Appears as an invited paper in the Proceedings of the
BCS-FACS 7th Refinement Workshop (Bath, UK, 3-5 July, 1996),
He Jifeng, J. Cookeand P. Wallis (editors), in the series e ectronic Workshops in Computing,
Springer-Verlag, London, 1996.

Using Temporal Fixpointsto
Compositionally Reason about Liveness

Ben Moszkowski*
Department of Electrical and Electronic Engineering
University of Newcastle upon Tyne, Newcastle NE1 7RU, Gresat Britain

Abstract

The compositional specification and verification of the behavior of concurrent processesis a challenging research
area. Theassumption/commitment approach hasemerged asoneway to systematically achievethe desired modularity.
However, it isgenerally limited to reasoning about safety propertieswhich apply throughout the execution of asystem.
Liveness properties involving intermittent behavior are harder to address. We investigate the use of assumptionsand
commitmentsin Interval Temporal Logic and show how to augment them with some more information for handling
liveness. The proposed techniques are a continuation of our previous research on formalizing assumptions and
commitments through the use of fixpoints of certain simple temporal operators. Associated with thisis a generalized
notion of Owicki and Gries' proof outlines. We illustrate the approach with examples including a mutual exclusion
system with time stamps.

1 Introduction

Assumptions and commitments are recognized as one way to reasoning about concurrent systems. Jones [6] shows
how to augment the pre- and post-conditionsfound in Hoare logic with compositional assumptions and commitments
(called by Jones rely- and guarantee-conditions). Assumptions are especially selected so that if they are true for a
system component, then they are automatically true for al sequential subcomponents. Thus one can say that such
assumptionsare easy to import. Commitmentsare chosen such that when truefor a series of sequentia subcomponents
are also automaticaly true for the overall component. Thus, such commitments are easy to export. This style of
analysis works best when one reasons about safety properties[11] which hold everywhere but it is more limited when
dealing with liveness. One reason isthat liveness propertiesare by definition not necessarily true al thetime but only
some of thetime. Consequently, they are too weak to be exported with conventional compositional commitments.

Other researchers have investigated how to handle liveness. Stalen [23] deals with it by adding await-conditionto
Jones' approach. See also Xu and He [27], and Xu, Cau and Collette[24] and a survey by Xu, de Roever and He [26].
Pandya and Joseph [21] and Jonsson and Tsay [7] use linear-time temporal logic.

In this work we show how to augment compositional assumptions and commitments with some extra notation
to bridge the gaps where exportable commitments by themselves are not sufficient. Interval Tempora Logic (ITL)
[13, 4, 14], serves as our framework. In previouswork [16] we characterized generalized versions of compositional
assumptions and commitments in ITL as fixpoints of certain simple tempora operators. An application of this
approach to intervals with infinite length was illustrated in [17]. We now show that fixpoints of some other ITL
operators facilitate reasoning about liveness. Our approach also supports an extended form of the proof outlines of
Owicki and Gries[18, 19] as a means to visually elucidate compositional proofs about both safety and liveness.

The remaining sections of the paper are organized asfollows. In Section 2 we overview how to embed assumptions
and commitmentsin Interval Temporal Logic and briefly discuss how to extend thisto handleliveness. Section 3 gives
asummary of ITL's syntax and semantics aswell as acompositiona proof system. Section 4 gives more details about
dealing with liveness and includes various examples. For simplicity, Sections 3 and 4 only consider temporal intervals
having finite length. Section 5 extends ITL and our compositional methods to reasoning about infinite intervals. We

*The research described here has been kindly supported by EPSRC research grant GR/K25922.

7th BCS-FACS Refinement Workshop, 1996 1

Compositionally Reason about L iveness

include a number of small examples throughout Sections 4 and 5. One involves proving the absence of deadlock in
a simpl e two-process system with shared write access to a counter variable. Section 6 looks at two nontrivia mutual
exclusion systems operating over infinite time. The first is easier to describe but can deadlock. The second one
remedies this deficiency through the use of time stamps. Both of these systems served as our primary case studies
during the devel opment of the methods presented here.

2 Overview of Assumptions and Commitmentsin ITL

Modularity is a desirable attribute of any formal method. We wish to address how to modularly specify and prove
liveness properties. However, itisnecessary to first present some background material. One of the best known modular
logical notationsis Hoare logic [5]. It uses the important insight that proofs about the pre/post-condition behavior of
a sequentia program can be decomposed into subproofs of the program’s parts. In Interval Tempora Logic we can
express a Hoare clause as a theorem about discrete intervals of time consisting of one or more states:

wa Sys O finw.

Herewand W are state formul as containing no temporal operatorsand Sysis some arbitrary temporal formulawewish
to reason about. The temporal formulafinw’ is true on an interval iff w is truein the interval’sfinal state. A more
precise definition of fin and other ITL operatorsisgivenin Section 3.

The pre/post-condition approach is not particularly well suited for specifying and verifying systems in which
ongoing and paralel behavior are important. However, this can be remedied through the addition of what are
commonly known as assumptions and commitments. Francez and Pnudli [3] are the first to consider them and refer
to them as interface predicates. The following implication shows the basic form of an ITL theorem incorporating an
assumption As and a commitment Co:

wa Asa Sys O Con finw.

In general As and Co can be arbitrary temporal formulas. However, when compositional reasoning about sequential
parts of a system is needed, it isuseful to require that As and Co be respective fixpoints of the ITL operators @ (read
“box-a") and * (read “chop-star”) asis now shown:

As= 1 As, Co = Co".

The first equivalence ensures that if the assumption Asistrue on an interval, it isaso truein al subintervals. The
second ensures that if zero or more sequentia instances of the commitment Co span an interval, Co is aso true on
the interval itself. The ITL operator * (chop-star) used here is a repetitive version of the chop operator mentioned
above and issimilar to the Kleene star found in regular expressions. The tempora formula0 (K = 1) (read “K always
equals1”) isan example of an importable assumption. The temporal formulaK «+ K (“K’sinitial and final values on
theinterval are equal”) is an exportable commitment. Some formulas such as stableK (“K’s value remains the same
throughout the interval™) can be used both as assumptions and commitments. These are precisaly the fixpoints of the
ITL operator keep, where the formula keep S, for some subformula S, istrue on an interval iff Sistrue on every unit
subinterval (i.e., consisting of exactly two adjacent states). For assumptions and commitments obeying the above, the
next derivable proof ruleis sound:

F waAsa Sys O Con finw,
FwWaAsaSs D Coafinw” (1)

F waAsa (S5 9ys) D Coa finw’.

Theruleusesthe ITL operator “;” (chop) which combines the formulas Sysand Sys' in series. That is, Sys; Sys' istrue
on an interval iff Sysistrue on aleft subinterval and Sys' is true on the corresponding right subinterval which shares
one state.

Here is an analogous rule for decomposing a proof for zero or more iterations of aformula Sys:

F waAsa Sys D Con finw
F waAsa Sys* O Confinw.

@)

Similar rules are possiblefor if , while and other constructs.

7th BCS-FACS Refinement Workshop, 1996 2

Compositionally Reason about L iveness

Note that our approach only requires assumptions and commitments which are used directly in rules such (1)
and (2) to be compositional. Compositiona proofs about a system in ITL typicaly aso involve reasoning about
noncompositional assumptions and commitments as well. For instance, there is an important class of formulas using
the standard tempora operator O (read “box” or “always’) and of the form OSwhich often occur in temporal logic
specifications. In general they can neither be used directly as compositional assumptions or commitments. However,
those of theform Ow, for some state formulaw, can be used as assumptionssince they are fixpointsof the operator @:

F Ow=&E0Ow.

However, even these cannot be used as exportable commitments since, for example, the formula (Ow)* (and indeed
any formulaS*) isvacuoudy true on intervals having exactly one state whereas Ow is hot necessarily true on them. In
other words (Ow)* A —Ow is satisfiable for some w and therefore Ow = (Ow)* isnot in general atheorem. However,
thereisasimple way around this. We express Ow as the conjunction of keepw and finw:

F Ow=keepwna finw.

Since w isa state formula, keep w turns out to be true on an interval iff wistrue on dl of the interval’s states except
possibly the last one. Since we aready mentioned that keep S for any formula S is a perfectly good exportable
commitment, we can use keep w in compositional proofsand at the very end combineit with finw to obtain the desired
(generaly nonexportable) commitment Ow.

The techniques so far presented do not address reasoning about formulas involving liveness such as O0Ox and
O(x D OX'), wherex and X’ are state formulas. In what follows we investigate how to handle such tempora formulas
in compositiona proofs. Thisis facilitated through the exploitation of further fixpointsof ITL operators. In genera,
such formulas are not suitable as compositional assumptions or commitments. Let us now use the tempora operators
(“box-m”) and & (“diamond-i”). A formula@Sis true on an interval iff the subformula Sistrue on al terminal
(suffix) subintervals with more than one state, that is al the interval’s nonempty termina subintervals. Therefore
ignores the last (empty) terminal subinterval consisting of one state and is dightly weaker than O. A formula< Sis
trueon an interval iff Sistrue on some initial (prefix) subinterval (which might be the interval itself). It turnsout that
for any S theformulam <& Sisafixpoint of chop-star:

F mBoS=(mo9r.

