Presented at the IFIP Working Conf. on Programming Concepts, Methods and Calculi
(PROCOMET ’94), 6-10 June 1994, San Miniato - Italy.
Included in Programming Concepts, Methods and Caleuli, E.-R. Olderog (ed.),
IFIP Transactions, Vol. A-56, North-Holland, 1994, 307-326.

Some Very Compositional Temporal Properties
Ben Moszkowski®

2Department of Computing Science, University of Newcastle upon Tyne,
Newcastle NE1 7TRU, Great Britain

e-mail: Ben.Moszkowski@ncl.ac.uk

A logic for reasoning about sequential and parallel behavior must support some form
of compositionality. That is, much of the proof of a system should be decomposible into
proofs of its parts. We discuss some important and easily described classes of properties
which are readily imported and exported between temporal scopes. We call such proper-
ties very compositional since they support a methodology of specification and proof which
is especially modular and reusable. Our presentation uses Interval Temporal Logic as the
notation in which all behavior is described and proved. We give a powerful and elegant
ITL proof system. It has been used by us to rigorously prove hundreds of theorems and
derived inference rules, including a number for parallel systems involving message-passing,
timing constraints and shared write-access. We believe that very compositional properties
will be of interest to anyone involved with the specification and verification of computer
systems.

Keyword Codes: F.4.1; 1.2.3

Keywords: Mathematical Logic; Deduction and Theorem Proving

1. INTRODUCTION

The notion of compositionality is very important in computer science. It facilitates
the modular design and maintenance of complex systems and the reuse of the intellectual
and physical resources invested in them. Successful examples of its use include modular
hardware design, subroutine libraries, object-oriented programming and open systems.
Compositionality is also of great value in programming logics. A major reason for the
success of Hoare’s axiomatic system [1] for sequential programs is the ease with which
the proofs of a program’s pieces can be combined together. We have been using Interval
Temporal Logic [2-5] to investigate various forms of parallel behavior. In the course of
our research, we have identified certain classes of properties that are especially suited for
compositional temporal specifications and proofs.

The basic nature of these compositional properties is not hard to grasp. In order for
the reader to better appreciate their significance, we now give a brief, relatively informal
presentation of them within the framework of ITL. Basically ITL is a logic for reasoning
about discrete intervals or periods of time and consists of conventional logic constructs as
well the three operators skip, ; (chop) and * (chop-star). An interval is a finite, nonempty

sequence of states. The length of an interval is defined to be the number of states in the
interval minus one. A precise definition of ITL’s syntax, semantics and proof system is
given later on.

Suppose we have two formulas T'; 7" and T™. The first one T'; T consists of the sequential
composition of subformulas 7" and 7’. The formula T';7" is true on an interval iff the
interval can be split into two subintervals sharing a common state and in which subformulas
T and T are respectively true. The formula 7™ denotes the sequential iteration of the
specification T' some finite number of times and is similar to the Kleene star of regular
expressions. We will not give any more details about 7" and 1" at this time. Consider the
following proof rule:

FoowaT D finw,
Foow AT D finw”
Foowa (15T D fin w”.

Here w, w' and w” are formulas in conventional first-order logic containing no temporal
operators and describing properties of individual states. The turnstyle F means that the
formula to its right is provable in our axiom system. Note that a conjunction of formulas
is true on an interval iff each formula is true. The temporal operator fin is definable in
ITL and lets us examine an interval’s final state. The first lemma states that if w is true
in an interval’s initial state and T is true on the interval then w’ is true in the final state.
The rule shows how to compose two such lemmas proved about input-output behavior of
T and T" into a corresponding lemma for 7;T". Here is an analogous proof rule for T*:

FowaT D finw
FoowaT* D finw.

The rough meaning of the rules so far given should be reasonably clear. They and all the
other proof rules shown here can be formally derived in our proof system presented later
in section 3. Other similar rules can be proved for if and while constructs.

So far we have dealt solely with input-output properties. The following are general-
izations of the previous rules to extract more information about behavior in intermediate
states:

FoowaT D Unfinw, FoowaT D UAfinw

Foow' AT D U A fin w” Foowad™ D U* A fin w. (1),(2)
Fowa (15T O (U;U) A fin w”

Using these, we can compositionally transform one specification into another. This is
because we reduce the overall proof into proofs for the subformulas.
Now consider the following two proof rules which are in general not sound:

FownaSAT D U finuw, FoowaSAT D UAfinw
Foow' aSAT D Unfinw” FowaSAT D Un finw. (3),(4)
FoowaSA(T;T) D UAfinw”

The formulas S and U correspond to some general temporal “ongoing” properties. For
instance, the first lemma in the rule on the left says that if w is initially true and ' is true

when T is performed, it follows that U is true and w’ is true in the final state. Unlike
rules 1 and 2 above, these rules do not work for arbitrary formulas S and U. The two
rules below are in fact the best we can do without imposing any restrictions:

FwaSAT DU finw, FwaSATDUAfinw
Fw ASAT DU A fin w”, Fwa(SATY DU A finw. (5),(6)
Fwa((SAT);(SATY))DWUU) A fin w”

These are in fact instances of rules 1 and 2 given earlier. Thus rules 3 and 4 provide a
degree of compositionality much better than rules 5 and 6 and we therefore call them very
compositional.

The question remains regarding what the minimal requirements are for S and U for
the rules to work. Intuitively, it can be seen that we need the following theorems to be
provable for showing that S can be imported into subintervals:

EoSA(TY D (SAT)(SATYH, FoSAT* D (SAT).
Here are analogous theorems for exporting sequences of the formula U:
= U0 DO U, U D> U

We say that S is temporally importable and similarly that U is temporally exportable.
One way to formally and concisely describe temporally importable and exportable prop-
erties is through fixpoints. Let the formula @ S be defined to be true for an interval of time
exactly if S is true in all subintervals. A simple and formal definition of @ will be given
later. We simply need to prove that S and U are solutions to the following equivalences:

FS=&S, o U=U".

