This is a pre-copy-editing, author-produced PDF of an article accepted for publication in the

Journal of Logic and Computation following peer review. The definitive publisher-authenticated version
(Journal of Logic and Computation 2007 17(2):333-409; doi : 10. 1093/ | ogcom exnD06) is available
online athtt p: //1 ogcom oxfordj ournal s. org/ cgi/content/abstract/ 17/ 2/ 333

Using Temporal Logic to Analyse Temporal
Logic: A Hierarchical Approach Based on
Intervals

Ben MoszkowskKi

Software Technology Research Laboratory; Gateway House
De Montfort University; The Gateway; Leicester LE1 9BH; @r8ritain

email: benm@mu. ac. uk

9 January 2007

Abstract

Temporal logic has been extensively utilized in academdiadustry to for-
mally specify and verify behavioural properties of numerkinds of hardware and
software. We present a novel way to apply temporal logic éostindy of a version
of itself, namely, propositional linear-time temporaliogPTL). This involves a
hierarchical framework for obtaining standard resultsRaIL, including a small
model property, decision procedures and axiomatic corapésts. A large number
of the steps involved are expressed in a propositionalmeis Interval Temporal
Logic (ITL) which is referred to as PITL. It is a natural geakzation of PTL
and includes operators for reasoning about periods of tintesgquential com-
position. Versions of PTL with finite time and infinite timeeaboth considered
and one benefit of the framework is the ability to systemégicaduce infinite-
time reasoning to finite-time reasoning. The treatment df Rith the operator
until and past time naturally reduces to that for PTL without eithiee. The
interval-oriented methodology differs from other analys&€PTL which typically
use sets of formulas and sequences of such sets for canoradals. Instead we
represent models as time intervals expressible in PITL. arfadysis furthermore
relates larger intervals with smaller ones. Being an irgkbased formalism, PITL
is well suited for sequentially combining and decomposhegrelevant formulas.
Consequently, we can articulate issues of equal signifeanmore conventional
analyses of PTL but normally only considered at the metalevgood example
of this is the existence of bounded models with periodic seffor PTL formulas
which are satisfiable in infinite time. We also describe deniprocedures based
on binary decision diagrams and exploit some links with dhstate automata.

Beyond the specific issues involving PTL, the research igaifstant appli-
cation of ITL and interval-based reasoning and illustrategeneral approach to
formally reasoning about sequential and parallel behaniodiscrete linear time.
The work also includes some interesting representatioorémes. In addition, it
has relevance to hardware description and verificatioredime specification lan-
guages PSL/Sugar (IEEE Standard 1850) and “temporal et GQddEEE Stan-
dard 1647) both contain temporal constructs concerniregvats of time as does

*Part of the research described here has been kindly supportee®RC research grant GR/K25922.

the related SystemVerilog Assertion language containetlystemVerilog (IEEE
Standard 1800), an extension of the IEEE 1364-2001 Verdaguage.

Keywords: temporal logic, interval temporal logic, smabadels, decision procedures,
axiomatic completeness

1 Introduction

Temporal logic as studied by Prior [80], Rescher and Urquid&] and others has its
historical roots in philosophy. However, following the seal paper by Pnueli [78], it

has become one of the main formalisms used in computer gcfenceasoning about
the dynamic behaviour of systems [25, 34, 35,53, 59]. Ini@adr, the version known

as Propositional Linear-Time Temporal Logi{@bbreviated as either PTL or PLTL)
and some variants of it have been extensively investigatddapplied. In a relatively

recent and significant article, Lichtenstein and Pnuel] five a detailed analysis of
PTL which is meant to largely subsume and supercede earles.dndeed, the work
appears to have the rather ambitious goal of coming clos#e¢ara the last word on

the subject and is perhaps best described in the authorsivonas:

The paper summarizes work of over 20 years and is intendecbtide a
definitive reference to the version of propositional tengptgic used for
the specification and verification of reactive systems.

The kind of PTL considered by Lichtenstein and Pnueli hasrdie time and past
time. Both decision procedures and axiomatic completeaessiscussed and a new
simplified axiom system is presented. The approach makesfussmantic tableaux
and throughout the presentation the treatment of PTL wisit-pane operators runs in
parallel with the future-only version. The authors choasparticular to use tableaux
since they offer a basis for uniformly showing axiomatic gdeteness and also obtain-
ing a practical decision procedure. The material abouttpastis distinctly marked so
that one can optionally delete it to obtain an analysis kehiio the future fragment of
PTL.

