
Presented at the IFIP Working Conf. on Programming Concepts, Methods and Calculi(PROCOMET '94), 6-10 June 1994, San Miniato - Italy.Included in Programming Concepts, Methods and Calculi , E.-R. Olderog (ed.),IFIP Transactions, Vol. A-56, North-Holland, 1994, 307{326.Some Very Compositional Temporal PropertiesBen MoszkowskiaaDepartment of Computing Science, University of Newcastle upon Tyne,Newcastle NE1 7RU, Great Britaine-mail: Ben.Moszkowski@ncl.ac.ukA logic for reasoning about sequential and parallel behavior must support some formof compositionality. That is, much of the proof of a system should be decomposible intoproofs of its parts. We discuss some important and easily described classes of propertieswhich are readily imported and exported between temporal scopes. We call such proper-ties very compositional since they support a methodology of speci�cation and proof whichis especially modular and reusable. Our presentation uses Interval Temporal Logic as thenotation in which all behavior is described and proved. We give a powerful and elegantITL proof system. It has been used by us to rigorously prove hundreds of theorems andderived inference rules, including a number for parallel systems involving message-passing,timing constraints and shared write-access. We believe that very compositional propertieswill be of interest to anyone involved with the speci�cation and veri�cation of computersystems.Keyword Codes: F.4.1; I.2.3Keywords: Mathematical Logic; Deduction and Theorem Proving1. INTRODUCTIONThe notion of compositionality is very important in computer science. It facilitatesthe modular design and maintenance of complex systems and the reuse of the intellectualand physical resources invested in them. Successful examples of its use include modularhardware design, subroutine libraries, object-oriented programming and open systems.Compositionality is also of great value in programming logics. A major reason for thesuccess of Hoare's axiomatic system [1] for sequential programs is the ease with whichthe proofs of a program's pieces can be combined together. We have been using IntervalTemporal Logic [2{5] to investigate various forms of parallel behavior. In the course ofour research, we have identi�ed certain classes of properties that are especially suited forcompositional temporal speci�cations and proofs.The basic nature of these compositional properties is not hard to grasp. In order forthe reader to better appreciate their signi�cance, we now give a brief, relatively informalpresentation of them within the framework of ITL. Basically ITL is a logic for reasoningabout discrete intervals or periods of time and consists of conventional logic constructs aswell the three operators skip, ; (chop) and � (chop-star). An interval is a �nite, nonempty1

sequence of states. The length of an interval is de�ned to be the number of states in theinterval minus one. A precise de�nition of ITL's syntax, semantics and proof system isgiven later on.Suppose we have two formulas T ;T 0 and T �. The �rst one T ;T 0 consists of the sequentialcomposition of subformulas T and T 0. The formula T ;T 0 is true on an interval i� theinterval can be split into two subintervals sharing a common state and in which subformulasT and T 0 are respectively true. The formula T � denotes the sequential iteration of thespeci�cation T some �nite number of times and is similar to the Kleene star of regularexpressions. We will not give any more details about T and T 0 at this time. Consider thefollowing proof rule:` w ^ T � �n w0;` w0 ^ T 0 � �n w00` w ^ (T ;T 0) � �n w00:Here w, w0 and w00 are formulas in conventional �rst-order logic containing no temporaloperators and describing properties of individual states. The turnstyle ` means that theformula to its right is provable in our axiom system. Note that a conjunction of formulasis true on an interval i� each formula is true. The temporal operator �n is de�nable inITL and lets us examine an interval's �nal state. The �rst lemma states that if w is truein an interval's initial state and T is true on the interval then w0 is true in the �nal state.The rule shows how to compose two such lemmas proved about input-output behavior ofT and T 0 into a corresponding lemma for T ;T 0. Here is an analogous proof rule for T �:` w ^ T � �n w` w ^ T � � �n w:The rough meaning of the rules so far given should be reasonably clear. They and all theother proof rules shown here can be formally derived in our proof system presented laterin section 3. Other similar rules can be proved for if and while constructs.So far we have dealt solely with input-output properties. The following are general-izations of the previous rules to extract more information about behavior in intermediatestates: ` w ^ T � U ^ �n w0;` w0 ^ T 0 � U 0 ^ �n w00` w ^ (T ;T 0) � (U ;U 0) ^ �n w00 ` w ^ T � U ^ �n w` w ^ T � � U� ^ �n w: (1); (2)Using these, we can compositionally transform one speci�cation into another. This isbecause we reduce the overall proof into proofs for the subformulas.Now consider the following two proof rules which are in general not sound:` w ^ S ^ T � U ^ �n w0;` w0 ^ S ^ T 0 � U ^ �n w00` w ^ S ^ (T ;T 0) � U ^ �n w00 ` w ^ S ^ T � U ^ �n w` w ^ S ^ T � � U ^ �n w: (3); (4)The formulas S and U correspond to some general temporal \ongoing" properties. Forinstance, the �rst lemma in the rule on the left says that if w is initially true and S is true2