Like the proof rules which use them, such properties are called very compositional since
lemmas developed with them are especially combinable. The property “The interval has
length less than 1007 is an example of a fixpoint of & since the property is true for an
interval if and only if it is true for all subintervals. Another example is “The variable
K always equals 1.” However, neither of these properties is a fixpoint of chop-star. The
property “The interval has even length” is a fixpoint of chop-star since whenever there is a
sequence of adjacent subintervals each satisfying the property, the overall interval also has
it since the sum of some even numbers is itself even. The property “The variable I’s initial
and final values in the interval are equal” is also a fixpoint of chop-star. Neither example
is a fixpoint of Gl. Incidentally, every formula expressible as & S for some arbitrary S is
a fixpoint of @l. Likewise, any formula of the form S* for some arbitrary S is a fixpoint
of *. The following theorems describe this:

FoRS=06m@ys, ST =5

Let us now turn to properties that are both temporally importable and exportable. Such
properties are especially convenient since they can be exported from one proof and then
readily imported in later proofs. Examples of this are the properties “The variable A’s

value remains stable throughout the interval” and “The variable K keeps increasing by 1
from each state to its immediate neighbor.” These properties are fixpoints of both & and
chop-star. Let the formula keep S be true if S is true in all subintervals of length 1 (i. e.,
having exactly two states). We can express keep S using & and skip:

Q.
L

keep S = B(skip D S).
This works because skip is defined to be true exactly for intervals having length 1 (i. e.,
two states). It is easy to prove that a fixpoint of keep is also a fixpoint of @ and *. It
therefore follows that fixpoints of keep are both importable and exportable. In fact, we
can show the converse that any property that is a fixpoint of both & and * is also a fixpoint
of keep. Thus, in a important sense keep characterizes a major class of properties that
are both importable and exportable. This can be formalized in the following way:

FoS=aS F S=5 iff B S=keep S

The proof of this makes use of the following interesting lemma for expressing keep using
chop-star:

F o keep S = (skip A S)*.

Further note that if S and 7" are both fixpoints of @, then so is their conjunction S A T'.
This also applies to the conjunction of two fixpoints of keep. Also, any formula of the
form keep S for some S is a fixpoint of keep .

Readers may be interested in comparing our techniques for sequential composition with
Stirling’s proof system [6] for an extended Hoare logic. It is based on the rely-guarantee
approach of Jones [7] and is intended for reasoning about state invariants that hold true
throughout a concurrent computation. Francez and Pnueli [8] introduce interface predi-
cates for handling parallel composition. See Cousot [9] for a discussion about composi-
tional proof systems for concurrency.

2. OVERVIEW OF BASIC INTERVAL TEMPORAL LOGIC

Let us examine the syntax and semantics of ITL. If the reader prefers, he can initially
skip this section and the next one about a practical ITL proof system and proceed to
section 4 on applications.

2.1. Syntax
2.1.1. Alphabet and sorts

The first thing to consider is the alphabet of symbols used in building constructs. We
assume the following distinct sets:

e Static variables: a, b, ¢, ... e Equality: =.

e State variables: A, B, C', ... e Conventional logical symbols: =, A, ¥, :, (and)
e Function symbols: f, g, ... e Definite description symbol: ¢

e Predicate symbols: p, ¢, ... e Temporal logical symbols: skip and ; and ~

Each function and predicate symbol has an associated arity. In practice we use constants
(nullary functions) such as 0 and 1, as well as functions such as + and + and predicates
such as = and <.

We assume sorts referenced by the positive integers 1, 2, Each variable v is associ-
ated with one sort 0. Each n-ary predicate symbol p has n associated sorts pq, ..., p, for
its parameters. Similarly each n-ary function symbol has n 4+ 1 sorts fl, ey fn-l—l- The
first n sorts are for the parameters and the n + 1-st sort is for the function’s range.

2.1.2. Syntax of expressions
Expressions are built inductively as follows:

e Static variables (lower case): a, b, ¢, ... e Functions: f(er,...,e,)
e State variables (upper case) : A, B, C, ... e Definite descriptions: ww: S
Here v is a static variable, eq,..., e, are expressions and S is a formula. In the case of

constants (nullary functions), we omit the parentheses.

2.1.3. Formulas
Below are permitted formulas:
e Predicates: p(e,...,e,) e Unit interval: skip.
o Equality: e; = e, e Chop: 5;T
e Logical connectives: =5, and S AT e Chop-star: S*, where S is a formula

e Universal quantification: Vu: S
Here v is any variable, e1,..., €, are expressions and S and T' are arbitrary formulas.

We freely use various conventional propositional constructs which can be expressed in
terms of A and —: true, false, v (logical or), D (implication), = (logical equivalence)
and if-then-else. In addition, 3 (existential quantification) is defined in terms of V. The
following temporal operators are also quite standard:

og « skip; S S is true from the next state
®S = 045 Weak next

o5 true; S S is sometimes true

0s ¥ 0.9 Sis always true

Here is a version of O for expressions:

o ¥ 4 e = a),
where the static variable a has the same sort as e and does not occur freely in it.

We adapt the convention that S, T" and U as well as primed and subscripted variants
refer to arbitrary formulas. It is beneficial to sometimes consider formulas without any
temporal modalities. We refer to these using w, w’ and so forth. The symbols e, ¢’ and
so on refer to expressions. Expressions and modality-free formulas containing only static
variables are themselves called static.

Formulas built from multiple occurrences of A are right-associative. Thus a formula of
the form S A T A U is equivalent to S A (T A U). This also applies to formulas with
chop, that is, a formula S;T; U is equivalent to S; (T; U). On several occasions, we write
formula S* using the alternative programming notation for some times do S.