It thereforefollowsthat for any formulaDI which isafixpoint of &, theformulamDI isawaysafixpoint of chop-star
and is a suitable compositional commitment. Now, for any state formulas x and x’, the formulax > <x’ is a fixpoint
of the temporal operator &. Consequently, the formula®(x > <x’) is afixpoint of chop-star. In order to prove a
formulad(x o> Ox’), we compositionally establish the related formula@ (x O <x’) and aso show fin(x O Ox’), thus
obtaining O(x O <x'). Here we are using the following lemma relating O with @ and fin:

F OS=mSafinS

There are also other useful fixpointsof <> which we consider later. In addition, the conjunction and disjunction of two
such fixpoints are themsel ves fixpoints of <.

The fixpoints of the ITL operator ¢ (read “diamond-a”) are aso important. In general, ¢ Sistrue on an interva
iff Sistrue on some subinterval (possibly the interval itself). Formulas such as &x, where x is a state formula, and
— stableA (meaning “ The variable A has more than one value over theinterval”) are fixpointsof ®. If DA isafixpoint
of @, then it isaso afixpoint of <> so @DA isafixpoint of chop-star and hence a compositional commitment. More
generdly, the formulax > DA is always a fixpoint of < and therefore m(x > DA) is a fixpoint of chop-star. The
fixpoints of ® are closed under conjunction and digunction.

Let us consider another benefit of fixpoints of ¢. Suppose one wishes to prove that a formula Sys; Sys' with a
suitable precondition and an importable assumption implies a commitment @ (x > DA) for some state formulax and
some fixpoint DA of ©. The most straightforward thing to do is to first show the commitment both for Sys and Sys'
and then combine the results using proof rule (1). However, thisis not aways possible since DA might never be true
in Sys and only occur in Sys’ even though x is perhaps somewhere truein Sys. In such cases, we can use thefollowing
derivable proof rule aslong as dl intervals are assumed for simplicity to have finite length:

F waAsa Sys D finw,
FwWaAsaSs D B(xD DA) » DA finw” (3)
F waAsa (S5, 9ys) O @(xD DA) DA A finw”.

7th BCS-FACS Refinement Workshop, 1996 3

Compositionally Reason about L iveness

This shows that the only thing we need to verify about Sysis that it ensures that the statement w istrue in itsfina
state. Both the desired commitment @(x > DA) and DA itself can be obtained for Sys; Sys' from Sys' aone because
DA isafixpoint of ®. Later onin Section 4 we illustrate how to use this proof technique. A variant rule for infinite
timeisdiscussed in Section 5.

In what follows, we will further examine the significance of fixpoints of such temporal operators as chop-star, &,
<& and & in reasoning about liveness.

3 Review of Interval Temporal Logic

We now describe Interval Tempora Logic. The presentation is rather brief and the reader should refer to references
such as[13, 4, 14, 16] for more details. ITL isalinear-timetemporal logic with a discrete model of time. An interval
o ingeneral has alength |o| > 0 and afinite, nonempty sequence of |o| 4+ 1 states oo, . . ., 0,. Thus the smallest
intervals have length O and one state. Each state o for i < |o| mapsvariablesa, b, c, ..., A, B, C, ... todatavaues.
Lower casevariablesa, b, ¢, ... are caled static and do not vary over time. Infiniteintervals can aso be handled by
us but for simplicity we do not consider them until Section 5. Basic ITL contains conventional propositiona operators
such as a and first-order ones such as vV and =. Normally expressions and formulas are evaluated relative to the
beginning of the interval. For example, theformulad = | + 1istrueon an interva o iff the J’'svaluein ¢'sinitid
state is one more that |'svauein that state.

There are three primitive tempora operators skip, “;” (chop) and “*” (chop-star). Here istheir syntax, assuming
that Sand T are themselves formulas:

sip ST S,

The formula skip has no operands and istrue on an interval iff theinterval haslength 1 (i. e., exactly two states). Both
chop and chop-star permit evaluation within various subintervals. A formulaS; T istrue on an interva o with states
0o, ..., 0)4| iff theinterval can be chopped into two sequential parts sharing asingle state oy for somek < |s| and in
which the subformula Sistrue on the l€ft part oy, . . ., ok and the subformula T istrue on the right part oy, . . ., 0|
For instance, theformulaskip; (J = | + 1) istrueon aninterval ¢ iff o has at least two states g, 01, ...andJ =1 + 1
is true in the second one ;. A formula S* istrue on an interval iff the interval can be chopped into zero or more
sequential partsand thesubformulaSistrueoneach. Anempty interval (one having exactly onestate) trivially satisfies
any formulaof theform S* (including false*). The following serves as an alternative programming-likesyntax for S°:

for sometimesdo S.

We generally usew, W', x, X’ and so forth to denote state formulaswith no temporal operatorsinthem. Expressionsare
denoted by e, € and so on. Table 1 shows a variety of useful temporal operators definable in ITL. A summary of the
kinds of fixpointsused in our approach is shown in Table 2. It also includes examples of them. Note that in general
the variables As and Co can refer respectively to arbitrary assumptions and commitments and they are fixpoints only
when it is specificaly stated, such as when they are supposed to be compositionally importable or exportable. Thisis
the case most of the timein our presentation here. In the long run, it might be better to refer to an assumption which
isafixpoint of @ by the name BA and a commitment which isa fixpoint of chop-star by CS,

In[16] we made use of the conventional logica notion of definite descriptionsof theform :v: Swherevisavariable
and Sis aformula (see for example Kleene [8, pages 167-171]). These alow a uniform semantic and axiomatic
trestment in ITL of expressions such as Oe (€'snext value), fine (¢'sfina value) and len (the interva’slength). For
example, ©e can be defined as follows:

oe ¥ waO(e=a),

where a does not occur freely ine. Hereisaway to define temporal assignment using afin term:

eced E (fing=¢.

The following operator stable tests whether an expression’s value changes and is a so later needed by us:

stablee & Ja:O(e=a),

7th BCS-FACS Refinement Workshop, 1996 4

Compositionally Reason about L iveness

Conventional linear-timetemporal logic operators

oS dzd skip; S Next

es ¥-o-s Weak next

os ¥ true; S Sometimes (some terminal subinterval)

os dzef =08 Always (all terminal subintervals)
Some other important operators

more & Otrue Nonempty interval

empty dzd —more Empty interval

fins € O(empty > S) Final state

halt S dzd 0(S= empty) Exactly final state

ms ¥ O(more > S) All nonempty terminal subintervals

&S dzef O(morea S) Some nonempty terminal subinterval

While and repesat |oops
whilewdo S € (W §)* a fin-w
repeat Suntil w « S while-=wdo S

Moreinterval-oriented operators

def .
®S = true S true Some subinterval
def

BS =-®-S All subintervals
&S dzd S true Someinitial subinterval
os ¥-_o¢-s Al initial subintervals

keepSE m(kip>'S Al unit subintervals
keepnowsdzef &(skip A S) First unit subinterval

Table 1: Some definable ITL operators

Formula .
Operator name Sample formula Meaning
@ As stableK “ThevariableK isstable’
| BT finMk “Thefinal value of Mk istrue”
chop-star Co m— stableK “In all nonempty terminal subintervals, K is not stable”
& DI even(K) D —stableK “If Kisinitially even, it is not stable”
® DA - stableK “K isnot stable”
keep (none) keep(K < OK) “ K never decreases’

Table 2: Various useful temporal fixpoints

7th BCS-FACS Refinement Workshop, 1996 5

Compositionally Reason about L iveness

where the static variable a is chosen so as not to occur freely in the expression e. The formulae gets € istrueiff in
every unit subinterval, the initia value of the expression € equalsthe fina value of the expression e

egets¢é “ keep(e + €).
An expression is said to be padded iff it is stable except for possibly the last statein the interval:

padded e dzef Ja: keep(e = a),

where the static variable a does not to occur freely in e. A useful version of assignment called padded temporal
assignment can then be defined:

ewd L (fine) = € A paddede.

This ensures that e does not change until possibly the very end of the interval when the assignment takes effect.

3.1 A Practical Proof System

We now present a very powerful and practica compositiona proof system for ITL. The reader may prefer to initially
omit this subsection. Our experience in rigorously developing hundreds of propositional and first-order proofs has
hel ped usrefine theaxioms and convinced usthey are sufficient for avery widerange of purposes. See M oszkowski [16]
for more about this. The proof system is divided into a propositiona part and afirst-order part. Our discussion looks
at each inturn.

3.1.1 Propositional Axioms and Inference Rules.

The propositional axioms and inference rules mainly deal with chop, and skip and operators derived from them. Only
oneaxiom is needed for chop-star. The proof system gives nearly equal treatment to initia and terminal subintervals.
This is exceedingly important for the kinds of proofs we do. In addition, this makes the proof system easier to
understand since much of it consists smply of dualsin this sense. In contrast, most temporal logics cannot handle
initial subintervalsand even other proof systemsfor ITL largely neglect them.