when T is performed, it follows that U is true and w0 is true in the �nal state. Unlikerules 1 and 2 above, these rules do not work for arbitrary formulas S and U . The tworules below are in fact the best we can do without imposing any restrictions:` w ^ S ^ T � U ^ �n w0;` w0 ^ S ^ T 0 � U ^ �n w00;` w ^ ((S ^ T); (S ^ T 0)) � (U ;U) ^ �n w00 ` w ^ S ^ T � U ^ �n w` w ^ (S ^ T)� � U� ^ �n w: (5); (6)These are in fact instances of rules 1 and 2 given earlier. Thus rules 3 and 4 provide adegree of compositionality much better than rules 5 and 6 and we therefore call them verycompositional.The question remains regarding what the minimal requirements are for S and U forthe rules to work. Intuitively, it can be seen that we need the following theorems to beprovable for showing that S can be imported into subintervals:` S ^ (T ;T 0) � (S ^ T); (S ^ T 0); ` S ^ T � � (S ^ T)�:Here are analogous theorems for exporting sequences of the formula U :` U ;U � U; ` U� � U:We say that S is temporally importable and similarly that U is temporally exportable.One way to formally and concisely describe temporally importable and exportable prop-erties is through �xpoints. Let the formula 2a S be de�ned to be true for an interval of timeexactly if S is true in all subintervals. A simple and formal de�nition of 2a will be givenlater. We simply need to prove that S and U are solutions to the following equivalences:` S � 2a S; ` U � U�:Like the proof rules which use them, such properties are called very compositional sincelemmas developed with them are especially combinable. The property \The interval haslength less than 100" is an example of a �xpoint of 2a since the property is true for aninterval if and only if it is true for all subintervals. Another example is \The variableK always equals 1." However, neither of these properties is a �xpoint of chop-star. Theproperty \The interval has even length" is a �xpoint of chop-star since whenever there is asequence of adjacent subintervals each satisfying the property, the overall interval also hasit since the sum of some even numbers is itself even. The property \The variable I's initialand �nal values in the interval are equal" is also a �xpoint of chop-star. Neither exampleis a �xpoint of 2a . Incidentally, every formula expressible as 2a S for some arbitrary S isa �xpoint of 2a . Likewise, any formula of the form S� for some arbitrary S is a �xpointof �. The following theorems describe this:` 2a S � 2a 2a S; ` S� � S��:Let us now turn to properties that are both temporally importable and exportable. Suchproperties are especially convenient since they can be exported from one proof and thenreadily imported in later proofs. Examples of this are the properties \The variable A's3

value remains stable throughout the interval" and \The variable K keeps increasing by 1from each state to its immediate neighbor ." These properties are �xpoints of both 2a andchop-star. Let the formula keep S be true if S is true in all subintervals of length 1 (i. e.,having exactly two states). We can express keep S using 2a and skip:keep S def� 2a (skip � S):This works because skip is de�ned to be true exactly for intervals having length 1 (i. e.,two states). It is easy to prove that a �xpoint of keep is also a �xpoint of 2a and �. Ittherefore follows that �xpoints of keep are both importable and exportable. In fact, wecan show the converse that any property that is a �xpoint of both 2a and � is also a �xpointof keep . Thus, in a important sense keep characterizes a major class of properties thatare both importable and exportable. This can be formalized in the following way:` S � 2a S; ` S � S� i� ` S � keep S:The proof of this makes use of the following interesting lemma for expressing keep usingchop-star:̀ keep S � (skip ^ S)�:Further note that if S and T are both �xpoints of 2a , then so is their conjunction S ^ T .This also applies to the conjunction of two �xpoints of keep . Also, any formula of theform keep S for some S is a �xpoint of keep .Readers may be interested in comparing our techniques for sequential composition withStirling's proof system [6] for an extended Hoare logic. It is based on the rely-guaranteeapproach of Jones [7] and is intended for reasoning about state invariants that hold truethroughout a concurrent computation. Francez and Pnueli [8] introduce interface predi-cates for handling parallel composition. See Cousot [9] for a discussion about composi-tional proof systems for concurrency.2. OVERVIEW OF BASIC INTERVAL TEMPORAL LOGICLet us examine the syntax and semantics of ITL. If the reader prefers, he can initiallyskip this section and the next one about a practical ITL proof system and proceed tosection 4 on applications.2.1. Syntax2.1.1. Alphabet and sortsThe �rst thing to consider is the alphabet of symbols used in building constructs. Weassume the following distinct sets:� Static variables: a, b, c, : : : � Equality: =.� State variables: A, B, C, : : : � Conventional logical symbols: :, ^, 8, :, (and)� Function symbols: f , g, : : : � De�nite description symbol: {� Predicate symbols: p, q, : : : � Temporal logical symbols: skip and ; and �Each function and predicate symbol has an associated arity. In practice we use constants(nullary functions) such as 0 and 1, as well as functions such as + and � and predicatessuch as = and <. 4

We assume sorts referenced by the positive integers 1, 2, : : : . Each variable v is associ-ated with one sort v̂. Each n-ary predicate symbol p has n associated sorts p̂1, : : : , p̂n forits parameters. Similarly each n-ary function symbol has n + 1 sorts f̂1, : : : , f̂n+1. The�rst n sorts are for the parameters and the n+ 1-st sort is for the function's range.2.1.2. Syntax of expressionsExpressions are built inductively as follows:� Static variables (lower case): a, b, c, : : : � Functions: f(e1; : : : ; en)� State variables (upper case) : A, B, C, : : : � De�nite descriptions: {v:SHere v is a static variable, e1,: : : , en are expressions and S is a formula. In the case ofconstants (nullary functions), we omit the parentheses.2.1.3. FormulasBelow are permitted formulas:� Predicates: p(e1; : : : ; en) � Unit interval: skip.� Equality: e1 = e2 � Chop: S;T� Logical connectives: :S, and S ^ T � Chop-star: S�, where S is a formula� Universal quanti�cation: 8v:SHere v is any variable, e1,: : : , en are expressions and S and T are arbitrary formulas.We freely use various conventional propositional constructs which can be expressed interms of ^ and :: true, false , _ (logical or), � (implication), � (logical equivalence)and if-then-else. In addition, 9 (existential quanti�cation) is de�ned in terms of 8. Thefollowing temporal operators are also quite standard:
S def= skip;S S is true from the next state
wS def= :
:S Weak next3S def= true;S S is sometimes true2S def= :3:S S is always trueHere is a version of
 for expressions:
e def= {a:
(e = a);where the static variable a has the same sort as e and does not occur freely in it.We adapt the convention that S, T and U as well as primed and subscripted variantsrefer to arbitrary formulas. It is bene�cial to sometimes consider formulas without anytemporal modalities. We refer to these using w, w0 and so forth. The symbols e, e0 andso on refer to expressions. Expressions and modality-free formulas containing only staticvariables are themselves called static.Formulas built from multiple occurrences of ^ are right-associative. Thus a formula ofthe form S ^ T ^ U is equivalent to S ^ (T ^ U). This also applies to formulas withchop, that is, a formula S;T ;U is equivalent to S; (T ;U). On several occasions, we writeformula S� using the alternative programming notation for some times do S.5