We present a novel framework for investigating PTL whichngigantly differs
from the methods of Lichtenstein and Pnueli and earlietrneats such as [33, 36, 53,
95]. Itis used to obtain standard results such as a small ipoalgerty, decision proce-
dures and axiomatic completeness. However, instead ahgebn semantic tableaux,
filtration and other previous techniques, our method is tb@sean interval-oriented
analysis of certain kinds of low-level PTL formulas callednsition configurations
An important feature of this approach is that it provides @ra hierarchical means of
reducing full PTL to this subset and also reduces both PTh thiéuntil operator and
past time to versions without them. Therefore the overwirbulk of the analysis
only involves PTL with neithemuntil nor past time. Moreover, the analysis of PTL
with infinite time naturally reduces to that for PTL with juUstite time. The low-level
formulas also have associated decision procedures, ingwgimple symbolic ones
based on binary decision diagrams (BDDs) [10] which we hayaemented. Some
connections with automata-based decision proceduresHoaRe discussed.

The basic version of PTL used here is described in detail ati@e3 but we will
now briefly summarize some of the features in order to be abteérview some key
aspects of our work. We postpone the treatment:atl and past time in order to later
handle them in a natural hierarchical manner. Both finiteiafidite time are permit-
ted, whereas most versions of PTL deal solely with the la@&e reason for including

finite time is to allow us to naturally capture parts of ournite-time analysis within
PTL formulas concerning finite-time subintervals. The oty primitive temporal
operators initially considered are (strong next) and> (eventually) although some
others are definable in terms of them (el@(henceforth) and>* (strict eventually)).

Our analysis of PTL extensively employs intervals of timashhare represented as
finite and countably infinite sequences of states and desthip formulas in a propo-
sitional version of Interval Temporal Logic (ITL) [37, 648671-73] (see also [49])
referred to as PITL. By using a hierarchical, interval-otesl framework, the approach
differs from that of Lichtenstein and Pnueli and previous®which in general utilize
sets of formulas and sequences of such sets (also referasddthy. We instead relate
transition configurations to semantically equivalent fatas in PITL. Time intervals
facilitate an analysis which naturally relates larger ivéds with smaller ones. The
process of doing this can be explicitly expressed in PITL wag not possible within
previous frameworks which lack both a formalization of mtds and logical operators
concerning various kinds of sequential composition ofrivas.

Let us now informally consider as an example a simplified gméstion of how we
later establish the existence of periodic models for cekaids of low-level formulas
involving infinite time. The analysis for temporal logic foulas involving infinite
time needs to consider formulas of the form>™ A, where A is itself a restricted
kind of temporal logic formula. Herg &1 A is true for an interval, that is, the interval
satisfiesd O A, iff the interval has infinite length and itself is satisfied by an infinite
number of the interval's suffixes. We want to show thaBif>™ A is satisfied by
some interval, then there also exists a periodic intervativbatisfiesd &+ A. We
first show a sufficient condition motivated bys restricted syntax which ensures that
O<oT A is semantically equivalent to the PITL formul’. This formula is true on
an interval if the interval has infinite length and can betsptio an infinite sequence
of finite intervals each satisfyingd. We then select one of these finite intervals and
join w copies of it together to obtain a periodic interval satisfyd“ and hence also
the original formula® ¢ A. Furthermore, after showing the existence of bounded
models forA4, we can then establish similar properties fist and hence als@ O+ A.

We believe that our interval-based analysis complemenssiieg approaches since
it provides a notational way to articulate various issuesceoning PTL model con-
struction which are equally relevant within a more convami analysis but are nor-
mally only considered at the metalevel. It also illustratesme general techniques for
compositional specification and proof in discrete lineareti This all fits nicely with
one of the main purposes of a logic which is to provide a notefor explicitly and
formally expressing reasoning processes. In addition,nabeu of the temporal logic
formulas encountered can even be used with little or no ahasgnput to a implemen-
tation of a PTL decision procedure which supports both fiartd infinite time. The
analysis itself is performed without the need to add any &mnentally new concepts
to PITL but does require a reader’s willingness to acquiraeséamiliarity with PITL
and various fairly general issues concerning intervattasasoning.

Another feature of our approach is that it readily geneealio a finite-time analysis
of an important subset of PITL calldelision Logic(FL), which was previously used
by us in [73] to hierarchically show the completeness of aivraxsystem for PITL
with finite time. The analysis of FL uses a reduction of FL fatas to PTL ones.
The prototype implementation of our decision procedurd®L with finite time also
supports FL. A brief introduction to FL is given in Subseati®3.4 since FL is a
natural extension of our framework for studying PTL andHertnore demonstrates
another connection between PTL and intervals.