2.1.4. Some sample formulas
Here are some sample ITL formulas whose semantics we will later describe:

O/ = 0); skip; O(1 = 1), (skip; skip)*, (skip; skip)* = (skip; skip)™,
[:OAJZO/\(Skip/\(O[):[—|-1/\(OJ):J—|-[)*,
I=0raJ=0n(skipan(Ol)=14+1a(0J)=J+1)" D> OJ=I1-1)+2).

2.2. Semantics
2.2.1. Semantics of the underlying first-order logic

The semantics of ITL is built upon a fairly conventional first-order logic with sorts
now described. We assume a fixed interpretation Z which serves two purposes. First,
it associates data domains Z;, Z,,..., with the corresponding sorts 1, 2,.... Secondly, 7
gives meaning to the predicate and function symbols. More precisely, 7 maps each n-ary
predicate symbol p to an n-ary relation Z(p) € 2% % *Zn _ Similarly, each n-ary function
symbol f is associated with a n-ary function Z(f) € Ty x - xTI; — Ian that suits
f’s sort requirements. It is assumed that Z contains interpretations for the arithmetic
operators and relations for natural numbers as well as operators for manipulating finite
lists (e. g., subscripting and list length).

The first-order logic uses a straightforward notion of state. A state is any function s
which maps each variable v to a value s(v) in the data domain Z; indexed by v’s sort v.
Unless we specify otherwise, variables in the range 7, j, ..., nand [, J, ..., N are mapped
to the natural numbers.

We assume the existence of a choice function y which maps any nonempty set to some
element in the set. This is needed for the semantics of definite descriptions.

2.2.2. Semantics of intervals

An interval is defined to be any finite, nonempty sequence of states such that every lower
case, static variable is mapped to the same value in each state. The set of all intervals is
denoted by Int. It is especially convenient to define the length of an interval o, denoted
|o|, to be one less than the number of states in o. Thus, the smallest interval has one state
and length 0. The notation o;,; denotes the subinterval of o of length 7 — ¢ with states o,
Oit1s ---, 0j. We write o ~, o' if the intervals ¢ and ¢’ are identical with the possible
exception of their mappings for the variable v.

2.2.3. Meaning of expressions
The meaning of an expression is defined inductively:
e Static or state variable: M, [v] = oo(v).
The value of a variable for an interval o is the variable’s value in the initial state oy.

e Function: M, [f(e1,...,en)] =Z(f)(Msed], ..., Ms[en]).

: UL can) ox(u) ifu#E{}
e Definite descriptions: M, [iv: S| = { W(Ts) otherwise,
where u is the set of values of the static variable v in intervals ¢’ such that o ~, o’

and M,/[S] = true:
u=A{c'(v):0" € Int, o ~,c" and M[S] = true}.

If w is empty, the description equals some value selected from v’s domain Z;. Since
v is static, it has a unique value in o’ denoted here o'(v).

2.2.4. Meaning of formulas

Predicates: M,[p(e1,...,e,)] = true iff (M, [ed],..., M,[en]) € Z(p).
Equality: M,[e; = 3] = true iff M,[ei] = M,[e2] -

Negation: M, [-S] = true iff M,[S] = false.

Conjunction: M,[S A T] = true iff M,[S] = true and M,[T] = true.
Universal quantification: M,[Vv: S] = true iff M/[S] = true,

for all intervals ¢’ that are identical to o except possibly for the behavior of the

variable v (i. e., o ~, o’).

e Unit interval: M, [skip] = true iff |o|=1.

o Chop: M,[S;T] = true iff M[S] = true and M, »[T] = true,
where 0’ = oo, and 0" = oy, for some k < |o|. Note that the two intervals ¢’ and
o' share the common state .

e Chop-star: M,[S*] = true iff ./\/lgli:l“rl [S] = true, for each ¢ : 0 <@ < n,
for some n > 0 and finite sequence of one or more natural numbers lop < {; <--- <,
where Iy = 0 and [,, = |o|. Note that S* is true for any empty interval since we can
always take n = 0.

2.2.5. Analysis of previous examples

Now that we have presented the basic semantics of ITL, it is possible to describe the
meaning of the sample formulas given earlier. For each formula, we give the general
characteristics of an interval on which the formula is true:

e O(/ =0);skip;O(1 = 1): The variable I equals 0 for a while and then equals 1 for

the rest of the interval. We use skip to avoid I =0 and I =1 in one state.
(skip; skip)*: The interval has an even length (i. e., an odd number of states).
(skip; skip)* = (skip; skip)™*: The interval has even length iff it consists of a sequence

of intervals each with even length.
IT=0nAJ=0n(skipan(Cl)=1+1A(CJ)=J+ [)*: The initial values of [and

J are both 0 and then [increases from state to state by 1 while J simultaneously

increases by [I’s value.

I=0nAJ=0n(skipr (O =IT+1AOS)=J+1)" D OJ=II-1)+
2): If within the interval the variables [and .J have the behavior described in the
previous example, then J always equals [([— 1) =2, that is, the sum of the numbers

0,1,...,1—1.

2.2.6. Satisfiability, validity and provability

If a formula S is true for an interval o, we say that o satisfies S. A formula having some
interval satisfying it is called satisfiable. A valid formula is one satisfied by all intervals.
For example, the following two formulas are satisfiable but not valid:

I =1;1=2, skip.

Note that I = 1 and [= 2 are only examined in the initial states of the respective
subintervals. Here are two formulas which are both satisfiable and valid:

I=1L1=2)=I=1r3(1 =2)), skip™.

The formula skip™ is valid in part because chop-star is trivially true on empty intervals.
The third and fifth examples given earlier in §2.1.4 are also valid whereas the others are

7

satisfiable but not valid.