2.1.4. Some sample formulasHere are some sample ITL formulas whose semantics we will later describe:2(I = 0); skip;2(I = 1); (skip; skip)�; (skip; skip)� � (skip; skip)��;I = 0 ^ J = 0 ^ (skip ^ (
I) = I + 1 ^ (
J) = J + I)�;I = 0 ^ J = 0 ^ (skip ^ (
I) = I + 1 ^ (
J) = J + I)� � 2(J = I(I � 1)� 2):2.2. Semantics2.2.1. Semantics of the underlying �rst-order logicThe semantics of ITL is built upon a fairly conventional �rst-order logic with sortsnow described. We assume a �xed interpretation I which serves two purposes. First,it associates data domains I1, I2,: : : , with the corresponding sorts 1, 2,: : : . Secondly, Igives meaning to the predicate and function symbols. More precisely, I maps each n-arypredicate symbol p to an n-ary relation I(p) 2 2Ip̂1�����Ip̂n . Similarly, each n-ary functionsymbol f is associated with a n-ary function I(f) 2 If̂1 � � � � � If̂n ! If̂n+1 that suitsf 's sort requirements. It is assumed that I contains interpretations for the arithmeticoperators and relations for natural numbers as well as operators for manipulating �nitelists (e. g., subscripting and list length).The �rst-order logic uses a straightforward notion of state. A state is any function swhich maps each variable v to a value s(v) in the data domain Iv̂ indexed by v's sort v̂.Unless we specify otherwise, variables in the range i, j, : : : , n and I, J , : : : , N are mappedto the natural numbers.We assume the existence of a choice function � which maps any nonempty set to someelement in the set. This is needed for the semantics of de�nite descriptions.2.2.2. Semantics of intervalsAn interval is de�ned to be any �nite, nonempty sequence of states such that every lowercase, static variable is mapped to the same value in each state. The set of all intervals isdenoted by Int . It is especially convenient to de�ne the length of an interval �, denotedj�j, to be one less than the number of states in �. Thus, the smallest interval has one stateand length 0. The notation �i:j denotes the subinterval of � of length j � i with states �i,�i+1, : : : , �j. We write � �v �0 if the intervals � and �0 are identical with the possibleexception of their mappings for the variable v.2.2.3. Meaning of expressionsThe meaning of an expression is de�ned inductively:� Static or state variable: M�[[v]] = �0(v).The value of a variable for an interval � is the variable's value in the initial state �0.� Function: M�[[f(e1; : : : ; en)]] = I(f)(M�[[e1]]; : : : ;M�[[en]]).� De�nite descriptions: M�[[{v:S]] = (�(u) if u 6= f g�(Iv̂) otherwise,where u is the set of values of the static variable v in intervals �0 such that � �v �0andM�0 [[S]] = true:u = f�0(v) : �0 2 Int ; � �v �0 andM�0 [[S]] = trueg:If u is empty, the description equals some value selected from v's domain Iv̂. Sincev is static, it has a unique value in �0 denoted here �0(v).6

2.2.4. Meaning of formulas� Predicates: M�[[p(e1; : : : ; en)]] = true i� hM�[[e1]]; : : : ;M�[[en]]i 2 I(p).� Equality: M�[[e1 = e2]] = true i� M�[[e1]] =M�[[e2]] .� Negation: M�[[:S]] = true i� M�[[S]] = false.� Conjunction: M�[[S ^ T]] = true i� M�[[S]] = true andM�[[T]] = true.� Universal quanti�cation: M�[[8v:S]] = true i� M�0[[S]] = true;for all intervals �0 that are identical to � except possibly for the behavior of thevariable v (i. e., � �v �0).� Unit interval: M�[[skip]] = true i� j�j = 1 .� Chop: M�[[S;T]] = true i� M�0[[S]] = true andM�00[[T]] = true;where �0 = �0:k and �00 = �k:j�j for some k � j�j. Note that the two intervals �0 and�00 share the common state �k.� Chop-star: M�[[S�]] = true i� M�li:li+1 [[S]] = true; for each i : 0 � i < n,for some n � 0 and �nite sequence of one or more natural numbers l0 � l1 � � � � � lnwhere l0 = 0 and ln = j�j. Note that S� is true for any empty interval since we canalways take n = 0.2.2.5. Analysis of previous examplesNow that we have presented the basic semantics of ITL, it is possible to describe themeaning of the sample formulas given earlier. For each formula, we give the generalcharacteristics of an interval on which the formula is true:� 2(I = 0); skip;2(I = 1): The variable I equals 0 for a while and then equals 1 forthe rest of the interval. We use skip to avoid I = 0 and I = 1 in one state.� (skip; skip)�: The interval has an even length (i. e., an odd number of states).� (skip; skip)� � (skip; skip)��: The interval has even length i� it consists of a sequenceof intervals each with even length.� I = 0 ^ J = 0 ^ (skip ^ (
I) = I + 1 ^ (
J) = J + I)�: The initial values of I andJ are both 0 and then I increases from state to state by 1 while J simultaneouslyincreases by I's value.� I = 0 ^ J = 0 ^ (skip ^ (
I) = I + 1 ^ (
J) = J + I)� � 2(J = I(I � 1) �2): If within the interval the variables I and J have the behavior described in theprevious example, then J always equals I(I�1)�2, that is, the sum of the numbers0, 1, : : : , I � 1.2.2.6. Satis�ability, validity and provabilityIf a formula S is true for an interval �, we say that � satis�es S. A formula having someinterval satisfying it is called satis�able. A valid formula is one satis�ed by all intervals.For example, the following two formulas are satis�able but not valid:I = 1; I = 2; skip:Note that I = 1 and I = 2 are only examined in the initial states of the respectivesubintervals. Here are two formulas which are both satis�able and valid:(I = 1; I = 2) � (I = 1 ^ 3(I = 2)); skip�:The formula skip� is valid in part because chop-star is trivially true on empty intervals.The third and �fth examples given earlier in x2.1.4 are also valid whereas the others are7