Rosner and Pnueli [22] and Paech [20] give propositiona proof systems for ITL withinfinite intervals and prove
completeness. Our proof system contains some of the propositiona axioms suggested by Rosner and Pnueli but also
includes our own axioms and inference rule for the operators @, keepnow, and chop-star. These assist in deducing
propositional and first-order theorems and in deriving rulesfor importing, exporting and other aspects of composition.

Prop F Substitutionsof tautologies P7 +w>Ow

P2 F (ST);U=S(T;U) P8 + @(SDOS)AO(TDOT) D (ST)D(S;T)
P3 F (SvS);T D (ST)v (S:T) PO F OS> -0-S

P4 S§(TvT) > (ST)v(ST) P10 + &((Ohatw)r S D @((Ohaltw) > 9
P5 + empty,S=S P11 F SAD(SD>®S > OS

P6 F Sempty=3S P12 + S =emptyv (S more); S

MP FSOT, S = FT oGen- S = + OS

OGen+ S = F+ OS

We have strengthened axiom P10 in order to facilitate reasoning about initial subintervalsand what are called markers
(see Subsect. 4.1). The following earlier version used in proofs about the keep operator can be readily deduced from
P10 (with w replaced by true), the other axioms and inference rules:

F keepnowS O - keepnow-S.

We now give a sample theorem and its proof:

F @(SO>T) D> &SSO OT
Proof:

1 F true > true Prop

7th BCS-FACS Refinement Workshop, 1996 6

Compositionally Reason about L iveness

2 F O(true D true) 1,0Gen
3 F @(S D T)AO(true > true) P8

F D (Strue) O (T;true)
4 F @S >T) DO (Strue) O (T;true) 2,3Prop
5 F @S>T) O SO OT 4,def. of &

Theorem 3.1 The propositional proof systemis complete for quantifier-free formulas containing only bool ean-valued
static and state variables.

Outline of proof: For a given formula, we construct afinite tableau consisting of a number of states. Each stateis
represented as a digunction whose diguncts are themsel ves conjunctions of primitive propositions, next formulas and
their negations. Now suppose Sisavalid formula Construct atableau for its negation —=S. Call a state in a tableau
final if it is satisfiable by some empty interval. No state reachable from theinitia statein our tableau for —Sisfind,
since otherwise we can use the path to construct a model for —=S. Therefore the tableau reflects that —=Sis not true
in any finiteintervals. We convert this to a proof-by-contradiction for S. This technique also applies to a version of
Rosner and Pnueli’s proof system restricted to finite intervals.

3.1.2 First-Order Axioms and Inference Rules.

Below are axioms and inference rules for reasoning about first-order concepts. They areto be used together with the
propositional ones already introduced. See Manna [12] and Kroger [10] for proof systems for chop-free first-order
temporal logic. Welet vand V' refer to both static and state variabl es.

F1 F Al substitution instances of valid nonmodal formulas of conventional
first-order logic with arithmetic.
F2 FvYwS O §,
where the expression e is sort-compatiblewith vand v is free for ein S,
If e contains any temporal operators, then v must be a state variable not
occurring freely in Swithin the left side of a chop formula or within a
chop-star formula.

F3 F Y (SDT) D (SO VwT),
where v doesn't occur freely in S.
FA4 F (w9 =w'5S),
wherev and V' are static variablesof one sort and visfreefor vV in S,
F5 F Yy (S=T) D (wv:§=(w:T), where v is static.
F6 F@vSa@@w:§=v DO § where v is a static variable.
F7 Fw O Ow, where w only contains static variables.
F8 F3v(ST) D> (@v:9;T,
where v doesn’t occur freely in T.
F9 F3v(ST) O S@wvT),
where v doesn't occur freely in S.
F10 F (3v:9;0(3v:T) D V. (SOT),
where visa statevariable
vGen F S = F Yv§ for any variablev.
Induct - &, FS> 9t = S
for any static variable n whose sort is the natural numbers.

The axiom F1 permits using properties of conventional first-order logic with arithmetic without proof. Most of the
other axioms and thetwoinferencerulesat theend are adaptati ons of conventional nonmodal equiva entsfor quantifiers
and definite descriptions. Only four axioms actually contain temporal operators. Axiom F7 deals with state formulas
containing only static variables. Thetwo axioms F8 and F9 show how to move an existential quantifier out of the scope
of chop. The remaining temporal axiom F10 shows how to combinetwo state variablesin nearly adjacent subintervals
into one state variable for the entire interval. We extensively use it and lemmas derived from it for constructing
auxiliary variables. Dutertre [2] gives a complete first-order ITL proof system but with a nonstandard semantics of
intervals.

7th BCS-FACS Refinement Workshop, 1996 7

Compositionally Reason about L iveness

4 Moreabout Analyzing Liveness

We now review and expand upon some of the ideas presented in Section 2 about liveness. As mentioned there, a
formula of the form OS can not in general be used as a compositional assumption or commitment. A formula of the
more restricted form Ow, for some state formula w, can be used directly as an importable assumption and a minor
variant of it of the form keepw can be used as an exportable commitment which is ultimately combined with finw to
establish Ow. Now there are many other important formulas of the form OSwhich are not addressed by this. We now
consider one way to deal with at least some such formulas. Recdl that @mSto be true on an interval iff Sistrue on all
terminal (suffix) subintervals except possibly the last one:

ms € O(more D S).

Notethat for a state formulaw the formulas keep Sand @S are in fact provably equivalent:
F keepw = @w.

An important observation aready noted in Section 2 isthat for any S, theformulam <& Sisafixpoint of chop-star:
F BOS= (@O

It followsthat for any &-fixpoint DI, theformulam DI isafixpoint of chop-star and issuitablefor use asacompositional
commitment. Important liveness-related formulas such as Ox and x O O’ arein fact fixpoints of <>, provided that x
and X' are state formulas. The important construct keep Swhich is frequently used as a compositional assumption and
commitment in proofs can be expressed with the @ operator and a -fixpoint:

- keepS=mo(skip A 9.

Furthermore, all conjunctions and disjunctionsof fixpoints of < are themselves fixpoints of <.

Consider for example the formula (K < K + 1)*. We can compositionally prove that this implies the formula
m— stableK. The formulam— stableK can be directly used as the commitment in the proof because the subformula
— gtableK isprovably afixpoint of &:

F - stableK = & - stableK.
Infact it iseven afixpoint of ®. Wefirst deduce that K <~ K + 1 impliesthe commitment @— stableK:
F K« K+1 D> @m-sableK.

Next, we use thisin a simplified version of proof rule (1) in Section 2 which omits pre- and post-conditionsas well as
assumptions to obtain the desired god:

F (KeK+1)* > @D-dableK.
Let usnow look a how to prove the following in a compositional way:
F K>1a(stableK;K <« 2K)* > @-gableK A fin(K > 1). 4

Notethat we are unableto obtain the commitment @— stableK from thefirst part of each loop step, that isstableK, by
purely local analysis. In order to get around this, more proof techniques are needed as was noted in Section 2. First of
all, in addition to compositiona assumptions and commitments, we sometimes include another formula DA which is
some fixpoint of the tempora operator ¢. Here isthe genera form of a suitableimplication:

WaAsaSs O Coa DA finw.

Now theformulax > DAisafixpoint of <>. Among other things, thisensuresthat theformula@(x > DA) isafixpoint
of chop-star and hence a compositional commitment. However, DA itself isnot in general afixpoint of chop-star and
therefore cannot be exported in the usual way. However, if we have a specification Sys; Sys' and can show that under
appropriate circumstances the second subformula Sys” implies both @(x > DA) and DA, then both @(x > DA) and

7th BCS-FACS Refinement Workshop, 1996 8

Compositionally Reason about L iveness

{K>1}
K <~ 2K @ stableK A — stableK
{K>1}

Figure 1: Proof outlinefor lemma (7).

{K>1} _
for sometimes do (
{(K>1)
stableK true
{K>1} m— stableK A — stableK | @— stableK
K <« 2K m— stableK A — stableK
{K>1}

<=1 -

Figure 2: Proof outlinefor lemma (4).

DA can be automatically exported from Sys; Sys'. This avoids first proving that Sys implies@(x > DA). Hereisa
derivable proof rule for fixpointsof DA:

F waAsa Sys D finw,
FwWaAsaSs D @B(xD DA) A DA finw” (5)
F waAsa (S5, 9ys) O @(xD DA) DA A finw”.
The following corollary rule uses mDA as the commitment by replacing x by true and simplifying:
F waAsa Sys D finw,
F W aAAsaSys O BEDAA DA finw’ (6)
F waAsa (S5 Sys) O @DA A DA A finw”.
Such arule provides away to export the commitment @— stableK in the example above since — stableK isin fact a
fixpoint of &. Below is an application of proof rule (6) to the example:
F K> 1atruea stableK > finK > 1
F K>1atruea K <« 2K O m-sableK A —stableK A finK > 1
F K> 1latruens (stableK; K < 2K) O m-sableK A - stableK » finK > 1.
Once thisis done, we simply export the commitment m— stableK from the iterative formula (stableK; K <« 2K)*
using proof rule (2) found in Section 2. Owicki and Gries [18, 19] developed proof outlines as a visud tool for

concisely reasoning about Hoare clauses. Figure 1 containsasmall proof outlinegeneralized to include a commitment
and which corresponds to the following lemma:

F K>1atrueaK <« 2K O m-stableK A —stableK A finK > 1. (7)

The proof outline shows the pre- and post-conditions, the sequential component K <~ 2K and on the right of the
large bracket isthe resulting commitment. We keep the assumption implicit here and in other proof outlinessinceit is
usualy importable and remains the same in al sequential subcomponents. A generalized proof outlinefor lemma (4)
isshown in Figure 2. In particular, it illustrates the composition of commitments of subcomponents into those for
larger parts of asystem.

