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Abstract

Interval Temporal Logic (ITL) is an established formalism for reasoning about
time periods. We elucidate here the relationship between various kinds of compo-
sitional propositional ITL formulas. Several are closed under conjunction and the
standard temporal operator known as “box” and “always”.
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1 Introduction

Intervals and discrete linear state sequences offer a compellingly natural and flexible way
to model computational processes involving hardware or software. Interval Temporal
Logic (ITL) [1], an established formalism for reasoning about such phenomena, has
operators for sequentially combining formulas. If A and B are formulas, so are A;B
(“chop”) and A∗ (“chop-star”). These are related to the concatenation and Kleene star
operators for regular expressions. Time is modelled as in conventional discrete linear-time
temporal logic using finite and infinite sequences of one or more states.

We recently introduced and investigated 2-to-1 formulas for compositional reason-
ing [2]. A formula A is 2-to-1 if the implication (A;A) ⊃ A is valid, so if two portions
of a system ensure such a formula’s behaviour, then their sequential composition is guar-
anteed to as well. This work builds on our earlier compositional techniques surveyed
in [3] to facilitate inference rules for combining concurrent systems sequentially and in
parallel. A sample rule is later presented in Sect. 3. The 2-to-1 formulas are closed under
conjunction and the conventional temporal operator 2 (“always”) which examines suffix
subintervals. This helps modularly obtain 2-to-1 safety and liveness formulas such as the
standard temporal formulas 2p (“always p”) and 2(p ⊃ 3q) (“p always leads to q”),
where p and q are propositional variables. The propositional version of ITL (PITL) used
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here to formalise 2-to-1 formulas is decidable and has a complete axiomatisation [4], but
our results are also applicable to first-order ITL (along the lines of [3]).

The versatile class of 2-to-1 formulas has useful subclasses (e.g., ∗-to-1: A∗ ⊃ A)
and other variants, also closed under conjunction and sometimes closed under 2 as well.
Our presentation here mainly concerns interconnections between these to elucidate the
nature of such formulas and obtain new ones. We systematically and incrementally apply
properties proved about some formulas to later proofs for others to avoid redundant
reasoning.

2 Propositional Interval Temporal Logic

We now describe the version of (quantifier-free) PITL used here. More about PITL can
be found in [4] (see also [1] and the ITL web pages [5]).

Here is a BNF syntax of PITL formulas, with p any propositional variable:

A ::= true | p | ¬A | A ∨ A | skip | A;A | A∗. (1)

Boolean operators false, A ∧ B, A ⊃ B and A ≡ B are defined as usual.

Time within PITL is modelled by discrete, linear state sequences. The set of states
Σ is the power set 2V, where V is the set of propositional variables. Each state in
Σ therefore sets every propositional variable p, q, . . . to true or false. The associated
(standard) version of PITL with such state-based variables (instead of interval-based
ones) is called local PITL. An interval σ is any element of Σ+ ∪Σω and has states σ0,
σ1, . . . .

The notation σ |= A, defined shortly by induction on formula A’s syntax, denotes
that interval σ satisfies A. If all intervals satisfy A, denoted |= A, it is valid. Below are
the semantics of the first five PITL constructs in (1):

σ |= true for any σ σ |= p iff p ∈ σ0 (initially p) σ |= ¬A iff σ 6|= A

σ |= A ∨ B iff σ |= A or σ |= B σ |= skip iff σ ∈ Σ2 (two states).

The cases below for chop and chop-star involve subintervals:

– Chop: σ |= A;B iff for some σ′ and σ′′, σ′ |= A and σ′′ |= B

or σ ∈ Σω and σ |= A,

where σ′ ∈ Σ+ is a finite prefix subinterval of σ (perhaps even σ itself if σ ∈ Σ+),
and σ′′ is the adjacent suffix subinterval of σ with one shared state (i.e., the last
state of σ′). Chop here is weak (like the weak version of the temporal operator
Until) for potentially nonterminating programs which ignore B. Strong chop (and
chop-star) is derivable.

– Chop-star: σ |= A∗ iff one of the following holds: (1) σ has only one state
(i.e., σ ∈ Σ). (2) σ either itself satisfies A or can be split into a finite number of
subintervals which share end-states (like chop) and all satisfy A. (3) σ ∈ Σω and
can be split into ω finite-length intervals sharing end-states (like chop) and each
satisfying A.

