
In Proceedings of the 27th International Colloquium on Automata, Languages and Programming (ICALP 2000),
editors: Ugo Montanari, José Rolim and Emo Welzl. Geneva, Switzerland, July 9–15, 2000.

Lecture Notes in Computer Science, vol. 1853, Springer-Verlag, pages 223–234.

An Automata-Theoretic Completeness Proof for
Interval Temporal Logic

(Extended Abstract)

B. C. Moszkowski⋆

Software Technology Research Lab.
SERCentre

Hawthorn Building
De Montfort University

The Gateway
Leicester LE1 9BH

Great Britain

benm@dmu.ac.uk
http://www.cms.dmu.ac.uk/˜benm

Abstract. Interval Temporal Logic(ITL) is a formalism for reasoning about time
periods. To date no one has proved completeness of a relatively simple ITL de-
ductive system supporting infinite time and permitting infinite sequential iteration
comparable toω-regular expressions. We have developed a complete axiomati-
zation for such a version of quantified ITL over finite domainsand can show
completeness by representing finite-state automata in ITL and then translating
ITL formulas into them. Here we limit ourselves to finite time. The full paper
(and another conference paper [15]) extends the approach toinfinite time.

1 Introduction

Interval Temporal Logic(ITL) [6,9,10] is a temporal logic which includes a basic con-
struct for the sequential composition of two formulas as well as an analog of Kleene
star. Within ITL, one can express both finite-state automataand regular expressions. Its
notation makes it suitable for logic-based modular reasoning involving periods of time,
refinement [2], sequential composition using assumptions and commitments based on
fixpoints of various temporal operators [12, 14] and for executable specifications [11].
Various imperative programming constructs are expressible in ITL and projection be-
tween time granularities is available (but not considered here). Zhou Chaochen, Hoare
and Ravn [21] have developed an ITL extension calledDuration Calculusfor hybrid
systems. Several researchers have looked at ITL decision procedures and axioms sys-
tems. However, previously there was no known complete axiomsystem for a version
of ITL over both finite andω-words having no artificial restrictions on interval con-
structs. We present a natural and complete axiomatization for a subset of quantified ITL

⋆ Part of the research described here has been kindly supported by EPSRC research grant
GR/K25922.
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for finite time in which variables are limited to finite domains. The completeness proof
describes an ITL decision procedure within ITL itself. In the full paper (and another
conference paper [15]) infinite time is considered.

We build on the work of Siefkes [19] who proved the completeness of an axiom-
atization of theSecond-Order Theory of Successor(S1S) and Kesten and Pnueli [7]
who did likewise forQuantified Propositional Temporal Logic(QPTL) with past-time
operators. Our approach follows Kesten and Pnueli’s technique of reducing temporal
formulas to finite-state automata as part of a decision procedure. These automata are
themselves represented and manipulated in ITL. The ITL axiom system and complete-
ness proof vary substantially from Kesten and Pnueli’s. This reflects differences be-
tween conventional temporal logics and an interval-based one.

Our results offer a natural yet complete axiom system for a nontrivial subset of ITL
and show how ITL can itself encode the decision procedure. Automata are more compo-
sitional than temporal logic tableaux which analyze several formulas in parallel. There
is no need for Fischer-Ladner closures [4], first developed for a propositional version of
Pratt’s Dynamic Logic [17]. We also show that the ITL axiom system provides a logical
framework for both finite-state automata and regular expressions.

2 Related Work

Let us now discuss other work on ITL axiom systems. Rosner andPnueli [18] inves-
tigate an axiom system for quantifier-free propositional ITL (PITL) with finite andω-
intervals. The ITL subset also includes theuntil operator but not the operatorchop-star
which is like Kleene-star for regular expressions. A tableaux-based decision procedure
underlies the completeness proof and uses an adaptation of the Fischer-Ladner closures.
One inference rule requires detailed meta-reasoning abouttableaux transitions.

Paech [16] investigates PITL withω-intervals but includes achop-starlimited, like
Kleene-star, to finitely many iterations and another operator unless. She gives a com-
plete proof system with some nonconventional axioms for formulas already in a form
like regular expressions and possibly involving complex meta-reasoning. A generaliza-
tion of Fischer-Ladner closures is used.

