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ABSTRACTWe present a completeness proof Rmopositional Interval Temporal Logic (PITL)
with finite time which avoids certain difficulties of convenal methods. It is more gradated
than previous efforts since we progressively reduce raagonithin the original logic to sim-
pler reasoning in sublogics. Furthermore, our approach dfée from being less constructive
since it is able to invoke certain theorems about regulaglaeges over finite words without the
need to explicitly describe the associated intricate psoof

A modified version of regular expressions calfaasion Expressions used as part of an in-
termediate logic called~usion Logic Both have the same expressivenes®BEL but are
lower-level notations which play an important role in theeffsirchical structure of the over-
all completeness proof. In particular, showing completsnior PITL is reduced to showing
completeness for Fusion Logic. This in turn is shown to heldtive to completeness for con-
ventional linear-time temporal logic with finite time.

Logics based on regular languages over finite words @naords offer a promising but elusive
framework for formal specification and verification. A numbgsuch logics and decision pro-
cedures have been proposed. In addition, various reseesdieve obtained complete axiom
systems by embedding and expressing the decision prosediueetly within the logics. The
work described here contributes to this topic by showing tmexploit some interesting links
between regular languages and interval-based temporat$og
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1. Introduction

Interval Temporal Logi¢ITL) [MOS 83b, HAL 83, MOS 85] is a temporal logic
with a basic construct for the sequential composition offovonulas as well as an ana-
logue of Kleene star. Within ITL, one can express both fisit#e automata and reg-
ular expressions. Its notation makes it suitable for ldzased modular reasoning in-
volving periods of time, refinement [CAU 97], sequential gasition using assump-
tions and commitments based on fixpoints of temporal opesfidOS 94, MOS 98]
and for executable specifications [MOS 86]. Various impeegbrogramming con-
structs are expressible in ITL and projection between timanglarities is available
(but not considered here). Zhou, Hoare and Ravn [Zho 91ptesn ITL extension
called Duration Calculusfor hybrid systems (see also Zhou and Hansen [Zho 04]).
Several researchers have looked at ITL decision procedmeaxiom systems.

We present a natural and complete axiomatisation for (dfiexrfree) Proposi-
tional ITL (PITL) for finite time. The completeness proof is hierarchical ahdws
that if aPITL formula A is logically consistent (i.e., not provably false), theerin
exists a certain consistent formula in conventional Propositional Temporal Logic
(PTL). Now the completeness &TL ensures that thiX has a satisfying model.
This model in turn also satisfies the origifalTL formula A. Our proof exploits a
variant of regular expressions called harsion expressions’he completeness proof
also uses an associated subsd?BFL called herd-usion Logic(FL) which acts as a
bridge betwee®ITL andPTL.

In previous work on complete axiom systems F&i. with finite time [MOS 00a]
and infinite time [MOS 00b], we made use of embeddings of fisitde automata
within ITL formulas. Consequently, we had to use quantiit¢dL and include ax-
loms for it in order to reason about hidden automata stathis dpproach was moti-
vated by an earlier automata-based completeness proostéiKand Pnueli [KES 95,
KES 02] for QuantifiedPTL (QPTL) with past time. However, in the course of
preparing the full versions of our papers, we observed #@tlar expressions (and
subsequently fusion expressions) offer some importararadges iPITL complete-
ness proofs over automata. Among other things, they arerdoshel TL notion and,
at least with finite time, totally avoid the need for quantfariables which can hide
automata states. More importantly, they reduce the needpresenting within for-
mulas a number of constructions involving automata. Howenehe case of infinite
time, automata seem unavoidable. We note that French anibRksy{FRE 03] have
recently proved the completeness of an axiom syster@ir'L without past time.

Arecent and related paper of ours [MOS 04a] uses intervalsansistency-based
reasoning in a new hierarchical and compositional proofarhgleteness foPTL.
Taken together, the papers provide evidence of the stromdpigyic links between
PTL andPITL. Some of the techniques described in these papers have heen h
been further developed in another work by us [MOS 04b] whistega proof of
the small model property faPropositional Dynamic Logi¢PDL) [FIS 77, FIS 79,
HAR 84, KOZ 90, HAR 00, HAR 02] without using the conventioia$cher-Ladner
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closures introduced in [FIS 77, FIS 79]. This supports odiebé¢hat research on
intervals and TL, while challenging, is worthwhile. It seems to even offeexpected
interesting spin-offs which increase our understandinipetheory of other logics.

1.1. Structure of Presentation

The organisation of this work is now summarised. Sectiorvizves related work.
Section 3 gives an overview of the syntax and semanti¢d'dl.. Section 4 presents
the PITL axiom system. Section 5 deals with some useful notions ofpbet@ness
and relative completeness which are utilised in our hi¢riaed method. Section 6
describes regular languages and fusion languages. Bottequéed for analysing
Fusion Logic FL) introduced later in this work. Section 7 defines fusion esgions
(also calledFE formulas) and looks at their expressiveness. Section &itbesd'L
which acts as an intermediate logic betwédid'L. andPTL. Section 9 introduces an
axiom system fol'LL which is proved to be complete in a later section. Section 10
presents th&TL axiom system which later serves as a basis for successivalyiisg
completeness for thEL andPITL axiom systems. Section 11 considgis formula
behaviour in certain useful classes of intervals. This isessary for subsequently
reducingFL formulas containing the iterative construct chop-starchs akin to
Kleene-star. Section 12 describes a way to indirectly adtarse chop-star idr'L.
This later plays a key role in obtaining relative completmef usefulFL. subsets.
Section 13 presents a proof of completeness foftheaxiom system by transform-
ing formulas into suitabld®TL ones and then making use of the completeness of
the PTL axiom system. Section 14 deals with embeddingkheand PTL axiom
systems in th@ITL axiom system. Section 15 establishes the completenesg of th
PITL axiom system. We exploit the expressiveness of fusion espyas to reduce
PITL completeness tBL. completeness. Section 16 concludes with some discussion.
Appendix A presents some results concerning the complexiBITL. Appendix B
shows how to dedudeTL axioms and inference rules in tli&. axiom system.

1.2. Diagrammatic Representation of Parts of Completeness Hroo

Let us now present a rough summary of the interrelationshgome key parts of
the completeness proof in diagrammatic form. A reader mighh to refer back to
this as he studies this work. The notati®r~ S’ found in the diagrams means that the
set of formulasS is a subset of the set of formul&s and furthermore completeness
for the elements of is shown by us to imply completeness for the elements’ off
an arrow has a number on its top, then the number refers teetbeant theorem or
lemma which explicitly establishes the indicated resulsat least a very significant
link in proving it.

We commence with the axiomatic completenesB'0L. (Theorem 51) but rely on
a proof of it published elsewhere. Therefore the first majgges actually proved here
deals with going fronPTL completeness t6L. completeness. A countably infinite
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sequence of subsets B, formulas denoted here #L.0:°, FL?;', ... are used. They
are later formally introduced in Definition 44.

— ... ﬁ) FL7&+1,0 — s ... ﬂ) FLV L FL .

Below is the structure of the proof frofil. to PITL using countably infinite
subsets ofPITL formulas denoted aBITLY, PITL', ... and formally introduced
later in Definition 80:

FL 84a 0 n 84b n+1 85

— PITL"--- — ---PITL" — PITL — --- — PITL .
Here Lemma 84 has a proof by induction. The suffix “a” referthimbase case and
the suffix “b” refers to the inductive proof step.

2. Related Work

Let us now discuss other work on axiom systemslibr. and then some closely
related calculi. A proof of completeness for such notatisngften based on some
kind of decision procedure so we make some mention of thisedls \alpern and
Moszkowski [MOS 83a, pages 23-24] prove the decidability Iof L. with quantifiers
over finite time by translation tQPTL over finite time which is decidable by an
easy modification of an analogous result for conventidpRII'L. over infinite time
by Wolper [WOL 82, SIS 87] (see also [LIC 85] for a direct pripofhe satisfiability
problem forPITL has nonelementary complexity and hence is much harder tiaén t
for popular logics such aBTL. We include statements and proofs of relevant results
for PITL in Appendix A. These difficulties with complexity have als@mnifested
themselves in work on complete axiom system3fbFL. The topic seems to present
more hurdles than in the case for other some related logibs.r&ader should bear
this in mind when attempting to assess progress in this area.

Rosner and Pnueli [ROS 86] investigate an axiom system fantifier-freePITL
with finite andw-intervals and theintil operator. However it does not contain the op-
eratorchop-starwhich is like Kleene-star for regular expressions. A tablesethod
serves as the decision procedure underlying the compktgrreof and employs an
adaptation of Fischer-Ladner closures developed for Rigpoal Dynamic Logic
(PDL) [FIS 79, HAR 00]. One of the inference rules is quite largd agquires con-
structing anndex-tablecontainingindices(includingterminal indice$ and anacces-
sibility relation for automata transitions connected with tableau constmctFur-
thermore, the inference rule necessitates deducing tategaries oPITL theorems
concerning accessibility between indices in the indexetdlefore an inference can
actually be made.

Paech [PAE 88] investigates a quantifier-free versio®BFL with w-intervals
having chop-starlimited, like Kleene-star, to a finitely many iterations aimdlud-
ing an additional temporal operatonless Due to a theorem of Thomas [THO 79]
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(later more simply proved by Y. Choueka and D. Peleg [CHO,83II'L with such

a restrictedchop-staris still as expressive as-regular expressions (and hence the
logics S1S [BUC 62] an)PTL) as well as quantifier-free propositioITL with
unrestrictedchop-star(which permitsw consecutive finite iterations) although with
possibly less succinctness. An additional temporal operatless which is a vari-
ant of the conventional operatantil, is also included. Paech presents a complete
Gentzen-style proof system which includes some noncomwadtaxioms which ob-
ligate certairPITL formulas to already be in a form analogous to regular express
This can potentially involve complex meta-reasoning alaohitraryPITL formulas
over finite intervals to ensure suitability for these paitée axioms. The proof method
Is adapted from one used by Nishimura [NIS 79]IR@ L and subsequently refined by
Valiev [VAL 79]. Consequently, a generalised form of Fischadner closures is nec-
essary to cope with negation and other aspeciI@f. not found inPDL programs.
Surprisingly, the axioms, unlike those of Rosner and Pnaglpear to limit intervals
to be infinite. Therefore no modular reasoning about finitargervals is possible.

Dutertre [DUT 95] gives two complete proof systems for fiostlerITL without
chop-starfor finite time. The first uses a possible-worlds semanticsnoé and the
second considers arbitrary linear orderings of stateshBeis complete for standard
discrete-time intervals. Wang Hanpin and Xu Qiwen [Wan 9jeralise Dutertre’s
results to handle infinite time. Kono [KON 95] presents ag¢allbased decision pro-
cedure forPITL with quantifiers and temporal projection over finite time @hhas
been successfully implemented in Prolodlo formal proof is given that the method
does not overlook models. Instead, a sketchy argument &aouination is presented.
Kono suggests that the transformations provide a partsikdar a complete axiom
system. Many details are omitted and one of the two proposeda for projection
is unsound. Moszkowski [MOS 94] presents propositional and first-om@dom sys-
tems forITL over finite intervals. This is shown to support proofs inwtysequen-
tial and parallel aspects of compositionality based onr¢heguarantegaradigm of
Jones [JON 83]. The propositional part is claimed to be cetegdut only a brief out-
line of a proofis given. This work is extended in [MOS 95] talmde a axiomatisation
for temporal projection which is complete relativeR8TL without projection.

Bowman and Thompson [BOW 98] present a detailed study of edakbased
decision procedure for quantifier-fr&@dTL with finite time and temporal projection
but do not give an axiom system. They omit considerationsiatie termination
of their method. In [BOW 00, BOW 03] they look at terminationdaalso obtain a
completeness proof for an axiomatisation of this versioRIGFL.

Wolper [WOL 83] present&xtended Temporal Logi@ETL) which includes op-
erators containing explicit automata descriptions. Tha&kekTL’s expressive power
equivalent to that of S1S. A decision procedure and complaten system are given.
Compared wittPITL, ETL’s notational reliance on automata makes it less suited for

1. We have extensively used it and never found a bug.
2. However, Kono has told us that the associated problem imtp&emented decision proce-

dure was rectified early on.
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sequential composition. Baniegbal and Barringer [BAN 8&jv8 the unsoundness of
oneETL inference rule and offer a transition-based remedy. Heernkand Thiagara-
jan [HEN 97, HEN 99] investigate a formalism relatedB@'L and calledDynamic
Linear Time Temporal Logiwhich combine®?TL andPDL in a linear-time frame-
work with infinite time. It is similar to our Fusion Logic andsés multiple atomic
programs instead of tests containing propositional foesulThe axiom system has
special inference rules involving transitions and sets @fds.