2



©A =̂ skip;A Next more =̂© true Two or more states

empty =̂¬more One state A? =̂ empty ∧ A One state with test

inf =̂ true ;false ω states finite =̂¬inf Finite interval

3A =̂finite;A Eventually 2A =̂¬3¬A Henceforth (always)

fin A =̂2(empty Final state Aω =̂ inf Chop-omega
⊃ A) (weak) ∧ (finite ∧ A)∗

i3A =̂A; true Initial (prefix) i2A =̂¬ i3¬A All initial (prefix)
subinterval subintervals

Table 1: Some Useful Derived PITL Operators

Consider a sample 5-state interval σ with the following alternating values for the
variable p:

p ¬p p ¬p p.

Here are formulas satisfied by σ:

p skip;¬p p ∧ (true ;¬p) (p ∧ (skip; skip))∗.

For instance, skip;¬p is true since σ’s prefix subinterval σ0σ1 satisfies skip and the adja-
cent suffix subinterval σ1 . . . σ4 satisfies ¬p because p 6∈ σ1. The formula (p ∧ (skip; skip))∗

is true since σ’s subintervals σ0σ1σ2 and σ2σ3σ4 both satisfy p ∧ (skip; skip). The interval
σ does not satisfy the formulas ¬p, skip; p and true ; (¬p ∧ ¬(true ; p)).

Table 1 shows useful derived PITL operators.

Let w and w′ denote state formulas with no temporal operators. Let PTL denote
the PITL subset of conventional Propositional Linear-Time Temporal Logic with
just the (derived) operators © and 3 in Table 1.

Here are some sample valid PITL formulas:

A ⊃ i3A skip∗ inf ≡ 2more (w ∧ A);B ≡ w ∧ (A;B) A ≡ (empty ;A).

As another example, the equivalence (w ∧ A) ≡ (empty ∧ w);A is valid since for any
interval σ, σ |= w ∧ A iff σ’s first state satisfies w and σ |= A.

3 2-to-1 Formulas

A PITL formula A is 2-to-1 iff (A;A) ⊃ A is valid. For example, true , p, empty and B?
(for any B) are 2-to-1, as are PTL formulas 2p and 2(p ⊃ 3q), but not skip. The next
sample semantic inference rule uses a 2-to-1 formula A with systems Sys and Sys ′ and
pre- and post-conditions w, w′ and w′′:

|= w ∧ Sys ⊃ A ∧ fin w′,

|= w′
∧ Sys ′ ⊃ A ∧ fin w′′

|= w ∧ (Sys ; Sys ′) ⊃ A ∧ fin w′′.
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We now discuss properties of 2-to-1 formulas. This class is later used with other
classes such as ∗-to-1 formulas (i.e., |= A∗ ⊃ A) for iteration in Sect. 4. Our systematic
analysis incrementally obtains formulas in the classes. Included are many PTL formulas
for which it also seems computationally feasible to check membership in the classes, but
this is left for future work.

Theorem 1 (Moszkowski [2]). 2-to-1 formulas are closed under ∧ and 2.

Proof. Here is a chain of valid implications for ∧: (A ∧ B); (A ∧ B) ⊃ (A;A) ∧ (B;B) ⊃
(A ∧ B). For 2, if σ |= (2A); (2A), then every suffix of σ satisfies A;A or A and hence
A so σ |= 2A. Therefore, |= (2A); (2A) ⊃ 2A.

The 2-closure for 2-to-1 formulas nicely generalises to the next semantic inference
rule for any C and C ′: |= (C ′;C) ⊃ C ⇒ |= ((2C ′);2C) ⊃ 2C.

If A is 2-to-1, so is empty ∨A (equivalent to more ⊃ A) and, more generally, B? ∨ A

(empty is equivalent to true?). Our proof reduces (B? ∨ A); (B? ∨ A) to (B?; (B? ∨ A)) ∨

(A; (B?)) ∨ (A;A) and then B? ∨ A using, e.g., |= (A; (B?)) ⊃ A. The 2-to-1 class is not
closed under ∨ (e.g., p ∨ 2q).

We define a PITL formula A to be i3-to-1 if |= ( i3A) ⊃ A is valid. This includes
2-to-1 formulas p, 3q and p ⊃ 3q, but not 2p so lacks 2-closure.

Lemma 2. Every i3-to-1 formula is 2-to-1.

Proof. From |= (A;A) ⊃ i3A and |= ( i3A) ⊃ A follows |= (A;A) ⊃ A.

Lemma 3. The i3-to-1 formulas are closed under both ∧ and ∨.

Proof. Here are chains of valid implications:

i3(A ∧ B) ⊃ ( i3A) ∧ ( i3B) ⊃ A ∧ B

i3(A ∨ B) ⊃ ( i3A) ∨ ( i3B) ⊃ A ∨ B.