Later on we present a proof system for ITL. From now one we prefix a formula with the
conventional symbol I to indicate that the formula is provable. Much of the time, we give
provable schemas representing classes of theorems. Here are some examples where S, 5/,
T and U are arbitrary formulas and w is any formula containing no temporal operators:

Foo(SvsSyT = (5 T)v(8:T) S S B
Foo(S;T)ya(S;U0) O S(TA-U) F S = 5*
Fo(waS)T = wa(S;T)

Here are examples of provable theorems containing O, & and O:
F(OS);T=0(S5:T) EoOT T A (S;T) D (ST
FoS;T O OT F Ole=¢) D (0¢)=(0¢)

2.2.7. Complexity

If we restrict ourselves to I'TL formulas containing only boolean-valued state and static
variables, we have a propositional variant of the logic. Here is a useful result regarding
this:

Theorem 2.1 (Halpern and Moszkowski) Validity for quantifier-free ITL formulas
containing only boolean-valued variables is decidable.

See Moszkowski [2] for details. In general, complexity of the decision procedure is nonele-
mentary. Kono [10] however has a useful implementation in Prolog.

2.3. Building a vocabulary

There are many kinds of dynamic phenomena that are useful to describe and reason
about. The ITL formalism is powerful enough to express a rich class of concepts. Rather
than limiting ourselves solely to formulas containing only the three basic ITL constructs,
we develop what can be thought of as a vocabulary of various kinds of temporal behavior.
This is an important task in its own right. An analogous situation arises in conventional
propositional logic. One can start with one or two adequate connectives and then define a
number of others. Once this is done, it is exceedingly unpleasant and unnatural to restrict
propositional formulas and axiom systems to the original constructs. Regarding ITL, we
similarly view the starting constructs as adequate connectives for defining a repertoire of
others which are then freely used in formulas and in the proof system.

We now present a vocabulary of temporal concepts organized by categories. Proposi-
tional constructs are first looked at followed by first-order ones. After a group of definitions
is given, a few representative theorems are shown. The reader may wish to try and under-
stand their meaning and convince himself of their truth. They should not be thought of
as arbitrary examples. Indeed, many of them have been extensively used by us in larger
proofs. In additional, later definitions are often based on earlier definitions and therefore
also serve as illustrations of their usage. The material here can be initially skimmed and
then referred back to when the reader studies the examples of parallel systems discussed
later in section 4.

2.3.1. Operators for initial and arbitrary subintervals
The conventional temporal operators O, & and O defined earlier only look at subintervals
that are suffixes of the current interval. We call these terminal subintervals. It is often

necessary to consider behavior in initial or arbitrary subintervals. The following operators

serve this purpose:

o5 Y S;true Some initial subinterval &>sY true; S;true Some subinterval

S dEef -< =5 All initial subinbtervals &S déf @S All subintervals

The following are representative elementary theorems:

Gl &S
[l Ow

FOESDOT)AST D T FES
FoRSOS)AS;T) o (S5T) F Dw

2.3.2. Interval length

The basic operator skip tests whether an interval has length 1, or in other words, exactly
two states. We also need to be able to determine whether or not an interval has length 0
(i. e., exactly one state). Such intervals are called empty:

more =2 Otrue Nonempty interval empty Y nore Empty interval
Here are some provable properties of empty and more:
F Sy empty =5 F more = Oskip Foempty D S”

2.3.3. Final states
An interval’s final state is identical to the terminal subinterval having length 0. We make

use of this in the following definitions:
fin S o O(empty O S) Final state halt § % O(empty = S) Halt upon S

The formula fin S only examines S’s truth value in the final state whereas the formula
halt S ensures that S is true exactly at the end and not before. The following theorems

make use of these constructs:

Fo(Safinw);T=S;(waT) F =S ahalt S D Ohalt S
FoS5(T A fin w)=(S;T) A fin w o Ow = O(halt w)

2.3.4. Unit subintervals
Our experience with very compositional properties has demonstrated the benefit of

sometimes considering only subintervals having length 1. These subintervals are called
unit subintervals. Here are constructs for examining them:

keep S o E(skip D S) All units keepnow S « D(skip A S) Initial unit

The relation between keep and keepnow is similar to the one between O and O. For
example, we use the construct keepnow in induction proofs involving keep . Here are some

theorems:
o (keep S); (keep S) D keep S F o (keepnow S) A O(keep S) D keep S,
F o keep S = keep keep S F o keep w = O(more D w),
F o keep S = (skip A S)* F o Ow = keep w A fin w.

2.3.5. Control and iterative constructs

It is well known that the conventional formula i¢f S then T else U can be expressed in
propositional logic as follows (S A T) v (=S A U). The ITL formalism provides a natural
way to define if-then and while-do as well. We also include here a very important analogue
of Kleene plus for one or more iterations of a formula:

if SthenT o if S then T else empty If-then g+ S*:S Chop-plus
def

while S do T = (S AT)* A fin =S While loop

The following are representative theorems:

F o whilew do S = if w then (S; (while w do S)) oSt = S5
Fo&(sS >T) O (whilewdoS) D (whilew doT)

2.3.6. Some definite descriptions

We now look at some first-order ITL operators for expressions and formulas. Let us
first consider some expressions definable using definite descriptions and operators already
mentioned. Here e and ¢’ are themselves arbitrary expressions of the same sort and « is
any static variable not occurring freely in e and ¢’ and having the same sort:

fin e def wa: fin (e = a) keepnow € L keepnow (e = a)
if S then e else ¢ o (if S then e =a else ¢’ = a)

For example, fin ¢ is the value of the expression e in the interval’s final state. The re-
striction that the static variable @ has the same sort as the expressions ensures that the
descriptions also have this sort. The requirement in conditional expressions that e and ¢’
have the same sort could be weakened but it suffices for our purposes. The reader prob-
ably finds the expression keepnow e unfamiliar. We use it when specifying and proving
first-order properties of the keep construct.

Below are some theorems:

F S D (if Stheneelsee)=c¢ F o more D (keepnow fin A) = (OA)
F o fin(e=a)=(fine)=ua

In the last theorem, A is an arbitrary state variable.