A weakened variant of rule (6) is sometimes used to export DA from the |eft part of Sys; Sys' without exporting
mDA aswell:

F waAsa Sys O DA finw,
F wWaAAsaSys O finw!

F W Ash (S5 95) O DAAfinw’,

7th BCS-FACS Refinement Workshop, 1996 9

Compositionally Reason about L iveness

{K=j}

stabIeK @K = j) B(K = j)

{K=1J} a(K =) ABOK =2 | B(K =i D OK = 2i)
K <]A<>K22j A OK =2

K=2} A OK =2

Figure 3: Proof outlinefor lemma (9).

Hereis another theorem we wish to verify about our example by using a @-fixpoint:
F o (stableK;K <« 2K)* A fin(K=n) D OK=iri#n > OK=2i). 8

The proof of thistheorem introduces an auxiliary static variable j and theformula OK = 2j isused asa ®-fixpoint. A
generaization of rule (6) permitting an additional exportable commitment Co is utilized:

F waAsa Sys O Con finw,
= W'/\AS/\%/S/ O Cona @DA A DA A finw/

F wa Asa (3’5,%’5’) O Coa @DA A DA A finw”.

An overview of the proof of theorem (8) isgiven below. Most pre- and post-conditionsas well as al assumptions are
simply true and we omit them:

1 F K=jadgableK > @K=j)fin(K=j)

2. F K=jaK«2K O BK=)rmOK=2JAOK=2

3 12= + K=ja(stableK;K = 2K) D BK=j)rBOK=2/rOK=2j
4. F AaK=)rmBOK=2 > @BK=i>D OK=2i)

5. 34= + K=ja(stableK;K = 2K) > @K=i D> OK=2i)

6. 5= F (stableK;K<«2K) > ®@(K=i> OK=2i)

7. 6= F (sableK;K <« 2K)* O @K=i> OK=2i)

8. FoaK=i>OK=2)rfin(K=n) > OK=iari#n D OK=2i)
9. 7,8= F (dableK;K <« 2K)* Afin(K=n) D> OK=iri#£n D OK=2i.

Figure 3 depicts a proof outline for the lemma now given about the body of the loop:
F (stableK;K « 2K) O @(K=i > OK=2i). 9
Theresults of thisare used in Figure 4 for the proof outline of alemma about the overall loop:

F (stableK;K « 2K)* > ®K=i > OK=2i). (10

41 Markers

Here isavariant of the previous example with the two sequentia parts of the loop body exchanged:
(K < 2K; stableK)* A fin(K = n).

Once again we wish to prove that thisimpliesthe formula
OK=iai#n D> OK=2i).

However, the proof is more complicated since we can no longer readily propagate the @®-fixpoint @ K = 2j from
K<~2K back to stableK. A more powerful technique for analyzing reachability is needed. We now introduce the

7th BCS-FACS Refinement Workshop, 1996 10

Compositionally Reason about L iveness

{true} .
for sometimes do (
{true}
Jj: (
K=} .
EEOpBg'O}ly BK=iD0K=2)|BK=id>0K=2)|8K=i>0K=2)
=2

{true}

{true} —

Figure 4: Proof outline for lemma (10).

notion of marker. Thisis aboolean state variable, called here Mk, which is true exactly at the start and end of loop
iterations. A variant of chop-star having a marker can be defined as follows:

o

chopstar ykS o (S OhaltMK)*.

See Table 1 for the definition of the haltconstruct. The following programming syntax is also used for this kind of
chop-star:

foryk sometimesdo S.

Without loss of generality, we can dways existentialy introduce a marker as an auxiliary variable. The following
provable lemma states this:

F & = 3Mk: (Mk A chopstarwkS),
where Mk does not occur freely in theformulaS. The marker facilitates postponing reachability of a @-fixpoint until
alater loop iteration. We originally considered markersin [13, page 127].
In our example, we introduce such a marker and prove the following lemma about liveness:
F Mk a chopstarmk(K <~ 2K; stableK)
O @B(K=i D> OK=2)vo(MkaK=i)) (11)
ABE(MkAK=1i D> OK = 2i).

The two commitments are combined using tempora reasoning and ensure that whenever K = i, eventualy either
K = 2i or the overall interval finisheswith K till equalingi:

=2i)v O(Mka K = 1))

i O OK=2) (12)
D) (K:I D) (<>K:2I vfan:I))

After hiding the marker, we obtain the next lemma

(K< 2K;stableK)* > ®(K=i > (OK=2ivfinK=1)).

The overall reduced commitment together with the originaly given postcondition fin(K = n) imply the desired
formula

FoB(K=i> (0K=2ivfinK=i))rfinK=n > OK=ini#n > OK=2i).

7th BCS-FACS Refinement Workshop, 1996 11

Compositionally Reason about L iveness

Mk K =j} _ BK=]

oK <7 B(K = | v K =2

K< 2K A ~ T |

(K =2j}]AOK—?J vBo(K=2 | ooy
(MkAK =2} A BOMkaK=2) | nOK=2]

Figure5: Proof outlinefor lemma (17).

The proof of lemma (11) requires a @-fixpoint called here DA and a fixpoint of the tempora operator O referred
tothisformulaas BT. In our treatment of loops, BT isawaysfin Mk. Hereisthe generalized version of proof rule (5)
for chop:

F waAsa Sys D finw,
FWaABTAAsA SyS O @(xD DA) A DA A finw” (13)

F wa BT AAsa (Ss Ss) D @(xD DA) A DA finw”.

The proof rule now given isfor the version of chop-star with amarker. It uses a $-fixpoint DI:

F wafinMka Asa Sys O DI A finw
F wa Asa chopstarykSys O ®(Mk D DI) a finw.

(14)

The following variants of these rules permit an additional commitment Co and are in fact the ones used for proving
lemma (17) shown above.

F waAsa Sys O Con finw,
FWABTAAsASyS O Con (XD DA)/\DA/\finW” (15)

F waBTAAsA (Sys9y8) D Con @(xD DA) A DA finw’.

F wafinMka Asa Sys O Coa DI a finw
F wa Asa chopstarykSys O Coa (MK D DI 4 finw.

(16)

The analysis of theloop body K <~ 2K; stableK involves the use of rule (15) to deduce the lemma below:

F truea finMk A true s (K < 2K; stableK)
> B(K=i> O(K=2)vO(MkaK=i)) (17)
A (K=1iD> OK=2i)afintrue

Figure 5 and Figure 6 show proof outlinesfor establishing lemmas (17) and (11), respectively. In these, Co stands for
the exportable commitment

(K:i D) QK:ZiVQ(MkAK:i))
and DI gtandsfor the &-fixpoint K =i D K = 2i.

5 ITL with Infinite Time

The semantics and proof system so far presented is suitable for reasoning about finite intervals. We now discuss
some modifications needed to permit infiniteintervalsas well. First, we apply our semanticsof S; T and S* to infinite
intervals. Asbeforethismeans S; T is true on such an interval if the interval can be divided into one part for S and
another adjacent part for T and that S* istrueif theinterval can bedividedinto afinite number of parts, each satisfying
S Inaddition, we now also let S, T be true on an infiniteinterval which satisfies S. For such an interval, we can ignore
T. Furthermore, we let S be true on an infiniteinterval that is divisibleinto afinite number of subintervalswherethe

7th BCS-FACS Refinement Workshop, 1996 12

Compositionally Reason about L iveness

{Mk} _
forvk sometimes do (
{Mk}
Jj: (
LoopBody] Co DI | Con DI | Coam(Mk D DI)
{Mk A K = 2j}

)
{Mk}

{Mk} —

Figure 6: Proof outlinefor lemma (11).

last one has infinitelength and each satisfies Sor aternatively into an infinite number of finiteinterval s each satisfying
S. We define new constructs for testing whether an interval isinfinite or finite, and alter the definition of <:

—inf
O(empty A 9).

inf
oS

Here sfinSis a strong version of finSand is true only on finite intervals. In contrast, finSis vacuously true on al
infiniteintervals. Aswe have noted, the formulaS* can be true on an infinite interval where S occurs infinitely often
in successive subintervals each having finite length. We denote thisby S¢ (read “chop-omega”) and define it in the
following way:

true; false finite
finite S sfinS

& g
& g

s € (safinitg* A inf.