Dutertre [3] gives two complete proof systems for first-order ITL without chop-
star for finite time. One has a possible-worlds semantics of time and the other uses
arbitrary linear orderings of states. Neither is complete for standard discrete-time inter-
vals. Wang Hanpin and Xu Qiwen [20] generalize this to infinite time. Moszkowski [12]
presents propositional and first-order ITL axiom systems for finite intervals. The former
is claimed to be complete but only an outline of a proof is given. Axioms for tempo-
ral projection are given in [13]. Bowman and Thompson [1] have recently developed
a tableaux-based completeness proof for an axiomatizationof ITL with projection and
finite time.

3 Overview of Interval Temporal Logic

We now briefly describe ITL for finite time. More details are in[6, 8–12, 14]. Basic
ITL uses discrete, linear time. An intervalσ has a length|σ| ≥ 0 and a finite, nonempty
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sequence of|σ|+1 statesσ0, . . . , σ|σ|. A stateσi maps a variable such asA to a value
σi(A). Lower-casestaticvariablesa, b, . . . do not vary over time.

Here are permitted constructs using variablev, termst andt ′ and formulasP andQ:

Terms: v(for numericalv), 0, 1, 2,. . . (natural numbers),if P then t else t′

Formulas: v(for booleanv), t = t ′, ∀v.P, ¬P, P ∧ Q, skip, P;Q, P∗

A variablev’s values in an interval range over the finite, nonempty setdomain(v)
which here is either{ false, true} or some initial subsequence of the natural numbers.
Finite data domains ensure we have a decision procedure for our completeness result.
We can readily extenddomain to all ITL constructs. As in several temporal logics, the
formulaI = 2 is true onσ iff I ’s value inσ0 equals 2.

There are three primitive temporal operators:

skip P;Q (chop) P∗ (chop-star) ,

whereP andQ are themselves formulas. The formulaskipis true on a two-state interval.
A formula P;Q is true onσ iff σ can be chopped into two subintervals sharing a state
σk for somek ≤ |σ| with P true onσ0 . . .σk andQ true onσk . . .σ|σ|. Thus the formula
skip; I = J is true onσ iff σ has at least two states andI = J is true inσ1. A formula
P∗ is true onσ iff σ can be chopped into zero or more parts withP true on each. Any
formulaP∗ (includingfalse∗) is true on a one-state interval (see §3.2). Figure 1a picto-
rially illustrates the semantics ofskip, chop, andchop-star. Some simple ITL formulas
together with intervals which satisfy them are shown in Fig.1b.

PP P

P∗

P Q

P;Q

skip

(a) Informal semantics

true; I 6= 1
(3 I 6= 1)

¬(true; I 6= 1)

(2 I = 1)

I = 1 ∧ skip

I = 1

skip; I = 1
(© I = 1)

1

I :

I : 2 4

1 2

2 1 2 4

I = 1skip

1 3 1 1

I 6= 1true

1 1 1 1 1 1

I :

I :

I :

11

(b) Some examples

Fig. 1. Informal ITL semantics and examples

For natural numbersi, j with i ≤ j ≤ |σ|, let σi: j denotes the subinterval of length
j − i (i.e., j − i + 1 states) with starting stateσi and final stateσ j . Below is the syntax
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and semantics of the basic ITL constructs used here. We denote the semantics of a term
t and formulaP on intervalσ asM σ[[t]] andM σ[[P]].

3.1 Semantics of Terms

– Numerical static or state variable:M σ[[v]]=σ0(v).
A numerical variable’s value for an intervalσ is the value inσ’s initial stateσ0.

– Numerical constant:M σ[[c]] = c.
– Conditional term:M σ[[if P then t else t′]] =

{

M σ[[t]], if M σ[[P]] = true

M σ[[t ′]], otherwise.

3.2 Semantics of Formulas

– Boolean static or state variable:M σ[[v]] = σ0(v).
A boolean variable’s value for an intervalσ is the value inσ’s initial stateσ0.