satis�able but not valid.Later on we present a proof system for ITL. From now one we pre�x a formula with theconventional symbol ` to indicate that the formula is provable. Much of the time, we giveprovable schemas representing classes of theorems. Here are some examples where S, S 0,T and U are arbitrary formulas and w is any formula containing no temporal operators:` (S _ S0);T � (S;T) _ (S0;T) ` S�;S� � S�` (S;T) ^ :(S;U) � S; (T ^ :U) ` S�� � S�` (w ^ S);T � w ^ (S;T)Here are examples of provable theorems containing
, 3 and 2:` (
S);T �
(S;T) ` 2(T � T 0) ^ (S;T) � (S;T 0)` S;T � 3T `
(e = e0) � (
e) = (
e0)2.2.7. ComplexityIf we restrict ourselves to ITL formulas containing only boolean-valued state and staticvariables, we have a propositional variant of the logic. Here is a useful result regardingthis:Theorem 2.1 (Halpern and Moszkowski) Validity for quanti�er-free ITL formulascontaining only boolean-valued variables is decidable.See Moszkowski [2] for details. In general, complexity of the decision procedure is nonele-mentary. Kono [10] however has a useful implementation in Prolog.2.3. Building a vocabularyThere are many kinds of dynamic phenomena that are useful to describe and reasonabout. The ITL formalism is powerful enough to express a rich class of concepts. Ratherthan limiting ourselves solely to formulas containing only the three basic ITL constructs,we develop what can be thought of as a vocabulary of various kinds of temporal behavior.This is an important task in its own right. An analogous situation arises in conventionalpropositional logic. One can start with one or two adequate connectives and then de�ne anumber of others. Once this is done, it is exceedingly unpleasant and unnatural to restrictpropositional formulas and axiom systems to the original constructs. Regarding ITL, wesimilarly view the starting constructs as adequate connectives for de�ning a repertoire ofothers which are then freely used in formulas and in the proof system.We now present a vocabulary of temporal concepts organized by categories. Proposi-tional constructs are �rst looked at followed by �rst-order ones. After a group of de�nitionsis given, a few representative theorems are shown. The reader may wish to try and under-stand their meaning and convince himself of their truth. They should not be thought ofas arbitrary examples. Indeed, many of them have been extensively used by us in largerproofs. In additional, later de�nitions are often based on earlier de�nitions and thereforealso serve as illustrations of their usage. The material here can be initially skimmed andthen referred back to when the reader studies the examples of parallel systems discussedlater in section 4.2.3.1. Operators for initial and arbitrary subintervalsThe conventional temporal operators
, 3 and 2 de�ned earlier only look at subintervalsthat are su�xes of the current interval. We call these terminal subintervals. It is often8

necessary to consider behavior in initial or arbitrary subintervals. The following operatorsserve this purpose:3i S def� S; true Some initial subinterval 3a S def� true;S; true Some subinterval2i S def� :3i :S All initial subinbtervals 2a S def� :3a :S All subintervalsThe following are representative elementary theorems:` 2a (S � T) ^ S� � T � ` 2a S � 2a 2a S` 2i (S � S0) ^ (S;T) � (S 0;T) ` 2w � 2a 2w2.3.2. Interval lengthThe basic operator skip tests whether an interval has length 1, or in other words, exactlytwo states. We also need to be able to determine whether or not an interval has length 0(i. e., exactly one state). Such intervals are called empty:more def�
true Nonempty interval empty def� :more Empty intervalHere are some provable properties of empty and more:` S; empty � S ` more � 3skip ` empty � S�2.3.3. Final statesAn interval's �nal state is identical to the terminal subinterval having length 0. We makeuse of this in the following de�nitions:�n S def� 2(empty � S) Final state halt S def� 2(empty � S) Halt upon SThe formula �n S only examines S's truth value in the �nal state whereas the formulahalt S ensures that S is true exactly at the end and not before. The following theoremsmake use of these constructs:` (S ^ �n w);T � S; (w ^ T) ` :S ^ halt S �
halt S` S; (T ^ �n w) � (S;T) ^ �n w ` 3w � 3i (halt w)2.3.4. Unit subintervalsOur experience with very compositional properties has demonstrated the bene�t ofsometimes considering only subintervals having length 1. These subintervals are calledunit subintervals. Here are constructs for examining them:keep S def� 2a (skip � S) All units keepnow S def� 3i (skip ^ S) Initial unitThe relation between keep and keepnow is similar to the one between 2 and
. Forexample, we use the construct keepnow in induction proofs involving keep . Here are sometheorems:` (keep S); (keep S) � keep S ` (keepnow S) ^
(keep S) � keep S;` keep S � keep keep S ` keep w � 2(more � w);` keep S � (skip ^ S)� ` 2w � keep w ^ �n w:9

2.3.5. Control and iterative constructsIt is well known that the conventional formula if S then T else U can be expressed inpropositional logic as follows (S ^ T) _ (:S ^ U). The ITL formalism provides a naturalway to de�ne if-then and while-do as well. We also include here a very important analogueof Kleene plus for one or more iterations of a formula:if S then T def� if S then T else empty If-then S+ def� S�;S Chop-pluswhile S do T def� (S ^ T)� ^ �n :S While loopThe following are representative theorems:` while w do S � if w then (S; (while w do S)) ` S+ � S;S�:` 2a (S � T) � (while w do S) � (while w do T)2.3.6. Some de�nite descriptionsWe now look at some �rst-order ITL operators for expressions and formulas. Let us�rst consider some expressions de�nable using de�nite descriptions and operators alreadymentioned. Here e and e0 are themselves arbitrary expressions of the same sort and a isany static variable not occurring freely in e and e0 and having the same sort:�n e def= {a:�n (e = a) keepnow e def= {a: keepnow (e = a)if S then e else e0 def= {a: (if S then e = a else e0 = a)For example, �n e is the value of the expression e in the interval's �nal state. The re-striction that the static variable a has the same sort as the expressions ensures that thedescriptions also have this sort. The requirement in conditional expressions that e and e0have the same sort could be weakened but it su�ces for our purposes. The reader prob-ably �nds the expression keepnow e unfamiliar. We use it when specifying and proving�rst-order properties of the keep construct.Below are some theorems:` S � (if S then e else e0) = e ` more � (keepnow �n A) = (
A)` �n (e = a) � (�n e) = aIn the last theorem, A is an arbitrary state variable.2.3.7. Some other �rst-order constructsThe next few de�nitions provide a way of observing the values of one or two expressionsare various points in time. These constructs are used extensively in the parallel systemsdescribed later. As before, e and e0 are arbitrary expressions of some particular sort anda is any static variable of the same sort not occurring freely in e:e e0 def� (�n e) = e0 goodindex e def� keep (e �
e � e+ 1)stable e def� 9a:2(e = a) padded e def� 9a: keep (e = a)e gets e0 def� keep (e e0) e <� e0 def� (e e0) ^ padded eThe operator goodindex tests that an expression remains unchanged or increases by 1 overevery unit subinterval. The operator padded ensures that the expression's value remains10