The other possibility for S on an infinite interval involves aformula S being true for a finite number of successive
subintervals, but where the last one has infinite length, and is possibly the interval itself. The construct S* (read
“chop-infinity”) is used to denote the union of both kinds of behavior for chop-star on infiniteintervals:

s ¥ s,

The syntax forever do Sissometimes used as an alternative programming-language based notationfor S In addition,
the following two variant notations permit referencing a marker such as Mk:

chopinf kS, foreverk do S.

The first-order operators for temporal assignment and padded temporal assignment are redefined to be true only on
finiteintervas:

o

ece L fiiten (fing) = @,
ewe 2 finitex (fine) = € 1 paddede.

o

Once this is done, al the axioms and basic inference rules remain sound. We aso include the following two
propositional axioms:

P13+ (Sainf);T = Sainf,
P14+ SAO(SD(Tamore);S) O T

The first-order axiom now given is sometimes needed for constructing auxiliary variables with chop-star:

FI1 F (Wi (v=V A S)" D WAV (v=V 1 S),
wherev and V' are state variables and v does not occur freely S.

It seems likely that completeness in the sense of Theorem 3.1 can only be achieved with a nonconventional inference
rule. Thisisnot central to our approach.

7th BCS-FACS Refinement Workshop, 1996 13

Compositionally Reason about L iveness

{K=j}
aabIeKAflnlte] m(K = j) A finite | @m(K = j)
{K=1J} a(K =) ABOK =2 | B(K =i D OK = 2i)
K <« 2K = = 2]
K= 2)] A BOK = 2 noK=2
=9l T L oK =2

Figure 7: Proof outline for lemma (19).

5.1 A Simple Examplelnvolving Infinite Time

The following example requires reasoning about infiniteintervals:
F ((stableK a finite);K <~ 2K)™ > O(K =i > OK = 2i).

Asit shows, when analyzing such intervals, one must sometimes explicitly specify or prove that certain subintervals
have finite length.
Proofs can use the fact that the operators 0 and @ are equivalent on infiniteintervals:

F inf O OS=mS

Once infinite intervals are permitted, one must use rules such as the following variant of derived rule (18) for
reachability proofs:

F wa Asa Sys D finitea finw,
FwWaAsaSs D B(xD DA) » DA finw” (18)
F waAsa (S5, 9ys) O @(xD DA) DA A finw”.

Here we ensure that the interval satisfying Sys isfinite, thus guaranteging that DA does indeed occur in Sys; Sys. Note
that theformulafiniteis not afixpoint of chop-star. See Figures 7 and 8 for respective proof outlinesfor thefollowing
lemmas needed for the above example:

F o ((stableK a finite);K < 2K) D> @(K=i > OK = 2i), (19
F o ((stableK « finite); K < 2K)™ > O(K =i > OK = 2i). (20)

Without loss of generality, Figure 8 uses existential quantification to introduce a static variable j equally K’s value at
the beginning of each loop iteration. A modified version of rule (18) permitting other exportable commitments as well
isused:

F waAsa Sys D Confinite a finw,

FwWaAsaSs D Coa@(xD DA) A DA finw”

F waAsa (Ss9s) DO ConB(xD DA) A DA A finw”.

Sometimes each of a sequence of components implies finite. This can be reduced by means of the derived rule now
given:

F wa Asa Sys D finitea finw,
F W aAsaSs D finitea finw’

F waAsa (S Ss) D finitea finw”.

5.2 Compositionally Proving Absence of Deadlock

Let us now present a compositional analysis proving the absence of deadlock. This small example illustrates shared
writeaccess and involvesfewer conceptsin itsspecification and anal ysi sthan the mutual exclusion examples considered
later in Section 6. For instance, no markers or other auxiliary variables are required here. Figure 9 showstwo simple

7th BCS-FACS Refinement Workshop, 1996 14

Compositionally Reason about L iveness

{true} .
forever times do (
{true}
3 (
K=} ,
EEOpBg'O}ly BK=iD0K=2)|BK=i>0K=2)|0OK=i>0K=2)
=2

{true}

{true} —

Figure 8: Proof outline for lemma (20).

o

ef

o

ef

F1 = forsometimesdo (F2 = for sometimesdo (
K« K+1; halt odd(K);
halt even(K) K<« K+1

)
Figure9: A simpleparale system

processes F1 and F2 which aternately modify a single variable K. Theiteratingin F1 and F2 is expressed by means
of the chop-star operator in the notation of a for-loop. The predicates even and odd are simple arithmetic tests. Here
isthe overall system together with K initially equal to O:

K=0aAF1xrF2

When K iseven, F1 keeps it stable for awhile and then eventually incrementsiit, thus making it odd. At thistime, F2
keepsK stableand then incrementsit, thushanding responsibility for it back to F1. Thiscontinuesfor some unspecified,
possibly infinite number of times. We use padded tempora assignments in order to ensure proper communication
between F1 and F2.

Hereis atheorem describing correctness of the overall system:

Foeven(K)AF1AF2 O kegp(K < OK < K+ 1) A fineven(K).

The theorem uses the keep operator defined earlier to state that K is aways stable or increases by 1 over pairs of
adjacent states. In addition, K’sfinal value is even. In [16] we consider how to compositionally prove this safety
property. The proof holdsfor both finite and infiniteintervals.

The discussion so far only deals with showing that the variable K continuesto remain stable or increase. It remains
for us to ensure that when the combined system operates over an infinite interval, K never gets stuck a some value.
Hereisan ITL theorem which expresses this:

Foinf reven(K)AFLAF2 O O-stableK.
The next lemma plays an important role in our overal anaysis:
F A#BAA<w B DO O-stableA

This states that if the state variable A is padded and itsinitial and fina values in the (finite) interval differ, then Ais
not stable in al nonempty termina subintervals. Here is aslightly ssimplified substitution instance of thisthat is used
when the variable K increases by 1:

F K« K+1 O BE-sableK.

7th BCS-FACS Refinement Workshop, 1996 15

Compositionally Reason about L iveness

We have omitted the subformulaK # K + 1 sinceitistrivialy true. The following lemmas consider the behavior of
F1and F2:

F even(K) A F1 O @(even(K) D —stableK) x fineven(K), (21)
F even(K) A F2 > @(odd(K) O —stableK) » fineven(K). (22)

Note that fin is defined to be weak and istherefore trivialy true for infiniteintervals. The proofs compositionally use
lemmas such as those below for the sequentia parts of F1:

F even(K) A K<« K+1 > @(even(K) D —stableK) a finodd(K),
F odd(K) A halteven(K) O m(even(K) D —stableK) x fineven(K).

We combine lemmas (21) and (22) for F1 and F2 in parallel to obtain the following:

F een(K)AFlAF2 O ®-sablek. (23)
Our assumption about infinitetimeisthen introduced in the following lemma:

F inf A @—-stableK > O-stableK.
From this and lemma (23) we obtain the desired theorem:

Foinf reven(K)AFLAF2 O O-stableK.

In [17] we deduce this without the use of ®-fixpoints by introducing an auxiliary variable. The resulting proof has
more steps.

6 Two ExamplesInvolving Mutual Exclusion

We now anayze the safety and liveness properties of two systems for mutual exclusion. They have served as our main
case studies during the development of the methods described in thiswork. Both are more complex than any of the
exampl es discussed earlier and together require al of the technical machinery presented in the previous sections. The
first example is the simpler of the two to describe but can sometimes deadlock. The second, modified system found
later in Subsect. 6.3 remedies this problem but requires the introduction of extra variables which act as time stamps.

Thefirst system, known as GSys, iscomposed of two paralel parts G1 and G2 shown in Figure 10. The combined
specification together with initidizationis as follows:

S1=C1=2=C2=falsen G1 » G2.

Here G1 sets Sl to true when requesting entry into G1's critical region. Upon entry, G1 sets C1 to true and keeps it
true until departure from the critical region. At thistime C1 and then Sl are reset to false and remain so until the next
attempt for entry ismade. The usage by G2 of variables 2 and C2 for controllingitscritica region isanaogous. We
can verify the safety property that C1 and C2 are never both true at the same instant:

I SI=Cl=S2=C2=falseA G1, G2 > O(~Clv ~C2). (24)

Liveness of the form OCC1 A OOC2 cannot be proved because G1 and G2 might both simultaneously attempt to
enter their respective critical regions and deadlock. To some extent, one can deal with this by including the following
assumption asserting that G1 and G2 do not initiate requests at the same time:

keep(—Sla -2 O O(=Slv -2)).
We instead show aweaker liveness property stating that C1 and C2 are dways eventually false:
F Sl=Cl=S2=C2=falser G1 A G2 D> OO(=Cla —-C2).

