In Proceedings of the 27th International Colloquium on Auttanhanguages and Programming (ICALP 200
editors: Ugo Montanari, José Rolim and Emo Welzl. Genevatzéwand, July 9-15, 2000.
Lecture Notes in Computer Scienwel. 1853, Springer-Verlag, pages 223—-234.

An Automata-Theoretic Completeness Proof for
Interval Temporal Logic
(Extended Abstract)

B. C. Moszkowski

Software Technology Research Lab.
SERCentre
Hawthorn Building
De Montfort University

The Gateway

Leicester LE1 9BH
Great Britain

benm@nu. ac. uk

http://www.cms.dmu.ac.ukdenm

Abstract. Interval Temporal Logi€ITL) is a formalism for reasoning about time
periods. To date no one has proved completeness of a réjagiveple ITL de-
ductive system supporting infinite time and permitting inérsequential iteration
comparable tao-regular expressions. We have developed a complete axiomat
zation for such a version of quantified ITL over finite domaargl can show
completeness by representing finite-state automata in RitLthen translating
ITL formulas into them. Here we limit ourselves to finite timehe full paper
(and another conference paper [15]) extends the approanofirtive time.

1 Introduction

Interval Temporal Logi¢ITL) [6,9,10] is a temporal logic which includes a basic eon
struct for the sequential composition of two formulas aslaslan analog of Kleene
star. Within ITL, one can express both finite-state autoraathregular expressions. Its
notation makes it suitable for logic-based modular reawpimvolving periods of time,
refinement [2], sequential composition using assumptiosc@mmitments based on
fixpoints of various temporal operators [12, 14] and for exable specifications [11].
Various imperative programming constructs are expressiblTL and projection be-
tween time granularities is available (but not consideregth) Zhou Chaochen, Hoare
and Ravn [21] have developed an ITL extension calbedation Calculusfor hybrid
systems. Several researchers have looked at ITL decisamegures and axioms sys-
tems. However, previously there was no known complete axdgstem for a version
of ITL over both finite andw-words having no artificial restrictions on interval con-
structs. We present a natural and complete axiomatizatiom $ubset of quantified ITL

* Part of the research described here has been kindly sugpbyteEPSRC research grant
GR/K25922.

for finite time in which variables are limited to finite domaifThe completeness proof
describes an ITL decision procedure within ITL itself. Iretfull paper (and another
conference paper [15]) infinite time is considered.

We build on the work of Siefkes [19] who proved the complet=nef an axiom-
atization of theSecond-Order Theory of Succes¢84S) and Kesten and Pnueli [7]
who did likewise forQuantified Propositional Temporal Log{QPTL) with past-time
operators. Our approach follows Kesten and Pnueli’'s tegrenof reducing temporal
formulas to finite-state automata as part of a decision phage These automata are
themselves represented and manipulated in ITL. The ITLrdgstem and complete-
ness proof vary substantially from Kesten and Pnueli'ssTkiflects differences be-
tween conventional temporal logics and an interval-based o

Our results offer a natural yet complete axiom system forraénnoal subset of ITL
and show how ITL can itself encode the decision procedurtoata are more compo-
sitional than temporal logic tableaux which analyze sevferanulas in parallel. There
is no need for Fischer-Ladner closures [4], first developed fpropositional version of
Pratt's Dynamic Logic [17]. We also show that the ITL axions®m provides a logical
framework for both finite-state automata and regular exgioes.

2 Related Work

Let us now discuss other work on ITL axiom systems. RosnerRaneeli [18] inves-
tigate an axiom system for quantifier-free propositional (PITL) with finite andw-
intervals. The ITL subset also includes Uil operator but not the operatchop-star
which is like Kleene-star for regular expressions. A tablebased decision procedure
underlies the completeness proof and uses an adaptatioa Bistcher-Ladner closures.
One inference rule requires detailed meta-reasoning ahblgaux transitions.

Paech [16] investigates PITL with-intervals but includes ehop-stadimited, like
Kleene-star, to finitely many iterations and another openanless She gives a com-
plete proof system with some nonconventional axioms fomfdas already in a form
like regular expressions and possibly involving complexareasoning. A generaliza-
tion of Fischer-Ladner closures is used.