unchanged except possibly at the interval's very end. This is used in the de�nition of theoperator <� to describe a padded temporal assignment which can be used for synchronousassignments in parallel systems.We now give some sample theorems. The variables A, K and L are state variables andn is a static one with K, L and n ranging over the natural numbers. We assume that w isa state formula in which A is the only state variable occurring.` weA ^ A e � �n w ` stable A � (stable A)�;` K K � :(K K + 1) ` stable A � A gets A;` K + n L+ n � K L ` stable A � A A` K � L ^ goodindex L ^ stable K � 2(K � L)` K <� K + 1 � stable K; (skip ^ K K + 1)3. A PRACTICAL PROOF SYSTEMWe now present a very powerful and practical compositional proof system for ITL. Ourexperience in rigorously developing hundreds of propositional and �rst-order proofs hashelped us re�ne the axioms and convinced us they are su�cient for a very wide range ofpurposes. The proof system is divided into a propositional part and a �rst-order part.Our discussion looks at each in turn.3.1. Propositional axioms and inference rulesThe propositional axioms and inference rules mainly deal with chop, and skip andoperators derived from them. Only one axiom is needed for chop-star. The proof systemgives nearly equal treatment to initial and terminal subintervals. This is exceedinglyimportant for the kinds of proofs we do. In addition, this makes the proof system easierto understand since much of it consists simply of duals in this sense. In contrast, mosttemporal logics cannot handle initial subintervals and even other proof systems for ITLlargely neglect them.Rosner and Pnueli [11] and Paech [12] give propositional proof systems for ITL within�nite intervals and prove completeness. Our proof system contains some of the propo-sitional axioms suggested by Rosner and Pnueli but also includes our own axioms andinference rule for the operators 2i , keepnow , and chop-star. These assist in deducingpropositional and �rst-order theorems and in deriving rules for importing, exporting andother aspects of composition.Prop ` Substitutions of tautologies P8 ` 2i (S � S0) ^ 2(T � T 0)P2 ` (S;T);U � S; (T ;U) � (S;T) � (S0;T 0)P3 ` (S _ S0);T � (S;T) _ (S 0;T) P9 `
S � :
:SP4 ` S; (T _ T 0) � (S;T) _ (S;T 0) P10 ` keepnow S � : keepnow :SP5 ` empty;S � S P11 ` S ^ 2(S �
wS) � 2SP6 ` S; empty � S P12 ` S� � empty _ (S ^ more);S�P7 ` w � 2i wMP ` S � T; ` S) ` T 2i Gen ` S) ` 2i S2Gen ` S) ` 2S 11

We now give a sample theorem and its proof:` 2i (S � T) � 3i S � 3i TProof:1 ` true � true Prop2 ` 2(true � true) 1,2Gen3 ` 2i (S � T) ^ 2(true � true) � (S; true) � (T ; true) P84 ` 2i (S � T) � (S; true) � (T ; true) 2,3,Prop5 ` 2i (S � T) � 3i S � 3i T 4,def. of 3iTheorem 3.1 The propositional proof system is complete for quanti�er-free formulascontaining only boolean-valued static and state variables.Outline of proof: For a given formula, we construct a �nite tableau consisting of anumber of states. Each state is represented as a disjunction whose disjuncts are themselvesconjunctions of primitive propositions, next formulas and their negations. Now suppose Sis a valid formula. Construct a tableau for its negation :S. Call a state in a tableau �nalif it is satis�able by some empty interval. No state reachable from the initial state in ourtableau for :S is �nal, since otherwise we can use the path to construct a model for :S.Therefore the tableau re
ects that :S is not true in any �nite intervals. We convert thisto a proof-by-contradiction for S. This technique also applies to a version of Rosner andPnueli's proof system restricted to �nite intervals.3.2. First-order axioms and inference rulesBelow are axioms and inference rules for reasoning about �rst-order concepts. Theyare to be used together with the propositional ones already introduced. See Manna [13]and Kr�oger [14] for proof systems for chop-free �rst-order temporal logic. We let v and v0refer to both static and state variables.F1 ` All substitution instances of valid nonmodal formulas of conventional�rst-order logic with arithmeticF2 ` 8v:S � Sev ,where the expression e is compatible with v and v is free for e in S.F3 ` 8v: (S � T) � (S � 8v:T); where v doesn't occur freely in S.F4 ` ({v:S) = ({v0:Sv0v);where v and v0 are static variables of one sort and v is free for v0 in S.F5 ` 8v: (S � T) � ({v:S) = ({v:T), where v is static.F6 ` (9v:S) ^ ({v:S) = v � S, where v is a static variable.F7 ` w � 2w, where w only contains static variables.F8 ` 9v: (S;T) � (9v:S);T , where v doesn't occur freely in T .F9 ` 9v: (S;T) � S; (9v:T), where v doesn't occur freely in S.F10 ` (9v:S);
(9v:T) � 9v: (S;
T), where v is a state variable.12

