each P ′

i also fulfils the associated concrete
instance (87) of the First Assumption. ⊓⊔

60 Ben Moszkowski

We also need the next Lemma 13.9 concerning the Second Assumption (47):

Lemma 13.9 The following concrete instance of the Second Assumption (47) for Pe-

terson’s algorithm is valid:

|= ✸E0 ∧ ✸E1 ⊃ inf . (88)

Recall that the Second Assumption (47) was needed in Sect. 11.2.3 to show mutual
exclusion exclusion for the abstract algorithm. Consequently, implication (88), as
an instance of the Second Assumption, encapsulates in a concise way a key aspect
of Peterson’s algorithm, and it focuses on a central mechanism used to ensure
mutual exclusion. Therefore, the proof of the validity of implication (88) has a
special significance in the understanding of how Peterson’s algorithm works.

Proof (Lemma 13.9) Our proof of the validity of implication (88) actually shows
the stronger result that ✸E0 ∧ ✸E1 is unsatisfiable. Simple temporal reasoning
allows us to establish this by a case analysis which demonstrates that each of the
following two formulas is unsatisfiable:

E0 ∧ ✸E1 E1 ∧ ✸E0. (89)

This is because if ✸E0 ∧ ✸E1 were to be satisfiable, then there would be some
suffix subinterval satisfying one of the two formulas E0 ∧ ✸E1 or E1 ∧ ✸E0 in (89).
Owing to the symmetry involved, we only need to consider the first of these here.
Let us use the valid equivalence (79) to re-express E0 ∧ ✸E1 in terms of ptest i,
ptest ′i, and nochangei:

ptest0 ∧ ✸ptest ′0 ∧ nochange0 ∧ ✸
(
ptest1 ∧ ✸ptest ′1 ∧ nochange1

)
. (90)

Our analysis can ignore the conjunct ✸ptest ′0. When we replace the remaining
state formulas ptest0, ptest1 and ptest ′i by their respective definitions given in (77)
and (78), the slightly shortened version of formula (90) without ✸ptest ′0 becomes
the following:

flag0 = 1 ∧ turn = 1 ∧ nochange0
∧ ✸

(
flag1 = 1 ∧ turn = 0 ∧ ✸(flag0 = 0 ∨ turn = 1) ∧ nochange1

)
.

(91)

The variable flag0 always equals 1 because of the effect of stable flag0 in the def-
inition of nochange0 (see (70)). Therefore, the subformula flag0 = 0 ∨ turn = 1
in (91) can be reduced to turn = 1, which we underline below:

flag0 = 1 ∧ turn = 1 ∧ nochange0
∧ ✸

(
flag1 = 1 ∧ turn = 0 ∧ ✸(turn = 1) ∧ nochange1

)
.

(92)

Observe that the formulas nochange0 and nochange1, as defined in (70), are both
conjunctions of ✷-formulas. It follows that if nochange0 and nochange1 are true for
an interval, then they are also true for all suffix subintervals (i.e., they are 1-to-✷

formulas):
|= nochange i ⊃ ✷nochange i.

Now consider the suffix subinterval starting with the state where the subformula
flag1 = 1 ∧ turn = 0 in (92) is true. In that subinterval, the formulas nochange0
and nochange1 are both true, so the two formulas frameturn0 and frameturn1 in

Compositional reasoning using intervals and time reversal 61

their definitions are as well. Therefore, the variable turn must remain stable from
then on (as we previously noted with valid equivalence (69) in Sect. 13.1). This
behaviour concerning nochange0, nochange1 and turn is expressed by the following
valid PTL formula:

|= nochange0 ∧ nochange1 ⊃ stable turn .

However, the eventual stability of turn in formula (92) is contradicted by the con-
junction turn = 0 ∧ ✸(turn = 1) found within the outer ✸-formula. Consequently,
the formula (92) itself is in fact unsatisfiable. It then follows from this that for-
mula (91) is likewise unsatisfiable and so is the previous formula E0 ∧ ✸E1 in (89).
Symmetry ensures that the formula E1 ∧ ✸E0 is unsatisfiable as well. This all
demonstrates that the conjunction ✸E0 ∧ ✸E1 is unsatisfiable and so implies any-
thing, including the formula inf . Consequently, implication (88) is indeed valid.

⊓⊔

At this stage, we have obtained for Peterson’s algorithm concrete instances of
the Third Assumption (Theorem 13.4) , then the First Assumption (Lemma 13.8),
and finally the Second Assumption (Lemma 13.9). Consequently, from the concrete
instances (87) and (88) of the First Assumption (46) and Second Assumption (47),
respectively, all of the mutual exclusion properties discussed for abstract processes
in Sect. 11 can be carried over to Peterson’s algorithm.

14 Use of time symmetry to reduce some PITL formulas to PTL

We now briefly discuss at an exploratory level how our new techniques of time
symmetry and reflections introduced in Sect. 5 can provide a theoretical basis for
transforming some PITL formulas to the computationally more tractable formal-
ism PTL. The main contribution of this section is to show how to combine some
ideas from our earlier work in [55] with the new concept of reflection and reasoning
about prefix subintervals. In particular, we will first reduce a PITL safety prop-
erty concerning backward analysis to a PTL formula involving suffix subintervals
together with the temporal operators ✷ and until . This kind of reduction can then
also be done on a formula about a system and an associated safety property. One
potential benefit is that we can extend the application of some existing decision
procedures and tool-support for PTL to handle suitable PITL formulas as well.
Some computational aspects of PTL are surveyed by Kröger and Merz [37] and
Fisher [19], who also provide further references to the significant literature on the
subject. In [55] we discuss an implemented decision procedure for PTL with both
finite and infinite time which has connections with the theory of PITL. We only
mention this because some of the techniques presented in [55] are later on adapted
when we reduce PITL formulas to PTL.

A key observation here is that a reflection of a formula with f✷-subformulas
contains ✷-subformulas. The later can be easier to reduce to PTL because ✷ is
itself a PTL construct, whereas f✷ is not. Recall that PTLu is the version of PTL
with strong until defined earlier in Sect. 3.3. Let us use the formula PeteSafe0
defined in (74) to illustrate obtaining from a f✷-formula a reflection in PTLu. In
order to derive a PTLu formula which reflects PeteSafe0, our reduction to PTLu

62 Ben Moszkowski

first obtains the next interval-oriented way to re-express PeteSafe0:

f✷

(
(fin cs0) ⊃ ✸

(
(empty ∧ ptest0); nochange0;

(empty ∧ ptest ′0); nochange0
))
.