Our previous work in [74] contains an earlier descriptiortto$ material but was
limited to showing axiomatic completeness for PTL withoasptime. In the mean
time, we have significantly extended the notation, methodistheir scope of applica-
tion. The structure of presentation has also been refinedeknpnary version of the
current work appears in [75], after which further improvensdhave been subsequently
incorporated.

The use of intervals here seems to go well with a growing géraevareness even
in industry of the desirability for temporal logics which geyond conventional point-
based constructs to also handle behavioural specificativok/ing intervals of time.
As evidence for this we mention the Property SpecificationgLeage PSL/Sugar [81].
This is a modified version of a language Sugar [3] develop#8MtHaifa. PSL/Sugar
has been ratified as IEEE Standard 1850 by the IEEE Standasixciation [47] and
has the purpose of precisely expressing a hardware systiesign properties so that
they can then be tested using simulation and model checkingcludes a temporal
logic with regular expressions and other operators for eetjal composition. The
hardware description language SystemVerilog [85] is aeresibn of the established
IEEE Standard 1364 Verilog language and includes tempssardons similar to those
in PSL/Sugar. SystemVerilog was itself ratified as a stashtdgrAccellera Organiza-
tion, Inc. and has now been approved as IEEE Standard 1800.

In addition, the IEEE Standards Association has more rgcapproved Verisity
Ltd.’s [90] elanguage, which is intended for functional testing andfieation, as IEEE
Standard 1647 [48] A subset ofe calledtemporal econtains temporal operators for
sequentially composition and was influenced in part by IT&, BB, 91].

Structure of presentation

Let us now summarize the structure of the rest of this papsati@ 2 mentions some
related work and compares it with our approach. Section Sgorts the version of PTL
we use. Section 4 summarizes the propositional version lofwfich we use in the
analysis. Section 5 introduces low level PTL formulas chiiansition configurations
and relates them to some semantically equivalent propasitiTL formulas which
simplify the subsequent analysis. Section 6 proves thaexnas of small models for
transition configurations. Section 7 shows how to relatesttesfiability of the two
main kinds of transition configurations with simple intdreaiented tests. Section 8
deals with BDD-based decision procedures for transitionfigarations. Section 9
concerns axiomatic completeness for an important subseibfin which the only
temporal operator i© (next). Section 10 looks at a PTL axiom system and axiomatic
completeness for transition configurations. Section 1kgnts formulas calleth-
variants and invariant configurationswvhich together serve as a bridge between the
previously mentioned transition configurations and aaojtPTL formulas. Section 12
discusses how to generalize the previous results to wotk avhitrary PTL formulas.
Section 13 hierarchically extends our approach to deal poth the temporal operator
until and past time. It also briefly looks at a superset of PTL cafasion Logic
Section 14 concludes with some brief discussion.

Lverisity has been acquired by Cadence Design Systems [16].

2 Background

Temporal logics have become a popular topic of study in #tezal computer sci-
ence and are also being utilized by industry to locate fanlt$igital circuit designs,
communication protocols and other applications. Issuek a8 small models, proof
systems, axiomatic completeness and decision procedur@&st (with time almost
always modelled as discrete and infinite) have been extegsiwestigated by Gabbay
et al. [33], Sistla and Clarke [84], Wolper [95], Kroger [5&oldblatt [36], Lichten-
stein and Pnueli [57], Lange and Stirling [55], Pucella [82ho also considers PTL
with finite time) and others. French [32] elaborates on tles@ntation by Gabbay et
al. [33].

Vardi and Wolper [88] and Bernholtz, Vardi and Wolper [6] gidecisions pro-
cedures for some temporal logics based on a reductiondatomata. They do not
consider axiomatic completeness. Wolper [93] presentsaaialion such a decision
procedure for PTL with infinite time.

Ben-Ari et al. [4, 5], Wolper [92, 94] and Baniegbal and Bager [2] develop
closely related proofs of completeness for logics whicHude PTL as a subset or
are branching-time versions of it. The book by Rescher argukkrt [83] is an early
source of tableau-based completeness proofs for tempmgals| with various mod-
els of time. The survey by Emerson [25] includes materialudlaxiom systems for
both linear and branching-time temporal logic. Burgesg gl Marx, Mikulas and
Reynolds [61] consider the axiomatization of versions ofigeral logic with linear
time but without an assumption of discrete time. The handbdy Gabbay, Hodkin-
son and Reynolds [35] and Gabbay, Finger and Reynolds [8¢]aytensive coverage
to various important aspects of temporal logic such as aximation.