– Equality:M σ[[t = t ′]] = true iff M σ[[t]] =M σ[[t ′]].
– Negation:M σ[[¬P]] = true iff M σ[[P]] = false.
– Conjunction:M σ[[P ∧ Q]] = true iff M σ[[P]] =M σ[[Q]] = true.
– Universal quantification:M σ[[∀v.P]] = true iff M σ′ [[P]] = true,

for every intervalσ′ identical toσ except possibly for variablev’s behavior.
– Unit interval:M σ[[skip]] = true iff |σ| = 1.
– Chop:M σ[[P;Q]] = true iff M σ′ [[P]] = trueandM σ′′ [[Q]] = true,

whereσ′ = σ0:i andσ′′ = σi:|σ| for somei ≤ |σ|. Intervalsσ′ andσ′′ share stateσi .
– Chop-star:M σ[[P∗]] = true iff M σli :li+1

[[P]] = true, for eachi : 0≤ i < n,
for somen ≥ 0 and finite sequence of natural numbersl0 ≤ l1 ≤ ·· · ≤ ln where
l0 = 0 andln = |σ|. Every one-state interval satisfiesP∗ since we can trivially choose
n = 0.

If a formulaP is true on an intervalσ, thenσ satisfies P, denotedσ |= P. A formula
P satisfied by all intervals isvalid, denoted|= P.

We view formulas as boolean terms to avoid, for example, distinct theorems for
quantified boolean and numerical variables. HenceP = Q andP≡ Q are identical.

3.3 Some Definable Constructs

Constructs liketrue, P ∨ Q and∃v.P are definable as are3P (“sometimesP”), 2P
(“alwaysP”) and©P (“next P”):

3P
def
≡ true;P 2P

def
≡ ¬3¬P ©P

def
≡ skip;P .

We refer to the quantifier-free ITL subset built from no temporal operators but3 and©

assimple temporal logic. Here are more operators expressible in this:

©w P
def
≡ ¬©¬P (Weak next) fin P

def
≡ 2(empty⊃ P) (Final state)

more
def
≡ © true (More states) halt P

def
≡ 2(P≡ empty) (Just last)

empty
def
≡ ¬more (One state) 2m P

def
≡ 2(more⊃ P) (Mostly)
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The conventional temporal operatoruntil, though definable (with∃), is not needed. A
version of© for numerical terms is expressible using conditional terms. The formula
t gets t′ is true iff for each pair of adjacent states, the value of termt ′ at the first state
(i.e., on the suffix subinterval starting from it) equals term t ’s value at the second state:

t gets t′
def
≡ 2m

(

(©t) = t ′
)

.

Below are operators for examininginitial andarbitrary subintervals:

3i P
def
≡ P; true 2i P

def
≡ ¬3i ¬P 3a P

def
≡ true;P; true 2a P

def
≡ ¬3a ¬P .

4 A Proof System

We now present a proof system for ITL. Our experience with hundreds of proofs has
helped refine it. There is a quantifier-free part and another for quantifiers.

4.1 Quantifier-Free Axioms and Inference Rules.

We use some of Rosner and Pnueli’s axioms forchop[18] and ours for2i andchop-
star [12]. Let w be astate formula, i.e., without temporal operators.

Basic ⊢ Substitution instances of all valid
quantifier-free state formulas.

P2 ⊢ (P;Q);R≡ P;(Q;R)
P3 ⊢ (P ∨ P′);Q ⊃ (P;Q) ∨ (P′;Q)
P4 ⊢ P;(Q ∨ Q′) ⊃ (P;Q) ∨ (P;Q′)
P5 ⊢ empty;P≡ P
P6 ⊢ P;empty≡ P
P7 ⊢ w ⊃ 2i w

MP ⊢ P⊃ Q, ⊢ P ⇒ ⊢ Q
2Gen⊢ P ⇒ ⊢ 2P

P8 ⊢ w ⊃ 2w ,

where variables inw are static.
P9 ⊢ 2i (P⊃ P′) ∧ 2(Q⊃ Q′)

⊃ (P;Q) ⊃ (P′;Q′)

P10 ⊢ ©P ⊃ ©w P
P11 ⊢ P ∧ 2(P ⊃ ©w P) ⊃ 2P
P12 ⊢ P∗ ≡ empty∨ (P ∧ more);P∗

2i Gen⊢ P ⇒ ⊢ 2i P

These axioms and inference rules do not have quantifiers butw, P, etc. can. In Axiom
Basic, term t substitutes into variablev only if domain(t) ⊆ domain(v). Axiom P11
enables induction over time.