(93)

Here the PTL formula E0 (defined in (73)) has been replaced by a PITL formula
with weak chops which is semantically equivalent to E0 in finite intervals. We now
reflect (93):

✷

(
cs0 ⊃ f✸

(
nochanger0; (empty ∧ ptest ′0);

nochanger0; (empty ∧ ptest0)
)) (94)

We then re-express the f✸-subformula in PTLu:

Y until
(
ptest ′0 ∧ (Y until ptest0)

)
, (95)

where Y acts like nochanger0 on pairs of adjacent states:

(©flag0) = flag0 ∧
(
(© turn = 0) ⊃ turn = 0

)
.

Finally, we can take the PTLu reflection of PeteSafe0 to be (94) with the f✸-
subformula replaced by (95). Note the reduction to PTLu of the reflection of a
f✷-formula containing chop-star might require auxiliary variables. This is because
PITL with chop-star (which can express regular and omega-regular languages [77])
is much more expressive than PTLu. However, this is not always an issue as our
example demonstrates. See Kröger and Merz [37] for a discussion of the operator
until and the expressiveness of temporal logics containing it. It would appear that
reductions from PITL to PTLu could be automated for a range of syntactic classes
of formulas.

To further illustrate the potential of reflection, let us now consider how to check
the validity of a formula (w ∧ Sys) ⊃ (f✷A ∧ fin w′), for some system Sys expressed
in PITL. For finite-time analysis, this has the reflection ((fin w) ∧ Sysr) ⊃ (✷Ar

∧

w′). We can reduce Sysr to some PTL formula X with auxiliary variables and test
finite-time satisfiability of (fin w) ∧ X ∧ ¬(X′

∧ w′), where X′ is a reflection of f✷A

expressed in PTLu as described above for the example PeteSafe0.
For infinite time, we can first reduce Sys to a PTL formula with auxiliary vari-

ables or an omega automaton [37,77]. As we show in [55], these can be represented
in PTL by a low-level transition configuration of the form below:

✷T ∧ init ∧ ✷✸
+
L, (96)

where T is an NL1 formula, init is a state formula, ✸+ L abbreviates ©✸L (strict
✸), and L is a finite conjunction of implications each of the form w ⊃ ✸w′. As
shown in [55], the transition configuration has ultimately periodic models and is
equivalent to the next formula in infinite time:

(X′′
∧ init)⌢

(
X

′′
∧ L ∧ (V← V)

)⋆
, (97)

where X′′ denotes ✷(more ⊃ T) and V← V is the conjunction of temporal assign-
ments v ← v for each variable v in the transition configuration. Note that in [55],
the chop-omega operator (Aω) is used instead of strong chop-star (A⋆). How-
ever, the two operators have identical semantics in infinite intervals. Testing for

Compositional reasoning using intervals and time reversal 63

infinite-time validity of (w ∧ Sys) ⊃ (f✷A ∧ fin w′) is reducible to checking infinite-
time unsatisfiability of Sys ∧ w ∧ ¬ f✷A. Here fin w′ is trivially true for infinite time
and ignored. We then replace Sys by (97) to obtain the formula below:

(X′′
∧ init)⌢

(
X

′′
∧ L ∧ (V← V)

)⋆
∧ w ∧ ¬ f✷A.

This is equivalent to a variant with w in the chop’s left side:

(X′′
∧ init ∧ w)⌢

(
X

′′
∧ L ∧ (V←V)

)⋆
∧ ¬ f✷A. (98)

The next semantic inference rule (related to (36)) reduces testing unsatisfiability
for (98) to finite-time unsatisfiability:

|=finite ∧ (B1
⌢
B
⋆
2) ⊃ f✷B3 ⇒ |= (B1

⌢
B
⋆
2) ⊃ f✷B3,

where the Bis can be any formulas. More precisely, it follows from this that if
the conjunction (B1

⌢B⋆
2) ∧ ¬ f✷B3 is unsatisfiable, then it is unsatisfiable in finite

time. Observe that (98) has this form. In order to do the testing for finite time, we
can first reflect (98) and reduce it to a PTL formula with more auxiliary variables.
For example, if f✷A is the formula PeteSafe0 we reflected above and reduced to
PTLu, then this PTLu reflection can be used.

The transition configuration (96) is only meant for analysing infinite-time be-
haviour. However, a simplified transition configuration of the form shown below can
analogously be used for checking finite-time validity of (w ∧ Sys) ⊃ (f✷A ∧ fin w′):

✷T ∧ init ∧ finite.

We would like to see these rather experimental ideas implemented and also to
have this approach compared with others, such as one based on a reduction of the
implication (w ∧ Sys) ⊃ (f✷A ∧ fin w′) to a suitable formula with A instead of f✷A.
Various formulas in our analysis of Peterson’s algorithm could be used as an initial
test.

15 Discussion

We now touch upon a number of topics with relevance to our framework based on
ITL, 2-to-1 formulas and time symmetry.

15.1 Summary of formulas closed under conjunction and box

For the convenience of readers, Table 11 lists the classes of formulas closed under
conjunction and ✷ which we have looked at. It also mentions where they are
described and some of their uses with suitable formulas. However, note that the
“almost” ∗-to-1 formulas are not a proper class.

We plan in future work to discuss some other classes of formulas which are
closed under conjunction and ✷ and have potential applications. One example is
the 1-to- i✷ formulas, that is, any formula A for which the implication |= A ⊃ i✷A is
valid. Recall that the operator i✷ (defined in Table 1 in Sect. 2) examines all prefix
subintervals. In contrast, the operator f✷ only examines prefix subintervals having

64 Ben Moszkowski

Class of formulas Where defined Some uses

2-to-1 Formulas Def. 4.1 ISEPI Sequential combining

∗-to-1 Formulas Def. 10.1 ISEPI Iteration

+-to-1 Formulas Def. 10.2 ISEPI Iteration

(“Almost” ∗-to-1 Formulas Lemma 10.11 ISEPI Iteration)
1-to- f✷ Formulas Def. 8.2 ISEPI Extend rightward

1-to-✷ Formulas Remark 8.6 Import formula into ✸

Table 11 Various classes of formulas closed under conjunction and box

finite length. We are studying whether the operator i✷ and its associated class of
1-to- i✷ formulas can be used instead of f✷ and 1-to- f✷ formulas in practice. For
example, f✷((fin w) ⊃ ✸B) is semantically equivalent to the i✷-formula i✷((sfin w) ⊃
✸B). Here sfin w is a strong version of fin derivable as ✸(empty ∧ w) and also
expressible as finite ∧ fin w. Our general experience is that weak interval operators
can sometimes be more convenient in applications involving compositionally. More
evidence one way or the other still needs to be collected.