8Gen ` S) ` 8v:S, for any variable v.Induct ` S0n; ` S � Sn+1n) ` S;for any static variable n whose sort is the natural numbers.The axiom F1 permits using properties of conventional �rst-order logic with arithmeticwithout proof. Most of the other axioms and the two inference rules at the end arestraightforward adaptations of conventional nonmodal equivalents for quanti�ers and de�-nite descriptions. Only four axioms actually contain temporal operators. Axiom F7 dealswith state formulas containing only static variables. The two axioms F8 and F9 showhow to move an existential quanti�er out of the scope of chop. The remaining temporalaxiom F10 shows how to combine two state variables in nearly adjacent subintervals intoone state variable for the entire interval. We extensively use it and lemmas derived fromit for constructing auxiliary variables.3.3. ITL with in�nite timeThe semantics and proof system so far presented is suitable for reasoning about �niteintervals. We brie
y discuss some modi�cations needed to permit in�nite intervals as well.First, we apply our semantics of S;T and S� to in�nite intervals. As before this meansS;T is true if the interval can be divided into one part for S and another adjacent partfor T and that S� is true if the interval can be divided into a �nite number of parts, eachsatisfying S. In addition, we now let S;T be true on an in�nite interval which satis�esS. For such an interval, we can ignore T . Furthermore, we let S� be true on an in�niteinterval dividable into an in�nite number of �nite intervals each satisfying S. We de�nenew constructs for testing whether an interval is in�nite or �nite, and alter the de�nitionof 3: inf def� true; false �nite def� :inf3S def� �nite ;SOnce this is done, all the axioms and basic inference rules remain sound. We also includethe following two axioms:P13 ` (S ^ inf);T � S ^ infP14 ` S ^ 2(S � (T ^ more);S) � T �It seems likely that completeness in the sense of theorem 3.1 can only be achieved witha nonconventional inference rule. This is not central to our approach. In the rest of thispaper we restrict ourselves to �nite time.4. APPLICATIONSLet us now consider some applications of the proof system. Due to space limitationsand for the sake of brevity, only summaries of the actual proofs are given here. The readermay wish to review the material in the introduction about very compositional properties.13

4.1. A simple parallel system with shared write accessBelow are descriptions of two simple processes Q and R which alternately modify asingle variable K:Q(K) def� R(K) def�for some times do (for some times do (K <� K + 1; halt odd(K);halt even(K) K <� K + 1))The iterating in Q and R is expressed by means of the chop-star operator in the notationof a for-loop. The predicates even and odd are simple arithmetic tests. Here is the overallsystem together with K initially equal to 0:K = 0 ^ Q(K) ^ R(K):When K is even, Q keeps it stable for a while and then eventually increments it, thusmaking it odd. At this time, R keeps K stable and then increments it, thus handingresponsibility for it back to Q. This continues for some �nite, unspeci�ed number oftimes. We use padded temporal assignments in order to ensure proper communicationbetween Q and R.Here is a theorem describing correctness of the overall system:` even(K) ^ Q(K) ^ R(K) � goodindex K ^ �n even(K):The theorem uses the goodindex operator de�ned earlier to state that K is always stableor increases by 1. In addition, K's �nal value is even.In the proof we make use of the following variants of goodindex :goodevenindex (K) def� keep (even(K) � K �
K � K + 1);goododdindex (K) def� keep (odd(K) � K �
K � K + 1):Both goodevenindex and goododdindex are �xed points of keep so we can readily provethe following lemmas for Q and R using sequential composition:` even(K) ^ Q(K) � goodevenindex (K) ^ �n even(K);` even(K) ^ R(K) � goododdindex (K) ^ �n even(K):The formulas goodevenindex (K) and goododdindex (K) can then be combined togetherinto goodindex (K):` goodevenindex (K) ^ goododdindex (K) � goodindex (K):The proofs of all these theorems makes extensive use of the fact that goodindex and itsvariants are very compositional. 14

4.2. Skeletons and compositionalityOne of the simplest types of sequential communicating processes are those expressiblein the form S�, where the arbitrary formula S describes some basic transaction. Such for-mulas are clearly �xpoints of chop-star. The Q and R formulas given earlier are examples.A number of communication techniques do not merely consist of a sequential series ofsimilar transactions, one following the other. Instead, between each pair of consecutivetransactions there can be an idle period described by some formula T . It is useful to restrictT to a �xpoint of chop-star since this ensures that any empty interval is a (trivial) idleperiod and that adjacent idle periods can be lumped together and thought of as one. Thesimplest kind of idling involves one or more state variables being kept stable but otherforms of idling are also possible.Once we introduce the notion of idling, the skeletal behavior to be extracted from anappropriate speci�cation can be roughly described as something of the general formT ;S;T ;S; : : : ;S;T:Here each S corresponds to an individual transaction and each T to an idle period. Thiscan be more precisely expressed in closed form as (T ;S)�;T: It can be proved that sucha formula is a �xpoint of chop-star and can therefore be compositionally extracted fromspeci�cations.For succinctness, let us further require that the transaction S absorbs T on the left:` T ;S � S:If this is not provable for a particular S, one can simply use a new transaction S 0 de�ned asT ;S which is easily seen to have the desired property. If S and T are as described, we callthe formula S�;T an S-star-T formula. Such a formula is then a very convenient �xpointof chop-star. The formulas S, T and (S�;T)� each imply S�;T . It can be modularlyexported from applications and then analyzed. The results can later be imported intoproofs speci�c to the applications.4.3. Producer-consumer system with single bu�erConsider the following skeletal producer-consumer system which illustrates a generalmessage-passing convention using a single bu�er:BufProdSkel(CI ;PI ;Buf) def� BufConSkel (CI ;PI) def�for some times do (for some times do (PI <� PI + 1; stable CI ^ �n (CI 6= PI);stable (PI ;Buf) ^ �n (PI 6= CI + 1) CI <� CI + 1););stable PI stable CIRecall that we use a for-loop notation as a programming-language syntax for chop-star.The body of each skeleton's loop contains one transaction and the last subformula afterthe loop describes the idle behavior. The producer is responsible for an index PI and abu�er Buf and the consumer maintains a similar index CI .15