2.3.7. Some other first-order constructs

The next few definitions provide a way of observing the values of one or two expressions
are various points in time. These constructs are used extensively in the parallel systems
described later. As before, e and ¢’ are arbitrary expressions of some particular sort and
a is any static variable of the same sort not occurring freely in e:

e e ¥ (fine)=¢ goodindexr ¢ o keep (e < Oe <e+1)
def def

stable e dEf Jda:O(e = a) padded e dEf Jda: keep (e = a)

e gets ¢ = keep (e €) e < e = (e« ¢) A padded e

The operator goodindex tests that an expression remains unchanged or increases by 1 over
every unit subinterval. The operator padded ensures that the expression’s value remains

10

unchanged except possibly at the interval’s very end. This is used in the definition of the
operator < to describe a padded temporal assignment which can be used for synchronous
assignments in parallel systems.

We now give some sample theorems. The variables A, K and L are state variables and
n is a static one with K, [and n ranging over the natural numbers. We assume that w is
a state formula in which A is the only state variable occurring.

FwianAe—e D finw F o stable A = (stable A),
F K+« K DO =(K+K+1) F o stable A = A gels A,

F K+ne—L+n = KL F o ostable A O A+ A

F K < L agoodindex L astable K’ O O(K < L)

F K< K+1 = stable K;(skip n K + K+ 1)

3. A PRACTICAL PROOF SYSTEM

We now present a very powerful and practical compositional proof system for ITL. Our
experience in rigorously developing hundreds of propositional and first-order proofs has
helped us refine the axioms and convinced us they are sufficient for a very wide range of
purposes. The proof system is divided into a propositional part and a first-order part.
Our discussion looks at each in turn.

3.1. Propositional axioms and inference rules

The propositional axioms and inference rules mainly deal with chop, and skip and
operators derived from them. Only one axiom is needed for chop-star. The proof system
gives nearly equal treatment to initial and terminal subintervals. This is exceedingly
important for the kinds of proofs we do. In addition, this makes the proof system easier
to understand since much of it consists simply of duals in this sense. In contrast, most
temporal logics cannot handle initial subintervals and even other proof systems for I'TL
largely neglect them.

Rosner and Pnueli [11] and Paech [12] give propositional proof systems for ITL with
infinite intervals and prove completeness. Our proof system contains some of the propo-
sitional axioms suggested by Rosner and Pnueli but also includes our own axioms and
inference rule for the operators @, keepnow , and chop-star. These assist in deducing
propositional and first-order theorems and in deriving rules for importing, exporting and
other aspects of composition.

Prop F Substitutions of tautologies P8 F s o>sanloT)

P2 F (S;7),U=8;(T,U) O (5;T) D (5,1

P3 F(SvS)yT D (S;T)v(S5T) P9 FOS D —-0-S

P4 FS;(TvTy O (S;T)v(S;T) P10 F keepnow S DO —keepnow —S
P5 Foempty; S =S P11 F SAD0(SD®S) > OS

P6 F S empty = S P12 + 5" = empty v (S A more); S*
P7 Fw D Dw

MP F SDOT, S = FT OGen - S = F @S

OGen - S = F OS

11

We now give a sample theorem and its proof:

oS O>T) D> ©5 DT

Proof:
1 F o true D true Prop
2 F o O(true D true) 1,0Gen
3 Foo@(S O T)a0(true D true) D (S;true) D (T;true) P8
4 ool o> T) D (Sitrue) D (T true) 2,3,Prop
5 FES OT) DO &5 O OT 4,def. of &

Theorem 3.1 The propositional proof system is complete for quantifier-free formulas
containing only boolean-valued static and state variables.

Outline of proof: For a given formula, we construct a finite tableau consisting of a
number of states. Fach state is represented as a disjunction whose disjuncts are themselves
conjunctions of primitive propositions, nert formulas and their negations. Now suppose S
is a valid formula. Construct a tableau for its negation =5. Call a state in a tableau final
if it is satisfiable by some empty interval. No state reachable from the initial state in our
tableau for —.5 is final, since otherwise we can use the path to construct a model for 5.
Therefore the tableau reflects that =5 is not true in any finite intervals. We convert this
to a proof-by-contradiction for S. This technique also applies to a version of Rosner and
Pnueli’s proof system restricted to finite intervals.

3.2. First-order axioms and inference rules

Below are axioms and inference rules for reasoning about first-order concepts. They
are to be used together with the propositional ones already introduced. See Manna [13]
and Kroger [14] for proof systems for chop-free first-order temporal logic. We let v and v
refer to both static and state variables.

F1 F All substitution instances of valid nonmodal formulas of conventional
first-order logic with arithmetic
F2 F YorS DO SE,
where the expression e is compatible with v and v is free for e in S.
F3 F VYo (SDOT) D (S DOVuT), where v doesn’t occur freely in S.
F4 F (w0 9) = (w: SY),
where v and v’ are static variables of one sort and v is free for v’ in S.
F5 F VYo (S=T) DO (w:S)=(w:T), where v is static.
Fé6 F(u:S)a(w:S)=v D S, where v is a static variable.

F7 Fw DO Duw, where w only contains static variables.

F8 F o (S;T) D (Fu:S); T, where v doesn’t occur freely in T
F9 F o (S;T) D S;(Fe:T), where v doesn’t occur freely in S.
F10 F (Ju:9);0(F0:T) D Fv:(5;0T), where v is a state variable.

12

YGen F S = F Vu§, for any variable v.
Induct + 52, F S5 O Sttt = F S

for any static variable n whose sort is the natural numbers.

The axiom F1 permits using properties of conventional first-order logic with arithmetic
without proof. Most of the other axioms and the two inference rules at the end are
straightforward adaptations of conventional nonmodal equivalents for quantifiers and defi-
nite descriptions. Only four axioms actually contain temporal operators. Axiom F7 deals
with state formulas containing only static variables. The two axioms F8 and F9 show
how to move an existential quantifier out of the scope of chop. The remaining temporal
axiom F10 shows how to combine two state variables in nearly adjacent subintervals into
one state variable for the entire interval. We extensively use it and lemmas derived from
it for constructing auxiliary variables.