So far we have reviewed various temporal logics. Let us nok & certain related
formalisms. Some mention has already be given of Siefkesigaring work [SIE 70]
on proving a axiom system for S1S to be complete. He achidwegtoof by em-
bedding a decision procedure developed by Biichi [BUC 62]1i8 8self through a
process he calleslyntactization This even included a challenging proof of a restricted
but nontrivial version of Ramsey’s theorem.

Salomaa [SAL 66] examines axiom systems for equationaribeof regular ex-
pressions over finite words. Wagner [WAG 76] extends Sal&gnaark to handle an
axiom system for equations betwegrregular expressions without an operator for
complementing. The system is proved in detail to be complateugh the use of
w-automata. Kozen [KOZ 94] presents an complete finitaryrasitisation oKleene
algebrasinvolving equations and inferences between equations. cbngpleteness
proof utilises an algebraic encoding of classical opesatarfinite-state automata such
as determinisation and state minimisation. Regular expyas over finite words pro-
vide the motivation for Kleene algebras and serve as thelatdrmodels for them.

Many problems in computing can be modelled by means of woves a finite
nonempty alphabet. Finite-state machines and regularesgjns are perhaps the
best known ways of describing such words. These normally leahdle finite words
but Biichi’s seminal work [BUC 62] showed how to extend bothaapts to handle
w-words by means dBuchi-automatandw-regular expressions. As seen above, var-
lous researchers have investigated logics which are éalléor reasoningu-words.
Lichtenstein, Pnueli and Zuck [LIC 85] as well as Emerson ERD] survey the re-
lationship between a number of such formalisms. Decisioeguiures, complete ax-
loms systems, various results about expressiveness aomciness as well as some
software tools exist. However, unlike regular expresseimdPITL, the logics so far
mentioned do not have basic facilities for reasoning abdaitrary subwords and lack
a simple way to sequentially compose two or more formulasiasach subwords to
obtain a formula for an overall word. Nor is some analogue lefelke-star generally
available. For example, conventional temporal logicsrofteovide a construct for
examining the next state and another construct for examialinstates before some
particular condition is true. However, one can not take twmteary temporal formu-
las and combine them one after the other as is routinely dathete concatenation
of regular expressions. Although the binary temporaldagperator known asn-
til offers some degree of sequential composition, the leftambmust be specially
expressed to achieve this. In addition, unlike concatenaintil lacks associativity.
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3. Overview of Propositional Interval Temporal Logic

We now briefly describe (quantifier-free) propositioBEL (PITL) for finite time.
More details abouliTL are in [MOS 83b, MOS 83a, HAL 83, MOS 85, MOS 86,
MOS 94, MOS 98, MOS 00a]. Time IBITL is discrete and linear. An intervalhas
aninterval length|e| > 0 and a finite, nonempty sequence|ef + 1 statesoy, ...,
0|,|- There is a denumerable sBtr of propositional variables such &5 @ andR.
Each stater; maps a variable if/ar such asP to a values;(P). In PITL the only
values arerue andfalse. The set of all finite-timeé?ITL intervals will be denoted
here adNT.

Here is the syntax dPITL’s formulas, whered andB are themselves formulas:

true v (for propositional variable) —-A Av B skip A;B A"

There are three primitive temporal operators:
skip A; B (chop) A* (chop-star),

where A and B are themselves formulas. The formulayp is true on a two-state
interval. A formulaA; B is true ono iff ¢ can be chopped into two subintervals
sharing a state;, for somek < |o| with A true onoy ... oy, andB true onoy, ... 0|4
Thus the formulaskip; P is true ono iff o has at least two states atlis true in
o1. A formula A* is true ongo iff ¢ can be chopped into zero or more parts with
A true on each. Any formulal* (including false™) is true on a one-state interval
(see Subsect. 3.1). Figure 1 pictorially illustrates theaetics ofskip, chop and
chop-star Some simplePITL formulas together with intervals which satisfy them
are shown in Fig. 2. In the figure, the logical valuege and false are respectively
abbreviated ast” and “f”. Furthermore, for some sample formulas we include in
parentheses versions using conventional temporal logcadprs which are formally
introduced later in Subsect. 3.3.

skip o o

KB A
A B

AR
A A A

Figure 1. Informal semantics

For natural numbers j with i < j < |o|, leto;.; denotes the subinterval having
interval lengthy — i (i.e.,j — 7 + 1 states) and with starting statg and final state ;.
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P Pt f f

P A skip Pt £

skip; P P:w

(OP) skip P

true;ﬂP Pt t t f t
- -~~~

(<> P) true -P

ﬂ(tme;_lp) Pt t t t t t

(B P)

Figure 2. Some samplRITL formulas and intervals

Below is the syntax and semantics of (RET'L constructs used here. We denote the
semantics of a formulad on intervale as M, [A].

3.1. Semantics of Formulas

— M [true] = true.
— M,[P] = 0o(P), for any propositional variabl® € Var.
The value ofP for an intervals is P’s value ing’s initial stateoyg.
— My [-A] = true iff  M,[A] = false.
— M [A v B] = true iff  M,[A] = true or M, [B] = true.
— M [skip] = true iff |o| = 1.
— M [A; B] = true iff M, [A] = true and M, [B] = true,
wheres’ = 0¢.; ando” = 0y, for somei < |o|. Intervalss’ ando” share state;.
—MG[A"] = true W Mo, [A] = true, foreachi: 0 <i <mn,
for somen > 0 and finite sequence of natural numbgys< I; < --- < [,, where
lo = 0andl, = |o|.

DEFINITION 1 (EMPTY INTERVALS). — We refer to intervals containing exactly
one state agmpty intervals

The behaviour of chop-star on empty intervals is a frequentce of confusion.
We therefore state the following important lemma which me to prove:
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LEMMA 2 (CHOP-STAR AND EMPTY INTERVALS). — For any PITL formula 4,
every empty interval satisfies".

PROOF. — In the definition of chop-star’s semantics we carmnlet 0 no matter what
Als. |

Consequently, evefulse™ is true in any empty interval, whereas it is false in all
other intervals. Th®DL program(false?)* exhibits similar behaviour,

DEFINITION 3 (SATISFIABILITY AND VALIDITY ). — If M, [A] = true for some
interval o, theno satisfies4, denotedr = A. In addition, A is said to besatisfiable

A formula A satisfied by all intervals igalid, denoted= A.

Notation such a&p;11, A can used to avoid ambiguity when properties of differ-
ent logics are being compared.

3.2. Conventions Regarding Variable Names
VariablesA, B, C' and variants such a4’ denotePITL formulas. The variable
denotes atate formulacontaining no temporal operators.

Later on, we use variables, Y, Z and variants such a§’ to denote formulas in
certain subsets d?ITL such as conventional Propositional Temporal Log@'[).

3.3. Some Definable Constructs

Boolean constructs such gdse and A A B are definable as are the conventional
temporal constructe A (“sometimes4”), O A (*always A”) andO A (“next A”):

CAY prue:A DAY 0-4 04Y skip: A

The sublogic built only from the temporal operatérandO is commonly known as
Propositional Temporal LogicHTL). Here are more operators expressible in this:

f f :
@4 ¥ _o0-4 (Weak next) fin A © O(empty D A)  (Final state)
more = O true (More states)  finite Lo empty (Finite time)
empty © more (One state) 4« O(more D A) (Mostly)

The conventional temporal operatontil is definable if quantification is added but
it is not needed here. A restricted version can be expresséd 4); B, where the
the only temporal constructs in the subformulaare non-neste®-operators. This
suffices for many purposes. Alternativebitil can be readily added as a primitive
operator. Below are operators for examiningial andarbitrary subintervals:

@AdgA;true IIlACIEefﬁ@—lA @Adzeftrue;A;true @Adg—l©—u4 .
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Appendix A presents some results BARI'L's complexity. Decidability is nonele-
mentary but is elementary in the alternation-ofnd chop (and chop-star).

4. PITL Axiom System

We now present an axiom system iIfTL. Our experience in rigorously develop-
ing hundreds of proofs has helped us refine the axioms andramw/us of their utility
for a wide range of purposes such as compositional reas¢si®g 94, MOS 98].

DEFINITION 4 (TAUTOLOGY). — A tautology is any formula which is a substitution
instance of some valid nonmodal propositional formula.

For example, anPITL formula of the formO A v & B D < B is a tautology
since it is a substitution instance of the valid nonmodaifoia P v ) D Q. Itis
not hard to show that all tautologies are themselves vaiitlitively, a formula is a
tautology if it does not require any modal reasoning to fusts truth.

4.1. Axioms and Inference Rules foPITL

OurPITL axiom system is given in Table 1 and first appeared in [MOS Rétall
that the symbob is the logical operatamplicationused in formulas. In contrast, the
metalogical symbok- denotes the ability to infer a new theorem from other presipu
deduced ones. The axiom system mainly deals witbpg and skip and operators
derived from them. Only one axiom is neededdbop-star(but see Remarks 6).

Table 1. Axiom system foPITL

Taut F All PITL tautologies P7 Fow [ w

P2 + (4;B):;C = 4;(B;C) P8 m( S A)ADB D B)
P3 F (AvA);B D> (4 B)v(A;B) D (A;B) D (A B)
P4 + A;(BvB) D (AB)v(4;B) P9 + OA D ®A

P5 F empty; A = A PI0 F AAOAD®A) D OA
P6 F A;empty = A P11 F A* =

MP + ADB, +vA = + B empty v (A A more); A*
OGen - A = F OA OGen - A = F DA

The axiom system contains some of the propositional axiaggested by Rosner
and Pnueli [ROS 86] but also includes our own axioms andemfes rule for the oper-
ators andchop-star These assist in deducing theorems and derived inferetes ru
for compositional reasoning (see our work in [MOS 94, MOS fa8]more details).
The Axiom Taut permits using properties of conventional nonmodal logithaut
proof (recall Definition 4 concerning tautologies). It issstble to omit it and achieve



A completeness proof for PITL 65

the same results by means of a few “lower-level” axioms afet@nce rules dealing
primarily with nonmodal reasoning.

The axiom system gives nearly equal treatment to initialtanaiinal subintervals.
For example, the Inference Rulé&sen andOGen respectively provide a means to
obtain new theorems by embedding previously deddd&d. theorems ind andO.
This is exceedingly important for the kinds of proofs we dacel we naturally move
formulas in and out of the left side of chop in many situationke later embedding
of the FL. axiom system in th&ITL axiom system and the reductionBITL com-
pleteness t&'L. completeness both involve a lot of this kind of reasoninge Pphoof
of the PITL Replacement Theorem (Theorem 77) is also a good examplenotiteo
analysis of the left side of chop is relevant. We additionbklieve that axioms and
inference rules concernirig make the axiom system easier to understand since much
of it consists simply of duals in this sense. In contrast, m@®poral logics cannot
readily handle initial subintervals since the conventlar@erators are point-based.
Even other axiom systems f&f'L largely neglect initial subintervals.

A formula A which is deducible (provable) from the axioms and inferantges
is called anPITL theorem denoted-p;11, A or simply A. When doing proofs,
we can observe thatRITL subset in which the only primitive temporal operator is
chop and one side is always some fixed formula obeys the riikae @onventional
normal modal syster (see Chellas [CHE 80] and Hughes and Cresswell [HUG 96]).
We now give two sample theorems and their proofs. The juatiba Prop in some
steps refers to conventional propositional reasoning kvhan involve implicit uses
of Axiom Taut and/or modus ponens.

T1 + ©AD>DB) DO ©A4AD OB

Proof:
1 F true D true Prop
2 +  O(true D true) 1,0Gen
3 F 0O D B)aADO(true D true) P8

D (A;true) D (Bj;true)
4 F OA D B) D (A;true) D (B;true) 2,3Prop
5 F @A D>B) DO A D OB 4,def. of &
T2 F  finite
Proof
1 F  true;empty = true P6
2 F  true; empty 1,Prop
3 F Sempty 2,def. of&
4 +  finite 3,def. offinite
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The following instance of AxionP7 illustrates why it is not subsumed by Infer-
ence RulgdGen:

Fo=@Q D O-Q .
Here( is a propositional variable. We cannot us&en since—() is not a theorem.

LEMMA 5 (SOUNDNESS OF THEPITL AxiOM SYSTEM). — The PITL axiom
system is sound, that is, any formula which is a theorem s\&d$d.