We presented in previous sections various results which relate some of the
classes. For example, Theorem 10.7 gives a sufficient condition for a 2-to-1 for-
mula to also be +-to-1. Similarly, Lemma 10.11 concerns 2-to-1 formulas which
are “almost” ∗-to-1. It seems worthwhile to further investigate interrelationships
between various classes. We report some new results in [58].

15.2 Exogenous and endogenous frameworks

Our compositional way of reasoning about concurrency in ITL using 2-to-1 for-
mulas contrasts with the better known and much more widely used one based
on point-based temporal logic that Pnueli [65] and others have quite successfully
advocated. In particular, the point-based approach does not represent or reason
about a program directly in the logic but requires it to be first translated into a
state-transition system with many labels (as was also done earlier by Floyd [20]).
Temporal logic is used to reason about these. Pnueli already in his first pub-
lication about temporal logic over thirty five years ago describes this as being
endogenous [65]:

Another point that is worth mentioning is that the [Endogenous] ap-
proach taken here can be classified together with Floyd’s [20], By that
[the term Endogenous] we mean that we immerse ourselves in a single pro-
gram which we regard as the universe, and concentrate on possible develop-
ments within that universe. Characteristic of this approach is the first phase
which translates the programming features into general rules of behavior
which we later logically analyze.

An ITL-based analysis, on the other hand, is much closer to what Pnueli [65] refers
to as being exogenous when he compares the two categories:

These [proponents of Exogenous systems such as Hoare [30]] suggest
a uniform formalism which deals in formulas whose constituents are both
logical assertions and program segments, and can express very rich relations

Compositional reasoning using intervals and time reversal 65

between programs and assertions. We will be the first to admit the many
advantages of Exogenous systems over Endogenous systems. These include
among others:
a. The uniform formalism is more elegant and universal, richer in express-

ibility, no need for the two-phase process of Endogenous systems.
b. Endogenous systems live within a single program. There is no way to

compare two programs such as proving equivalence or inclusion.
c. Endogenous systems assume the program to be rigidly given, Exogenous

systems provide tools and guidance for constructing a correct system
rather than just analyse an existent one.

Against these advantages Endogenous system can offer the following single
line of defense: When the going is tough, and we are interested in proving
a single intricate and difficult program, we do not care about generality,
uniformity or equivalence. It is then advantageous to work with a fixed
context rather than carry a varying context with each statement. Under
these conditions, Endogenous systems attempt to equip the prover with
the strongest possible tools to formalize his intuitive thinking and ease his
way to a rigorous proof.

We do not believe that this is the place for a detailed, meaningful assessment
of the merits of the (endogenous) point-based and (exogenous) interval-based tem-
poral frameworks, particularly since ours is certainly much more experimental and
less applied.

It seems appropriate to quote below the related discussion by Harel et al. in
their comparison of Dynamic Logic (DL) [27,28] with point-based temporal logic
since the succinctly expressed points concerning compositionality equally apply
here:

There are two main approaches to modal logics of programs: the ex-

ogenous approach, exemplified by Dynamic Logic and its precursor Hoare
Logic [30], and the endogenous approach, exemplified by Temporal Logic
and its precursor, the invariant assertions method of Floyd [20]. A logic
is exogenous if its programs are explicit in the language. Syntactically, a
Dynamic Logic program is a well-formed expression built inductively from
primitive programs using a small set of program operators. Semantically, a
program is interpreted as its input/output relation. The relation denoted
by a compound program is determined by the relations denoted by its parts.
This aspect of compositionality allows analysis by structural induction. The
importance of compositionality is discussed by van Emde Boas [80]. In Tem-
poral Logic, the program is fixed and is considered part of the structure
over which the logic is interpreted. The current location in the program
during execution is stored in a special variable for that purpose, called the
program counter, and is part of the state along with the values of the pro-
gram variables. Instead of program operators, there are temporal operators
that describe how the program variables, including the program counter,
change with time. Thus Temporal Logic sacrifices compositionality for a
less restricted formalism.

Readers should be able to readily discern that the explanation of Harel et al. gives
the impression that temporal logic as a whole is somehow intrinsically limited to
being endogenous. The authors do not mention research exploring exogenous uses

66 Ben Moszkowski

of temporal logics to reason about imperative program behaviour. However several
earlier publications on this subject by us and others were already available at the
time (e.g., [13, 16, 23, 24, 47–51]). Most of these appeared significantly before the
summary appeared. Unlike Dynamic Logic, this ITL-based work does not have
separate notations for programs and formulas. Our range of new and fundamen-
tal mathematical results about 2-to-1 formulas and time symmetry are a direct
continuation of the research on the exogenous use of ITL to express imperative
programming constructs. This is a topic we have been pursuing since the 80s.

More recent work by Duan et al. [17] and the KIV theorem prover group [7]
concerns exogenous uses of variants of ITL for concurrent algorithms.

15.3 2-to-1 formulas and the assumption of discrete time

Our central Theorem 4.5 states that 2-to-1 formulas are closed under the temporal
operator ✷. Observe that the proof there requires that time is linear but does not
at all depend on it being discrete. The theorem is even applicable to a restricted
version of PITL consisting of conventional propositional logic with the sole addition
of the temporal operator weak chop. Now ✷ is the only other temporal operator
needed to formalise basic ✷-closure of 2-to-1 formulas. It is not hard to derive ✷

from weak chop (as described in our earlier publications [48–51]):

inf =̂ true; false finite =̂ ¬inf ✸A =̂ finite;A ✷A =̂ ¬✸¬A.

So Theorem 4.5 seems quite basic in the theory of temporal logic.

We can alternatively take strong chop as a primitive to obtain 2-to-1 formulas
using Lemma 4.2’s second characterisation of them (i.e., |= (A⌢A) ⊃ A). The PTL
temporal operator ✷ is then derivable as shown in Table 1 in Sect. 2 in order to
formalise ✷-closure of 2-to-1 formulas.

Our comments here about Theorem 4.5 not requiring discrete time also apply
to the analogous Lemma 10.5 concerning the closure of +-to-1 formulas under ✷.