3.3. ITL with infinite time

The semantics and proof system so far presented is suitable for reasoning about finite
intervals. We briefly discuss some modifications needed to permit infinite intervals as well.
First, we apply our semantics of S;7T and S* to infinite intervals. As before this means
S; T is true if the interval can be divided into one part for S and another adjacent part
for T' and that S™ is true if the interval can be divided into a finite number of parts, each
satisfying 5. In addition, we now let S;T be true on an infinite interval which satisfies
S. For such an interval, we can ignore T'. Furthermore, we let S* be true on an infinite
interval dividable into an infinite number of finite intervals each satisfying S. We define
new constructs for testing whether an interval is infinite or finite, and alter the definition

of <

o
a

e
o
-

€

true; false finite = —inf
finite; S

oS

Q.
Al

Once this is done, all the axioms and basic inference rules remain sound. We also include
the following two axioms:

P13 - (Sainf);T =S ninf
P14 - S A0S D (T A more); S) D T*

It seems likely that completeness in the sense of theorem 3.1 can only be achieved with
a nonconventional inference rule. This is not central to our approach. In the rest of this
paper we restrict ourselves to finite time.

4. APPLICATIONS

Let us now consider some applications of the proof system. Due to space limitations
and for the sake of brevity, only summaries of the actual proofs are given here. The reader
may wish to review the material in the introduction about very compositional properties.

13

4.1. A simple parallel system with shared write access
Below are descriptions of two simple processes () and R which alternately modify a
single variable K:

QK) = R(K) =
for some times do (for some times do (
K < K+ 1; halt odd(K);
halt even(K) K<~ K+1

))

The iterating in () and R is expressed by means of the chop-star operator in the notation
of a for-loop. The predicates even and odd are simple arithmetic tests. Here is the overall
system together with K initially equal to 0:

K=0rQ(K)rR(K).

When K is even, () keeps it stable for a while and then eventually increments it, thus
making it odd. At this time, R keeps K stable and then increments it, thus handing
responsibility for it back to (). This continues for some finite, unspecified number of
times. We use padded temporal assignments in order to ensure proper communication

between () and R.

Here is a theorem describing correctness of the overall system:
Fooeven(K) A Q(K) A R(K) D goodindex K A fin even(K).

The theorem uses the goodindex operator defined earlier to state that K is always stable
or increases by 1. In addition, K’s final value is even.
In the proof we make use of the following variants of goodindex :

Q.
L

€

goodevenindex (K) = keep(even(K) D K <OK < K + 1),
ef

goododdindex (K) = keep (odd(K) D K <OK < K +1).

Q.

Both goodevenindexr and goododdindex are fixed points of keep so we can readily prove
the following lemmas for () and R using sequential composition:

Fooeven(K) A Q(K) D goodevenindex (K) a fin even(K),
Fooeven(K) A R(K) D goododdindex (K) A fin even(K).

The formulas goodevenindex (K') and goododdindex (K') can then be combined together
into goodindex (K):

F goodevenindex (K) n goododdindex (K) DO goodindex (K).

The proofs of all these theorems makes extensive use of the fact that goodindexr and its
variants are very compositional.

14

4.2. Skeletons and compositionality

One of the simplest types of sequential communicating processes are those expressible
in the form S*, where the arbitrary formula S describes some basic transaction. Such for-
mulas are clearly fixpoints of chop-star. The () and R formulas given earlier are examples.

A number of communication techniques do not merely consist of a sequential series of
similar transactions, one following the other. Instead, between each pair of consecutive
transactions there can be an idle period described by some formula T'. It is useful to restrict
T to a fixpoint of chop-star since this ensures that any empty interval is a (trivial) idle
period and that adjacent idle periods can be lumped together and thought of as one. The
simplest kind of idling involves one or more state variables being kept stable but other
forms of idling are also possible.

Once we introduce the notion of idling, the skeletal behavior to be extracted from an
appropriate specification can be roughly described as something of the general form

T,5;7;5;...;5:T.

Here each S corresponds to an individual transaction and each T' to an idle period. This
can be more precisely expressed in closed form as (7;.5)*; 7. It can be proved that such
a formula is a fixpoint of chop-star and can therefore be compositionally extracted from
specifications.

For succinctness, let us further require that the transaction S absorbs T' on the left:

TS O S

If this is not provable for a particular S, one can simply use a new transaction S’ defined as
T'; S which is easily seen to have the desired property. If S and T" are as described, we call
the formula S*; T" an S-star-T formula. Such a formula is then a very convenient fixpoint
of chop-star. The formulas S, T and (5*;T)* each imply S*;T. It can be modularly
exported from applications and then analyzed. The results can later be imported into
proofs specific to the applications.

4.3. Producer-consumer system with single buffer
Consider the following skeletal producer-consumer system which illustrates a general
message-passing convention using a single buffer:

BufProdSkel(CI, PI, Buf) = BufConSkel(CI,PI) %
for some times do (for some times do (
Pl < PI +1; stable CI A fin (CI # PI);
stable (PI, Buf) fin (Pl # CI + 1) Cl «~ CI+1
););
stable PI stable CI

Recall that we use a for-loop notation as a programming-language syntax for chop-star.
The body of each skeleton’s loop contains one transaction and the last subformula after
the loop describes the idle behavior. The producer is responsible for an index PI and a
buffer Buf and the consumer maintains a similar index C1.

15

It should be easy to see that both skeletons meet the requirements of S-star-T formulas
and can therefore be compositionally extracted from systems using this message-passing
convention. The idle periods represented by stable are readily absorbed on the left of the
respective transactions which themselves start with stable periods. Two stable periods
can be merged into one.