PROOF. — This involves induction on the length ofATL theorem’s finite proofin
the axiom system. The base case involves guaranteeingviagt @ncrete instance
of each axiom is valid. This can be checked fromi&'L semantics. The inductive
case requires ensuring that if the inference rules are mpipleorems which are in-
ductively assumed to be valid, then the resulting theoremalao valid. For example,
consider Inference Rul@Gen which fromk A yields @ A. If the PITL formula
Ais atheorem, then by induction it is valid and true for alltenintervals. Therefore,
it is true in all subintervals of any finite interval and herigel is true for all finite
intervals and consequently itself valid. |

REMARKS 6. — If desired PITL Axiom P11 concerning chop-star can be replaced
by the following two axioms which some readers may find motenaé

|_PITL A* = empty \Y, (A,A*) |_PITL A* = (A/\ more)* .

The second axiom can be optionally weakened to be4tisd (A A more)*. We omit
the relevant proofs. However, readers interested in tloslghconsult the material in
Subsect. 14.3 concerning some properties of chop-sfarii..

5. Notions of Completeness

Various notions connected with arbitrary logics and th&ipm systems are now
described. These notions facilitate showing deductiveftetaness in a modular way.
Consequently, this section does not specifically conBéfiriL.

DEFINITION 7 (COMPLETENESY. — A logic iscompleteif each valid formula is
deducible as a theorem in the logic’s axiom system. In otluedsy if = A, then A.

DEFINITION 8 (CONSISTENCY). — We define a formula to beconsistentf — A is
nota theorem, i.el/ —A.

We will make use of the following standard variant way of eegeing complete-
ness by means of consistency:

LEMMA 9 (ALTERNATIVE NOTION OF COMPLETENES$. — A logic’s axiom system
Is complete iff each consistent formula is satisfiable.

In the course of proving completeness we make use of defisinpbcompleteness
and relative completeness for sets of formulas:
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DEFINITION 10 (COMPLETENESS FOR A SET OF FORMULAS — An axiom system
is said to be complete for a set of formula4, ..., A, } if the consistency of any;
implies its satisfiability.

DEFINITION 11 (RELATIVE COMPLETENESS FOR A SET OF FORMULAS — The
axiom system is said to be complete for one set of formulgs. . ., A4,,} relative

to another set of formula$B,, ..., B, } if completeness for the second set implies
completeness for the first set.

If a set has only one formula we will refer to completenesslierformula itself.

LEMMA 12 (TRANSITIVITY OF RELATIVE COMPLETENESY. — LetS;, S; andSs
be three sets of formulas for which completeness hold§ foelative to formulaS,
and additionally forS; relative toS3;. Then completeness holds for relative t0Ss.

PROOF. — Suppose completeness holds fr Then by relative completeness for
Ss, it also holds forS;. Subsequently, it holds fa; as well. Hence completeness
holds forS; relative toSs. H

LEMMA 13. — Supposed and B are two formulas with the following properties:

(a) If A is consistent, then so B.
(b) If B is satisfiable, then so 4.
(c) Completeness holds fa@f.

Then completeness holds tdr

PROOF. — Suppose the assumptions are true. We need to show tha donsistent
then it is also satisfiable. Now il is consistent, then by assumption (&),is also
consistent. In addition, assumption (c) now ensureshitsatisfiable as well. This
together with assumption (b) guarantegs satisfiability. Hence completeness holds
for A. |

COROLLARY 14 (COMPLETENESS FOR A FORMULA RELATIVE TO ANOTHER. —
Supposed and B are two formulas with the following properties:

— If A is consistent, then so B.
— If B is satisfiable, then so 4.

Then completeness holds fdrelative to B.

PROOF. — The proof is immediate from Lemma 13 and our definition datiee
completeness. |
DEFINITION 15 (DEDUCTIVE EQUIVALENCE OF TWO FORMULAY. — Two for-

mulas A and B are said to bedeductively equivalenif the equivalenced = B is
itself a deducible theorem (i.¢-,A = B).

LEMMA 16 (RELATIVE COMPLETENESS AND DEDUCTIVE EQUIVALENCH. — If
two formulasA and B are deductively equivalent, then completeness holdsAfor
relative toB.
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PROOF. — We use Corollary 14 and need to show thatiifs consistent, then so is
B and also ifB is satisfiable, then so id. The contrapositive of each will be proved.

Case for consistencysupposeB is not consistent. ThenB is a theorem. From
the assumptior A = B and simple propositional reasoning we readily establiah th
—A is a theorem and hencgis not consistent.

Case for satisfiability Supposed is not satisfiable. ThemA is valid. From the
assumptio- A = B and the soundness of the axiom system we lrave= B and
hence= —B. ThereforeB is also not satisfiable. |

6. Regular Languagesand Fusion Languages

There is a natural connection between conventional redanguages an&#1TL
sincePITL formulas can express exactly those regular languages ntinog the
empty word. We use this in the proof of deductive completsiaesl require the notion
of regular languages. Hamaguchi et al. [HIR 92, HAM 92] pregubversions of tem-
poral logic with regular expressions. More recently, theglaage Sugar [BEE 01] has
been developed at IBM’s Haifa Research Laboratory for $pieg functional prop-
erties of logic designs. It supports temporal logic withuleg expressions and serves
as the basis of an IEEE international standard. We will desdusion languages
which are similar to regular languages but are better siided version of temporal
logic with close links taPITL. At least from a technical standpoint, fusion languages
generally subsume regular languages. The formalism Dynbaimear Time Temporal
Logic of Henriksen and Thiagarajan [HEN 97, HEN 99] combiRE4. andPDL in
a linear-time framework with infinite time. It is similar tauo formalism for fusion
languages and uses multiple atomic programs instead efdestaining propositional
formulas.

6.1. An Alphabet Based on Propositional Variables

A conventional regular language has a finite alphabet witpresumed internal
structure. In contrast to this, we impose some naturalicéisins due to our underly-
ing logical framework. Lel” be a finite set of zero or more propositional variables.
AssumingV’ contains exactly. elements, we obtain an alphaligt whose letters are
each of the2” possible subsets df. In other words XYy is the power se2”. For
example, the set of variabl¢#, ()} has the following four-element alphabet:

APy {Qy {PQ}.

We let )\, \', etc. denote letters iRy, .

A word is now defined to be a sequence of zero or more letteFs,in We only
consider words having a finite number of letters. Defiife to denote the set of alll
such words and;> to denote the set of all words having at least one letter. Naw |
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¢ denote the (unique) empty word having zero letters and &t kter\ in Xy also
denote the associated one-letter word. Given an alpiapea languageoverXy is

a set of words, that is, a subsetX§.. We readily obtain several trivial but important
languages, namely, the empty language of no words defipthd singleton language
{e} containing the empty word, and for each letiethe singleton languagg\ } .

6.2. Regular Languages

For any two languages and L’, one can define the standard operatbrs L’
(union), L - L’ (concatenation) anfi* (Kleene star). We will often writd. - L' more
concisely ad.L’. HereL U L' denotes the set union of all words InandL’. The
languagel. - L’ equals the set of all words obtained by pairwise concatemaii any
word in L with any word inL'. Finally, L* equals|J,~, L*, whereL® is defined to

the set containing just the empty word (i.8% = {¢}) and for anyn > 0, L"t! is
defined to be. - L™.

DEFINITION 17 (THE SET Reg,, OF REGULAR LANGUAGES WITH ALPHABET
Yy). — We now define the s®eg,, of regular languages over finite words with
alphabet:y as follows (see Hopcroft and Uliman [HOP 79]):

— The empty languadkand the singleton languade } are both inReg;, .

— For each) in Xy, the singleton languagg\} is in Regy, .

—If L andL’ are inRegy,, soareL U L', LL' andL*.

— These are the only languagesherg;, .

The following is a well known result of language theory:

LEMMA 18 (CLOSURE OFReg;: UNDER COMPLEMENTATION). — The comple-
ment of any languag® in Reg;, with respect ta:}, (i.e.,X},\L) is also inRegy,.

DEFINITION 19 (THE SETReg},). — We defindReg], to be the set of languages in
Regy, not containing the empty word.

LEMMA 20 (CLOSURE OFRngVr UNDER COMPLEMENTATION). — The comple-
ment of any languags in Reg7> with respect ta=;; (i.e., X, \ L) is also inReg7.

6.3. Fusion Languages

Before formally defining fusion languages, we defineftigonof two words:

DEFINITION 21 (FUSION PRODUCT OF TWO WORDE — Letz and z’' be two
nonempty words for which the last letter oequals the first letter of’. We let the
fusion producbf z andz’, denoted here aso 2’, be the word obtained by appending
the two words together so as to include only one copy of theedHatter.
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For example, ifz is the two-letter word\\’ andz’ is the two-letter word\’ \”,
then their fusiorr o 2z’ equals the three-letter wopd\’ \”. If z andz’ are compatible
for fusion, then the number of letters o z’ is the sum of the number of letters in
z andz’ minus 1. Pratt first defined fusion product for describinggbmantics of a
process logic [PRA 79]. In what follows, we simply refer tastbperation asusion

DEFINITION 22 (FUSION-COMPATIBLE WORDS). — If z andz’ are two nonempty
words and the last letter of equals the first letter of’, then we say that they are
fusion-compatible

DEFINITION 23 (FUSION OF TWO LANGUAGEY. — Let L and L’ be two lan-
guages. Their fusionl o I’ is defined to be the language containing exactly all
possible fusions involving fusion-compatible elements ahd L':

Lo ¥ {zoz' :z€ Landz' € L' andz andz’ are fusion-compatible .

We also need to define a version of Kleene star adapted taifusar any language
L, let LI denote the languag®y containing exactly all words with one letter. The
actual value ofL is irrelevant in determinin@.!’!. Further, for any. > 0, let L*+1]
denote the language fusidne L™,

DEFINITION 24 (FUSION STAR— A FUSION VERSION OF KLEENE STAR. — For
any languagd., the fusion version of Kleene star appliediids denoted ad.l*]. It
is called hereusion starand is defined to be the union of all the langua@é$, LI,

g def ULM'
i>0

DEFINITION 25 (THE SET Fusiony OF FUSION LANGUAGES WITH ALPHABET
Yy). — We now define the sétisiony of fusion languages over finite words with
alphabet¥ as follows:

— The empty languadkis in Fusiony .

— For each) in Xy, the singleton languagg\} is in Fusiony .

— The languag&y Xy, also denoted a&?,, of all two-letter words is iffusiony .

— If L and L’ are inFusiony, so areL U L', L o L' and L[*].

— These are the only languageshnsiony .

The next lemma compares regular and fusion languages in thetad:

LEMMA 26 (RELATIONSHIP BETWEEN REGULAR AND FUSION LANGUAGES$. —
For any languagd. C X%, the following are equivalent:

(@) L is in Reg?..
(b) L is in Fusiony .
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PROOF. — Finite-state automata assist in carrying out the prabiaigh we do not
need to explicitly describe them here in temporal logic folas.

(a)=(b): We can construct a finite-state automaton which recogrisasd then
obtain a fusion language which equals the set of (nonempaydisvaccepted by the
automaton.

(b)=-(a): We can construct a finite-state automaton which recogisasd then
obtain from it a regular IanguageREg;; which captures the (nonempty) words which
the automaton accepts. |

REMARKS 27. — A convenient variant of finite state automata speclfidal fusion
languages can be defined by slightly modifying the acceptanadition. We do not
deal with this here but details can be found in our earliepagta-based proof of
completeness for finite-timITL [MOS 00a].

LEMMA 28 (CLOSURE OF FUSION LANGUAGES UNDER COMPLEMENTATION —
The complement of any languagein Fusiony with respect toxy (i.e., S5 \L) is
also inFusiony .

PROOF. — Lemma 26 ensures thdt is also an element dReg},. Let L' be the

complement of. with respect ta=;;. By Lemma 20,L’ is also inReg7,. By another

application of Lemma 26 td.’, we reach our goal of showing that is in Fusiony .
|

6.4. PITL and Languages

We now look at the connection between words, languagesyvaiteandPITL
formulas.

DEFINITION 29 (THE SET OF FORMULASPITLy ). — For any set of variable¥’,
let PITLy denote the set &ITL formulas containing only variables ivi.

DEFINITION 30 (WORDS FROM INTERVALS AND LANGUAGES FROMPITL FOR-
MULAS). — For a given intervalc € INT, leto|,, denote the unique word iB7:
corresponding to the behaviour &fs variables in all ofs’s states.

Let the function? : PITLy — X7, map each formulad in PITLy to an asso-
ciated language which is a subset®f; as given below:

£HA) € (o], : o € INT ando = A}.