It should be easy to see that both skeletons meet the requirements of S-star-T formulasand can therefore be compositionally extracted from systems using this message-passingconvention. The idle periods represented by stable are readily absorbed on the left of therespective transactions which themselves start with stable periods. Two stable periodscan be merged into one.The combined system skeleton BufSysSkel is simply the conjunction of the producer andconsumer skeletons:BufSysSkel (CI ;PI ;Buf) def� BufProdSkel(CI ;PI ;Buf) ^ BufConSkel (CI ;PI):Note that BufSysSkel is not a �xpoint of chop-star and therefore lacks sequential com-positionality. This is not a problem for us since we only use BufSysSkel after we haveextracted the individual producer and consumer skeletons.So far we have discussed how to obtain the skeletons from speci�cations of applications.Another important issue is how to describe the correctness of the skeleton system. Inorder to do this, we �rst formalize a notion of processing a sequence of data values. Thefollowing de�nition for goodbu�er serves this purpose:goodbu�er (tr ;K;A) def� keep (K K + 1 � �n (K � jtr j ^ A = tr [K � 1])):Here tr is a static, possibly empty list which traces the data values being transmitted.The index variable K is a state variable ranging over the natural numbers which increasesby 1 whenever a new data value is seen. The de�nition ensures that when this happens,K does not exceed the length of the trace tr . The variable A serves as a bu�er containingthat current data value. Whenever a new data value is handled, A should contain the valuein the trace tr indexed by K � 1 . Note that the trace can include elements not indexedby K in the current interval. Being a �xpoint of keep , goodbu�er is easy to import andexport within speci�cations.The following theorem characterizes the basic correctness of the skeleton BufSysSkel :` CI = PI ^ goodbu�er (tr ;PI ;Buf) ^ BufSysSkel (PI ;CI ;Buf)� goodbu�er (tr ;CI ;Buf) ^ �n (CI = PI):We also need the following lemmas in order to verify that the producer and consumer arepatient:` CI = PI ^ BufSysSkel (PI ;CI ;Buf) � keep (CI = PI � stable CI);` CI = PI ^ BufSysSkel (PI ;CI ;Buf) � keep (PI = CI + 1 � stable (PI ;Buf)):The �rst lemma ensures that the consumer patiently waits for the producer and does notincrease its index before the producer makes data available. The second lemma similarlyensures that the producer index and bu�er remain stable until after the consumer hasindicated acceptance. From these lemmas, we can prove that the producer and consumerindices never di�er by much:` CI = PI ^ BufSysSkel (PI ;CI ;Buf) � 2(CI � PI � CI + 1):16

The proofs of these properties make extensive use of compositionality and various otherproperties of goodindex , goodbu�er and other constructs introduced so far. For example,when an index is stable and no data is therefore communicated, goodbu�er is triviallytrue: ` stable K � goodbu�er (tr ;K;A):The following theorem ensures that we can always assume the existence of a trace associ-ated with a given well-behaved index and bu�er:` goodindex K � 9tr : (goodbu�er (tr ;K;A) ^ �n (K = jtr j)):4.4. An asynchronous systemOur previous example deals with data transfers using a single bu�er. This approachrequires the producer to wait for consumer acknowledgement every time data is madeavailable. Now consider a system with a pool of n bu�ers, for some n � 1. The producercan advance several data transfers ahead of the consumer. We now look at skeletonsfor such behavior. For simplicity, we only consider the interaction of the producer andconsumer indices and omit the bu�er pool.IndexProdSkel (n;PI ;CI) def� IndexConSkel (PI ;CI) def�for some times do (for some times do (PI <� PI + 1; stable CI ^ �n (CI 6= PI);stable PI ^ �n (PI 6= CI + n) CI <� CI + 1););stable PI stable CIThe static variable n equals the number of bu�er slots, PI is the producer bu�er index andCI is the consumer bu�er index. At any point in time, the values of PI mod n and CI modn refer to the respective current bu�er slots. The skeleton IndexProdSkel (n;PI ;CI)controls the behavior of PI and similarly IndexConSkel (PI ;CI) looks after CI . Bothskeletons are S-star-T formulas.Here is the combined system:IndexSysSkel (n;PI ;CI) def� IndexProdSkel (n;PI ;CI) ^ IndexConSkel (PI ;CI):The following two theorems show that the producer waits if it is n transfers ahead of ofthe consumer and that the consumer waits until the producer is ahead of it:` CI = PI ^ IndexSysSkel (n;PI ;CI)� keep (PI = CI + n � stable PI) ^ �n (PI < CI + n);` CI = PI ^ IndexSysSkel (n;PI ;CI)� keep (CI = PI � stable CI) ^ �n (CI � PI):The proofs use reduced forms of the skeletons not given here. From these theorems wecan also prove that PI always ranges between CI and CI + n:` CI = PI ^ IndexSysSkel (n;PI ;CI) � 2(CI � PI � CI + n):17

4.5. Speci�cation of timing constraintsThe ITL formalism provides facilities for specifying and proving theorems involving tim-ing dependencies. We now introduce constructs to measure interval length and then showan application using them. The following de�nition intlen (n) can be used to determinewhether an interval has length equal to the static variable n:intlen (n) def� 9I: (I = 0 ^ I gets I + 1 ^ �n (I = n)):This existentially introduces a state variable I which counts the number of units of timein the interval. The interval has length n exactly if I's �nal value equals n. Within ITLwe can prove that every interval has some length and that the length is unique:` 9n: intlen (n) ` intlen (m) ^ intlen (n) � m = nThe existence and uniqueness of interval length helps us de�ne a de�nite descriptionequaling the interval's length: len def= {n: intlen (n):The expression len has the following provable theorem for additivity of interval lengths:` len = m+ n � len = m; len = n:We now specify skeletons for a simple timing-dependent system with a producer and aconsumer: Here are skeletons:TimedProdSkel(n;PI ;Buf) def� TimedConSkel (n;PI ;CI) def�for some times do (for some times do (stable PI ; halt (CI 6= PI) ^ stable CI ;PI <� PI + 1; len � n ^ CI <� CI + 1len � n ^ stable (PI ;Buf));); stable CIstable PIAs before, the producer skeleton uses the index PI to indicate when a new data value isready in the bu�er Buf . Unlike our earlier examples, the producer does not examine theconsumer index CI to wait for receipt. Instead, the producer keeps the data stable fora minimum of n units of time before making new data available. The consumer skeletonwaits for the producer prepare a value and then accepts it in not more than n units oftime. Note that the producer skeleton is an S-star-T formula but the consumer skeletonis not since extra idling can adversely a�ect its timely response to incoming data.As in previous examples, we specify the combined system skeleton using conjunction:TimedSysSkel (n;PI ;CI ;Buf) def�TimedProdSkel(n;PI ;Buf) ^ TimedConSkel (n;PI ;CI):The basic correctness for data transfer is expressed by the following theorem:` CI = PI ^ goodbu�er (tr ;PI ;Buf) ^ TimedSysSkel (n;PI ;CI ;Buf)� goodbu�er (tr ;CI ;Buf) ^ �n (CI � PI):18