The combined system skeleton BufSysSkel is simply the conjunction of the producer and
consumer skeletons:

Q.
L

€

BufSysSkel(CI, PI, Buf) = BufProdSkel(CI, PI, Buf) n BufConSkel(CI, PI).

Note that BufSysSkel is not a fixpoint of chop-star and therefore lacks sequential com-
positionality. This is not a problem for us since we only use BufSysSkel after we have
extracted the individual producer and consumer skeletons.

So far we have discussed how to obtain the skeletons from specifications of applications.
Another important issue is how to describe the correctness of the skeleton system. In
order to do this, we first formalize a notion of processing a sequence of data values. The
following definition for goodbuffer serves this purpose:

Q.
L

€

goodbuffer (tr, K, A) = keep(K + K+1 D fin(K <|tr|n A=tr[K —1])).

Here tr is a static, possibly empty list which traces the data values being transmitted.
The index variable K is a state variable ranging over the natural numbers which increases
by 1 whenever a new data value is seen. The definition ensures that when this happens,
K does not exceed the length of the trace tr. The variable A serves as a buffer containing
that current data value. Whenever a new data value is handled, A should contain the value
in the trace tr indexed by K — 1 . Note that the trace can include elements not indexed
by K in the current interval. Being a fixpoint of keep , goodbuffer is easy to import and
export within specifications.
The following theorem characterizes the basic correctness of the skeleton BufSysSkel:

F o CI = PI A goodbuffer (tr, PI, Buf) n BufSysSkel(PI, CI, Buf)
D goodbuffer (tr, CI, Buf) A fin (CI = PI).

We also need the following lemmas in order to verify that the producer and consumer are
patient:

F o CI = PI A BufSysSkel(PI, CI, Buf) O keep (CI = PI D stable CI),
F o CI = PI A~ BufSysSkel(PI, CI, Buf) O keep (Pl = CI+1 D stable (PI, Buf)).

The first lemma ensures that the consumer patiently waits for the producer and does not
increase its index before the producer makes data available. The second lemma similarly
ensures that the producer index and buffer remain stable until after the consumer has
indicated acceptance. From these lemmas, we can prove that the producer and consumer
indices never differ by much:

F o CI = PI A BufSysSkel(PI, CI, Buf) > O(CI < PI <CI+1).

16

The proofs of these properties make extensive use of compositionality and various other
properties of goodindex , goodbuffer and other constructs introduced so far. For example,
when an index is stable and no data is therefore communicated, goodbuffer is trivially
true:

F o ostable K D goodbuffer (tr, K, A).

The following theorem ensures that we can always assume the existence of a trace associ-
ated with a given well-behaved index and buffer:

F o goodindex K O Jtr:(goodbuffer (tr, K, A) n fin (K = |tr])).

4.4. An asynchronous system

Our previous example deals with data transfers using a single buffer. This approach
requires the producer to wait for consumer acknowledgement every time data is made
available. Now consider a system with a pool of n buffers, for some n > 1. The producer
can advance several data transfers ahead of the consumer. We now look at skeletons
for such behavior. For simplicity, we only consider the interaction of the producer and
consumer indices and omit the buffer pool.

IndexProdSkel(n, PI, CI) &f IndexConSkel (PI, CT) oo
for some times do (for some times do (
Pl < PI +1; stable CI A fin (CI # PI);
stable PI A fin (Pl # CI 4+ n) Cl «~ CI +1
););
stable PI stable CI

The static variable n equals the number of buffer slots, PI is the producer buffer index and
CI is the consumer buffer index. At any point in time, the values of Pl mod n and C1 mod
n refer to the respective current buffer slots. The skeleton IndexProdSkel(n, PI, CI)
controls the behavior of Pl and similarly IndexConSkel(PI, CI) looks after CI. Both
skeletons are S-star-T formulas.

Here is the combined system:

Q.
L

€

IndexSysSkel(n, PI, CI) = IndexProdSkel(n, PI, CI) n IndexConSkel (PI, CT).

The following two theorems show that the producer waits if it is n transfers ahead of of
the consumer and that the consumer waits until the producer is ahead of it:

F o CI = PI A IndexSysSkel(n, PI, CI)

D keep (Pl = CI +n D stable PI) A fin (PI < CI +n),
F o CI = PI A IndexSysSkel(n, PI, CI)

D keep (CI =PI D stable CI) A fin (CI < PI).

The proofs use reduced forms of the skeletons not given here. From these theorems we
can also prove that PI always ranges between CI and CI + n:

F o CI = PI A IndexSysSkel(n, PI,CI) D> 0O(CI < PI < CI +n).

17

4.5. Specification of timing constraints

The ITL formalism provides facilities for specifying and proving theorems involving tim-
ing dependencies. We now introduce constructs to measure interval length and then show
an application using them. The following definition intlen (n) can be used to determine
whether an interval has length equal to the static variable n:

Q.
L

€

intlen (n) = 3L:(I=0a1lgets [+ 1A fin(I =n)).

This existentially introduces a state variable I which counts the number of units of time
in the interval. The interval has length n exactly if I’s final value equals n. Within ITL
we can prove that every interval has some length and that the length is unique:

F dn:intlen (n) F o intlen (m) A intlen(n) D m=n

The existence and uniqueness of interval length helps us define a definite description
equaling the interval’s length:

len % nintlen (n).

The expression len has the following provable theorem for additivity of interval lengths:
Folen =m+n = len =m;len =n.