A formulaP deduced from the axiom system is called anITL theorem, denoted⊢ P.
Below are a few theorems. The full paper has more with some proofs.

T1 ⊢ 2(P⊃ Q) ⊃ 2P⊃ 2Q T4 ⊢ (w ∧ P);Q ≡ w ∧ (P;Q)
T2 ⊢ ©(P⊃ Q) ⊃ ©P⊃ ©Q T5 ⊢ P∗∗ ≡ P∗

T3 ⊢ 3empty T6 ⊢ skip∗
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4.2 Axioms and Inference Rules for Quantifiers

In the axioms and inference rules for quantifiers,v is an arbitrary variable:

Q1 ⊢ ∀v.P ⊃ Pt
v ,

wherev is free fort in P anddomain(t) ⊆ domain(v). (The full paper describes
substitution into temporal contexts.)

Q2 ⊢ ∀v.(P⊃ Q) ⊃ (P⊃ ∀v.Q), wherev does not occur freely inP.
Q3 ⊢ ∃v.(P;Q) ≡ (∃v.P);Q, wherev does not occur freely inQ.
Q4 ⊢ ∃v.(P;Q) ≡ P;(∃v.Q), wherev does not occur freely inP.
Q5 ⊢ (∃v.P);©(∃v.Q) ⊃ ∃v.(P;©Q), wherev is a state variable.

∀Gen ⊢ P ⇒ ⊢ ∀v.P, for any variablev.

The next theorem expresseschop-starusing a fresh boolean variableB:

T7 ⊢ P∗ ≡ ∃B.

(

B ∧ 2m
(

B ⊃ 3i (P ∧ ©halt B)
)

)

.

Here is one to construct a hidden state variablev always equalingt:

T8 ⊢ ∃v.2(v = t) ,

wheredomain(t) ⊆ domain(v) andv does not occur freely int.

The one below creates a hidden state variablev which is initialized and then incre-
mentally assigned a term which can depend onv’s current value:

T9 ⊢ ∃v.(v = t ∧ v gets t′) ,

wheredomain(t) ⊆ domain(v) anddomain(t ′) ⊆ domain(v). Also v does
not occur freely int or within the temporal operators int ′.

Thus, the boolean variableB below initially equalsfalseand always flips:

⊢ ∃B.(B = false∧ B gets¬B) .

One can easily show that the axiom system issound, that is,⊢ P implies |= P. Our
main goal is conversely to establishcompleteness, that is,|= P implies⊢ P:

Theorem 4.1 (Completeness)Any valid ITL formula is also a theorem.

5 Overview of the Proof of Completeness

The basic completeness proof assumes formulas contain no static variables:

Lemma 5.1 (Relative completeness for static variables)If all valid formulas without
static variables are theorems, so are those with them.

Proof (Outline) Let P be a valid formula and letP′ be ∀u1 . . . ∀un.P, whereu1, . . . ,
un are the free static variables inP. Now P′ is also valid and provably impliesP (i.e.,
⊢ P′ ⊃ P). For each static variableu in P′, replace any subformula∀u.Q using the
theorem⊢∀u.Q≡

V
c∈domain(u) Qc

u. The new formulaP′′ is valid and provably equivalent
to P′ (i.e.,⊢ P′ ≡ P′′). By our assumption,P′′ is a theorem so we can deduceP. ⊓⊔
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The proof of Theorem 4.1 reduces formulas to equivalent onesin a normal form:

Lemma 5.2 (Normal form) For each formula we can deduce an equivalent one having
no new variables and in which each equality is of the form v= c, where v is numerical
and c∈ domain(v). If the original formula is the simple temporal logic definedin §3.3,
so is the normalized one.

Lemma 5.3 (Completeness for simple temporal logic)Any valid formula in the sim-
ple temporal logic subset is a theorem.