Fisher [29, 30] (see also later work by Fisher, Dixon and P@ij and Bolotov,
Fisher and Dixon [9]) presents a normal form for PTL calksparated Normal Form
(SNF) which consists of formulas having the syntay\; A;, where eacly, can be
one of the following:

start O \/_ I, ONA, ke D OV, la ONy kv O <L

Here each particulak,, ks, [, . andl, is a literal (i.e., a propositional variable or its
negation). Some versions of SNF permit past-time consrmichave other relatively
minor differences. Applications include theorem proviexgcutable specifications and
representingr-automata. We mention SNF here since it is a PTL normal fornchvh
somewhat resembles what we call invariants and formalftpdhice in Section 11.

3 Overview of PTL

This section summarizes the basic version of PTL used hater bn in Section 13 we
augment PTL with the operatamtil and past time.

3.1 Syntax of PTL

We now describe the syntax of permitted PTL formulas. In wib#iows, p is any
propositional variable and botki andY denote PTL formulas:

D true =X X vY OX (strongnext) ¢ X (eventually)

We includetrue as a primitive so as to avoid a definition of it which containosne
specific variable. This is not strictly necessary. Otherveational logic operators
such asfalse, X A Y andX D Y (X impliesY’) are defined in the usual way. Also,
O X (henceforth) is defined as< —X.

3.2 Semantics of PTL

The version of PTL considered here uses discrete, linear timich is represented
by intervals each consisting of a sequence of one or moresstadore precisely, an
interval o is any finite or infinite sequence of one or more statésc!, Each
states’ in ¢ maps each propositional varialpe g, ...to one of the boolean values
true and false. The value ofy in the stater’ is denotedr?(p). A finite intervalo has
aninterval length|o| > 0 which equals the number of states minus 1 and is hence
always greater than or equal to 0. We regard the smallesenomzaterval length 1 as
a unit of (abstract) time. For example, an interval with 6 statesihgerval length 5
or equivalently 5 time units. These units do not correspandrty particular notion
of physical time. The interval length of an infinite intervaltaken to bev. The
termsubintervalrefers to any interval obtained from somentiguoussubsequence of
another interval’s states.

We call a one-state interval (i.e., one with interval len@ffanempty interval A
two-state interval (i.e., one with interval length 1) isledlaunit interval Both kinds
of intervals play an important role in our analysis.

The notatiors = X denotes that the interval satisfieshe PTL formulaX. We
now give a definition of this using induction oxi’'s syntax:

e Propositional variabler = p iff pistrue in the initial state (i.e.,a"(p) =
true).

True: o |= true trivially holds for anyo.
e Negationio =-X iff o X.
e Disjunctionic =X vY iff o XoroEY.

e Nextc EOX iff o' X,
whereo contains at least two states arfddenotes the suffix subinterval o2 . . .
which starts from second staté in o.

e Eventually:c =< X iff o E X,
for some suffix subintervat’ of o (perhaps itself).

Table 1 shows a variety of other useful temporal operatorehware definable
in PTL. It includes operators for testing whether an intersdinite or infinite and
whether the interval has exactly one state or two states.t bfohe operators only
become relevant when finite intervals are permitted. Tloeeefreaders who are just
familiar with conventional PTL with infinite time will haverpviously encountered
only a few of the operators.

Note: Some readers may prefer to skim Table 1 for now and ¢atesult it in more
detail when the various operators are actually used.

Figure 1 assists in the understanding of Table 1 by illusigad number of the
operators through sample formulas and intervals. In thedighe logical valuegrue
andfalse are respectively abbreviated as’*and “f ”. In what follows, we frequently

Standard derived®TL operators:
def

Oox = -0-X Henceforth
def . .
OotX Z 00X Eventually in strict future
f : :
orx €_ootox Henceforth in strict future (not used here)

PTL operators primarily for finite intervals:
def

more = O true More than one state
def .

empty = —more Only one state (empty interval)
def

®@X = -0-X Weak next (same asore O O X)

. def -

skip = O empty Exactly two states (unit interval)
def . :

X? = X A empty Empty interval with test
def L .