DEFINITION 31 (DEFINABILITY OF A LANGUAGE IN A SET OF FORMULAS). —
Supposes is a set of formulas. A language C X7, is said to bedefinablein S
exactly if there exists some formulain S for which L equalsCy (4).

LEMMA 32 (EXPRESSIVENESS COMPLETENESS dPITLy ). — For any language
L C X7, the following are equivalent:
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(@) L is in Fusiony .
(b) L is definable inPITLy, .

PROOF. — (a@)=-(b): Each case in Definition 25 of fusion languages can be induc-
tively expressed as a formulaRITLy .

(b)=(a): Let A be a formula inPITLy which expresse&. We do induction on
A’s syntax. The only nontrivial case is whetis main operator is negation st has
the form—B for somePITLy formula B. Lemma 28 ensures that B defines a
language ifusiony, then the complement of this language with respegttds also
in Fusiony . This ensures that}; (A) is in Fusiony . |

7. Fusion Expressions

Regular expressions are a standard notation for repragaegjular languages. In
our completeness proof, it is more appropriate to use fualoguages and a variation
of regular expressions called hdtesion expressionsWe now define &21TL-based
representation of them which is in fact a special subs®tadil. formulas and plays a
major role in our completeness proof.

DEFINITION 33 (FUSION EXPRESSION FORMULA¥. — The set offusion expres-
sion formulas denotedF'E, consists oPITL formulas with the syntax given below,
whereE and F' themselves denote suEl formulas:

w? EvF skip E; F E* .

The new construet? is defined below i?ITL:

[o
-

(S
w? = w A empty .

The syntax oFE formulas is like that of programs in Propositional Dynamiadic

(PDL) [FIS 79,KOZ 90,HAR 00] with a single atomic prograsyp and without rich

tests. HoweveFE has a semantics based on sequences of states rather thary bina

relations.

For any set of variable¥’, let FEy denote the set &fE formulas containing only
variables inV.

Unlike letters in conventional regular expressions, anymodal formula can be
used inw?. For examplefalse? is permitted even though itis unsatisfiable. In contrast
to w?, the otheE constructs are already foundRITL. Consider for example the
following FE formula:

(sk‘ip; (P A Q)‘?) v ((—Q)?; skip)*.

This is true on an interval if either the interval has exatily states and and() are
both true in the second state or it has some arbitrary nunflstates, say:, with @
false in each of the firgt — 1 states.
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The elements oFEy in a certain sense express exactly all languag@&asiony, .
The following lemma formalises this:

LEMMA 34 (CORRESPONDENCE BETWEEN LANGUAGES INFusiony AND FEy
FORMULAS). — For any languagd., the following are equivalent:

(a) L is in Fusiony.
(b) L is definable inFEy, .

PROOF. — We first prove the implication (a3 (b). Now each of the primitive fusion
languages has a direct analogud'ify . Induction on the (finite) depth of operations
in L’'s construction yields a corresponding elem&nn FE, .

Now consider the implication (B}(a). The goal here is to show that for eaEh
in FEy/, the associated languagsg, (E) is indeed inFusiony . The proof is by easy
induction onE’s syntax. |

REMARKS 35. — It is worth pointing out that, as iIBRDL, programming language
constructs such as conditional statements and while-loap®e expressed as fusion
expressions. For examplehile w do E can be expressed &s7; E)*; —w?.

8. Fusion Logic

We now introduce a sublogic #fITL called herd~usion Logic(FL) which plays
a central role in this paper. In essenk&, augments convention®TL with fusion
expressions. The establishment of deductive completeigss PITL axiom system
later on in Section 15 in Theorem 86 is first reduced in Lemmado8the task of
showing deductive completenessidfT'L relative to another axiom system limited to
the sublogid'L. Prior to this, Theorem 71 deals with completenesdfior

DEFINITION 36 (FUSION LOGIC). — Here is the syntax oFL. where P is any
propositional variable inVar, E is anyFE formula andX andY are themselves
formulas inFL:

P -X XvY O0X ©X (B)X.

We define the new constru@t’) X (called “FL-chog’) and its dual [E]X (called
“FL-yields’) by means of the primitiv&ITL constructs chop ané:

(VX € EX  [EX E ~(E)-X.

Within anFL formula,O, ¢ andFL-chop will themselves be treated as primitive
constructs. OthePTL operators such asmpty and fin are expressible if'L in
terms ofC and< (see Subsect. 3.3).

In contrast toPITL, FL limits the left sides of chop to being fusion expressions.
Its syntax is like that of formulas i*PDL. HoweverFL has a semantics based on
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sequences of states rather than binary relations. We had®mne an analysis &L’s
computational complexity.

DEFINITION 37 (LEFT-FORMULAS). — For any elemenfX of FL, we say that an
FE formulaFE is aleft-formulaof X if E occurs as the lefthand operand of oneXo6
FL-chop constructs. In other wordg; is a left-formula inX iff for someFL formula
Y, X isitself theFL formula(E)Y or contains this as a subformula.

For example, leX be the formula shown below:
(P7;Q7)(Q7" v P?)P) A (empty v [(Q7; skip)*|more) .
The three left-formulas ok are(P7; Q7), (Q?* v P?) and(Q7; skip)*.

DEFINITION 38 (THE SET OF FORMULASFLy ). — For any setl” of propositional
variables, letFLy, denote the subset &L in which all left-formulas are inFEy, .
Variables which are not i can occur withinFLy, formulas but not in left-formulas.

REMARKS 39. — The conventional temporal operatorand< which are primitives
in FL can actually be expressed as instancdslethop:

F OX = (skip) X E OX = (skip™)X.

These equivalences are found in ik axiom system presented later in Table 2 as
Axioms FL 2 andFL 3, respectively.

In spite of FL. being a proper subset &fITL, the subset oFLy in which all
variables are iV’ (i.e.,FLy N PITLy ) defines exactly the languageshnsiony :

LEMMA 40. — For any languagd., the following are equivalent:

(a) L is in Fusiony .
(b) L is definable infLy by som&'Ly formula havingall variables inV'.

PROOF. — The implication (b}x-(a) is the simpler of the two so we consider it first.
The previous Lemma 32 ensures any language definaldd .y is in Fusiony .
Therefore, since the formula is RITLy , the associated language iskinisiony, .

Let us now establish the implication ¢&)b). If L is a language iffusiony then
Lemma 34 ensures that there exists sdniig, formula E which expresseg, i.e.,
L{:(E) = L. Therefore, the semantically equivaldit, formula (E)empty also
expressed. This uses the previously noted fact tltakE L. operatorempty is express-
ible in FLy, . [

The Star Height and Exterior Height of Formulas if'E and FLL
Two measures of formula complexity callstar heightandexterior heightare in-
troduced to assist in an inductive proof of relative comgnesss for alF Ly formulas.

DEFINITION 41 (STAR HEIGHT). — Thestar heightof an FE formula £ is the
maximum number of nested chop-starginThe star height of ab’L formula X is
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the maximum of the star heights_&fs left-formulas. We denote these 85 F) and
sh'(X), respectively.

DEFINITION 42 (EXTERIOR HEIGHT). — Theexterior heighof anFE formula E

Is defined relative to some number> 0 and measures the nesting of constructs in
E with star height at least. This is denoted ash,,(E) and precisely defined as
follows:

—If sh(E) < n, theneh,(E) = 0.
— Otherwise:

- ehp(w?) = eh,(skip) =1 (only used fom = 0)
- ehn(F v G) = eh,(F;G) = max(eh,(F), eh,(G)) + 1
- ehn, (F*) = ehy(F) + 1.

The exterior height of ai'L. formula relative to some star heightis themaximum
of the exterior heights of its left-formulas relativestoThis is denoted byh,, (X).

We currently prefer to keegh and eh separate fronsh’ andeh’ since some for-
mulas such askip andskip v skip are both inFE andFL and might be a source of
confusion here.

The following subsets dfEy formulas and"Ly, formulas based on star height to-
gether with the previously analysed characterisation opestar assist in inductively
proving deductive completeness 6Ly :

DEFINITION 43 (THE SETSFEY’ FEY;', ..., FE.™,...). — For anym,n > 0,

let FE{,"™" denote the set of alFEy formulas having maximum star heightand
maximum exterior height: relative ton. In other words, arFEy formula E is in
FE/" iff sh(E) < nandeh,(E) < m.

DEFINITION 44 (THE SETSFLY,’, FLY' ..., FL™,...). — Foranym,n > 0,
let FL{>"™ denote the set of alFLy formulas having maximum star heightand
maximum exterior height, relative ton. In other words, arFLy formula X is in
FLy™ iff sh'(X) < nandeh,, (X) < m.

9. Axiom System for FL

We now look at theFL axiom system given in Table 2 and later prove that it is
complete in Theorem 71. ThEL axiom system is designed to provide a way to
compose and decompose the left and right siddd e€hop constructs and to express
some useful relations concernii. formulas similar to those found in theITL
axiom system in Table 1. Natural restrictions imposed byeof fusion expressions
in the FL. syntax contribute to some of the variation from REI'L. axioms. The
FL axiom system, like the one f&tITL, permits an embedding of tH&TL axiom
system.
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Table 2. Axiom system faFL

Taut + All FL tautologies FL7 H(E)}XVvY) D (E)X v(E)Y
FL2 FOX = (skip)X FL8 F(E*)X = X v (E;E"X
FL3 FOX = (skip™)X FL9 FOX DY) D (E)X D(E)Y
FL4A F (W)X = wa X FL10 FOX D ®X

FLS HF(EVF)X = (E)Xv(F)X FL11 F X A0(X D ®X) D O0X
FL6 F(E;F)X = (E)YF)X FL12 + O empty

MP FXDY FX = FY U0OGenkFX = FOX

FINf3 F (E)empty D (Flempty = +F(E)X D (F)X
FInf4 F (more A (E)empty) D (Flempty = F(E*)X D (F*)X

DEFINITION 45 (F. THEOREMHOOD AND CONSISTENCY. — An formula X is
called anFL theorem denoted-g1, X, if X is in FL and there exists a sequence of
FL-deductions which lead t& and only involve formulas if'L.

A formulaX is calledFL-consistenif it is in FL and its negation is not af'L
theorem.

LEMMA 46 (SOUNDNESS OF THEFL AXIOM SYSTEM). — TheFL axiom system
Is sound, that is, any formula which is a theorem is also valid

PROOF. — As in Lemma 5 concerning the soundness of Bi@' L. axiom system,
the proof here involves induction on the length offéln theorem’s finite proof in the
axiom system. The next Lemma 47 proves soundness of InfeiRaleFInf4. We
omit the remaining details. |

LEMMA 47 (SOUNDNESS OF INFERENCE RULEFINf4). — Suppose for twd'E
formulasE and F' the following implication holds:

E  more n (E)empty DO (F)empty . (1)
Then for anyFL formula X, the following implication is also valid:

F (EX D (FHX . (2)

PROOF. — We first ensure that any interval satisfyihg also satisfieg’* and prove
this by induction on interval length. In the case of an emptenval, F* is trivially
true for anyF'. A nonempty interval satisfying’* can be split into two subintervals
in which the first is also nonempty and satisfiesind the second satisfiés*. By as-
sumption (1), the first subinterval also satisflesinduction in interval length ensures
that the second subinterval satisfies. Therefore, the overall interval satisfies the
formulaF'; F* and hence alsé™. This readily leads to our goal, namely, the validity
of the implication (2). |

Observe that for each value f, the axiom system provides a means of deducing
theorems only involving formulas iRLy . Thus for each possiblg, the associated
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setFLy can be viewed as a logic in its own right. Here is a formal dadiniof
deducibility and consistency along these lines:

DEFINITION 48 (FLyy THEOREMHOOD AND CONSISTENCY. — An formulaX is
called anFLy theoremdenoted-ry,,, X, if X isin FLy and there exists a sequence
of FL-deductions which lead t& and only involve formulas if'Ly .

A formula X is called FLy -consistentif it is in FLy and its negation is not an
FLy theorem.

LEMMA 49 (SUBSTITUTION INSTANCES OFFLy THEOREMYS. — Let X be an
FLy theorem}i, ...,Y, beFLy formulas andR,, ..., R,, be variables not iri/.
Then the substitution instancéy! "~ is itself anFLy theorem.