Proof (Outline) We start with a complete axiom system for conventional linear-time
temporal logic easily altered for finite intervals and finitedomains. All of the axioms
and inference rules are provable from our ITL axiom system. They are AxiomsBa-
sic, P8, P10andP11, Inference RulesMP and2Gen and TheoremsT1, T2 andT3.
Therefore, ITL theoremhood of any valid formula in the subset can be deduced. ⊓⊔

5.1 Automata

We now adapt the approach of Kesten and Pnueli [7] and utilizea variant of finite-state
automata called herechop-automatawhich selectively accept intervals. All normalized
ITL formulas can be built from a few constructs, each having atranslation into an
automaton. In effect, we embed a decision procedure for ITL in ITL itself and use the
logic to express the procedure’s correctness. This helps toshow completeness.

The behavior of an automatonA can be expressed in ITL as the formula denotedχA
(defined later) which is true on an interval iffA accepts that interval. We then construct
from a formulaP an automatonA P accepting the intervals satisfyingP. The formula
χA P

representsA P’s accepting runs and is provably equivalent toP in the axiom system
(i.e., ⊢ P ≡ χA P

). The shorter formχP is generally used. We can also show for any
automataA accepting no intervals, the formulaχA is provably false (i.e.,⊢ ¬χA ).

To prove that a valid formulaP is a theorem, we construct from¬P an automaton
A ¬P with ⊢ ¬P≡ χ¬P. Now P is valid, soA ¬P accepts nothing and we deduce⊢ ¬χ¬P.
These together yield⊢ P.

We now describechop-automatafor recognizing finite intervals.

Definition 5.4 (Chop-automaton) A (nondeterministic)chop-automatonA is a quin-
tuple(V, K, q0, δ, τ) for which

– V is a possibly empty finite set of boolean and numerical statevariables,
– K is a nonempty finite set ofautomaton states,
– q0 ∈ K is theinitial state,
– δ is the transition functionmapping K×K to quantifier-free state formulas over

variables in V,
– τ is thetermination functionmapping K to quantifier-free state formulas over vari-

ables in V.

It is necessary to introduce the notion of arun of a chop-automaton on an interval:

7



Definition 5.5 (Run and accepting run of chop-automaton)A runof a chop-automata
A over an intervalσ is any finite sequenceρ of |σ|+ 1 elementsρ0, . . . , ρ|σ| ∈ K in
which for each two adjacent automaton statesρi andρi+1 the interval stateσi satisfies
the transition formulaδ(ρi ,ρi+1), (i.e.,σi |= δ(ρi ,ρi+1)).

A run ρ is called anaccepting runof the chop-automatonA over the intervalσ if
the run’s initial stateρ0 is q0 and in additionσ’s final stateσ|σ| satisfies the termination
condition selected by the run’s final automaton stateρ|σ|, namelyτ(ρ|σ|).

We say thatA acceptsan intervalσ if there is at least one accepting run overσ.

In contrast to conventional finite-state automata, a chop-automaton usesτ to test the
very end of an interval without advancing to permit the operator chopto be represented.

An automatonA ’s accepting runs are expressible in ITL. LetY be a numerical state
variablenot in V and withK ⊆ domain(Y). Define the formulaacc_rA (Y) as follows:

acc_rA (Y)
def
≡ Y = q0 ∧ 2m δ(Y,©Y) ∧ fin τ(Y) .

The formulaχA now defined expresses the existence of some accepting run:

χA def
≡ ∃Y.acc_rA (Y) .

5.2 Automata Constructions

Given some normalized formulaP (see Lemma 5.2 presented earlier), we construct an
automatonA P. We sometimes denote the individual parts ofA P asVP, KP, etc. and
abbreviateacc_rA

P
(Y) andχA P

asacc_rP(Y) andχP, respectively.
Here is a list of formulas which we need to consider:w (quantifier-free state for-

mula),P∨ Q,¬P, ∃v.P, skip, andP;Q. These constructs are ones most readily translated
to automata. We replacechop-starformulas using ITL TheoremT7 in §4.2 to avoid the
need to also directly reduce them to automata.

During the construction of automata, various operations can be performed such as
renaming of an automaton’s states or determinizing it. These are expressible as ITL
theorems. The details are omitted here. We also have the following lemma:

Lemma 5.6 If A has no accepting runs, then⊢ ¬χA .