Proofs for Theorem 1 and Lemmas 2–3 work even if chop is the only primitive temporal
operator, time is not discrete, or variables p, q, . . . are not state- but interval-based (e.g.,
σ0 can set p true, and σ0σ1 can set p false).

The i3-to-1 formulas such as those in Lemma 4 below can serve as simple 2-to-1
building blocks (recall Lemma 2) for creating bigger 2-to-1 formulas.

Lemma 4. For any state formula w, PITL formula A and i3-to-1 formula B, the fol-
lowing are i3-to-1: w, A;B (e.g., i3A, ©B and 3B) and w ⊃ B.

Proof. For example, here is a chain of valid implications for A;B: i3(A;B) ⊃ A; i3B ⊃
A;B. We re-express w ⊃ B as ¬w ∨B and use closure under ∨.

For instance, the PTL formula p ⊃ 3q is i3-to-1 and so 2-to-1 as is the liveness
formula 2(p ⊃ 3q) by 2-closure. However, this is not i3-to-1.

Let a positive PTL formula be one built from state formulas, © and 3 using con-
junctions and disjunctions, but no negated temporal formulas.
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Theorem 5. Every positive PTL formula is i3-to-1 and hence also 2-to-1.

Proof. We use Lemmas 3 and 4 and induction on syntax, then Lemma 2.

Let NL1 (NL=“Next Logic”) be the 3-less PTL subset with no © nested in another
© (e.g., p ∧ ¬q, (© p) ⊃ ¬©(q ∧ ¬r) and p ≡ ©¬p, but not p ∧ ©© q). Let T denote an
NL1 formula. It sees at most an interval’s first two states, just as a state formula such as
p ∧ ¬q only sees the interval’s first state. Positive NL1 formulas are i3-to-1 by Theorem 5,
but not all NL1 formulas are (e.g., 6|= ( i3 empty) ⊃ empty). We however show they are
2-to-1.

Lemma 6. For any NL1 formula T , more ∧ T is i3-to-1 and T is 2-to-1.

Proof. We can re-express more ∧ T as a positive NL1 formula (e.g., more ∧ ¬(p ∧ © q)
becomes more ∧ (¬p ∨ ©¬q)), so it is i3-to-1 by Theorem 5, and also 2-to-1 (Lemma 2).
Let us re-express T as (empty ∧ T ) ∨ (more ∧ T ). This abbreviates to T ? ∨ (more ∧ T )
and is an instance of the 2-to-1 disjunction B? ∨ A discussed earlier after Theorem 1, so
T is 2-to-1.

For example, the NL1 formula more ⊃ (p ≡ © p) tests equality of p in the first two
states. It is 2-to-1 by Lemma 6. By 2-closure, so is 2(more ⊃ (p ≡ © p)). This formula,
denoted stable p, tests that p is stable in the interval.

A restricted until formula T until C is definable as (finite ∧ 2(more ⊃ T ));C, also
expressible as

(
finite ∧ (skip ∧ T )∗

)
;C. Here is an example: (p ≡ © p) until 2q. We

omit finite for a weak version. If C is i3-to-1, so are T until C and its weak variant
by Lemma 4, and they are also 2-to-1 by Lemma 2. We further illustrate T until C
with a variant of a formula Bäumler et al. [6] use with ITL for Jones’ rely-guarantee
framework [7]: G until (more ∧ G ∧ ¬R), where G and R are in NL1. This ensures G is
true longer than R. Here C is the NL1 formula more ∧ G ∧ ¬R and is i3-to-1 by Lemma 6.
Hence, our instance of T until C is indeed i3-to-1 and 2-to-1 (as is one using the weak
version of until). Weak variants of it using disjunctions with either 2G (see Bäumler et
al. [6]), inf ∧ 2G or 2(more ⊃ G) are 2-to-1. The proofs use the fact that if A is 2-to-1,
B is i3-to-1 and |= (A;B) ⊃ B, then A ∨ B is 2-to-1. This is so since we can express
(A∨B); (A∨B) as (A;A) ∨ (A;B) ∨

(
B; (A∨B)

)
and reduce it to A ∨ B. Here B; (A∨B)

implies i3B, so also B since B is i3-to-1.