Dutertre [3] gives two complete proof systems for first-ortieL without chop-
star for finite time. One has a possible-worlds semantics of time e other uses
arbitrary linear orderings of states. Neither is completestandard discrete-time inter-
vals. Wang Hanpin and Xu Qiwen [20] generalize this to inéiiitne. Moszkowski [12]
presents propositional and first-order ITL axiom systeméiffite intervals. The former
is claimed to be complete but only an outline of a proof is giv&xioms for tempo-
ral projection are given in [13]. Bowman and Thompson [1]énagcently developed
a tableaux-based completeness proof for an axiomatizafibrL with projection and
finite time.

3 Overview of Interval Temporal Logic

We now briefly describe ITL for finite time. More details are[B) 8-12, 14]. Basic
ITL uses discrete, linear time. An intenahas a lengtho| > 0 and a finite, nonempty

sequence ofo| + 1 stateso, ..., 0/q. A statec; maps a variable such @sto a value
oi(A). Lower-casestaticvariablesa, b, ... do not vary over time.
Here are permitted constructs using variableermst andt’ and formula$® andQ:

Terms: (for numerical), 0,1, 2,... (natural numbers),if P thent else’t
Formulas: v(for boolearv), t=t’, vv.P, =P, PAQ, skip P;Q, P*

A variablev's values in an interval range over the finite, nonemptydeghain(v)
which here is eithef falsetrue} or some initial subsequence of the natural numbers.
Finite data domains ensure we have a decision proceduraifarampleteness result.
We can readily extendomainto all ITL constructs. As in several temporal logics, the
formulal = 2 is true ono iff 1's value inag equals 2.

There are three primitive temporal operators:

skip P.Q (chop) P (chop-star),

whereP andQ are themselves formulas. The formaldpis true on a two-state interval.

A formulaP; Q is true ono iff o can be chopped into two subintervals sharing a state
oy for somek < |o| with P true ongyp. ..ok andQ true ONGk. .. 0|g|- Thus the formula
skip| = Jis true ono iff o has at least two states ahe- J is true incy. A formula

P* is true ono iff o can be chopped into zero or more parts vietlrue on each. Any
formulaP* (includingfals€) is true on a one-state interval (see §3.2). Figure 1a picto-
rially illustrates the semantics skip, chop andchop-star Some simple ITL formulas
together with intervals which satisfy them are shown in Eig.

=1 1 2
. | =1 skip I 1 ;
skip L
PQ e sttt s skip! =1 12 4
P Q ©r=1) skip =1
P* 2 * : . ° ; true | # 1 . L] L] . . L]
N AN S -
PP P IENEREE N
(<>I # 1) true 1#£1
Suel #1011 11
(O1=1)
(a) Informal semantics (b) Some examples

Fig. 1. Informal ITL semantics and examples

For natural numberss j with i < j <0}, leto;.j denotes the subinterval of length
j—i(i.e., j—i+ 1 states) with starting statg and final states;. Below is the syntax

and semantics of the basic ITL constructs used here. We elémosemantics of a term
t and formulaP on intervalo as#[[t] and s [P].

3.1 Semantics of Terms

— Numerical static or state variablefs[[v]|=00(V).
A numerical variable’s value for an intervalis the value ino’s initial stateay.

— Numerical constan®/s[[c] = c. A TE i 2Ll = t
— Conditional terma/if P thent else’] = { ol }]’ It o] .H rue
Mq[t'], otherwise.

3.2 Semantics of Formulas

— Boolean static or state variablets[[v] = go(V).
A boolean variable’s value for an intervalis the value ino’s initial stateog.
— Equality: [t =t'] =true iff Mgt = Ms[t'].
— Negation:as[[-P]] =true iff a/s[[P] =false
— Conjunction:,[[P A Q] =true iff a4[P] = M,[Q] = true.
— Universal quantificatio/[[Vv.P] = true iff o/ [[P]] = true,
for every intervalo’ identical too except possibly for variablés behavior.
— Unitinterval: ¢ s[skig] = true iff |o|=1.
— Chop:a[[P; Q] =true iff 2y [P]] =trueanda/y[Q] = true,
whereo’ = ggj ando” = Oi:[of for somei < |o]. Intervalso’ ando” share state;.
— Chop-starafq[[P*]] = true iff Moy, [P]] = true, foreachi : 0<i <n,
for somen > 0 and finite sequence of natural numbkys< 13 < --- < I, where
lo =0and, = |o|. Every one-state interval satisfiéssince we can trivially choose
n=0.