If we take skip and either weak or strong chop as the two temporal primitives,
then the derived operator until defined in Sect. 3.3 (and used to express 2-to-
1 formulas in Sects. 5 and 14) is expressible without chop-star by means of the
following semantic equivalence:

|= T until A ≡
(
finite ∧ ✷(more ⊃ T)

)
;A

This uses the PTL subformula ✷(more ⊃ T) instead of the PITL subformula (skip ∧

T)⋆ in the original definition of T until A in Sect. 3.3. The two subformulas are
semantically equivalent because of the valid PITL equivalence below (we formally
state and prove this in [55, Theorem 5.4]):

|= ✷(more ⊃ T) ≡ (skip ∧ T)⋆.

Note that our technique for defining until as a derived operator using skip assumes
discrete time. However, the second definition of until can be made to work without
discrete time if the left operand is limited to being a state formula (e.g., p until ✷q).
We can simply take either more or empty to be a primitive operator. Alternatively,
if chop-star is taken to be a primitive, then we first derive empty from chop-star as
false⋆ and then derive more (which is normally defined using skip) using ¬empty .

Compositional reasoning using intervals and time reversal 67

15.4 Empty intervals

We have for about thirty years used the adjective “empty” to describe one-state
intervals in ITL. Some readers will surely find this convention a bit puzzling be-
cause, in contrast, the empty word in regular languages has no letters at all. Let
us now examine the choice of terminology. This also helps explain the behaviour
of chop-star with one-state intervals, which is a further source of confusion.

In language theory, the empty word is the unique word with no letters at all.
However, since the time of our early work on ITL [45–47], we have alway let the
derived construct empty (defined in Table 1 in Sect. 2) denote the test for one-state
intervals, which are also known in ITL as empty intervals. In fact, intervals in
ITL and PTL with finite time always have at least one state, so there is normally
no ambiguity about the meaning of the word “empty” in these logics.

Another reason why the term “empty” seems reasonable is because one-state
intervals in fact play a role in ITL quite similar to empty words in regular languages
and the standard finite-state automata associated with them. For example, some
of our proofs of axiomatic completeness for versions of ITL [52, 53, 57] use such
automata to encode ITL formulas, but the operation of the automata is modified
so that they always examine at least one letter. Such a letter represents both an
individual state and a one-state interval. The appropriateness of using “empty”
for one-state intervals can also be clearly seen by means of a comparison of Kleene
star with chop-star’s semantics on finite intervals:

– Standard definition of Kleene star on a regular language L: Define L0

to be the singleton set {ǫ} containing just the empty word ǫ. For each k ≥ 0,
inductively define Lk+1 to be the set of finite words {αβ : α ∈ L, β ∈ Lk},
where αβ is the usual string concatenation of words α and β. The language L∗

is defined to be the infinitary union of these sets:
⋃

k≥0 L
k.

– Semantics of PITL’s chop-star for finite intervals: For any PITL formula
A, we can analogously define A0 to be the formula empty and for each k ≥ 0,
the formula Ak+1 to be A⌢Ak. For each k ≥ 0, let Sk denote the set of finite
intervals which satisfy the formulaAk and let S′ denote the set of finite intervals
which satisfy the chop-star formula A⋆ (as defined in Sect. 2). Then the two
sets

⋃
k≥0 S

k and S′ can be shown to be equal.

Observe that the set obtained from the application of Kleene star to a regular
language, even the empty one {} with no words in it, always contains the empty
word ǫ. This is because the language L0 equals {ǫ} for every L, so L∗ also includes
ǫ as an element. Similarly, if one applies chop-star to a PITL formula A, the result
A⋆ is satisfied by all one-state (empty) intervals, even if A itself is unsatisfiable.
The formula false⋆ therefore provides a natural alternative way to express empty

using just the boolean formula false combined with the temporal operator chop-
star.

Duan [13–15, 17] and Bowman and Thompson [10] follow our convention of
using empty , although Duan recently abbreviates it as ε [18, 83]. We should point
out that some other naming conventions for the formula empty nevertheless also
exist. For example, Paech uses the construct L0 [61]. This follows a convention
found in some earlier work by others on process logics [26, 62]. The formula ℓ = 0
is favoured in the Duration Calculus [59, 84, 85], where the special construct ℓ

68 Ben Moszkowski

equals interval length. The formula ℓ = 0 can be abbreviated as ⌈⌈ ⌉⌉. The KIV
group use the construct last to specify one-state intervals [7].

15.5 Star-to-1 formulas and chop-star fixpoints

The ∗-to-1 formulas defined in the beginning of Sect. 10 (i.e., |= A∗ ⊃ A in Defini-
tion 10.1) are identical to the ones called chop-star fixpoints in our earlier work
on compositional reasoning in ITL [48–51]. A chop-star fixpoint is any formula
A for which the equivalence A ≡ A∗ is valid. Now for any PITL formula A, the
implication A ⊃ A∗ is valid. Hence, A is ∗-to-1 iff the equivalence A ≡ A∗ is valid.
We present an analysis of ∗-to-1 formulas which relates them to other classes of
formulas in recent work [58] that further explores the theory of 2-to-1 formulas.

16 Related work

We now consider relevant research by others and limit our coverage to the cate-
gories below:

– Mirror images
– Early proposals for using temporal logic with past time to reason about con-

currency
– Interval-based approaches for analysing mutual exclusion

More information about other formal ways to analyse mutual exclusion, including
extensive bibliographies, can be found in the various recent textbooks we already
cited at the beginning of Sect. 13 when justifying our choice of Peterson’s algorithm
to illustrate time symmetry.

16.1 Mirror images

Time reversal and reflections are related to mirror images (see Prior [67]) used with
temporal logics to obtain a rule for past-time operators from an analogous one for
future-time operators by means of time symmetry. Analyses of conventional tem-
poral logics for computer science typically cannot directly exploit mirror images
because the time models are intentionally asymmetric with an infinite future and
either no past or a bounded one. That has severely limited the application of mir-
ror images. Nevertheless, Furia and Spoletini [21] and Reynolds [69] have recently
applied mirror images to symmetric time models (e.g., bounded past and future).
This demonstrates ongoing interest in mirror images and associated techniques.

16.2 Early applications of temporal logic with past time to concurrency

Our presentation already mentioned in Sect. 6 the work by Pnueli [66] and Lichten-
stein, Pnueli and Zuck [41] in the mid 80s which formalises safety properties using
temporal formulas of the form ✷(w ⊃ X), where the only temporal operators in
X are past-time ones such as those described in Sect. 5.1. Therefore, X can just

Compositional reasoning using intervals and time reversal 69

concern past states and the current state, but not future ones. Only Pnueli [66]
specifically discusses mutual exclusion and Peterson’s algorithm. One motivation
for using past time is to assist in doing backward analysis about what must have
preceded certain events. We pointed in Sect. 6 out that the formula ✷(w ⊃ X)
bears a certain resemblance to our class of 2-to-1 PITL formulas having the form
f✷
(
(fin w) ⊃ ✸B

)
and showed how some instances can be formally related in a se-

mantic sense. One example of this given in Sect. 6 concerns the PITL formula (16)
and PTL− formula (17) which we reproduce below for the convenience of readers:

f✷
(
(fin p) ⊃ ✸(skip ∧ q)

)
first ∧ ✷(p ⊃ −©q).