Proof Suppose thatA has no accepting runs. The following formula is valid and hence a
theorem by Lemma 5.3:⊢¬acc_rA (Y). We introduce an existential quantifier to deduce
the theorem⊢ ¬∃Y.acc_rA (Y) which reduces to⊢ ¬χA . ⊓⊔

Below are constructions forw, skipandchop. The full paper also looks at others.

Automata for Quantifier-Free State Formulas For a quantifier-free state formulaw,
the automatonA w hasV equal the set ofw’s variables,K = {0,1}, q0 = 0 with δ andτ
as follows:

δ(0,0) : false δ(0,1) : w
δ(1,0) : false δ(1,1) : true

τ(0) : w τ(1) : true
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Claim 5.7 The automatonA w accepts an intervalσ iff σ satisfies w.

Lemma 5.8 The following equivalence is an ITL theorem:⊢ w≡ χw.

Proof Let X be a numerical state variable with domain{0,1} and not occurring inw.
The following valid simple temporal formula is a theorem by Lemma 5.3:

⊢ w ∧ X = 0 ∧ X gets1 ⊃ acc_rw(X) . (5.1)

The variableX can now be existentially created using ITL TheoremT9:

⊢ ∃X.(X = 0 ∧ X gets1) . (5.2)

The two theorems (5.1) and (5.2) are combined to obtain the following:

⊢ w ⊃ ∃X.acc_rw(X) . (5.3)

For the converse, the valid formulaacc_rw(X) ⊃ w is a theorem by Lemma 5.3. We
then deduce⊢ ∃X.acc_rw(X) ⊃ w which with (5.3) yields⊢ w≡ χw. ⊓⊔

Automaton for skip Below is an automatonA skip accepting two-state intervals:

V = {}, K = {0,1}, q0 = 0,

δ(0,0) : false δ(0,1) : true
δ(1,0) : false δ(1,1) : false

τ(0) : false τ(1) : true

Claim 5.9 The automatonA skip accepts an intervalσ iff σ satisfies skip.

Lemma 5.10 The following equivalence is provably true:⊢ skip≡ χskip.

Proof We first look at deducingskip ⊃ χskip. Let X have domain{0,1}. The next valid
formula is a theorem by Lemma 5.3:

⊢ skip∧ 2(X = if more then0 else1) ⊃ acc_rskip(X) . (5.4)

A hidden instance ofX is now created with ITL TheoremT8 in §4.2:

⊢ ∃X.2(X = if more then0 else1) . (5.5)

We then combine the two theorems (5.4) and (5.5):

⊢ skip ⊃ ∃X.acc_rskip(X) . (5.6)

For the converse, the valid formula below is a theorem by Lemma 5.3:

⊢ acc_rskip(X) ⊃ skip .

The variableX is existentially hidden to deduce the following:

⊢ ∃X.acc_rskip(X) ⊃ skip . (5.7)

We reach the goal by combining (5.6) and (5.7):⊢ skip≡ χskip. ⊓⊔
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Automata for chop Let us now construct an automatonA P;Q for the formulaP;Q and
deduce the equivalence ofP;Q andχP;Q. Assume by induction thatA P andA Q areP’s
andQ’s respective automata with disjointKP andKQ. Here is a suitableA P;Q:

V = VP∪VQ, K = KP∪KQ, q0 = qP
0,

δ(q,q′) :

δP(q,q′), for q,q′ ∈ KP

δQ(q,q′), for q,q′ ∈ KQ

τP(q) ∧ δQ(qQ
0 ,q′), for q∈ KP,q′ ∈ KQ

false, otherwise

τ(q) :

τP(q) ∧ τQ(qQ
0 ), for q∈ KP

τQ(q) for q∈ KQ

Claim 5.11 The automatonA P;Q accepts an intervalσ iff σ satisfies P;Q.

Lemma 5.12 Formulas P;Q andχP;Q are provably equivalent:⊢ P;Q≡ χP;Q.

Proof We assume by induction⊢ P≡ χP and⊢ Q≡ χQ and then deduce the following:

⊢ P;Q≡ χP;χQ (5.8)

To show that the valid formulaχP;χQ ≡ χP;Q is a theorem, we re-express it:
(

∃X.acc_rP(X)
)

;
(

∃Y.acc_rQ(Y)
)

≡ ∃Z.acc_rP;Q(Z) .