If a formulaP is true on an intervad, theno satisfies Pdenoteds = P. A formula
P satisfied by all intervals igalid, denoted= P.

We view formulas as boolean terms to avoid, for examplejrdistheorems for
quantified boolean and numerical variables. HdheeQ andP = Q are identical.

3.3 Some Definable Constructs

Constructs liketrue, P v Q and3v.P are definable as aré P (“sometimesP”), OP
(“alwaysP”) and OP (“next P"):

OPdEEftrue;P DPdEEfﬁOﬁP OPdEEfskipcP .

We refer to the quantifier-free ITL subset built from no temgoperators bu® andO
assimple temporal logicHere are more operators expressible in this:

op E_o-p (Weak next) finP dzefD(empty:) P) (Final state)

def def

more = Otrue (More states) haltP = O(P=empty (Justlast)
def def

emptyze —more (One state) mp = O(moreD> P) (Mostly)

4

The conventional temporal operatantil, though definable (withl), is not needed. A
version ofO for numerical terms is expressible using conditional teriiee formula
t gets tis true iff for each pair of adjacent states, the value of terat the first state
(i.e., on the suffix subinterval starting from it) equalstefs value at the second state:

(=X

ef

tgetst = m@((Ot)=t) .
Below are operators for examinimgjtial andarbitrary subintervals:

P E'p-true npE_o_p &P L true P:true ap% e p .

4 A Proof System

We now present a proof system for ITL. Our experience withdneds of proofs has
helped refine it. There is a quantifier-free part and anottregdiantifiers.

4.1 Quantifier-Free Axioms and Inference Rules.

We use some of Rosner and Pnueli’'s axiomsdmop[18] and ours for@ and chop-
star[12]. Letw be astate formulai.e., without temporal operators.

Basic - Substitution instances of all valid®’8 + w > Ow ,

quantifier-free state formulas. where variables inv are static.
P2 + (P;Q);R=P;(Q;R P9 +F OMPDOP)A0(QDQ)
P3 F (PvP),Q > (PQv(P;Q) > (FQ)>(PQ)
P4 +P;(QvQ) > (PQVv(PQ) P10 +FOPD ®P
P5 F emptyP=P P11 + PADO(P D> ®P) > OP
P6 I Piempty=P P12 I P*=empty (P A more);P*

P7 Fw> Ow

MP FP>Q +P = FQ
OGenk P = F OP oGen- P = F OP

These axioms and inference rules do not have quantifiers gt etc. can. In Axiom
Basic termt substitutes into variable only if domain(t) C domain(v). Axiom P11
enables induction over time.

A formulaP deduced from the axiom system is called@h theorem denoted- P.
Below are a few theorems. The full paper has more with somefgro

T1+HDOPD>Q) D OPDOQ T4 F (waP);Q = wa(P;Q)
T2 HFO(PD>Q) D OPD>OQ T5 F P*=P*
T3 F Cempty T6 + skip

4.2 Axioms and Inference Rules for Quantifiers
In the axioms and inference rules for quantifieris an arbitrary variable:

QL WP > PR,
wherev is free fort in P anddomain(t) C domain(v). (The full paper describes
substitution into temporal contexts.)

Q2 + W./(P>Q) > (P>WVv.Q),wherevdoes not occur freely iR.
Q3 F Iv(P;Q) (3v.P); Q, wherev does not occur freely i.
Q4 + Iv(PQ) P; (3v.Q), wherev does not occur freely iR.
Q5 F (3v.P);0(3v.Q) D 3Iv.(P;OQ), wherev is a state variable.

vGen - P = F VP for any variablev.

The next theorem expressgsop-starusing a fresh boolean variale
T7+P = 38 (BAD(BD ©(PrOhaltB))) .