PROOF. — Each axiom and application of an inference ruleXits proof can have
the original formulas involved replaced by ones in which WaeiablesRk,, ..., R,

are simultaneously replaced by, ...,Y,. Due to the assumption tha, ..., R,

are not variables i, the resulting formulas are well-forméd.,, ones. Therefore,
since none of the variabldg, . . ., R,, occur in any fusion expressions in the proof of
X, the proof of the theoremhood d;f}gll:‘.j”yg*‘n remains deducible and indeed has the

same length as the original one f&r. |

10. PTL Axiom System

We now present a complete axiom system arL. which can be embedded in
the FL axiom system. This will then enable us to show thaPallL formulas which
are valid for finite time can be deduced Bk theorems. Th&TL axiom system
considered here and shown in Table 3 is derived from anothelas PTL axiom
systemDX proposed by Pnueli [PNU 77]. Gabbay et al. [GAB 80] showed ba
Is complete. Pnueli’s original system uses strong versodr® and 0 which do not
examine the current state. In addition, Pnueli’s systemy dehls with infinite time.
However, Gabbay et al. [GAB 80] also include a variant systatled D°X based
on the conventiona® andO operators which examine the current state. The slightly
modified version presented here does this as well and alsuitgeooth finite and
infinite time. Finite time is essential in our completenessofs for FL. and PITL.
Optionally, an axiom such a8 empty can added to restrict time to being finite.

Table 3. Modified version of Pnueli’'s compleRI'L axiom systenbX

Axioms: Inference rules:
Al FOX DY) > OXxo0OYvy R1 If X is atautology, their X
A2 FOX D @®X R2 If-X DY and+ X, then~Y

A3 FO(X DY) D OXDOY R3 If - X, then-OX
A4 FOX D X A@OX
A5 FOXDO®X) D XOOX
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We denote the validity and theoremhood oPA&L formula X within the PTL
framework by=pr1, X andFppr, X, respectively.

LEMMA 50 (SOUNDNESS OF THEPTL AXIOM SYSTEM). — If a PTL formula X
is derivable as a theorem of ti&I'L. axiom system, it is also valid. In other words, if
l_pTL X, them:pTL X.

THEOREMb51 (COMPLETENESS OF THEPTL AXIOM SYSTEM). — Any validPTL
formula is deducible as a theorem in tRE'L axiom system in Table 3.
PROOF. — This is established by us in [MOS 04a]. |

10.1. Deducibility of PTL Theorems within theF'L, Axiom System

It is necessary to show that ti'L. axiom system found in Table 3 can be embed-
ded in theFL axiom system given in Table 2. This in useful in its own rigintce for
anyV, all PTL theorems ar&'Ly theorems as well. In addition, we later prove com-
pleteness foF Ly relative toPTL. This combined with the completeness of thEL
axiom system then yields completeness for formuldslifr and indeed all oF L. As
part of the proof, we need to establish that RAL formula X is FL-consistent, then
some interval satisfies the formul A finite. This interval can then serve as Bh
model for X'.

LEMMA 52 (EVERY PTL THEOREM IS AN FL THEOREM). — For anyPTL for-
mula X, if X is aPTL theorem, then it is also aRL theorem, i.e., ifp7r, X, then
Frr, X and also for any, Frr,,, X holds. Moreover, the deductions do not require
theFL Inference RuléInf4.

PRoOOF. — All the PTL axioms and inference rules can be embedded inkthe
axiom system. Therefore, the deductions in the proofief;, X can be mimicked to
obtaintpr, X. Details of the proof can be found in Appendix B. The reasgmnly
involvesFL formulas in which the fusion expressions do not contain aamnables.
Therefore, any suchL theorem is also aR'Ly theorem for any/. [

LEMMA 53 (COMPLETENESS OF THEFL AXIOM SYSTEM FORPTL WITH FINITE
TIME). — LetX be aPTL formula which is valid for finite time (i.e5p11, finite D
X). Thentp;, X holds and in addition, for any’, Fr1,, X holds. Moreover, the
deductions do not require tHeL Inference RuléInf4.

PROOF. — Supposeé=prr, finite O X holds. Then by the completeness of tHEL
axiom system, we can deduce tRE'L theoremt-p1p, finite D X and hence by
Lemma 52, th&'L theoremtyy, finite D X. This lemma does not require thd.
Inference Ruld=Inf4. Now we also can readily deduce th& theoremtyy, finite
from theFL Axiom FL 12 together with the definition ofinite as<® empty. Modus
ponens then yields desiréd. theorem-g;, X. The embedding of thBTL proof of
X in FL contains no variables within the scopelif formulas. ThereforeX is also
anFLy theorem for any/. [
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LEMMA 54 (SUBSTITUTION INSTANCES OF VALID PTL FORMULAS IN FLy). —
Let X be soméTL formulawhich is valid for finite tim&;7, . ..,Y;, beFLy formulas
and Ry, ..., R, be variables not iri”. Then the substitution instancg,,!" ¢ is

itself anFLy theorem.

PrROOF. — If X is valid for finite time then Lemma 53 concerning completanes
for PTL formulas in theFL axiom system ensures that is deducible as afi'Ly
theorem. Lemma 49 then ensures th’#ljy%"n is anFLy theorem. u

10.2. Substitution withinFLy Formulas

We now present some lemmas concerning substitution within formulas which
are in addition to the earlier Lemma 49. The proofs inclBdd.-based reasoning so
it seems natural and convenient to present the lemmas aiteliscussion abolLy,
theoremhood for substitution instancedFL formulas which are themselves valid
in finite time.

LEMMA 55 (THE TEMPORAL OPERATORO AND FLy THEOREMHOOD). — Let
X be an arbitraryFLy formula andR be a propositional variable not iV and
further letY be anFLy formula not containing?. Then the following implication is
deducible as afrLy theorem:

FrL, OR=Y) D> X = X} .

PROOF. — Induction can be done ak'’s syntax. |

LEMMA 56 (FLy THEOREMHOOD OF SUBSTITUTION INSTANCES OF DEDUCIBLE
EQUIVALENCES). — LetY and Z be deductively equivaledtLy formulas (i.e.,
FrL, Y = Z) and further letX be an arbitraryFLy formula andR be a proposi-
tional variable notinV’ and not occurring int” or Z. Then the formula&’ > and X 2
are deductively equivalent withifiLy, i.e., g1, X} = XZ.

PROOF. — We use Lemma 55 to deduce the following implication a%'ag theo-
rem:
Fr, O(R=Z) D X = XE .

Lemma 49 is then invoked to substititeinto R:
FrL, DY =2) D X) = XE . (3)

In addition, the deductive equivalenceYfand Z together with the"Ly, Inference
RuleOGen ensures th&'Ly theoremhood of the next formula:

- Oy =2) . (4)

The combination of formulas (3) and (4) together with modosgns yields our goal
of theFLy theoremhood of the equivalendg;, = XZ. u
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We also make use &f to assist in obtaining relative completeness for substitut
instances:

LEMMA 57 (THE TEMPORAL OPERATORO AND RELATIVE COMPLETENESS IN
FLy). — Let X be an arbitraryFLy formula andR be a propositional variable
not in V' and further letY” be anFLy formula not containing?. Then completeness
holds for the substitution instancéy, relative to the following conjunction:

O(R=Y) n X . (5)

PROOF. — We can show the following two properties:

(@) If XY is FLy -consistent then so is (5).
(b) If (5) is satisfiable then so iX Y.

Proof of (a) Suppose on the contrary that formula (5) is bty -consistent.
ThenO(R = Y) D —X is anFLy theorem. By Lemma 49 so is the substitution
instanced(Y = Y) D> —X} from which we readily obtain that X} is anFLy
theorem. Thereforﬁ’}{ is notFLy -consistent.

Proof of (b) Lemma 55 and the soundness of #ile axiom system (Lemma 46)
yield the validity of the next implication:

= OR=Y) D> X=Xj .
Therefore any model fdB(R = V) A X itself satisfies\ ).

Parts (a) and (b) together with Corollary 14 enskie, -completeness foX }
relative to the formula (5). |

11. FE Formula Behaviour in Empty and Nonempty Intervals

Performing induction over time on afL formula (E*)X can be tricky. One
challenge is thaly might be true on some empty intervals and therefore wii&n X
is unwound into £; E*) X by means of Axiont-L 8, the firstE can collapse, thereby
preventing any advance to a strictly later state. Becauskei®fifficulty, a function
¢ is introduced which for any > 0 transforms an arbitrary formul& in FE@’0 into
another formula:(E) also inFE’{L/O. This new formulac(E) capturest’s behaviour
in nonempty intervals and tHeITL equivalence(E) = (E A more) is valid. Unlike
E, ¢(F) cannot collapse. Therefore it facilitates dealing with teeuction of chop-
star instances since K is arbitrary, thet'Ly formula{c(E)*)X is easier to unwind
than the semantically equivalent formyla*) X . The fact that the star height ofE)
IS no greater thai’s turns out to greatly assist us in obtaining completen@sB
when we do induction on the star height in formulas.

REMARKS 58. — Some readers may have trouble understanding thatduoiit-
erations of chop-star can occur in empty intervals. As alteisumay be difficult to
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accept that the semantic equivalence(d@) andE A more is sufficient to ensure the
semantic equivalence ¢f( £)*) X and(E£*)X. Nevertheless, this equivalence indeed
holds even though( E)* avoids empty iterations where&as might permit them. The
proof of Lemma 47 concerning the soundness of Khielnference Rulg=Inf4 for
chop-star explains why for any twlE formulasE and F' with the valid FL impli-
cationk= more A (E)empty D (F)empty, theFE formula E* implies F*. Conse-
guently, any empty iterations possibly generatedtbyan be ignored. Wheh refers

to a formula such ag(E), we have the following stronger assumption:

E (Fempty = (E)empty n more .

In such a case, it is even easier to see that the converseatnph fromF™* to £*

also holds. Therefor&* andF* are semantically equivalent. The later Subsect. 14.3
contains a related analysis concerning chop-star in thieegbof PITL.

END OF REMARKS58.

Below is the definition ot:

DEFINITION 59 (THE FUNCTION¢). — For anyFE formula E, definec(E) in the
following way:
E c(E)
w? false?
FvG c(F) v (@)
skip skip
F;G ¢(F);G v F;¢(G)
F* c(F); F*
LEMMA 60 (STAR HEIGHT OF ¢(FE) EQUALS STAR HEIGHT OFFE). — For any

FEy formula E, we havesh(c¢(E)) = sh(E) andc(FE) also inFEy . Also for any
n >0, if Eisin FE3°, then the formula(E) is also inFE}".

PROOF. — In order to show thath(c(E)) = sh(FE) andc¢(E) is in FEy, we do
induction onE’s syntax and observe that no case:{ir)’s definition adds layers of
chop-stars or new variables. Noi is in FE?.’ iff it is in FEy andsh(E) < n.

Thereforec(E) is likewise inFE7°. |
We now formally define the notion efonempty formulas

DEFINITION 61 (NONEMPTY FE FORMULAS). — AnFE formula E is said to be
nonemptyf it is not true on empty intervals and hence the next two icagibns are
valid:

F E DO more

(Eyempty D more .
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LEMMA 62 (¢(E) IS NONEMPTY). — For anyFE formulaE andFLy formula X,
the formula(c(£))X is nonempty and hence tid. implication (¢(E))empty D
more IS valid.

PROOF. — This follows by induction orE’s syntax. |

LEMMA 63 (SEMANTIC EQUIVALENCE FORc¢(FE)). — For anyFE formulaE, the
following FL equivalence is valid:

E (c(E))empty = (E)empty n more . (6)

PrROOF. — We do induction onE’s syntax to prove the validity of the previously
mentionedPITL formulac(E) = (E A more). This is semantically equivalent to the
equivalence in our goal (6). |

LEMMA 64 (SEMANTIC EQUIVALENCE OF E* AND ¢(E)*). — ForanyFE formula
E, theFE formulasE* andc(E)* are semantically equivalent.

PRoOOF. — By Lemma 63 the only difference between the behaviout @ndc(E)
concerns empty intervals. Such intervals can be safelyaghim individual iterations
taking place inE* andc(E)* so these two formulas have identical semantics. B

12. Indirect Characterisation of Chop-Star

We will make use of the hierarchy of setslofy, formulas in Definition 44 based
on star height and relative exterior height. For amyn > 0, there is a corresponding
set denoted aBLy,"™. Later we want to show in Lemma 68 that completeness holds
the setFL»""! relative toFL}{;™. This requires some means of relating formulas
with exterior heightn + 1 relative ton to others with exterior height: relative to
n. In preparation for doing this, we now describe an importaay of eliminating
individual chop-stars from formulas by indirectly mimiokj chop-star behaviour with
the aid of an auxiliary variable. Consider the analogoussibn in conventiondPTL
with the operatountil. There it is possibly to show that completeness for a formula
containing instances aintil holds relative to anothaintil-free one which in effect
mimics each instance aintil by means of an extra variable. We can apply a similar
technique inFL to reasoning about chop-star in finite time.