Pnueli’s main justification given for past time is that point-based temporal logic
without past-time constructs imposes a more global view of the system behaviour.
In contrast, past-time constructs help to modularly specify and analyse the be-
haviour of an individual process.

Interestingly, around the same time as Pnueli, both Barringer and Kuiper [3,
4] and Koymans, Vytopil and de Roever [36] similarly suggest the use of past-
time constructs for reasoning about concurrency. They do not discuss ones of
the form ✷(w ⊃ X). However, Barringer, Kuiper and Pnueli in the slightly later
joint paper [5] mention a couple of formulas of this kind and also examine mutual
exclusion and Peterson’s algorithm.

The straightforward definitions of satisfiability and validity we use for PTL−

in Sect. 5.1 correspond to the so-called floating framework of PTL with past time.
However, Manna and Pnueli propose another approach called the anchored frame-

work [42] (also discussed by Lichtenstein and Pnueli in [40]) which they argue
is superior. In this framework, satisfiability and validity only examine pairs of
the form (σ, 0). There exist ways to go between the two conventions, but we will
not delve into this here and instead simply assume the more traditional floating
interpretation.

16.3 Other interval-based analyses of mutual exclusion

We now mention some interval-based work involving algorithms for mutual ex-
clusion and the related topic of lock-free data structures. The only previously
published analysis of Peterson’s algorithm in some ITL variant seems to be the
one by Pei and Xu [63] which uses the Discrete Time Duration Calculus [25,84]. Ver-
ification is performed using model checking with the popular SPIN tool [31] and
is global rather than modular in the sense of Pnueli [66] (as we briefly discussed
in Sect. 16.2).

Projection Temporal Logic is an ITL extension with operators for temporal gran-
ularities and framing [13–15, 17]. Duan [13, 14] expresses Dekker’s mutual exclu-
sion algorithm (first published by Dijkstra in [12]) in Projection Temporal Logic
but without any formal analysis. Yang, Duan and Ma [82] have applied Projection
Temporal Logic to the analysis of an mutual exclusion example involving a counter
and described earlier by Biere et al. [8]. The interactive theorem prover PVS [60]
provides tool support for a global proof in Pnueli’s sense involving the combined
behaviour of two concurrent processes. Consequently, no compositional properties
involving the correctness of the individual processes are given. Duan, Zhang and

70 Ben Moszkowski

Koutny [18] investigate axiomatic completeness for propositional Projection Tem-
poral Logic and illustrate their framework by summarising the global analysis of
another mutual exclusion example. In principle, Projection Temporal Logic sup-
ports past-time constructs, so a modular analysis, at least in Pnueli’s sense, seems
feasible. However, the case studies of mutual exclusion in [18,82] are formalised in
a version of the logic where the only past-time construct, the operator −© (“previ-
ous”), seems intended solely for framing variables. Our techniques involving time
symmetry and compositional formulas which are closed under conjunction and
the temporal operator ✷ might also be applicable to analysis involving Projection
Temporal Logic because it supports basic ITL operators.

The KIV interactive theorem prover group [7,79] has combined a variant of ITL
with the rely-guarantee paradigm [34, 35] of Jones to verify lock-free algorithms.
However, they have not yet looked at mutual exclusion. Moreover, the lack of much
published literature on applying the quite established rely-guarantee approach to
mutual exclusion (e.g., Stark [74] and see also the related work of Stølen [75] and
Collette [11]) suggests that the framework is not particularly well suited for it. The
textbook by de Roever et al. [70] presents a rely-guarantee example involving mu-
tual exclusion and is a comprehensive source of information about compositional
reasoning based on rely-guarantee conditions as well as other similar work.

We take this opportunity to also mention a class of ITL formulas which Siewe
et al. [73] and Janicke et al. [33] use for describing access control policies. Such
formulas have the form given below:

f✷
(
(✸B) ⊃ fin w

)
. (99)

Their syntax makes them similar to the 2-to-1 formula f✷
(
(fin w) ⊃ ✸B

)
we first

discussed in Sect. 6. However, the variant (99) is not necessarily 2-to-1. For exam-
ple, consider any three-state interval σ. It has exactly two two-state subintervals.
Each of these subintervals trivially satisfies the next f✷-formula:

f✷

((
✸(skip⌢skip)

)
⊃ fin false

)
. (100)

This is because a one- or two-state interval does not satisfy the implication’s left
operand ✸(skip⌢skip), which is only true for intervals with three or more states.
Hence, the implication’s right operand fin false is ignored. Now let A denote the
f✷-formula (100). Our reasoning so far about the subintervals ensures that the
three-state interval σ satisfies the chop formula A;A. Nevertheless, σ fails to satisfy
A because the left subformula ✸(skip⌢skip) of the implication in A is true in σ,
but the right subformula fin false is not. Hence, σ does not satisfy the implication
(A;A) ⊃ A, so the formula (100) is not 2-to-1.

Conclusions and Further Work

We believe that our results about interval-based compositional reasoning using 2-
to-1 formulas and time symmetry are promising. The various compositional classes
of formulas described here which are closed under conjunction and the temporal
operator ✷ seem quite intriguing owing to their simple mathematical features and
natural connections with PTL. The approach therefore appears worthy of further
study. Moreover, perhaps the application of the compositional classes and time

Compositional reasoning using intervals and time reversal 71

symmetry can even somewhat narrow the currently perceived wide practical gap
between PITL and PTL and help increase combined use of the two formalisms.
Possible connections could also be explored involving temporal logics with the same
expressiveness as PITL but lower computational complexity such as Regular Linear
Temporal Logic proposed by Leucker and Sánchez [39,71]. Incidentally, PITL itself
contains a natural, equally expressive sublogic of this sort called Fusion Logic [54,
55], which has some tool support.