Here the �nal value of CI is not necessarily equal to PI . This is because the producerdoes not explicitly wait for the consumer and can produce more data than the consumeris interested in seeing.The proof of correctness uses a special timer counter Ti which is existentially introducedwithout loss of generality as an auxiliary variable to keep track of how much time haselapsed since the producer index PI last changed. We de�ne that relationship between Tiand an arbitrary state variable A (such as PI in our case) as follows:goodtimer (Ti ; A) def� Ti gets (if stable A then T i+ 1 else 0):Thus, Ti always increases by 1 except when A changes and resets Ti to 0. In our examplehere, the producer is veri�ed to keep PI and Buf stable as long as Ti is less than n:` Ti � n ^ goodtimer (Ti ;PI) ^ TimedSysSkel (n;PI ;CI ;Buf)� keep (Ti < n � stable (PI ;Buf)) ^ �n (Ti � n):For simplicity we assume that Ti is initially not less than n since this mean PI can changeat any time.As mentioned above, the auxiliary variable Ti can be introduced without loss of gener-ality. The following shows this:` 9Ti : (Ti = n ^ Ti gets (if stable PI then T i+ 1 else 0)):This is in fact a straightforward corollary of a powerful and more general theorem weprove about constructing auxiliary variables:` 9A: (A = e ^ A gets e0):Here the state variable A and expressions e and e0 have the same sort. There should beno free occurrences at all of A in e. We allow A to occur in e0 but not within the contextof temporal operators. These restrictions ensure that A is not circularly de�ned. Forexample, the following simple corollary constructs a counter that can be used for showingthe existence of interval length needed for the constructs intlen and len :` 9I: (I = 0 ^ I gets I + 1):5. CONCLUSIONInterval Temporal Logic is a simple and yet powerful formalism for dealing with dynamicbehavior. From only a few basic concepts and a reasonably small axiom system, a wealthof useful operators and very compositional properties concerning sequential and parallelactivity can be investigated. Facilities exist for dealing with behavior involving messagepassing, shared write access and timing constraints. Until now, little work has beendirected at doing formal proofs about applications directly in ITL. We have presentedsome results of our extensive experience based on hundreds of proofs and believe that thisapproach is very promising. It may also be of bene�t in proof systems for the DurationCalculus [15], a continuous-time variant of ITL.19

AcknowledgementsWe wish to thank Zhenhua Duan, John Fitzgerald, Roger Hale, Chris Holt, ShinjiKono, Maciej Koutny, Anders Ravn and Hussein Zedan for discussions. The Science andEngineering Research Council funded our research.REFERENCES1. C. A. R. Hoare. An axiomatic basis for computer programming, Comm. ACM, Vol.12, No. 10, 1969, 576{580, 583.2. B. Moszkowski. Reasoning about Digital Circuits, PhD thesis, Stanford Univ., 1983.3. J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on temporalintervals, in: ICALP83, LNCS 154, Springer-Verlag, Berlin, 1983, 278-291.4. B. Moszkowski. A temporal logic for multilevel reasoning about hardware, IEEE Com-puter, Vol. 18, No. 2, 1985, 10{19.5. B. Moszkowski. Executing Temporal Logic Programs, Cambridge Univ. Press, Cam-bridge, UK, 1986.6. C. Stirling. A generalization of Owicki-Gries's Hoare logic for a concurrent while lan-guage, Theoret. Comp. Sci., Vol. 58, 1988, 347{359.7. C. B. Jones. Speci�cation and design of (parallel) programs, in: Proc. InformationProcessing '83, R. E. A. Mason (ed.), Elsevier, Amsterdam, 1983, 321{332.8. N. Francez and A. Pnueli. A proof method for cyclic programs, Acta Informatica, Vol.9, 1978, 133{157.9. P. Cousot. Methods and Logics for Proving Programs, in: Handbook of Theoret.Comp. Sci. (Vol. B), J. van Leeuwen (ed.), Elsevier, Amsterdam, 1990, 841{993.10. S. Kono. Automatic veri�cation of Interval Temporal Logic, Tech. rep. SCSL-TM-92-007, Sony Computer Sci. Lab., Inc., Tokyo, Japan, 1993.11. R. Rosner and A. Pnueli. A choppy logic, in Proc. 1st Ann. IEEE Symp. on Logic InComp. Sci., IEEE, 1986, 306{314.12. B. Paech. Gentzen-systems for propositional temporal logics, in: Proc. 2nd Workshopon Comp. Sci. Logic, LNCS 385, Springer-Verlag, Berlin, 1988, 240{253.13. Z. Manna. Veri�cation of sequential programs: Temporal axiomatization, in: M. Broyand G. Schmidt (eds.), Theoretical Foundations of Programming Methodology, D. Rei-del Pub. Co., 1982, 53{102.14. F. Kr�oger. Temporal Logic of Programs, Springer-Verlag, Berlin, 1987.15. Zhou Chaochen, C. A. R. Hoare and A. P. Ravn. A calculus of durations, Inf. Proc.Let., Vol. 40, No. 5, 1991, 269{276.
20