The previous Lemma 64 ensures thatliieformulasE* andc(E)* have identical
semantics. This can be exploited to indirectly charaatdiis usingc(E). Let R be
a propositional variablely be anFE formula andX be anFL formula. We later
establish in Theorem 66 that under suitable assumptiorfethrulal(R = (E*) X)
is deducibly equivalent to the formula(R = (X v (¢(E))R)). Now the number of
FE formulas with the same star height&$in the formulad (R = (X v (¢(E))R))
is one less than in the semantically equivalent originahida 0 (R = (E*) X) since
the earlier Lemma 60 ensures théE) has the same star height&gi.e., sh(c(E)) =
sh(E)). Laterin Lemma 68 in Sect. 13 we use Theorem 66 to prove adinelative
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completeness by reducing certain uséfiik, formulas containing chop-star to others
with strictly lower star height.

LEMMA 65 (DEDUCIBLE UNWINDING OF E* USING ¢(FE)). — Supposér is an
FE7° formula andX is someFLy formula. If completeness holds fBiL;:°, then
the following formula is ai¥'Ly theorem:

FrLy (DX = X v (e(B){E)X . 7)

PROOF. — If E is in FE}°, then Lemma 60 ensures thatF) is also inFE}".
Lemma 63 and simple semantic reasoning yield the next twd iraplications:

F  more A (E)empty DO (c(E))empty
= more A {(c(E)yempty DO (E)empty .
The assumption of completeness Ric’{?o guarantees both aifd., theorems:
Frr, more A (E)empty DO  (c(E))empty
Frr, more A (c(E))empty D (E)empty .

These with two respective applications of Inference Rtllef4 yield the following
deducible implications:

FrL, (E%)empty D (c(E)")empty
FrLy (c(E)")empty D (E")empty .

Both implications are used in two respective applicatiohénterence RuleFInf3
together with some propositional reasoning to deduce th@fimg equivalence:

FrLy (BDX = (e(B))X (8)
The right side can be unwound by means of AxiBb8 and then AxionFL6:
FrLy (BDX = X v (e(B){e(B))X . 9)

These last two equivalences (8) and (9) combined with Leménpesmit replacing
(c(E)*)X with (E*)X in (9) to ensure our goal (7). H

THEOREM 66 (DEDUCIBLE INDIRECT CHARACTERISATION OF CHOPSTAR). —
SupposeR is a propositional variableE is in FE’{;’O and X is in FL{;™. Then if
completeness holds fétL;,"™, the following equivalence is &Ly, theorem:

FrL, O(R=(E)X) = OR = (X v ((E)R)) . (10)
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PROOF. — Let P be some propositional variable which is distinct frégtnnot in V'
and not occurring inX. For any nonempt¥'E formula F', the following implication
can be shown to be valid by induction on interval length:

= OFP = (XVv{(F)P)) A OR = (XVv(F)R) D> OR=P).
From this we can readily obtain the validity of the next insplion:
F OP = (Xv(FHP) D> OR=P) =0R = (XVv(F)R)) . (11)

Lemma 62 guarantees thgtt) is a nonempty formula. We can therefore repléate
by ¢(E) in (11) to obtain the following implication:

= O = (X v {(c(E))P)) (12)
5> OR=P) = OR = (X v {((E)R)) .

The assumption thdf is in FE>* and Lemma 60 ensure thatE) is also inFE".
In addition, X is assumed to be iRL}"". Therefore formula (12) is if'Ly,"™ and by
the assumption of completeness Kty is anFLy theorem:

Fer, O(P = (X v {c(E))P))
D OR=P) = 0R = (X v{(E)R)) .

We invoke Lemma 49 to substitute the form(ks*) X into P and obtain the following
implication:

Feny, O((EDX = (X v (e(BE))(E*)X))
5 O(R=(EYX) = OR = (X v («(E)R)) .

Now the deducible equivalence (7) established in Lemma &%awed with the Infer-
ence RulédGen yields the antecedent of this implication:

Fer, D(E)X = (X v (¢(E))(E")X)) .

Consequently, we can use modus ponens to arrive at our gdjal (1 |

13. Proof of Completenessfor the FL. Axiom System

Axiomatic completeness for thEL. axiom system is established by first taking
some arbitrary finite set of variablés and ensuring completeness L.y, formu-
las. We does this by inductively proving completeness foreaanchy of subsets of
FLy formulas. Let us recall the diagrammatic summary of therretationship of the
completeness proofs presented earlier in Subsect. 1.2:

PTL ﬂ) FL(‘)/EO — % . — FL?/’m E} FL7‘”;,7’TL+1
—_— ﬁ)FL?/—H,O_)?_O)FLVA)FL
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Each numbered arrow corresponds to a lemma or theorem neeresl.

LEMMA 67 (COMPLETENESS FORFLY"). — Completeness holds f&iL};°.

PROOF. — Formulas inFL};" contain noFL-chop constructs and are herieg!’ is

identical to the set of alPTL formulas. Now Lemma 53 establishes completeness for
PTL with finite time in theFL axiom system and hence also ensures completeness
for FLY,” in the FL axiom system. |

LEMMA 68 (RELATIVE COMPLETENESS FORFLY" ™). — For anym,n > 0,
completeness fa& L™ holds relative taF L}, "™.

PROOF. — Let X refer some formula ifL;>™ " and letk be the number of left-
formulas inX with exterior heightn + 1 relative to star height. We do induction
on k to show completeness holds farrelative toFLy™.

Base case fok = 0: This is trivial sinceX itself is inFL},™.

Induction step fronk to k£ + 1: SupposeX contains exactlys + 1 left-formulas
having exterior height: + 1 relative ton. Let R be a propositional variable not in
and not occurring inX. We can expresy’ asYéEW', where the following conditions
hold:

— The formulaY” is in FLy,™ .

— Only k left-formulas occur irt” with exterior heightn + 1 relative ton.

— The formulaF is in FE™™ 1,

— The formulaY” is in FL{™.

Lemma 57 ensures that completeness holdé/ﬁarwl relative to the next con-
junction which is also ifFLy,™

OR = (E)Y') A Y . (13)

Therefore completeness also holds Jorelative to this.

We now construct a new formulda(R = Z) ~ Y which is deducibly equivalent
to (13) and inFL};™. If E's outermost construct is not chop-star, we can simply
determine the formul@ based orE’s outermost operator:

B (E)Y" A
w? w?)Y' wAY'
FvG (Fv@Y (F)Y' v (G)Y’
skip (skip)Y"’ oY’

F,G (F;G)Y’ (FYG)Y' .

In each of these casé#€)Y" is easily shown to be deducibly equivalent Zoby
means oft'L. axioms. Therefore by Lemma 56 the formtlaR? = Z) A Y is indeed
deducibly equivalent to (13).
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The remaining case wherg’s outermost operator is chop-star is the only non-
trivial one. Here we letZ be the formulaY”’ v (c¢(F))R. The overall formula
O(R = Z) A Y is deducibly equivalent to (13). This is because Theoremr@b a
the inductive assumption of completenessifdf; ™ ensure thafi(R = (E*)Y ) and
O(R = Z) are themselves deducibly equivalent.

In all of the cases it follows that completenessidholds relative ta1(R = Z) A
Y. Also,0(R = Z) A Y has onlyk left-formulas with exterior height: + 1 relative
to n. Therefore induction o yields that completeness holds fofR = Z) A YV
relative toFL{;"". Lemma 12 then ensures that completeness also holds fetative
toFL{"". |

LEMMA 69 (RELATIVE COMPLETENESS FORFL}""?). — For anyn > 0, com-

pleteness foF Lyt holds relative to the union of the countably infinite séts”,
FLY', ...
V 1

PROOF. — This readily follows from the fact that the seLy;""* itself equals the

union of the sequence of sét&.7°, FLY', ... |

THEOREM 70 (COMPLETENESS OFFLy IN THE FL AXIOM SYSTEM). — Every
valid FLy formula is deducible as aRLy theorem in th&'L axiom system.

PROOF. — ltis not hard to see that the set of formulds,, equals the union of the
sequence of countably infinite séf&.\;’, FL;', ..., FL{"™, .... We prove com-

pleteness foF Ly by inductively showing that for any:, n > 0, completeness holds
FL{,™. This is done using lexicographical ordering of the gairm):

Base case foFL?;O: This is established by the previous Lemma 67.
Inductive step foFL"‘/m“: This is a consequence of the earlier Lemma 68.
Inductive step foFLyt"°: This follows from the earlier Lemma 69. u

THEOREM 71 (COMPLETENESS OF THEFL AXIOM SYSTEM). — Every validFL
formula is a theorem in thEL axiom system.

PROOF. — Let X be a validFL formula andV be the set of variables IN. ThenX
isin FLy and by Lemma 70 aRLy theorem and so also &1 theorem. H

14. Embedding the FL and PTL Axiom Systemsin the PITL Axiom System

We first embed th&'L axiom system in th&ITL one and later ensure that each
PITL formula is deductively equivalent to &1. one. The embedding is done in two
parts becauseL. Axiom FInf4 requires special attention and is only dealt with after
the rest of thd'L axiom system is considered.
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14.1. Partial Embedding of theF L. Axiom System in thePITL Axiom System

The next Lemma 72 describes an embedding of most oFihaxiom system in
the PITL one. This is sufficient to indirectly embed tlP'L. axiom system in the
PITL one using Lemma 53. Later on, after proving some further gmogs of chop-
star InPITL, in Lemma 78 we can finish the embedding and include the rantain
FLy inference ruléInf4 not handled by Lemma 72.

LEMMA 72 (PARTIAL EMBEDDING OF FL AXIOM SYSTEM IN PITL AXIOM SYS-
TEM). — All FL axioms and the three Inference RuM®, O0Gen and FInf3 can
be embedded in thHeITL axiom system.

PrRooOF. — We show that eachL axiom and the three mentioned inference rules can
be obtained from th@ITL axiom system. |

LEMMA 73 (RESTRICTED SUBSTITUTION OFFLy THEOREMS INPITL). — Let
X be anFLy theorem deducible witholtL Inference Rulé1nf4. Also, let4,, ...,
A,, bePITL formulas andR;, ..., R,, be variables not irl/. Then the substitution

instanceX ﬁ;::;;:ﬁ: is itself aPITL theorem.

PROOF. — The proof is similar to that for Lemma 49 and uses Lemma 72. W

We only use this lemma here to obtain substitution instanE®sI'L theorems in
the next Lemma 74. Therefore, the restriction is not a proble

LEMMA 74 (SUBSTITUTION INSTANCES OF VALIDPTL FORMULAS IN PITL). —
AnyPITL formula which is a substitution instance ofPa’LL formula which is itself
valid in finite time is a deduciblBITL theorem.

PROOF. — We use Lemmas 53 and 73. [ |

14.2. A Lemma for Restricted Replacement BITL Formulas

We now present a lemma concerning the replacemdpi’®i. formulas. This Re-
stricted Replacement Lemma permits the replacement ofatiedly equivalenPITL
formulas within a largePITL formula. However, the lemma cannot deal with re-
placement in the scope of chop-star. Nevertheless, ifisiséful. Later on, a version
without this limitation is presented as tRéTL Replacement Theorem (Theorem 77).
Before that more powerful lemma can be proved, ce®difil. theorems concerning
the unwinding of chop-star must be established. Part oféhsaning relies on the
present restricted replacement lemma although we will eivedinto the details.

LEMMA 75 (RESTRICTED REPLACEMENT LEMMA FORPITL). — LetB; and B,
be deducibly equivalent formulas (i.epir1, B1 = Bs). Supposed; is an arbitrary
formula and the formulal, is obtained fromA; by replacing within4, zero or more
instances of3; by B,. If none of these occurrences Bf are within any chop-star
construct, therd; and A, are provably equivalent, i.e5p, A1 = As.
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PROOF. — Induction can be done oA;’s syntax with each instance db; re-
garded as atomic. Lemma 74 and tPEI'L. Axiom P8 together with the Inference
RulesO0Gen and@Gen and propositional reasoning greatly facilitate the proofill

14.3. Some Properties of Chop-Star iIRITL

ThePITL Replacement Theorem (Theorem 77) is a stronger versionromae75
that also handles chop-star and enables us in Lemma 78 todetimbeemaining'L
Inference Rule~Inf4 in the PITL axiom system. Before presenting it, we need to
prove some properties concerning both chop-startdfd..