Here is one to construct a hidden state variatdévays equaling:

T8 F Iv.O(v=t) ,
wheredomain(t) C domain(v) andv does not occur freely it

The one below creates a hidden state variabifich is initialized and then incre-
mentally assigned a term which can depend’srcurrent value:

T9 F Jv.(v=tavgetst) ,
wheredomain(t) C domain(v) anddomaint’) C domain(v). Alsov does
not occur freely irt or within the temporal operators th

Thus, the boolean variabRbelow initially equaldalseand always flips:
F 3B.(B=falsex B gets—B) .

One can easily show that the axiom systersdand that is,- P implies}= P. Our
main goal is conversely to establisbmpletenesshat is,= P impliest P:

Theorem 4.1 (Completenesspny valid ITL formula is also a theorem.

5 Overview of the Proof of Completeness

The basic completeness proof assumes formulas contaiatio\sriables:

Lemma 5.1 (Relative completeness for static variablesly all valid formulas without
static variables are theorems, so are those with them.

Proof (Outline) Let P be a valid formula and |e®’ be Vu; ... Vu,. P, whereuy, ...,
un are the free static variables i Now P’ is also valid and provably implieB (i.e.,

F P D P). For each static variable in P, replace any subformuléu.Q using the
theoremt-Yu. Q= Accdomainu) Q- The new formuld” is valid and provably equivalent
to P’ (i.e.,- P =P"). By our assumptior®” is a theorem so we can deduee O

The proof of Theorem 4.1 reduces formulas to equivalent onasormal form

Lemma 5.2 (Normal form) For each formula we can deduce an equivalent one having
no new variables and in which each equality is of the forma®, where v is numerical
and ce domain(v). If the original formula is the simple temporal logic definad3.3,

so is the normalized one.

Lemma 5.3 (Completeness for simple temporal logicAny valid formula in the sim-
ple temporal logic subset is a theorem.

Proof (Outline) We start with a complete axiom system for conventional listene
temporal logic easily altered for finite intervals and find@mains. All of the axioms
and inference rules are provable from our ITL axiom systetreyTare AxiomsBa-
sic, P8, P10andP11, Inference RuledMP andOGen and Theorem31, T2 andT3.
Therefore, ITL theoremhood of any valid formula in the sultss be deduced.

5.1 Automata

We now adapt the approach of Kesten and Pnueli [7] and utilizgriant of finite-state
automata called hehop-automatavhich selectively accept intervals. All normalized
ITL formulas can be built from a few constructs, each havingaaslation into an
automaton. In effect, we embed a decision procedure for RTITL itself and use the
logic to express the procedure’s correctness. This helglsda completeness.

The behavior of an automatencan be expressed in ITL as the formula dengtéd
(defined later) which is true on an interval #f accepts that interval. We then construct
from a formulaP an automatom " accepting the intervals satisfyirgy The formula
X" represents ~’s accepting runs and is provably equivalenPtim the axiom system
(ie.,FP= xﬂp). The shorter fornX” is generally used. We can also show for any
automataa accepting no intervals, the formud is provably false (i.el —=X?).

To prove that a valid formul® is a theorem, we construct fromP an automaton
4P with =P =X"P. NowPis valid, soz P accepts nothing and we deduee:X F.
These together yield P.

We now describehop-automat#or recognizing finite intervals.

Definition 5.4 (Chop-automaton) A (nondeterministicthop-automatom is a quin-
tuple (V, K, o, 9, 1) for which

— V is a possibly empty finite set of boolean and numerical statables,

— K'is a nonempty finite set aitomaton states

— o € K is theinitial state

— 0 is thetransition functionmapping Kx K to quantifier-free state formulas over
variablesinV,

— Tis thetermination functiormapping K to quantifier-free state formulas over vari-
ablesinV.

Itis necessary to introduce the notion afuen of a chop-automaton on an interval:

Definition 5.5 (Run and accepting run of chop-automaton)Arunof a chop-automata
4 over an intervalo is any finite sequence of |o| + 1 elementsy, ..., pjgj € K in
which for each two adjacent automaton stapgandp;j 1 the interval states; satisfies
the transition formula(pi, pi+1), (i-e.,0i = (i, Pi+1))-

A runp is called anaccepting rurof the chop-automator over the intervab if
the run’s initial statepo is ¢p and in additiono’s final stateo| satisfies the termination
condition selected by the run’s final automaton sg@tg, namelyt(p|q)-

We say that1 acceptsan intervalo if there is at least one accepting run over

In contrast to conventional finite-state automata, a chdpraaton usesto test the
very end of an interval without advancing to permit the opmrehopto be represented.