Ideally, we would also like to see a comparative analysis encompassing a number
of suitable benchmark applications, range of formalisms and models of concurrency
such as interleaving and true concurrency. It furthermore seems appropriate to
evaluate the tradeoffs between analyses involving concrete algorithms and more
abstract ones. The compositional details required in our analysis of Peterson’s
algorithm certainly suggest to us that abstraction can be quite beneficial. We
have clearly focused our attention on modular techniques here, but the nature of
both global and modular ones deserves further investigation.

Our future research plans include using 2-to-1 formulas and time symmetry in
a calculus of sequential and parallel composition based on Hoare triples having as-
sertions expressed in ITL. Implementations of decision procedures for PITL using
time symmetry and reductions to point-based temporal logic are also envisioned.

We end our discussion here by noting that we believe that the basic math-
ematical concepts described here enrich the body of knowledge about intervals
and temporal logics, no matter what the ultimate practical implications might be.
They include some elementary and exciting properties about compositionality and
time symmetry which turned out with the hindsight of several decades to be quite
elusive and so until now were completely overlooked and unexplored. It also seems
remarkable that most of them only involve the subset of PITL with just the tem-
poral operators chop and skip, but not chop-star. Perhaps similar treasures still
remain hidden, waiting to be discovered. We believe that the further systematic
and scientific study and application of the compositional techniques we already
presented in our earlier work [48–51], together with our interval-oriented analysis
of conventional point-based linear time temporal [55] and new completeness proof
for PITL with infinite time [57], could help in the exploration. This view is sup-
ported by the fact that the material in these publications played a crucial part in
leading us to uncovering the results we have described here.

Acknowledgements We would like to thank Antonio Cau, Amin El-kustaban, Helge Janicke,
Maciej Koutny, Sven Schewe, Xiaoxiao Yang and anonymous referees for comments. Shirley
Craig’s outstanding library services deserve special mention.

References

1. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling, Specifi-
cation and Verification. Cambridge University Press (2007)

2. Balser, M., Bäumler, S., Knapp, A., Reif, W., Thums, A.: Interactive verification of UML
state machines. In: J. Davies, W. Schulte, M. Barnett (eds.) Proc. 6th International
Conference on Formal Engineering Methods (ICFEM 2004), LNCS, vol. 3308, pp. 434–
448. Springer-Verlag (2004)

3. Barringer, H., Kuiper, R.: Hierarchical development of concurrent systems in a temporal
logic framework. In: S.D. Brookes, A.W. Roscoe, G. Winskel (eds.) Seminar on Concur-
rency, LNCS, vol. 197, pp. 35–61. Springer-Verlag (1985)

72 Ben Moszkowski

4. Barringer, H., Kuiper, R.: Towards the hierarchical, temporal logic, specification of con-
current systems. In: B. Denvir, W. Harwood, M. Jackson, M. Wray (eds.) The Analysis
of Concurrent Systems, LNCS, vol. 207, pp. 157–183. Springer-Verlag (1985)

5. Barringer, H., Kuiper, R., Pnueli, A.: A really abstract concurrent model and its temporal
logic. In: Proc. 13th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL’86), pp. 173–183. ACM (1986)

6. Bäumler, S., Balser, M., Nafz, F., Reif, W., Schellhorn, G.: Interactive verification of con-
current systems using symbolic execution. AI Communications 23(2–3), 285–307 (2010)

7. Bäumler, S., Schellhorn, G., Tofan, B., Reif, W.: Proving linearizability with temporal
logic. Formal Aspects of Computing 23(1), 91–112 (2011)

8. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 117–148 (2003)

9. Bowman, H., Cameron, H., King, P., Thompson, S.: Mexitl: Multimedia in Executable
Interval Temporal Logic. Formal Methods in Systems Design 22(1), 5–38 (2003)

10. Bowman, H., Thompson, S.J.: A decision procedure and complete axiomatization of finite
Interval Temporal Logic with projection. Journal of Logic and Computation 13(2), 195–
239 (2003)

11. Collette, P.: Composition of assumption-commitment specifications in a UNITY style.
Science of Computer Programming 23(2-3), 107–125 (1994)

12. Dijkstra, E.W.: Cooperating sequential processes. In: F. Genuys (ed.) Programming Lan-
guages: NATO Advanced Study Institute, pp. 43–112. Academic Press (1968)

13. Duan, Z.: An extended interval temporal logic and a framing technique for temporal logic
programming. Ph.D. thesis, Dept. of Computing Science, University of Newcastle Upon
Tyne (1996). Technical report 556, later published as [14]

14. Duan, Z.: Temporal Logic and Temporal Logic Programming. Science Press, Beijing,
China (2005). Published version of [13]

15. Duan, Z., Koutny, M.: A framed temporal logic programming language. Journal of Com-
puter Science and Technology 19(3), 341–351 (2004)

16. Duan, Z., Koutny, M., Holt, C.: Projection in temporal logic programming. In: F. Pfenning
(ed.) Proc. of Logic Programming and Automated Reasoning (LPAR ’94), LNCS, vol. 822,
pp. 333–344. Springer-Verlag, Berlin (1994)

17. Duan, Z., Yang, X., Koutny, M.: Framed temporal logic programming. Science of Computer
Programming 70(1), 31–61 (2008)

18. Duan, Z., Zhang, N., Koutny, M.: A complete axiomatization of propositional projection
temporal logic. Theor. Comp. Sci. (2012). DOI 10.1016/j.tcs.2012.01.026

19. Fisher, M.: An Introduction to Practical Formal Methods Using Temporal Logic. John
Wiley & Sons (2011)

20. Floyd, R.W.: Assigning meanings to programs. In: J.T. Schwartz (ed.) Proc. AMS Symp.
on Applied Mathematics 19, pp. 19–32. American Mathematical Society, Providence,
Rhode Island, USA (1967)

21. Furia, C.A., Spoletini, P.: Tomorrow and all our yesterdays: MTL satisfiability over the
integers. In: J.S. Fitzgerald, A.E. Haxthausen, H. Yenigün (eds.) 5th International Collo-
quium on Theoretical Aspects of Computing (ICTAC 2008), LNCS, vol. 5160, pp. 126–140.
Springer-Verlag (2008)

22. Gómez, R., Bowman, H.: PITL2MONA: Implementing a decision procedure for proposi-
tional Interval Temporal Logic. Journal of Applied Non-Classical Logics 14(1–2), 105–148
(2004). Special issue on Interval Temporal Logics and Duration Calculi. V. Goranko and
A. Montanari, guest editors

23. Hale, R.: Temporal logic programming. In: A. Galton (ed.) Temporal Logics and Their
Applications, pp. 91–119. Academic Press, London (1987)

24. Hale, R.W.S.: Programming in temporal logic. Ph.D. thesis, Computer Laboratory, Cam-
bridge University, Cambridge, England (1988). Appeared in 1989 as Technical report
173

25. Hansen, M.R., Zhou Chaochen: Duration calculus: Logical foundations. Formal Aspects
of Computing 9(3), 283–330 (1997)

26. Harel, D., Kozen, D., Parikh, R.: Process Logic: Expressiveness, decidability, completeness.
Journal of Computer and System Sciences 25(2), 144–170 (1982)

27. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge, Mass. (2000)
28. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. In: D. Gabbay, F. Guenthner (eds.)