As was noted in Section 11 with regardia,, it is often desirable to be able to
assume that individual iterations of a chop-star formudesatisfied in nonempty inter-
vals in order to facilitate induction over time. Indeed,g@aing of this sort is related
to the soundness of thHeITL Axiom P11 which only concerns the first nonempty
iteration of a chop-star formula. Nonempty iterations @euired for proving certain
lemmas dealing with substitution into formulas containihgp-star constructs. The
next two lemmas are relevant to this:

LEMMA 76. — For anyPITL formulasA and B, if the implication(A A more) D B
is valid, then so is the implicatiod* O B*.

PROOF. — We give two different proofs. The first is simpler wherelhs second
lends itself to being expressed in the axiom system, thusibating to our ultimate
goal of showing deductive completeness.

A direct proof establishels A* > B* by simply deleting all empty iterations in
any interval satisfyingl*. The remaining iterations each satisfyx more and hence
alsoB. Therefore the overall interval satisfi&s

The second proof af A* D B* shows that if the implication does not hold, there
must exist some time in the strict future when this situateeats itself. This can be
done by first unwinding the chop-stars using nonempty i@nat(as in AxiomP11):

E A" = empty v (A A more); A
= B* = empty v (B A more); B* .
We then suitably combine the indicated behaviour of each one
A" A=(B*) D  ((AAmore);A*) A —((B A more); B¥) .
The assumptiofr (A A more) D B lets us here replacB n more by A A more:
E A*A=(BY) D ((Aamore); A*) A —((A A more); BY) .
The two chop constructs in the implication’s right side drert merged:

A" A=(B*) D (A more); (A" A =(BY)) .
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The finiteness of intervals then yields a contradiction. fdiewing valid PTL im-
plication expresses this using some arbitrary propostivariableP:

FpTrL ﬁm'te A D(P D) OOP) D P .
Below is a variant in the style of an inference rule for antaaoy PITL formulaC:
FCDO>O00C = E-C.

We takeC to be the implicatioM* A —~(B*) and arrive at our goa+ A* D B*. N

Here is two derived inference rules based on Lemma 76 wheblatainable from
the axiom system:

FprTL (A A more) OB =  bprTL A* O B* (14)
FprTr, more D (A = B) = tprL A = B* . (15)

The deductions required for the first of these (14) are albedites described above

in the second proof of Lemma 76 for ensuring the validity @fitnplication4A* > B*

and use Lemma 74 for thBTL-based reasoning. The second derived inference
rule (15) can then be readily proved from (14) together witine propositional rea-
soning. Incidentally, we can use (15) together with thedlmgty given below to de-
duce the important equivalenegrtr, A* = (A A more)*:

Fprr, more D A = (A A more) .

14.4. Full Embedding of theFL Axiom System in thd®ITL Axiom System

We now look how to extend the embedding of #ile axiom system in th&ITL
to include the remaining Inference Ru#énf4 concerning chop-star. However, it is
first necessary to use the partial embedding ofRheaxiom system to establish the
deducibility of a usefuPITL theorem concerning chop-star.

The derivedPITL inference rule (15) in the previous Subsect. 14.3 is employe
to obtain thePITL Replacement Theorem which is more powerful than the praviou
restricted Lemma 75. In particular, the Replacement Thag@ermits the replacement
of deducibly equivalent formulas even within the scope ajEistar constructs:

THEOREM 77 (REPLACEMENT THEOREM FORPITL). — Let B; and B, be prov-
ably equivalent formulas (i.e=prr1, B1 = B»). Supposed; is an arbitrary formula
and the formulaA; is obtained fromA; by replacing zero or more instancesBf in

Ay by Bs. It follows thatA; and A, are provably equivalent, i.e5prTr, A1 = As.

PROOF. — Induction can be done a#;’s syntax with each instance &f, regarded

as atomic. The only case differing from the proof of Lemma €6urs whenA;
itself is not B; and A;’s outermost operator is chop-star. To deal with this, we use
the previously mentioned derivdd TL inference rule (15). The formuld; has the
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form C for somePITL formula ;. The formulaA, has the formC; for some
PITL formulaC5 with the associated deductioipirr, Cy = Cs true by induction.
From this we readily obtain thBITL theoremtpirr, more D (C; = Cy). The
derived inference rule (15) then yielels1r1, C; = C5 which is the same as our goal
l_PITL A1 = Ag. |

LEMMA 78 (FuLL EMBEDDING OF THEFL AXIOM SYSTEM IN THE PITL AXIOM
SsYSTEM). — All FL axioms and inference rules can be embedded inRHEL
axiom system.

PROOF. — The earlier Lemma 72 deals with most of ik axiom system. Here we
only need to consider Inference Rué&nf4. Let us recall this inference rule:

e, (more A (E)empty) D (Fyempty = Fpp (E")X D (F*)X .

From the assumption we can deduce the followid L theorem using the definition
of the FL-chop construct ilPITL together withPITL Axiom P6 and some proposi-
tional reasoning:

FpiTL (E A more) D F .

From this and the derived inference rule (14) for chop-starpbtain thePITL theo-
rembprr, E* O F*. Some simple propositional reasoning and i&'L inference
rule MGen then together yield-prr, @(E* O F*). We can also readily deduce
Ferr, O(X D X)) and make use of the following instanceRITL Axiom P8:

Fpir, @(E* D F*)A0X DX) D (E%X) D (F%X)

From this withpprp, @(E* D F*) andbFpyry, O(X D X) combined with proposi-
tional reasoning we obtain tHeITL theoremtprrr, (E*; X) D (F*; X). This can
be re-expressed RL notation as our goatp;rr, (E*)X D (F*)X. [

15. Completenessof the PITL Axiom System

ThePITL axiom system is now shown to be complete by redu8ifigL. formulas
to ones toFL formulas. An inductive argument reduces completenessriotrary
PITL formulas to completeness for simpler ones. The followingamoof formula
complexity provides a suitable hierarchy:

DEFINITION 79 (LEFT HEIGHT OF A FORMULA). — Theleft heightof a PITL
formula A is the maximum leftward nesting of chop and chop-star canitin A. We
regard thePTL constructsO and < as being primitives. Below is a precise definition
of left height as a function denotéfl A):

— Ih(true) = Ih(P) = Ih(skip) = 0, whereP is any propositional variable.
—Ih(—A) = Ih(OA) = Ih(O A) = 1h(A)
—Ih(A v B) = max(lh(A), lh(B)
( (B

—Ih(A; B) = max(lh(A) + 1,Ih(B))
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—h(A*) = Ih(A) + 1.

DEFINITION 80 (THE SETSPITL?, PITL', ...). — Foranyn > 0, PITL" de-
notes the set of alPITL formulas having maximum left heigit

DEFINITION 81 (EXPOSED SUBFORMULAS. — Let A be somé&ITL formula and
let B be aPITL subformula of4, possiblyA itself. Any occurrence a8 in A which is
neither within the left side of any chop constructs nor witthie scope of any chop-star
constructs is calle@xposed

DEFINITION 82 (THE FUNCTION d(A)). — For any PITL formula A, let d(A)
denote some elementIBE which is semantically equivalent i, i.e.,= A = d(A).

LEMMA 83. — The functiond is total.

PROOF. — LetV be the set of variables occurring Lemmas 32 and 34 together
ensure that a suitable elementloF., exists with is semantically equivalent té.
Therefored is a total function. |

LEMMA 84. — For anyn > 0 and elementd in PITL", the equivalencel =
(d(A))empty is aPITL theorem.

PrROOF. — We do induction om:

Base case for, = 0: It is not hard to see that every elemehtof PITLC is in
fact aPTL formula. In addition, the equivalenceé = d(A) is valid. Now it follows
that the relatedL. formulaA = (d(A))empty is also valid. The completenessioL
therefore ensures this equivalence’s deducibility as artma inFL and hence it is
also aPITL theorem by Lemma 78.

Induction step fromm to n + 1: By induction we already have deductive equiv-
alences for elements &fITL". Let A be a formula inPITL"*!. Now the left-
operands ofd’s exposed chop constructs and the main operandssaxposed chop-
star operands are all IRITL". Let us denote them a8, ..., By for somek > 0.

By induction, for each such formulB8; we have thePITL theoremtpyr, B; =
(d(B;))empty. Furthermore it is quite easy to deduce from this FI@L theorem
FprTr, B; = d(B;) by using the deductive equivalenegerrr, (d(B;))empty = d(B;)
which is really just an instance of Axiof6 in Table 1.

We then use th®ITL Replacement Theorem 77 to obtain a neW'L formula
A’ in which eachB; is replaced by the correspondif@ formulad(B;) by using the
previous deduce®ITL equivalence-pi11, B; = d(B;). Consequently, th€ITL
theoremtpipr, A = A’ holds. If A contains any exposed chop-stars, th&rmalso
does and is consequently not necessarily a well-forkletbrmula. However, we can
once again invoke thBITL Replacement Theorem to replace every such chop-star of
the formB; by the deductively equivaleiit. formula(d(B;)*)empty. Each exposed
O and< operator inA’ can be left untouched even though they are defined in terms
of chop. This is because in the definition/bf A) they are treated specially and do
not affectA’s left height. However, their operands can influence theealf /h(A)
and are therefore analysed in the course of obtaidigLet X be theFL formula
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obtained after dealing with any exposed chop-star4'init is deductively equivalent
to A’ in the PITL axiom system and hence also 40 Hence we can deduce as a
PITL theorem the equivalence-;1;, A = X. In addition, X is a well-formedFL
formula. Now theF'L formulaX = (d(A))empty is valid and by the completeness of
FL a theorem. Lemma 78 ensures that it is ald¥&L theorem. Transitivity of the
deductive equivalences yields the gbakrr, A = (d(A))empty. H

LEMMA 85 (CoMPLETENESS OFPITL RELATIVE TO FL). — Completeness holds
for all PITL formulas relative td*L formulas.

PROOF. — Let A be somePITL formula and let: be its left height. Consequently,
Ais in the setPITL". The previous Lemma 84 therefore yields REI'L. theorem
Fpir, A = (d(A))empty. Lemma 16 then ensures tHaITL completeness holds
for A relative to{d(A))empty. Now (d(A))empty itself is in FL. and hencePITL
completeness trivially holds for it relative to &I formulas. By transitivity PITL
completeness holds fof relative to the set oF L formulas. |

LEMMA 86 (COMPLETENESS ORPITL). — ThePITL axiom system is complete.

PROOF. — This follows from completeness of thd. axiom system (Theorem 70),
its embeddability in th&ITL axiom system (Lemma 78) and Lemma 85 concerning
completeness for the set BITL formulas relative to the set &fL. formulas. |

16. Discussion

Fusion expressions and Fusion Logic could find practicdiegion in logic spec-
ifications where sequential composition of temporal forasuivhile-loops and related
concepts arise (see Remarks 35) but RIITL is not needed. The€L completeness
proof even suggests a decision procedureifbrbased on a reduction ®TL with
finite time. However, we have not yet analysed the complefitiais. It might be use-
ful to extend fusion expressions to include an operatordontoral projection to deal
with different time granularities (see [MOS 86, MOS 95]). eTprojection operator
could at least in principle be readily added to the decisimtg@dure by transforming
formulas containing the construct into ones without it asctdi®ed in [MOS 95].

Our completeness proof might generalise handle quantiée?ITL andFL with
both finite time and and past time. However, in the case ofitefiime, either quan-
tifiers or nontrivial inference rules seem unavoidable. Riglence of this, we men-
tion Henriksen and Thiagarajar3ynamic Linear Time Temporal Log[¢iEN 97,
HEN 99] which is similar to Fusion Logic with infinite time amdquires special in-
ference rules involving transitions and sets of words. @€gagntly, the axiom system
is reminiscent of the one by Rosner and Pnueli [ROS 86] fontifiar-freePITL and
infinite time since that also contains an inference rulelwing a table of transitions.

As already noted in the introduction, our research on itsrandITL has lead
to some unexpected interesting spin-offs concerning thie$® TL andPDL. More
such discoveries may be possible and we hope to pursue wirisidirection.
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A. The Complexity of PITL

We briefly look at the complexity oPITL. This material is adapted from our
doctoral dissertation [MOS 83a, pages 20-24] and has neiqudy appeared in
print elsewhere. It was done in fruitful collaboration witbseph Y. Halpern.

A.l. Undecidability of PITL with Interval Variables

PITL can be defined so that propositional variables are intdraaéd. Instead of
each state in an interval mapping variables to values, esgbynterval has its own

mapping.

THEOREM87 (HALPERN AND MOSzKOowsKI). — Satisfiability forPITL with in-
terval variables is undecidable.

PROOF. — Our proofis very similar to the one presented by Chandah ¢CHA 81,
PAR 85] for showing the undecidability of satisfiability farpropositional process
logic. We strengthen their result since we do not requirgams in order to obtain
undecidability.