An automatom’s accepting runs are expressible in ITL. Yebe a numerical state
variablenotin V and withK C domain(Y). Define the formulacc r?(Y) as follows:

Qo
=

e

accr’(Y) = Y=qor@m3(Y,0Y)fint(Y) .

The formulaXx® now defined expresses the existence of some accepting run:

X? = 3Y.accri(y) .

5.2 Automata Constructions

Given some normalized formuR(see Lemma 5.2 presented earlier), we construct an
automatona”. We sometimes denote the individual partsadt asVP, KP, etc. and
abbreviateacc_r”P(Y) andx*" asacc rP(Y) andxP, respectively.

Here is a list of formulas which we need to consider(quantifier-free state for-
mula),P v Q, =P, 3v. P, skip, andP; Q. These constructs are ones most readily translated
to automata. We repla@hop-starformulas using ITL Theorem?7 in 84.2 to avoid the
need to also directly reduce them to automata.

During the construction of automata, various operatiomshmperformed such as
renaming of an automaton’s states or determinizing it. €ree expressible as ITL
theorems. The details are omitted here. We also have tteaviold lemma:

Lemma 5.6 If 2 has no accepting runs, then—X7.

Proof Suppose that has no accepting runs. The following formula is valid anddesen
theorem by Lemma 5.8: —acc r* (Y). We introduce an existential quantifier to deduce
the theorent- —3Y.acc r?(Y) which reduces te- —X*. 0

Below are constructions fav, skipandchop The full paper also looks at others.

Automata for Quantifier-Free State Formulas For a quantifier-free state formulg
the automatorn¥ hasV equal the set ofv's variablesK = {0,1}, go = 0 with d andt
as follows:

5(0,0): false ©(0,1): w 1(0): w 1(1): true
0(1,0): false 9(1,1): true

Claim 5.7 The automatom W accepts an intervab iff o satisfies w.
Lemma 5.8 The following equivalence is an ITL theoremw = X".

Proof Let X be a numerical state variable with domdi® 1} and not occurring imw.
The following valid simple temporal formula is a theorem bgnhma 5.3:

F waX=0aXgetsl D accr(X) . (5.1)
The variableX can now be existentially created using ITL Theor&n
F o 3X.(X=0nX getsl) . (5.2)
The two theorems (5.1) and (5.2) are combined to obtain thefng:
F w D> 3IX.accr(X) . (5.3)
For the converse, the valid formuéecc r*'(X) D w is a theorem by Lemma 5.3. We
then deducée 3X.acc r¥(X) D w which with (5.3) yields- w = XV. O
Automaton for skip Below is an automaton SKP accepting two-state intervals:

V= {}a K= {071}7 qO:Oa
6(0,0): false &(0,1): true 1(0): false t(1): true
5(1,0): false 8(1,1): false
Claim 5.9 The automatom SKP accepts an intervab iff o satisfies skip.
Lemma 5.10 The following equivalence is provably true:skip= XSkP.

Proof We first look at deducingkip > X3P, Let X have domair{0,1}. The next valid
formula is a theorem by Lemma 5.3:

+ skipa O(X = if more therDelsel) > acc rP(X) . (5.4)
A hidden instance oX is now created with ITL Theorem8 in §4.2:
F 3X.0(X =if moretherDelsel) . (5.5)
We then combine the two theorems (5.4) and (5.5):
- skip > 3X.acc rskP(X) . (5.6)
For the converse, the valid formula below is a theorem by Lerbi8:
- accrkP(X) o skip .
The variableX is existentially hidden to deduce the following:
F 3X.acc r¥P(X) o skip . (5.7)

We reach the goal by combining (5.6) and (57 skip= XSk O

Automata for chop Let us now construct an automata®:Q for the formulaP; Q and
deduce the equivalence BfQ andXPQ. Assume by induction that® anda @ areP’s
andQ’s respective automata with disjoikf andK®. Here is a suitabla "C:

V =VPUVQ, K =KPUK®, go=df,

3(a,q): (q) :
8°(q,9), for q,q € KP ™(q) A 19(qY), for qe KP
3(q,q), for q,q € K@ 9(q) for qe KQ
™(q) 2 3%(q,q), for qe KP g € KQ
false otherwise

Claim 5.11 The automatom ”:Q accepts an intervab iff o satisfies PQ.
Lemma 5.12 Formulas PQ andX":Q are provably equivalent- P;Q = X™Q.
Proof We assume by inductionP = X" and- Q = X® and then deduce the following:
FP;Q=X"XC (5.8)
To show that the valid formulé™:XQ = XPQ is a theorem, we re-express it:
(IX.acc rP(X)); (F.accr(Y)) = 3FZ.accrP(z) .

HereX, Y andZ share a domain which is a supersekdf KQ andK. The left subfor-
mula’s quantifiers can be moved out of tleopoperator:

F (3X.acc rP(X)); (3Y.accr(Y)) = 3X,Y. (acc rP(X);acc re(y)) . (5.9)

We now turn to the formulacc rP(X);acc rQ(Y). This is provably equivalent to the
formula3B. (B, X,Y), whereB is a new boolean state variable and the subformula
@(B,X,Y) is as now defined:

o
==

e

PB,X)Y) = X=0¢rB
Am(B S &P(X,0X))
AB(-B D 8°(Y,0Y) A O-B)
AO(BA®-B D 1P(X) Y = A (emptys 52(Y,0Y)))
AfinTQ(Y) .

We represent the automata’s behavior ugrigecause it is in simple temporal logic.

The purpose oB is to indicate at each interval state which of ttfgop construct's

two subintervals contains the state. WHaiis true, the state is enclosed in the left

subinterval and automator?” is active. WherB is false the state is within the right one

andz @ is active. In the case of the single state shared by bothvai&B remains true

as in the left subinterval. If the right subinterval has oo state theB is always true.
The relationship betweepandacc rP(X);acc rQ(Y) is now expressed:

F 3B.@(B,X,Y) = accrP(X);accroY) . (5.10)

10

In order to prove this, we first deduce the next theorem:
- @B,X,Y) = (accrP(X)0OB);(accrY) Br®O-B) .

Its proof uses temporal fixpoints and derived inferencesrtde compositionality. The
details are omitted here. Lemma 5.3 yields the theoremhéadme valid formulas
involving @ such as the next one for creatididrom B, X andY:

- @B,X,Y)ADO(Z=if BthenX elseY D acc r"?(z) .
We combine this with ITL Theorem8 in 84.2 and hidd andZ:
F 3B.@B,X,Y) O 3JZaccrPz) .
From this and ITL Theorems (5.9) and (5.10) we achieve hatiefyoal:
F o (3X.accrP(X)); (3Y.acc r(Y)) > 3Z.accrP(z) . (5.11)
For the converse of (5.11), we first deduce the next valid idamsing Lemma 5.3:

F accrPRz)A0(B=(ZeKP)AO(X=2)
AY = qu AY gets(if (OB) thenY els©Z)
S5 @BX.Y) .

We then existentially hidB, X andY using ITL Theoremd38 andT9:
F accr™(z) o 3B,X,Y.@(B,X,Y) .
This, (5.9) and (5.10) lead to our desired equivalence’sratlirection:
F 3Z.accr"Q(z) o (IX.acc rP(X)); (3Y.acc re(Y)) . (5.12)

From ITL Theorems (5.11) and (5.12) aK@ definition, we get- X"X? = X”Q. This
and theorem (5.8) yield our main goalP; Q = XPC. O

6 Discussion

The version of ITL here uses numerical variables. Altexredyi we can restrict all vari-
ables to being boolean and encode numbers as Kesten and dnuel
In [13] we look at a compositional axiom system for temporajgction over finite
intervals which is claimed to be complete. We would also fikpport forw-intervals.
Hale [5] first studiedramingin ITL. At present, if a state variable does not change
value, this must be explicitly specified. Framing makesithiglicit and shortens spec-
ifications. A complete axiom system for framing would be Higlp

Acknowledgments

The author thanks Antonio Cau and Jordan Dimitrov for sutiggs$mprovements to
the presentation. Moshe Vardi and Wolfgang Thomas alsoigedwhelpful advice.