7th BCS-FACS Refinement Workshop, 1996 16

Compositionally Reason about L iveness

GL E forever do (G2 £ forever do (
Sl <~ true A stableCl; S« true A stableC2;
halt—-S2 A stable(S1, C1); halt—S1 A stable(S2, C2);
C1l <« true A stableSlI; C2 <« true » stable2;
Cl <« false A stableSl; C2 « false n stable2;
Sl « false A stableC1 S « false a stableC2

Figure 10: Simple mutual exclusion system

6.1 Safety of GSys

Hereisan overview of the proof of safety:
(a) Compositionally show that whenever G2 makes no entry request and 2 isfalse, C2 isaso fase
F -R4-C2AG2 > 0O(-XRD-C2).
A theoremfor the behaviorimposed by G1 on S1 and Clisanal ogousbut not needed for the proof of theorem (24).
(b) Without loss of generality, introduce an auxiliary boolean variable P2 which istrue whenever G2 has been given
permission to enter its critical region. More precisely, when & and P2 are both true, we know that G2 has
advanced passed its step containing the halt formula. Note that C2 is not yet necessarily true. Associated with
P2 is an assumption P2_As which we | ater define.

(c) Prove that whenever 2 istrue but P2 isfase, G2 forces C2 to be false since G2 has requested approval to enter
itscritical region but not yet received it:

F =aR2A-C2AP2AsA G2 D 0O(=P2> -C2).
This uses the assumption P2_As which characterizes P2.
(d) Import the result of (c) into G1 to show that whenever C1listrue, C2 must befalse.
(e) Combine everything together to complete the proof of the main safety theorem (24).

We now ook at the proof’s stepsin more detail.

6.1.1 Sep(a).

We desire to prove the following lemma:
F -R24-C2AG2 > 0O(=-R>-C2). (25)

The consequent O(=S2 O —C2) isnot itself exportable (although it is importable) so we recast the lemma using the
formulam@ (-2 O —C2) as the commitment Co instead. Figure 11 shows a proof outlinefor this.

6.1.2 Sep(b).

We use the following general theorem about the gets construct (see itsdefinitionin Section 3 for introducing auxiliary
variables:

F JA (Agetse).

7th BCS-FACS Refinement Workshop, 1996 17

Compositionally Reason about L iveness

{-C2} _
forever do (
1—C2}
S <« truea aablecﬂ m-C2
{—C2}
halt ~S1 A stable(S2, czﬂ H-C2
{—C2}
C2 <« true a aablesﬂ mP Co
1C2}
C2 « falsea stablesﬂ R | @S2 | Co
{—C2}
S « falsea aableca R
{—C2}

m-C2 | Co

0(- > -C2)

Figure 11: Proof outline for lemma (25).

Here the state variable A and the expression e have the same sort. We allow A to occur in e but not within the context
of temporal operators. These restrictions ensure that A is not circularly defined. Here is an instance of this for the
variable P2:

o3P (Pz gets (P21 92) v oﬁ51)). (26)

This constructsan auxiliary boolean variable P2 which monitorswhether G1 has permission to enter itscritical region.
In order to do this, P2 keepstrack about whether S1 has ever been false since S2 last become true. Between each pair
of adjacent states, the next value of P2 is determined based on the current value of P2 and S2 and the next value of S1.
If R isfalse, then the next value of P2 equalsthe next value of —S1. Otherwise, it isthe logical-or of the current value
of P2 and the next value of —=S1. This ensures that after G2 requests entry and S2 becomes true, P2 is aso trueiff S1
has been falsein at |least in one state from then to now, inclusively. When G2 has a successful request, both S2 and P2
are simultaneoudly true. It is possible to include information about the initid value of P2 but this does not seem to be
necessary for our proof.

In what follows, we use the gets subformulain an assumption about P2's behavior called P2_As:

o

P2As £ P2gets (P24) v O-S1).

Thisisimportable because thegets-formulaisa@-fixpoint sinceit is defined interms of keep. In much of theremainder
of the overall proof of safety, we refer to P2 as a free variable. Towards the end, we eliminate it through the use of
lemma (26) above.

6.1.3 Sep(o).
We wish to show that whenever during G2's operation P2 isfalse, C2 isaso fase:

F -4 -C2AP2AsA G2 D> 0O(-P2> -C2). (27)
The exportable commitment Co used hereis @ (—-P2 > —C2). Notethat asin step (a), Co uses @ instead of O:
F -4 -C2AP2AsA G2 D> @(-P2> -C2).

The proof outline for lemma (27) isgiven in Figure 12.

7th BCS-FACS Refinement Workshop, 1996 18

Compositionally Reason about L iveness

{=2 1 -C2} _
forever do (
{=2 A =C2}
S <« true A stableC2] m-C2
{KAr-C24 (P2=-81)} @-C2
halt-SL A stable(S2, C2)] m-C2
{2 A P2}
C2 <« true A stable2 | mp2 Co
{2 A P2}
C2 « false n stableS2? mP2 | @mP2 | Co
{1 =C2 A P2}
S « false a stableC2] mP2
{=2 A =C2} —

Co

a (—|P2 D) —|C2)

Figure 12: Proof outline for lemma (27).

6.1.4 Sep(d).

Our goal in thisstep isto import into G1 an assumption about the results regarding G2 in steps (a), (b) and (c). Let us
define the assumption G1_As:

GlAs £ @((-Rv-P2A0SL 5 O-C2fin(-S2v -P2)).

It states that in any interval where initially no successful request is being made by G2 (i.e, =2 v —=P2) Slisaways
true (OSL), then G2 never entersits critical region and finishes the interva as it started without a successful request
(fin(—S2 v =P2)) The assumption G1_As is obtained from P2_As and the two commitments exported from G2:

F P2AsAO0(-RD>-C2)A0(-P2D>-C2) D> GlAs
We then prove the following about G1:
F —=SlAa-ClaGlAsAGl D> 0O(=Clv-C2). (28)

See Figure 13 for a proof outline of this in which the commitment Co is m(-C1 v —C2). Note that G1_As is
only actually needed in the proof of the step where C1 is assigned true since we trivialy have m—C1 and hence
(=C1 v =C2) true everywhere else.

6.1.5 Sep(e).
We consolidate the previouslemmas into the desired safety theorem (24). Here are the main lemmas so far dealt with:

-Kr-C2,G2 D O(=XRD-C2),

IP2: P2_As,

XA C2AP2ASA G2 O 0O(-P2D -C2),
P2AsA0O(=2>-C2) »O(-P2D>-C2) > GlAs
-SlA-ClAaGlAsAGl O 0O(=Clv-C2).

We now combine most of these to obtain the following lemma for G1 and G2 together:
F SIl=Cl=2=C2=falsea P2.AsAnG1 A G2 > 0O(=-Clv —C2).

Let usnow existentially quantify P2 in P2_As since P2 does not occur elsewhere in the implication:
F S1l=Cl=2=C2=falsea (IP2: P2.As) » G1 A G2 > O(=Clv —C2).

We can then eliminate P2 to obtain the fina theorem:
F SIl=Cl=2=C2=falsen G1.AsAn G1A G2 > O(-Clv —=C2).

TT T T T

7th BCS-FACS Refinement Workshop, 1996 19

Compositionally Reason about L iveness

{=Sl A -C1} —
forever do (
{—=Sl A =C1} — —
Sl <& true » stableCl | m—C1
{SL » -C1} m-Cl| Co
halt -2 A stable(SL, C1)] m-C1
{SL A =Cl A -2} =
{C511<A~Ctr1ueA sablesl | L o |4 o] co | co| D(=CLY ~C2)
A (- v =P2)} —
Cl < false A stableSl Dﬁca ﬁca Co
{S1l A -C1}
Sl <« false s stableC1 ﬁcﬂ Co
{—=Sl A -C1}

Figure 13: Proof outline for lemma (28).

6.2 Livenessof GSys

Recall that our liveness theorem for GSys is limited to ensuring that both G1 and G2 are always eventualy outside
their critica regions a the same time:

F SI=Cl=2=C2=falsea G1 A G2 > 0OO(=Cla —C2). (29)
To establish this, wefirst prove that G2 is always eventually outsideitscritical region:

F -2+ -C2,G2 > 0OO-C2 (30)
A proof outlinefor thisis shown in Figure 14.

Lemma (25) mentioned earlier statesthat G2 implies0(-S2 5 —C2). Thisis combined withlemma (30) to obtain

an assumption:

F O00-C2A0(-D>-C2) > @&(hat-> 00-C2). (32)
The following lemma imports this assumption into the process G1.

F Sl=Cl=S2=C2=falses B(halt-2 > 0G-C2) A G1 > OO(=Cla —C2). (32)

In order to prove this, we use a dight variant of G1 called G1' which includes an explicit marker Mk in its forever
construct (forever k) and we then deduce the following:

F =Sla—Cla Mka @(halt-S2 > 00-C2) A GI

5 O(O(=CLa =C2) v OMK) A O(Mk S &(~CL r —C2)). (33)

A proof outlinefor thiscontaining G1' isgiven in Figure 15. 1t uses for the ®-fixpoint DA the formula<>(—~C1 A —C2)
and for Cotheformulam (DA v &Mk). Thetwo O-formulas can be combined using conventional temporal reasoning:

F O(O(=C1la =C2) v OMK) A O(Mk D &(=C1la=C2)) D OO(=Cla —C2).
We then hide the marker Mk to obtain lemma (32). Theorem (29) can then be deduced from lemmas (30), (31) and
(32).