We now specify skeletons for a simple timing-dependent system with a producer and a
consumer: Here are skeletons:

o
-
o
-

€

TimedProdSkel(n, PI, Buf) = TimedConSkel(n, PI, CI) =
for some times do (for some times do (
stable PI,; halt (CI # PI) A stable CI,;
Pl <« PI +1; len <naCl <~ CI+1
len > n a stable (PI, Buf));
); stable CI
stable PI

As before, the producer skeleton uses the index PI to indicate when a new data value is
ready in the buffer Buf. Unlike our earlier examples, the producer does not examine the
consumer index C1 to wait for receipt. Instead, the producer keeps the data stable for
a minimum of n units of time before making new data available. The consumer skeleton
waits for the producer prepare a value and then accepts it in not more than n units of
time. Note that the producer skeleton is an S-star-T formula but the consumer skeleton
is not since extra idling can adversely affect its timely response to incoming data.
As in previous examples, we specify the combined system skeleton using conjunction:

def

TimedSysSkel(n, PI, CI, Buf) =
TimedProdSkel(n, PI, Buf) n TimedConSkel(n, PI, CT).
The basic correctness for data transfer is expressed by the following theorem:
F o CI = PI A goodbuffer (tr, PI, Buf) n TimedSysSkel(n, PI, CI, Buf)
D goodbuffer (tr, CI, Buf) a fin (CI < PI).

18

Here the final value of CT is not necessarily equal to PI. This is because the producer
does not explicitly wait for the consumer and can produce more data than the consumer
is interested in seeing.

The proof of correctness uses a special timer counter 7% which is existentially introduced
without loss of generality as an auxiliary variable to keep track of how much time has
elapsed since the producer index PI last changed. We define that relationship between T4
and an arbitrary state variable A (such as Pl in our case) as follows:

Q.
L

€

goodtimer (Ti,A) = Ti gets (if stable A then Ti+ 1 else 0).

Thus, T7 always increases by 1 except when A changes and resets 7% to 0. In our example
here, the producer is verified to keep Pl and Buf stable as long as T4 is less than n:

F o Ti > n A goodtimer (Ti, PI) n TimedSysSkel(n, PI, CI, Buf)
D keep (Ti<n D stable (PI, Buf)) A fin (Ti > n).

For simplicity we assume that 7% is initially not less than n since this mean Pl can change
at any time.

As mentioned above, the auxiliary variable 7% can be introduced without loss of gener-
ality. The following shows this:

Fo 3T (Ti=n A Ti gets (if stable PI then T+ 1 else 0)).

This is in fact a straightforward corollary of a powerful and more general theorem we
prove about constructing auxiliary variables:

Fo JA:(A=en A gels €).

Here the state variable A and expressions e and ¢’ have the same sort. There should be
no free occurrences at all of A in e. We allow A to occur in ¢’ but not within the context
of temporal operators. These restrictions ensure that A is not circularly defined. For
example, the following simple corollary constructs a counter that can be used for showing
the existence of interval length needed for the constructs intlen and len :

F LI =0n1gets I +1).

5. CONCLUSION

Interval Temporal Logic is a simple and yet powerful formalism for dealing with dynamic
behavior. From only a few basic concepts and a reasonably small axiom system, a wealth
of useful operators and very compositional properties concerning sequential and parallel
activity can be investigated. Facilities exist for dealing with behavior involving message
passing, shared write access and timing constraints. Until now, little work has been
directed at doing formal proofs about applications directly in ITL. We have presented
some results of our extensive experience based on hundreds of proofs and believe that this
approach is very promising. It may also be of benefit in proof systems for the Duration
Calculus [15], a continuous-time variant of ITL.

19

Acknowledgements

We wish to thank Zhenhua Duan, John Fitzgerald, Roger Hale, Chris Holt, Shinji
Kono, Maciej Koutny, Anders Ravn and Hussein Zedan for discussions. The Science and
Engineering Research Council funded our research.

REFERENCES

1. C. A. R. Hoare. An axiomatic basis for computer programming, Comm. ACM, Vol.
12, No. 10, 1969, 576-580, 583.

2. B. Moszkowski. Reasoning about Digital Circuits, PhD thesis, Stanford Univ., 1983.

3. J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on temporal
intervals, in: ICALP83, LNCS 154, Springer-Verlag, Berlin, 1983, 278-291.

4. B. Moszkowski. A temporal logic for multilevel reasoning about hardware, IEEE Com-
puter, Vol. 18, No. 2, 1985, 10-19.

5. B. Moszkowski. Executing Temporal Logic Programs, Cambridge Univ. Press, Cam-
bridge, UK, 1986.

6. C. Stirling. A generalization of Owicki-Gries’s Hoare logic for a concurrent while lan-
guage, Theoret. Comp. Sci., Vol. 58, 1988, 347-359.

7. C. B. Jones. Specification and design of (parallel) programs, in: Proc. Information
Processing ’83, R. E. A. Mason (ed.), Elsevier, Amsterdam, 1983, 321-332.

8. N. Francez and A. Pnueli. A proof method for cyclic programs, Acta Informatica, Vol.
9, 1978, 133-157.

9. P. Cousot. Methods and Logics for Proving Programs, in: Handbook of Theoret.
Comp. Sci. (Vol. B), J. van Leeuwen (ed.), Elsevier, Amsterdam, 1990, 841-993.

10. S. Kono. Automatic verification of Interval Temporal Logic, Tech. rep. SCSL-TM-92-
007, Sony Computer Sci. Lab., Inc., Tokyo, Japan, 1993.

11. R. Rosner and A. Pnueli. A choppy logic, in Proc. 1st Ann. IEEE Symp. on Logic In
Comp. Sci., IEEE, 1986, 306-314.

12. B. Paech. Gentzen-systems for propositional temporal logics, in: Proc. 2nd Workshop
on Comp. Sci. Logic, LNCS 385, Springer-Verlag, Berlin, 1988, 240-253.

13. 7Z. Manna. Verification of sequential programs: Temporal axiomatization, in: M. Broy
and G. Schmidt (eds.), Theoretical Foundations of Programming Methodology, D. Rei-
del Pub. Co., 1982, 53-102.

14. F. Kroger. Temporal Logic of Programs, Springer-Verlag, Berlin, 1987.

15. Zhou Chaochen, C. A. R. Hoare and A. P. Ravn. A calculus of durations, Inf. Proc.
Let., Vol. 40, No. 5, 1991, 269-276.

20