Given two context-free grammaés, andG,, we can construct RITL formula
that is satisfiable iff the intersection of the languagesegated byG,; and G- is
nonempty. Since this intersection problem is undecidabd@R® 79], it follows that
satisfiability forPITL is also.

Without lose of generality, we assume tliat and(G> contain noe-productions,
use 0 and 1 as the only terminal symbols and are in Greibachatdorm (that is, the
right-hand side of each production starts with a terminailsgl).

For a given an intervak,...s, and an interpretatiooM, we form thetrace
Tso...s, (P) of a variableP by observingP’s behaviour over the states, ... , s,.
We definer as follows:

_J O if M,[P] = false
|1 if M[P] = true
Tsg...s, () = Tso(P) ... 75, (P) .

Suppose that? is a context-free grammar consisting of a klisbf m production

setsry, ..., ™y, One for each nonterminal symbdi;:
Tt N1—>7T11‘7Tlg""‘71'1’|7r1|
ot No — WMoy | man | -+ | T2 |7a|

Tt Ny = Tt | Tz | | T -
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Let L(G, N;) be the language generated®wvith NV; as the start symbol. We give
a translationf (G, NV;) into PITL such that an intervad, . . . s,, satisfiesf(G, N;) iff
P’straceinsg... sy isin L(G, N;):

So...8n = F(G,N:) iff 7y . (P) € L(G,N;) . (16)

For each of the production sets, the associated translatidfitr;) is the PITL for-
mula

B(N; = (f(ma) v f(miz) v o v f(Tigmg))) -

Each production string;; = ViV . .. Viri has the translation

fVa .. Vi) = f(V1); skip; f(Va); skip; . ... skip; f(Vix,;))

where

F(0) = (=P A empty)

f(1) = (P~ empty)

f(N;) = N;, foreach nonterminal symbdV; .
Recall that the variabl# determines whether a state maps to O or 1. In order to
avoid conflicts, we require tha® not occur in the grammar. The overall translation
f(G,N;) is as follows:

Ni A f(m) .

It is now easy to show (16) by induction on the size of the waks . ..s,. We
need the grammar to be in Greibach normal form in order foirtactive step to go
through. See Chandra et al. [CHA 81, PAR 85] for details.

Given two context-free grammafs, and G, with disjoint sets of nonterminals
and respective start symbdis andS-, thePITL formula

f(G1,81) A f(G2, S2)

is satisfiable iff the intersection of the languad€sé7,) andL(G,) is nonempty. Be-
cause this emptiness problem is undecidable [HOP 79],laal that satisfiability in
PITL is also. |

CoROLLARY 88. — Validity for PITL with interval variables is undecidable.

REMARKS 89. — Undecidability can be shown to hold even if we are rettd

to just usingempty instead ofskip. To do this, we use interval-based propositional
variablesP and(@. The following operator$eg andfin for testing at the beginning
and end of intervals are used:

beg A = D(empty D A) a7)

fin A = O(empty D A) . (18)

We introduce an operatgroup( P, Q) which is true in intervals satisfying the next
formula:

(B beg Q); skip; (Bbeg (PA—Q)); skip; (Bbeg Q) .
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Such intervals are in effect delimited on both sides by statih () true and con-
tain internal states witlPA—(@) true. Hence() acts as a delimiter around a group of
states wherd’ is true. The following is a sample 5-state intervgl . . s, satisfying

group(P, Q):
So S1 S2 S3 S4

Q PP QQ

A A
—Q-Q .
Similarly, group(—P, Q) denotes a delimited group of states wil® true in the in-

terior. If we takeempty as a primitive operator, the operatpoup can be expressed
without the use of the operator.

o
-

€

group(P,Q) = grp(P,Q) n ~(grp(P, Q); grp(P,Q)) ,
wheregrp (P, Q) has the definition below:

grp(P, Q) e beg Q A fin Q A B(beg (PA—Q) v Q) A @beg P .

—

The modified translatioif’ is like f with the following exceptions:

Ve Vi) = (Vi) ff(Va)so s f1 (Vi)
f'(0) = group(—=P,Q)
f'(1) = group(P, Q) .

END OF REMARKS89.

A.2. Decidability of LocalPITL

We normally restrict propositional variables to be statgdnl. The associated stan-
dard version oPITL is often called_ocal PITL

THEOREM 90 (HALPERN AND M0OSzKoOwsKI). — Satisfiability for localPITL
with quantification is decidabfe

PROOF. — We give a linear translation from formulas RITL to formulas into
Quantified Propositional Temporal Log{QPTL). Formulas are built from proposi-
tional variablesP, (), ...and the following constructs:

-X YAZ OX 0OX dP X |

where X, Y andZ are themselveQPTL formulas. The interpretation of variables
and formulas is identical to that of loc®ITL with quantification. The particu-
lar QPTL used by us restricts intervals to be finite and is knowMasak QP TL

3. The definition ofPITL in our dissertation did not include chop-star. However,pgraof can
be extended to handle it and we leave the details as an exercis
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(WQPTL). It can express such constructs @sX, Y until Z (strong until) and
empty. Wolper [WOL 82, SIS 87] shows that the theory@QPTL over infinite in-
tervals is decidable but nonelementary; this result easitgnds toWQPTL (see
also [LIC 85] for a later direct proof). The complexity is glentary in the alternation
of — andd.

For a given variable® andPITL formula A, we now give a translatiop(P, A)
which is true of an intervad, . . . s,, In weak QPTL iff the variableP is true for the
first time in some state; and A is true over the initial intervady . . . s;. Thus,g(P, A)
Is semantically like th&ITL formula shown below:

O(O(P = empty) A A) .

This specifies an interval containing a prefix subintervaiciwierminates exactly
when P becomes true and also satisfigs The subformuledd(P = empty) can
be abbreviated asalt P.

Here is the definition of (see the previous footnote 3):

9(P,Q) = (OP)r Q

g(Pa_'A) — _'g(PvA)/\OP

g(P,(AAB)) = g(P,A) rn g(P,B)

g(P,0A4) = -PArOg(P,A)

g(P,(A;B)) = 3R.[g(R,A)  ((=P) until (R n g(P, B)))],

whereR does not occur freely in eithet or B.
9(P,3Q.A) = 3Q.9(P,4) .

A formula A in PITL has the same semantics@smpty, A) in WQPTL:

so...spn E A iff  so...sp FwqepTL g(empty, A) .
|

REMARKS 91. — The translation can be extended to hadI€L. over infinite in-
tervals.

A.3. Lower Bound for Satisfiability

The complexity of decidability foPITL is connected to that testing generalised
regular expressions containing a complement operator.d2eK (private communi-
cation) proved the following theorem:

THEOREM92 (D. KOzEN). — Satisfiability for localPITL is nonelementary.

PROOF. — Stockmeyer [STO 74] shows that the problem of decidingeimoti-
ness of an arbitrary regular expression over the alphfhédt} and with operators)
(union),- (concatenation) and (complement) is nonelementary. Satisfiability for lo-
cal PITL is now reduced to this problem. Given a regular expressiove construct
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a PITL formulah(e) containing instances of a single propositional variaBland
which is satisfiable iff the language generatedelig nonempty. The definition dfi
given by induction on the syntactic structureeof

e h(e)

0 P A empty

1 P A empty
e1 Ues h(el) \Y h(eg)

~e —h(e)

e1-ex  h(er);skip;h(ez)
For example, the translation of the regular expresfianuU ~1 is as follows:
((~Prempty); skip; (Prempty)) v =(Pnrempty) .

Note that the length ofi(e) is linear in that of.

A formal proof relating nonemptiness of a regular exprassiand satisfiability
of the PITL formula h(e) would use a straightforward induction on the syntactic
structure ofe. |

B. Deduction of PTL Axiomsfrom the FL. Axiom System

This appendix contains variolid. theorems and their deductions. These include
ones corresponding to some of (A& L axioms in Table 3 in Section 10. Most of the
PTL axioms and inference rules have identical or nearly idahtiersions in th&'L
axiom system in Table 2 in Section 9. The three exception®\ai@ms Al, A3 and
A4. We will look at each of them in turn &4 theoremd'5, T7 andT 13, respectively.
The trickiest is AxiomAl. The symbol- as used here always referstg;,. None
of the FE formulas occurring in the proofs contain variables anddfae the proofs
also ensure well-formeHLy theorems and derived inference rules for &hy

T3 F OX DY) > ©X DOV

Proof:

1 F OX DY) D (skiphX D (skip™)Y FL9

2 F OX = (skip™)X FL3

3 F QY = (skip")Y FL3

4 F OX DY) DO <©X O OY 2,3Prop

The following slightly obscure theorem is used in the prdof 6:
T4 + DOFY D -X) D> 0OX D> OY

Proof:
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1 F OEY D-X) D <$2Y D O-X T3
2 F l:l(—|Y D) —|X) D) -O=X D =<O-Y 1,PI’Op
3 F OFY >D-X) D 0OX D> OY 2,def. ofd

Below is the proof oPTL Axiom Al asFL theoremTl'5. In the final stepp-chain
stands for a chain of implications.

5 + OX DY) D> O0OX D> OY

Proof:
1 F (X2Y) DO (=Y O —X) Prop
2 F ==Y D -X) DO (X DY) 1,Prop
3 F OH(Y > -X) D (X DY) 2,0Gen
4 F OH(Y D> -X) D ~(X DY) T4

O O DY) D OEY O -X)
5 F O(X DY) D OHY O —X) 3,4AMP
6 F OFY >D-X) D 0O0OX D 0OY T4
7T F O0XD>Y) D 0OX >OY 5,6 D-chain
6 F O-X DO -0X
Proof:
1 F OX DO ©X FL10
2 F OX O -0-X 1,def. of®
3 F O-X DO -0X 2,Prop

Here is a proof oPTL Axiom A3:

T7 F OX DY) D OX D OY

Proof:

1 F (skip)(=X vY) D ((skip)—~X) v ((skip)Y) FL7

2 F O-X vY) = (skip)(=X v V) FL2

3 F O-X = (skip)—-X FL2

4 F OY = (skip)Y FL2

5 F O=-XvY) DO O-X v OY 1-4Prop
6 F O-X DO -0X T6

7T F O=-XvY) D —-0X v OY 5,6 Prop
8 F OXD>Y) D OX D> OY 7,def. of D

The remaining proofs are for ultimately deduciRg'L Axiom A4 asFL theo-
remT13. The following derived ruldDR1 can be readily generalised to allow some
arbitraryFE formula in place ofkip. In addition, a version can be proven which uses
= instead oD.

DR1 F X DY = F (skip)X D (skip)Y
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Proof:

1 - X DO Y

2+ (skip)X D (skip)Y
3 F OX = (skip)X

4 F OY = (skip)Y

5 F OX D OY

Proof:

1 F X =Y

2 F X DO Y

3 F OX DO OY

4 Y O X

5 F OY DO 0OX

6 F OX = O0OY

T8 F ¢SX = X v OOX

Proof:

1 F OX = (skip")X

2+ (skip™) X = X v (skip;skip®)X
3 (skip;skip™)X = (skip)(skip™)X
4 F  Oskip® X = (skip)(skip™)X

5 F 00X = O(skip™)X

6 F X = X v OOoX

T9 F X DO <OX

Proof:

1 F X = X v 00X

2 F X DO <¢X

assump.
OGen
FL9
2,3MP

assump.
1DR1
FL2
FL2
3,4Prop

assump.
1,Prop
2,DR2
1,Prop
4 DR2
3,5Prop

FL3

FL8
FL6
FL2
1,DR3
1-5Prop

T8
1,Prop

103
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T1I0 F OCX DO <©X

Proof:
1 F X = X v 00X
2 F O0X O <©X

T11 + OX DO X

Proof:

1 + =X D) O =X
2 F =0=X O X
3 F O0X DO X

T2 + O0X D> @O0X

Proof:

1 F ——=<C=X O O-X
O—-—=<C=-X DO 00X
OC—=-X DO <O-=X
O—-—=0-X DO <O-X
OoO-0X D) O X
-0-X DO -~0-0X
OX D> e0X

~N O U W N
T T T T T T

Below is a proof ofPTL Axiom A4:

T13 F OX D X A@OX

Proof:

1 F O0X DO X

2 F O0OX > e@O0X

3 F OX DO XAr0OX

This concludes the proofs.

T8
1,Prop

T9
1,Prop
2,def. ofO

Prop

1,DR2

T10
2,3D-chain
4.,def. of 0
5,Prop
6,def. of 0, @

T11
T12
1,2Prop