7th BCS-FACS Refinement Workshop, 1996 20

Compositionally Reason about L iveness

{-C2} _
forever do (
{-C2} _
S & truea stablecﬂ Dﬁca mS-C2
{—C2}
halt—SL » stable(S2, czﬂ Dﬁca mO—C2
{~c2} 0o-C2
C2 <« true a stablesﬂ ﬁca mO-C2 m>-C2 -
1C2}
C2 « false a stabIeSﬂ sfinﬁca mS—-C2
{—C2}
2 & false stablecﬂ Dﬁca mS-C2
{—C2} —
) _
Figure 14: Proof outline for lemma (30).
{-=C1 A Mk} _
forever v do (
{=C1 A Mk} _
Sl <« true A stableC1 | finite
Co
{(~C1} 0-C1 ODA™] Co » DA
?i'tcz}sz stable(SL, Clﬂ »00-C2 | ADA_| DA o
Cl < trues stableSﬂ finite Co | m(Mk > DA)
{c1} finite ~ DA
Cl « falsea stableSﬂ finite mOMK Co
A OMk
{—C1}
Sl <« false a stableC1] sfin Mﬂ BOMK
{~C1 A MK} A OMk _

Figure 15: Proof outline for lemma (33).

7th BCS-FACS Refinement Workshop, 1996 21

Compositionally Reason about L iveness

H1 £ forever do (H2 € forever do (
Sl <~ true A stableCl; S« true A stableC2;
halt(-2v T1 < T2) halt(-S1 v T2 < T1)
A stable(S1, C1); A stable(S2, C2);
Cl <« true A stableSlI; C2 <« true » stable2;
Cl <« false A stableSl; C2 « false n stable2;
Sl « false A stableC1 S « false a stableC2

Figure 16: Mutua exclusion system with time stamps

6.3 Mutual Exclusion Using Time Stamps

We now turn to a variant of the mutual exclusion example called here HSys and based on a suggestion of Xu, Cau and
Zedan [25] to maintain time stamps (referred to here as T1 and T2) which record when the most recent changes to S1
and 2 have occurred. Figure 16 showstheparalel partsH1 and H2 which can both try to enter their respective critical
regions. In the event that H1 and H2 both make requests (i.e.,, SL » &2), the one with the older request has priority.
If thereisatie (i.e, T1 = T2), then H1 has preference. This explains why H1 uses < in its halt construct whereas
H2 uses <. The maintenance of time stamps presumes the existence of a state variable we call Timer which always
increases:

keep(Timer < OTimer).

The time stamp variables T1 and T2 are initially less than or equal to Timer and aways record the last time S1 and 2
changed, respectively:

T1 < Timer A (T1 gets (if stableS1 then T1 else O Timer)),
T2 < Timer A (T2 gets (if stableS2 then T2 else O Timer)).

Note that atime stamp equals the last time immediately after achange (i.e., O Timer).
The formulas H1.init, H2_init and HSys_init denote the respective initial conditionsfor H1, H2 and HSys:

HLinit % —Sla~Cla T1< Timer,
H2init & -2 A ~C2 A T2 < Timer,
HSysinitE HLinit » H2.init.

Below are definitions for assumptions about the timer and time stamps:

Timer_As & keep(Timer < OTimer)
T1LAs = T1< Timer A Timer_As a (T1 gets (if stableSl then T1 else O Timer)),
T2.As E T2 < Timer A Timer_As » (T2 gets (if stableS2 then T2 else O Timer)),

T12.As & T1.Asr T2 As,

Q
@,

o

o

The lemmas now given assist for general reasoning about the time stamps T1 and T2. In particular, they establish that
T1 As, T2 Asand T12_As are indeed @-fixpointsand can be used as assumptions.

T1As 5 OTL< Timer,
T2.As 5 OT2< Timer,
TLAs= @ TLAs,

T2 As= @ T2 As,

T12 As= @ T12 As.

TT T T T

7th BCS-FACS Refinement Workshop, 1996 22

Compositionally Reason about L iveness

{-=2 1 -C2} _
forever do (
{=2 A =C2} _ _ _
S < true A stableC2 | m—C2
{2 =C2}
halt(-S1v T2 < T1)
@ Sanlefs2, C2) B-C2| 5 c2 | co
ARSIy T2< T1)} =
C2 < true » Stable2 Co
(24 C2 m-C2
A(-SLv T2< T1)} = — —
C2 « false n stable2] m(-Slv T2 < Tlﬂ Co
{2 A =C2}
S « false » stableC2 ﬁca Co
{=2 A =C2}

O(SLA TL1< T2 -C2)

Figure 17: Proof outline for lemma (37).

Here are theorems for safety and liveness:

F HSyslinita TI2AsAH1AH2 > 0O(=Clv -C2), (34)
F HSysinita TI2AsAa HLAH2 o> 0OOC1aO0C2 (35

The proof of each is considered separately.

6.4 Safety for HSys

Wefirst consider proving the theorem about safety. This does not require introducing a new auxiliary variable such as
P2 since the time stamps turn out to be sufficient. An assumption imported into H1 and called H1_Asis used:
HiAs £ @((-R2vT1<T2) A0Sl O 0-C24 fin(-Rv T1 < T2)).
Itisanalogousto G1_As and states that in any interval where H1 maintains an active request (OSL) and initialy H2 is
not requesting (—<2) or has a request which is not older than H1's (T1 < T2) then H2 never entersits critical region
(0—-C2) and ends up with the same genera request status (fin(—S2 v T1 < T2)).

Below are the mgjor lemmas needed:

F aA-C2AH2 > 0= D -C2), (36)
F H2initAa T2ZAsAnH2 O 0O(SLa T1< T2 D -C2), (37
F TI2AsA0(-RD5-C2) nO(SLA TL1L<T2D -C2) O HLAs (38)
F HLlinita TILAsan HILAsAH1 > O(-Clv —C2). (39)

The proof of lemma (36) is similar to that of lemma (25) and omitted. The proof outline for lemma (37) is shown in
Figure 17. It uses for the exportable commitment Co the formula@(S1 A T1 < T2 > =C2).

Lemma (38)’s proof involves straightforward tempora reasoning and is not given. See Figure 18 for a proof of
lemma (39). The exportable commitment Co used by itis@m(=C1 v ~C2). From these we can deduce theorem (34)
about safety.

6.5 Livenessfor HSys
The proof of liveness theorem (35) for HSys involves four key lemmas about the processes H1 and H2:
F H2inita TI2.AsA H2 D OOT1 < T2, (40)

7th BCS-FACS Refinement Workshop, 1996 23

Compositionally Reason about L iveness

{=Sl A -C1} —
forever do (
{—=Sl A =C1} —
Sl <& true » stableC1 | m—C1
{S1 A -C1} —
halt(-S2 v T1 < T2) @-C1 | Co
A stable(SL, C1) m-C1
{S1l A -C1
ARV TLILT2)} =

Co
1 <~ stableS1
{C <A true a 0-C2 m-C2 Co

ARV TLILT2)} <

Cl « false n stableSl] Dﬁca ﬁca Co
{Sl A =C1}

O(~Clv —C2)

Sl <~ false a stablecﬂ m-C1 | Co
{=SlL A —-C1} —
) 1
Figure 18: Proof outline for lemma (39).
F HLinita (T12.Asa @(haltTL < T2 D finite)) A HL > OOCL, (41)
F HLlinita H1 > O(C1> ©-Sl), (42)
F H2.inita (T12.As A @(halt—S1 D finite)) A H2 > 0OOC2. (43)

The firgt of these states that H1's request is at least as old as H2's infinitely often. It ensures that H2 is not making
too many requests without giving H1 a chance. The second lemma uses the the first on€e's results (converted to an
importable assumption) to establish that H1 entersitscritical region infinitely often. The consequent of thefirst lemma
isconverted to a@-fixpoint which isused as part of the second lemma's assumption. Recall that @-fixpointsare closed
under conjunction so a number of them can be imported together. The third lemma states that when H1 enters its
critical region, it also eventually leaves it and resets the request variable Sl to false. The consequents of the second
and third lemmas are combined to form an assumption @(halt =S1 O finite) specifying that H1 is never infinitely long
requesting entry without success. Thisassumptionisused inthefourthlemmato show that H2 entersitscritical region
infinitely often.