HereX, Y andZ share a domain which is a superset ofKP, KQ andK. The left subfor-
mula’s quantifiers can be moved out of thechopoperator:

⊢
(

∃X.acc_rP(X)
)

;
(

∃Y.acc_rQ(Y)
)

≡ ∃X,Y.
(

acc_rP(X);acc_rQ(Y)
)

. (5.9)

We now turn to the formulaacc_rP(X);acc_rQ(Y). This is provably equivalent to the
formula ∃B.φ(B,X,Y), whereB is a new boolean state variable and the subformula
φ(B,X,Y) is as now defined:

φ(B,X,Y)
def
≡ X = qP

0 ∧ B
∧ 2m(B ⊃ δP(X,©X))
∧ 2m(¬B ⊃ δQ(Y,©Y) ∧ ©¬B)

∧ 2
(

B ∧ ©w ¬B ⊃ τP(X) ∧ Y = qQ
0 ∧

(

empty∨ δQ(Y,©Y)
))

∧ fin τQ(Y) .

We represent the automata’s behavior usingφ because it is in simple temporal logic.
The purpose ofB is to indicate at each interval state which of thechop construct’s
two subintervals contains the state. WhenB is true, the state is enclosed in the left
subinterval and automatonA P is active. WhenB is false the state is within the right one
andA Q is active. In the case of the single state shared by both intervals,B remains true
as in the left subinterval. If the right subinterval has onlyone state thenB is always true.

The relationship betweenφ andacc_rP(X);acc_rQ(Y) is now expressed:

⊢ ∃B.φ(B,X,Y) ≡ acc_rP(X);acc_rQ(Y) . (5.10)
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In order to prove this, we first deduce the next theorem:

⊢ φ(B,X,Y) ≡ (acc_rP(X) ∧ 2B);(acc_rQ(Y) ∧ B ∧ ©w 2¬B) .

Its proof uses temporal fixpoints and derived inference rules for compositionality. The
details are omitted here. Lemma 5.3 yields the theoremhood of some valid formulas
involving φ such as the next one for creatingZ from B, X andY:

⊢ φ(B,X,Y) ∧ 2(Z = if B then X else Y) ⊃ acc_rP;Q(Z) .

We combine this with ITL TheoremT8 in §4.2 and hideB andZ:

⊢ ∃B.φ(B,X,Y) ⊃ ∃Z.acc_rP;Q(Z) .

From this and ITL Theorems (5.9) and (5.10) we achieve half ofthe goal:

⊢
(

∃X.acc_rP(X)
)

;
(

∃Y.acc_rQ(Y)
)

⊃ ∃Z.acc_rP;Q(Z) . (5.11)

For the converse of (5.11), we first deduce the next valid formula using Lemma 5.3:

⊢ acc_rP;Q(Z) ∧ 2
(

B≡ (Z ∈ KP)
)

∧ 2(X = Z)

∧ Y = qQ
0 ∧ Y gets

(

if (©B) then Y else©Z
)

⊃ φ(B,X,Y) .

We then existentially hideB, X andY using ITL TheoremsT8 andT9:

⊢ acc_rP;Q(Z) ⊃ ∃B,X,Y.φ(B,X,Y) .

This, (5.9) and (5.10) lead to our desired equivalence’s other direction:

⊢ ∃Z.acc_rP;Q(Z) ⊃
(

∃X.acc_rP(X)
)

;
(

∃Y.acc_rQ(Y)
)

. (5.12)

From ITL Theorems (5.11) and (5.12) andχ’s definition, we get⊢ χP;χQ ≡ χP;Q. This
and theorem (5.8) yield our main goal:⊢ P;Q≡ χP;Q. ⊓⊔

6 Discussion

The version of ITL here uses numerical variables. Alternatively, we can restrict all vari-
ables to being boolean and encode numbers as Kesten and Pnueli do.

In [13] we look at a compositional axiom system for temporal projection over finite
intervals which is claimed to be complete. We would also likesupport forω-intervals.

Hale [5] first studiedframing in ITL. At present, if a state variable does not change
value, this must be explicitly specified. Framing makes thisimplicit and shortens spec-
ifications. A complete axiom system for framing would be helpful.
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