4 Iteration and Star-to-1 Formulas

The ∗-to-1 class (i.e., |= A∗ ⊃ A) includes more ⊃ B and 2(more ⊃ B) for any B in
i3-to-1 or NL1 (e.g., p and p ⊃ 3q). We analyse it using the variants below:

0-to-1 formulas: |= empty ⊃ A

ω-to-1 formulas: |= Aω ⊃ A.
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Classes 0-to-1, 2-to-1 and ω-to-1 do not contain each other, but their intersection is
∗-to-1 (Lemma 7). Below are sample formulas and their classes:

skip [ ] empty ∨ skip [0] finite ∧ p [2] finite [0, 2]

skip ∨ inf [ω] ¬(skip; skip) [0, ω] 2p [2, ω]

more ⊃ p [0, 2, ω, ∗] p [ i3, 2, ω] true [ i3, 0, 2, ω, ∗],

where the sixth formula ¬(skip; skip) denotes “not three states”. The intersection of i3-
to-1 and 0-to-1 is all valid formulas (true-to-1). The next Venn diagram’s shaded area
is for i3-to-1:

0

ω

2
i3

∗ ( i3-to-1 is a subset of 2-to-1 and ω-to-1 by Lemmas 2 and 10.)

Lemma 7. A formula A is ∗-to-1 iff it is 0-to-1, 2-to-1 and ω-to-1.

Proof. Left to right: The formulas empty , A;A andAω each imply A∗. Hence, for example,
|= Aω ⊃ A∗ and assumption |= A∗ ⊃ A yield that A is ω-to-1.

Right to left: Assume σ |= A∗. Chop-star’s semantics in Sect. 2 has three cases: either
σ |= empty , σ |= An, or σ |= Aω, where An denotes n iterations for some (finite) n ≥ 1
(e.g., A;A;A). If σ |= empty, then σ |= A since A is 0-to-1. The assumption that A is
2-to-1 and induction on any k ≥ 1 yield |= Ak ⊃ A, so if σ |= An, then σ |= A. Lastly, if
σ |= Aω, then σ |= A since A is ω-to-1. Thus, for each case of σ |= A∗, also σ |= A. So
|= A∗ ⊃ A.

Lemma 8. If sets of formulas S1, . . . , Sn are each closed under a PITL operator (e.g., ∧

or 2), so is their intersection S1 ∩ · · · ∩ Sn.

Proof. For example with 2, if A ∈ S1 ∩ S2, then 2A is in S1 and S2, so in S1 ∩ S2.

Lemma 9. The 0-to-1 formulas are closed under ∧, ∨ and 2.

Proof. For example, from |= empty ⊃ A, we readily have |= empty ⊃ 2A.

Lemma 10. The ω-to-1 class includes i3-to-1 and is closed under ∧ and 2.

Proof. We use the two chains of valid implications Aω ⊃ i3A ⊃ A (where A is i3-to-1)
and (A ∧ B)ω ⊃ (Aω

∧ Bω) ⊃ (A ∧ B). For 2-closure, if σ |= (2A)ω, each suffix satisfies
Aω and hence A, so σ |= 2A and |= (2A)ω ⊃ 2A.

Closure for ∗-to-1 under ∧ and 2 follows by Theorem 1 and Lemmas 7–10. The next
theorem helps show 2

(
more ⊃ (p ⊃ 3q)

)
and stable p are ∗-to-1:

Theorem 11. If B is i3-to-1, then more ⊃ B and 2(more ⊃ B) are ∗-to-1.

Proof. Formula more⊃B is trivially 0-to-1. It is 2-to-1 since B is (see Lemma 2 and the
discussion after Theorem 1). Class ω-to-1 includes i3-to-1 (Lemma 10), so |= Bω ⊃B.
This yields |= Bω ⊃ (more ⊃B). We re-express Bω as (more⊃B)ω, so more⊃B is also
ω-to-1, hence ∗-to-1 by Lemma 7. Also, 2(more ⊃ B) is ∗-to-1 by 2-closure (so 0-to-1,
2-to-1 and ω-to-1).
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Every positive PTL formula, e.g., p ⊃ 3q, can serve as B (Theorem 5). For any NL1

formula T , the formula more ∧ T is i3-to-1 by Lemma 6. Hence, more ⊃ (more ∧ T ) is
∗-to-1, and so is the equivalent formula more ⊃ T .

Both ω-to-1 and ∗-to-1 are not ∨-closed (e.g., (more ⊃ p) ∨ 2(more ⊃ q)).

Variants of Lemmas 2 and 3 about i3-to-1 formulas work for 3-to-1 formulas (e.g.,
3A and finite). For example, 3-to-1 is in 2-to-1. In [2], time symmetry yields more
formulas. Note that safety properties, which concern prefix subintervals, are expressible
with i2. For example, 2p and 2(more ⊃ T ) are equivalent to i22p and i22(more ⊃ T ),
and also equivalent to i2(finite ⊃ 2p) and i2(finite ⊃ 2(more ⊃ T )), respectively.
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