A proof outlineof lemma (40) isin Figure 19 and uses DA to represent the formula<>(T1 < T2). Figure 20 shows
aproof for lemma (42) with Co being the exportable commitment m(C1 > <&—-Sl1). We aso include proof outlinesfor
versions of the second and fourth lemmas with explicit markers. They use sight variants of H1 and H2 called H1' and
HZ2', respectively, containing loops referencing markers (i.e., forever v instead forever). The lemmas for H1' and H2/
are now shown:

F HLinita Mk a (T12.As 2 E(haltTL < T2 S finitg)) A HI' 5 0O(Clv Mk) 2 O(Mk D OC1), (44)
F H2lnita Mk a (T12.As x E(halt=SL O finite)) A H2Z > OG(C2v Mk) A O(Mk D ©C2). (45)

The proof outline for lemma (44) is in Figure 21 and uses Co to represent the formula @ (SGCL v GMkK) and DA to
represent OGC1. Figure 22 containsthe proof outlinefor lemma (45). It uses Co to stand for m<(C2 v MK) and DA to
stand for ¢ C2. The two corresponding lemmas (41) and (43) for H1 and H2, respectively, are obtained from these
with the help of the following lemmas and existential elimination of existentia quantifiers:

F OO(Clv MK) A O(Mk> OCL) S 0OCL,
F 0O(C2v MK) A O(Mk> ©C2) > 0OC2

Here are some simple temporal lemmas for converting consequents of some of the lemmas into assumptions

imported by others.
F OOTLI< T2 O @(haltTl < T2 D finite),

7th BCS-FACS Refinement Workshop, 1996 24

1~2}
forever do (
-2}
2 <& true a stablecﬂ sfin(T1 < Tzﬂ @mDA
i |
alt(-Slv T2 < T1
» stable(2, C2)] BTl < Tﬂ mDA
=2}
C2 <« true a stableSﬂ finite
12} finite
C2 « false a stableSﬂ finite
&2} m DA
S « falsea stableca sfin(T1 < Tzﬂ
{—.Q} = A DA

Compositionally Reason about L iveness

mDA

Figure 19: Proof outline for lemma (40).

{—C1}
forever do (
{-C1} _ _
Sl <« truea stablecﬂ m-C1l
{—C1}
nalt(~=2 g(;ll a{ﬂ B-Cl | B-Cl| Co
{—C1}
Cl < truea stablesﬂ m-C1l
{C1} —
Cl « falsea stableSﬂ finite
(~Cl} m-Cl] Co
Sl « falsea stablecﬂ N oosl | n s

{=C1}

Co

Co

Figure 20: Proof outline for lemma (42).

7th BCS-FACS Refinement Workshop, 1996

mDA

ODA

0O(Cl1 > <=8l

25

{Mk A -C1}
forever vk do (
{Mk A -C1}

Sl <« true A stableC1

{~C1}

A stable(SL, C1)
{—C1}
C1l < true A stabl
{C1}
Cl « false A stab
{—C1}
Sl <« false A stabl
{Mk » =C1}

{—C2 A Mk}
forever vk do (
{—C2 » MK}

S <~ true A stableC2

{-C2}

A stable(S2, C2)

halt(-S2 v T1 < T2] — finite

halt(—SL v T2 < Tl] — finite

Compositionally Reason about L iveness

finite

@DA | Co
~ DA | A DA

. mDA
w22
IeSﬂ finite

' mOMK
eCﬂ SﬂnME| A OMK

mSMk | Co

Figure 21: Proof outline for lemma (44).

finite

moC2

A OC2 | BOC2

Co
A DA

{=C2}

C2 <~ truea stablesﬂ sfin ca BoC2

C2 <« falsea stablesﬂ Ca m<O>C2
{-C2}

S « falsea stableCZ] sfin Mﬂ OMH Co

{~C2 A MK}

A OC2

Co
A OC2

Figure 22: Proof outline for lemma (45).

7th BCS-FACS Refinement Workshop, 1996

0d(Clv C2)
A~ @(Mk D DA)

0o(C2 v MK)
A B(Mk D OC2)

26

Compositionally Reason about L iveness

F OOCLADO(CLDO-8L) DO 0O0-8l
F 0O0=Sl > @(halt-Sl D finite).

7 Conclusion

We have presented some of our experience with using tempora fixpoints for compositional reasoning about safety
and liveness. Our plans include applying these and other methods to the formal specification and analysis of various
conceptua layers of the EP/3 multithreaded computer [1] being built by Dr. J. N. Coleman at the University of
Newcastle.

Acknowledgements

Wewishto thank Antonio Cau, Nick Coleman, Macigj Koutny, Yassine Lakhnech, Li Xiaoshan, Xu Qiwen and Hussein
Zedan for discussions. The Engineering and Physical Sciences Research Council kindly funded our research.

References

[1] Coleman IN. A high speed dataflow processing element and its performance compared to a von Neumann
mainframe. In: |EEE 7th internationa paralel processing symposium. IEEE Computer Society Press, Los
Alamitos, Cadlifornia, USA, 1993, pp 24-33

[2] DutertreB. Onfirst order interval temporal logic. In: 10th annual |EEE symposium onlogicin computer science.
|EEE Computer Society Press, Los Alamitos, Cdifornia, 1995, pp 3643

[3] Francez N, Pnueli A. A proof method for cyclic programs. Acta Inf 1978; 9:133-157

[4] HalpernJ, MannaZ, Moszkowski B. A hardware semantics based on temporal intervals. In: Diaz J(ed) Proceed-
ingsof the 10thinternational collogquium on automata, languagesand programming (ICALP 83). Springer-Verlag,
Heidelberg, 1983, pp 278-291 (L ecture Notesin Computer Science No. 154)

[5] Hoare CAR. An axiomatic basis for computer programming. Comm ACM 1969; 12:576-580,583

[6] Jones CB. Specification and design of (paralel) programs. In: Mason REA (ed) Proceedings of information
processing ' 83. North Holland Publishing Co, Amsterdam, 1983, pp 321-332

[7] Jonsson B, Tsay Y-K. Assumption/guarantee specifications in linear-time tempora logic. In: Mosses PD et a
(eds) Proceedings of TAPSOFT '95: Theory and practice of software devel opment. Springer-Verlag, Heidelberg,
1995, pp 262-276, (Lecture Notesin Computer Science No. 915)

[8] Kleene SC. Mathematical logic. John Wiley & Sons, Inc., New York, 1967

[9] Kono S. A combination of clausal and non clausa tempora logic programs. In: Fisher M, Owens R (eds)
Executable modal and temporal |ogics. Springer-Verlag, Heidel berg, 1995, pp 40-57 (Lecture Notesin Computer
Science No. 897)

[10] Kroger F. Tempora logic of programs. Springer-Verlag, Berlin, 1987

[11] Lamport L. ‘Sometimes issometimes‘not never’: on thetemporal logic of programs. In: Proceedings of the 7th
ACM Symposium on principlesof programming languages. ACM Press, New York, 1980, pp 174185

[12] MannaZ. Verification of sequentia programs: temporal axiomatization. In: Broy M, Schmidt G (eds), Theoretical
Foundations of Programming Methodology. D. Reidel Publishing Co, 1982, pp 53-102

[13] Moszkowski B. Reasoning about digital circuits. PhD thesis, Stanford University, Stanford, California, 1983
[14] Moszkowski B. A temporal logic for multilevel reasoning about hardware. |IEEE Computer 1985; 18:10-19

7th BCS-FACS Refinement Workshop, 1996 27

Compositionally Reason about L iveness

[15] Moszkowski B. Executing tempora logic programs. Cambridge University Press, Cambridge, England, 1986

[16] Moszkowski B. Some very compositional tempora properties. In: E.-R. Olderog (ed) Programming concepts,
methods and calculi. IFIP Transactions, Vol. A-56, North-Holland, 1994, pp 307-326

[17] Moszkowski B. Compositiona reasoning about projected and infinite time. In: Proceedings of the first IEEE
International conference on engineering of complex computer systems (ICECCS 95). |IEEE Computer Society
Press, Los Alamitos, Caifornia, 1995, pp 238-245

[18] Owicki S. Axiomatic proof techniques for paralel programs. PhD thesis, Cornell University, Ithaca, New York,
1975

[19] Owicki Sand Gries D. An axiomatic proof technique for parale programs. part |. Acta Inf 1976; 6:319-340

[20] Paech B. Gentzen-systems for propositional temporal logics. In: Borger E et a (eds) Proceedings of the 2nd
workshop on computer science logic. Springer-Verlag, Heidel berg, 1988, pp 240-253 (L ecture Notesin Computer
Science No. 385)

[21] PandyaPK, Joseph M. P-A logic: A compositiona proof system for distributed programs. Distributed Computing
1991, 5:37-54

[22] Rosner R, Pnueli A. A choppy logic. In: Proceedings of the 1st annual |EEE symposium on logic in computer
science. IEEE Computer Society Press, Los Alamitos, Caifornia 1986, pp 306-314

[23] Stalen K. Proving total correctness with respect to afair (shared-state) paralel language. In: Proceedings of the
5th BCS-FACS refinement workshop. Springer-Verlag, London, 1992, pp 320-341

[24] XuQ, Cau A, Collette P. On unifying assumption-commitment style proof rules for concurrency. In: Concur’ 94.
Springer-Verlag, 1994, pp 267-282 (Lecture Notesin Computer Science No. 836)

[25] Xu Q, Cau A, Zedan H. Semantics and verification of infinite temporal agent model programs using interval
temporal logic. In preparation

[26] XuQ, de Roever W-PB, He J. Rely-guarantee method for verifying shared variable concurrent programs. Technical
Report 9502, Ingtitute of Computer Science |1, Kiel University, Kiel, Germany, 1995

[27] Xu Q, He J. A theory of state-based parallel programming: part 1. In: Morris J (ed) Proceedings of the 4th
BCS-FACS refinement workshop. Cambridge, UK, Springer-Verlag, London, 1991

7th BCS-FACS Refinement Workshop, 1996 28