Handbook of Philosophical Logic, vol. 4, 2nd edn., pp. 99–217. Kluwer Academic Publish-
ers, Dordrecht (2002)

Compositional reasoning using intervals and time reversal 73

29. Herlihy, M., Shavit, N.: The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (2008)

30. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications of the
ACM 12(10), 576–580,583 (1969)

31. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley
Professional (2003)

32. Interval Temporal Logic web pages. http://www.tech.dmu.ac.uk/STRL/ITL/
33. Janicke, H., Cau, A., Siewe, F., Zedan, H., Jones, K.: A compositional event & time-based

policy model. In: Proceedings of POLICY2006, London, Ontario, Canada, pp. 173–182.
IEEE Computer Society Press (2006)

34. Jones, C.B.: Specification and design of (parallel) programs. In: R.E.A. Mason (ed.) Proc.
IFIP Congress ’83, pp. 321–332. North Holland Publishing Co., Amsterdam (1983)

35. Jones, C.B.: Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems 5(4), 596–619 (1983)

36. Koymans, R., Vytopil, J., de Roever, W.P.: Real-time programming and asynchronous
message passing. In: Proceedings of the Second Annual ACM SIGACT-SIGOPS Sympo-
sium on Principles of Distributed Computing (PODC’83), pp. 187–197 (1983)

37. Kröger, F., Merz, S.: Temporal Logic and State Systems. Texts in Theoretical Computer
Science (An EATCS Series). Springer-Verlag (2008)

38. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware and Soft-
ware Engineers. Addison-Wesley Professional (2002)

39. Leucker, M., Sánchez, C.: Regular Linear Temporal Logic. In: C.B. Jones, Z. Liu, J. Wood-
cock (eds.) Proc. 4th International Colloquium on Theoretical Aspects of Computing (IC-
TAC’07), Macau, China, LNCS, vol. 4711, pp. 291–305. Springer-Verlag (2007)

40. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: Decidability and completeness.
Logic Journal of the IGPL 8(1), 55–85 (2000)

41. Lichtenstein, O., Pnueli, A., Zuck, L.: The glory of the past. In: R. Parikh, et al. (eds.)
Logics of Programs, LNCS, vol. 193, pp. 196–218. Springer-Verlag, Berlin (1985)

42. Manna, Z., Pnueli, A.: The anchored version of the temporal framework. In: J.W.D.
Bakker, W.P. de Roever, G. Rozenberg (eds.) Linear Time, Branching Time, and Partial
Order in Logics and Models for Concurrency (REX Workshop 1988), LNCS, vol. 354, pp.
201–284. Springer-Verlag (1989)

43. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial
intelligence. In: D. Michie, B. Meltzer (eds.) Machine Intelligence 4, pp. 463–502. Edin-
burgh University Press, Edinburgh (1969). Reprinted in [81, 431–450]

44. Mo, D., Wang, X., Duan, Z.: Asynchronous communication in MSVL. In: S. Qin, Z. Qiu
(eds.) 13th Int’l Conf. on Formal Engineering Methods (ICFEM 2011), LNCS, vol. 6991,
pp. 82–97. Springer-Verlag (2011)

45. Moszkowski, B.: Reasoning about digital circuits. Ph.D. thesis, Department of Computer
Science, Stanford University (1983). Technical report STAN–CS–83–970

46. Moszkowski, B.: A temporal logic for multilevel reasoning about hardware. Computer 18,
10–19 (1985)

47. Moszkowski, B.: Executing Temporal Logic Programs. Cambridge University Press, Cam-
bridge, England (1986)

48. Moszkowski, B.: Some very compositional temporal properties. In: E.R. Olderog (ed.)
Programming Concepts, Methods and Calculi (PROCOMET’94), IFIP Transactions, vol.
A-56, pp. 307–326. IFIP, Elsevier Science B.V. (North–Holland) (1994)

49. Moszkowski, B.: Compositional reasoning about projected and infinite time. In: Proc.
1st IEEE Int’l Conf. on Engineering of Complex Computer Systems (ICECCS’95), pp.
238–245. IEEE Computer Society Press (1995)

50. Moszkowski, B.: Using temporal fixpoints to compositionally reason about liveness. In:
He Jifeng, J. Cooke, P. Wallis (eds.) BCS-FACS 7th Refinement Workshop, electronic
Workshops in Computing. BCS-FACS, Springer-Verlag and British Computer Society,
London (1996)

51. Moszkowski, B.: Compositional reasoning using Interval Temporal Logic and Tempura.
In: W.P. de Roever, H. Langmaack, A. Pnueli (eds.) Compositionality: The Significant
Difference, LNCS, vol. 1536, pp. 439–464. Springer-Verlag, Berlin (1998)

52. Moszkowski, B.: An automata-theoretic completeness proof for Interval Temporal Logic
(extended abstract). In: U. Montanari, J. Rolim, E. Welzl (eds.) Proc. 27th Int’l. Collo-
quium on Automata, Languages and Programming (ICALP 2000), LNCS, vol. 1853, pp.
223–234. Springer-Verlag, Geneva, Switzerland (2000)

74 Ben Moszkowski

53. Moszkowski, B.: A complete axiomatization of Interval Temporal Logic with infinite time
(extended abstract). In: Proc. 15th Ann. IEEE Symp. on Logic in Computer Science
(LICS 2000), pp. 242–251. IEEE Computer Society Press (2000)

54. Moszkowski, B.: A hierarchical completeness proof for Propositional Interval Temporal
Logic with finite time. Journal of Applied Non-Classical Logics 14(1–2), 55–104 (2004).
Special issue on Interval Temporal Logics and Duration Calculi. V. Goranko and A. Mon-
tanari, guest editors.