11

References

(1]
(2]

(3]
[4]
[5]
(6]
[7]
(8]
9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]
(18]
(19]
(20]

[21]

H. Bowman and S. J. Thompson. A complete axiomatizatiomierval Temporal Logic
with projection. Technical Report 6-00, Computing Lab. MJof Kent, UK, Jan. 2000.

A. Cau and H. Zedan. Refining Interval Temporal Logic sfieations. In M. Bertran
and T. Rus, edsTransformation-Based Reactive Systems DevelopraBi@S 1231, pp.
79-94. AMAST, Springer-erlag, 1997.

B. Dutertre. Complete proof systems for first order im¢temporal logic. IrProc. 10th
LICS pp. 36-43. IEEE Computer Soc. Press, June 1995.

M. J. Fischer and R. E. Ladner. Propositional dynamiddag regular programsJ. Com-
put. Syst. Scil18(2):194-211, Apr. 1979.

R. W. S. Hale.Programming in Temporal Logid®hD thesis, Computer Laboratory, Cam-
bridge University, Cambridge, England, Oct. 1988.

J. Halpern, Z. Manna, and B. Moszkowski. A hardware seinatbased on temporal inter-
vals. In J. Diaz, edProc. ICALP '83 LNCS 154, pp. 278-291. Springer-Verlag, 1983.
Y. Kesten and A. Pnueli. A complete proof system for QPTrLProc. 10th LICSpp. 2-12.
IEEE Computer Soc. Press, 1995.

B. Moszkowski. Reasoning about Digital CircuitsPhD thesis, Dept. Computer Science,
Stanford Univ., 1983. Tech. rep. STAN-CS—-83-970.

B. Moszkowski. A temporal logic for multi-level reasary about hardware. IRroc. 6-th
Int'l. Symp. on Computer Hardware Description Languaggs 79-90, Pittsburgh, Penn.,
May 1983. North-Holland Pub. Co.

B. Moszkowski. A temporal logic for multilevel reasog about hardware Computer
18:10-19, 1985.

B. Moszkowski. Executing Temporal Logic Program€ambridge U. Press, 1986.

B. Moszkowski. Some very compositional temporal pmies. In E.-R. Olderog, ed.,
Programming Concepts, Methods and Calcli#ilP Transactions A-56, pp. 307-326. IFIP,
Elsevier Science B.V. (North—Holland), 1994.

B. Moszkowski. Compositional reasoning about pragelcand infinite time. IrProc. 1st
IEEE Int'l Conf. on Engineering of Complex Computer Systéi@&CCS’'95) pp. 238—
245. IEEE Computer Soc. Press, 1995.

B. Moszkowski. Compositional reasoning using Intéf@mporal Logic and Tempura. In
W.-P. de Roever et al., ed€pmpositionality: The Significant DifferendeNCS 1536, pp.
439-464. Springererlag, 1998.

B. Moszkowski. A complete axiomatization of intervahtporal logic with infinite time. In
Proc. 15th Annual IEEE Symp. on Logic in Computer Scienc&$2000)IEEE Computer
Soc. Press, June 2000.

B. Paech. Gentzen-systems for propositional tempogits. In E. Borger et al., eds.,
Proc. 2nd Workshop on Computer Science Logic, Duisburg (fFRSCS 385, pp. 240—
253. Springer-erlag, Oct. 1988.

V. R. Pratt. Semantical considerations on Floyd-Hdagic. In 17-th Annual IEEE Sym-
posium on Foundations of Computer Sciemge 109-121, 1976.

R. Rosner and A. Pnueli. A choppy logic. Bmoc. 1st LICSpp. 306—-313. IEEE Computer
Soc. Press, June 1986.

D. Siefkes. Decidable Theories |: Blichi's Monadic Second Order Suameésithmetig
Lecture Notes in Mathematics 120. Springer-Verlag, BedBv0.

Wang Hanpin and Xu Qiwen. Temporal logics over infinikervals. Technical Report
158, UNU/IIST, Macau, 1999.

Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A calcufudusations. Inf. Process.
Lett, 40(5):269-276, 1991.

12