55. Moszkowski, B.: Using temporal logic to analyse temporal logic: A hierarchical approach
based on intervals. Journal of Logic and Computation 17(2), 333–409 (2007)

56. Moszkowski, B.: Compositional reasoning using intervals and time reversal. In: 18th Int’l
Symp. on Temporal Representation and Reasoning (TIME 2011), pp. 107–114. IEEE Com-
puter Society (2011)

57. Moszkowski, B.: A complete axiom system for propositional Interval Temporal Logic with
infinite time. Logical Methods in Computer Science 8(3:10), 1–56 (2012)

58. Moszkowski, B.: Interconnections between classes of sequentially compositional temporal
formulas. Inf. Process. Lett. 113(9), 350–353 (2013)

59. Olderog, E.R., Dierks, H.: Real-Time Systems: Formal Specification and Automatic Veri-
fication. Cambridge University Press, Cambridge, England (2008)

60. Owre, S., Shankar, N.: A brief overview of PVS. In: O.A. Mohamed, C. Muñoz, S. Tahar
(eds.) 21st International Conference on Theorem Proving in Higher Order Logics (TPHOLs
2008), LNCS, vol. 5170, pp. 22–27. Springer-Verlag (2008)

61. Paech, B.: Gentzen-systems for propositional temporal logics. In: E. Börger, H.K.
Büning, M.M. Richter (eds.) Proceedings of the 2nd Workshop on Computer Science Logic
(CSL’88), LNCS, vol. 385, pp. 240–253. Springer-Verlag (1989)

62. Parikh, R., Chandra, A.K., Halpern, J.Y., Meyer, A.R.: Equations between regular terms
and an application to process logic. SIAM Journal on Computing 14(4), 935–942 (1985)

63. Pei Yu, Xu Qiwen: Checking interval based properties for reactive systems. In: B. Steffen,
G. Levi (eds.) Verification, Model Checking, and Abstract Interpretation, LNCS, vol. 2937,
pp. 51–75. Springer-Verlag (2004)

64. Peterson, G.L.: Myths about the mutual exclusion problem. Inf. Process. Lett. 12(3),
115–116 (1981)

65. Pnueli, A.: The temporal logic of programs. In: Proc. 18th Ann. IEEE Symp. on the
Foundation of Computer Science (FOCS), pp. 46–57. IEEE Computer Society Press (1977)

66. Pnueli, A.: In transition from global to modular temporal reasoning about programs. In:
K.R. Apt (ed.) Logics and Models of Concurrent Systems, NATO ASI Series F, vol. 13,
pp. 123–144. Springer-Verlag (1985)

67. Prior, A.: Past, Present and Future. Oxford Univ. Press, London (1967)
68. Reif, W., Schellhorn, G., Stenzel, K., Balser, M.: Structured specifications and interactive

proofs with KIV. In: W. Bibel, P.H. Schmitt (eds.) Automated Deduction – A Basis
for Applications, Volume II: Systems and Implementation Techniques, pp. 13–39. Kluwer
Academic Publishers, Dordrecht (1998)

69. Reynolds, M.: A tableau for Until and Since over linear time. In: 18th Int’l Symp. on
Temporal Representation and Reasoning (TIME 2011), pp. 41–48. IEEE Computer Society
(2011)

70. de Roever, W.P., de Boer, F., Hanneman, U., Hooman, J., Lakhnech, Y., Poel, M., Zwiers,
J.: Concurrency Verification: Introduction to Compositional and Noncompositional Meth-
ods. No. 54 in Cambridge Tracts in Theoretical Computer Science. Cambridge University
Press (2001)

71. Sánchez, C., Leucker, M.: Regular Linear Temporal Logic with past. In: 11th Int’l Conf.
on Verification, Model Checking, and Abstract Interpretation (VMCAI 2010), LNCS, vol.
5944, pp. 295–311. Springer-Verlag (2010)

72. Shanahan, M.: Solving the Frame Problem: A Mathematical Investigation of the Common
Sense Law of Inertia. MIT Press (1997)

73. Siewe, F., Cau, A., Zedan, H.: A compositional framework for access control policies en-
forcement. In: M. Backes, D. Basin, M. Waidner (eds.) ACMWorkshop on Formal Methods
in Security Engineering (FMSE’03), pp. 32–42. ACM Press, Washington, DC (2003)

74. Stark, E.W.: A proof technique for rely/guarantee properties. In: Proceedings of the 5th
Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 1985), LNCS, vol. 206, pp. 369–391. Springer-Verlag (1985)

75. Stølen, K.: A method for the development of totally correct shared-state parallel programs.
In: CONCUR 1991, LNCS, vol. 527, pp. 510–525. Springer-Verlag (1991)

Compositional reasoning using intervals and time reversal 75

76. Taubenfeld, G.: Synchronization Algorithms and Concurrent Programming. Pear-
son/Prentice Hall (2006)

77. Thomas, W.: Automata on infinite objects. In: J. van Leeuwen (ed.) Handbook of The-
oretical Computer Science, vol. B: Formal Models and Semantics, chap. 4, pp. 133–191.
Elsevier/MIT Press, Amsterdam (1990)

78. Thums, A., Schellhorn, G., Ortmeier, F., Reif, W.: Interactive verification of Statecharts.
In: H. Ehrig, W. Damm, J. Desel, M. Große-Rhode, W. Reif, E. Schnieder, E. Westkämper
(eds.) SoftSpez Final Report, LNCS, vol. 3147, pp. 355–373. Springer-Verlag (2004)

79. Tofan, B., Bäumler, S., Schellhorn, G., Reif, W.: Temporal logic verification of lock-
freedom. In: Proc. MPC 2010, Springer LNCS 6120, pp. 377–396 (2010)

80. van Emde Boas, P.: The connection between Modal Logic and Algorithmic Logic. In:
7th Symposium on Mathematical Foundations of Computer Science (MFCS 1978), lncs,
vol. 64, pp. 1–15. springer (1978)

81. Webber, L., Nilsson, N.J. (eds.): Readings in Artificial Intelligence. Tioga Publishing Co.,
Palo Alto, California (1981)

82. Yang, X., Duan, Z., Ma, Q.: Axiomatic semantics of projection temporal logic programs.
Mathematical Structures in Computer Science 20(5), 865–914 (2010)

83. Zhang, N., Duan, Z., Tian, C.: A cylinder computation model for many-core parallel
computing. Theor. Comp. Sci. (2012). DOI 10.1016/j.tcs.2012.02.011

84. Zhou Chaochen, Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time
Systems. Monographs in Theoretical Computer Science (An EATCS series). Springer-
Verlag (2004)

85. Zhou Chaochen, Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process. Lett.
40(5), 269–276 (1991)

This author-produced version was formatted on 10 February 2015.