$X = X A skip Unit interval with test

PTL operators for finite and infinite intervals:

finite Lo empty Finite interval

inf g finite Infinite interval

sfin X o O(empty A X) Strong test of final state

fin X o O(empty D X) Weak test of final state

ox ¥ & (more A X) Sometime before the very end

X o O(more D X) Henceforth except perhaps at very end

Xey¥ finite O (fin X)=Y Temporal assignment

Table 1: Some definable PTL operators

skip A sfin —p e e

p-t £
O$(pDQ—'p) e o o
A=$(p A Op) prt t f
@p/_'@_'p e o o o
ANOp AP prt t t f
(p D O_'p) e e o e o o
A=O(p D O-p) Pt ft £ f ¢t
(p D <>—|p) e e e o o o
A Sfin p p:t t t t £ t

Figure 1. Some examples of formulas with derived PTL opesato

use the operata® instead of the more conventional PTL operdiowhen we need to
test all pairs of adjacent states in a interval. This is bee&uis better suited for such
tests on finite-time intervals since it does not “run off timel'e The fourth example in
Figure 1 illustrates this feature. As a consequeftées often easier to work with in
our interval-based analysis as is later shown in Theorem 5.4

Definition 3.1 (Satisfiability and validity) For any intervalc andPTL formula X, if
o satisfiesX (i.e.,o = X holds), thenX is said to besatisfiabledenoted as? X. A
formula X satisfied by all intervals isalid, denoted a$= X.

We now define an important subset of PTL involving the operato

Definition 3.2 (Next Logic) The set oPTL formulas in which the only primitive tem-
poral operator isO is called Next Logic (NL). The subset oL in which noO is
nested within anothe® is denoted adL'.

For example, the NL formula » O ¢ is in NL*, whereas the NL formula A O(q v
Op) is not.
The variableg”, 7" andT" denote formulas in NL

Definition 3.3 (Tautologies) A tautologyis any formula which is a substitution in-
stance of some valid nonmodal propositional formula.

For example, the formula X v &Y D ¢ Y is atautology since it is a substitution
instance of the valid nonmodal formuiav ¢ O ¢. It is not hard to show that all
tautologies are themselves valid since intuitively a tengpis any valid formula which
does not require modal reasoning to justify its truth.

Convention for variables denoting individual formulas and sets of formulas: In
what follows, the variables), w’ andw” refer tostate formulasthat is, formulas with
no temporal operators. Furthermore, PROP denotes the s#itstéte formulas. For
any finite set of variable®, PROR, denotes the set of all state formulas only having

variables inV. Likewise, the set PT{. denotes the set of all formulas in PTL only
containing variables i and NI}, denotes the set of all formulas in Nbonly having
variables inV. For example, the formulan < g isin PTLy, ;3 but notin PTLy,;.

3.3 Example of the hierarchical process

Our analysis of PTL reduces arbitrary PTL formulas to lovexel ones with a much
more restricted syntax. The next PTL formula serves as alsisyample to motivate
some of the notation and conventions later introduced:

This is reducible to the formul@ I A~ w, wherel andw are given below:

I: (rm=0p) A (ra=0-1r1) A (r3=0-p) A (rg =-r3)

w: Ty A 4.

The auxiliary variables, ...,r4 provide a natural way to restrict the nesting of tem-
poral operators within the conjunctidn We call I aninvariant and the conjunction
O A w aninvariant configuration Both are formally introduced later in Section 11.
It can be shown that the original formula® p A O < —p is satisfiable iff the invariant
configurationd I A w is. Similarly, the original formula is satisfiable in finitente iff
the invariant configuratiofl I A w A finite is.

When analysing behaviour in finite time, we further transfdhe invariant config-
urationD I A w A finite to a semantically equivalent formula which is a special kind
of conjunctiond T A w A finite, whereT andw are as follows:

T: (r1=((pvOry)) A (ro=(-r1 vOrsy))
A(r3s=(-pvOrsg)) a (ry =(-r3vOry))

w: Ty A Ty

Here I's first conjunctr; = < p is replaced inl” by the O-free formular, = (p v
Orq). The remaining conjuncts it similarly avoid having any> constructs. We call
T atransition formulaandCOT A w A finite atransition configurationfformally
defined in Section 5). The formul& is in fact a formula in the important PTL sub-
set called NL (formally defined earlier in Definition 3.2) in which the ortigmporal
constructs ar® operators not nested within otheroperators. In addition, in finite-
time intervals the PTL formulas I andO T" are semantically equivalent. Moreover,
it can be proved that the original formulad p A O <O —p is satisfiable in finite time
iff the transition configuratiomlT" A w A finite is satisfiable. As is later shown in
Section 5, NL formulas such a% play a fundamental role in our analysis of transition
configurations.

Sections 6-10 subsequently consider small models, dagsacedures and com-
pleteness of axiom systems for transition configuratiosb 1300 7" A w A finite. For
example, in Section 6 in Theorem 6.2, we establish the exstef small models for
this kind of transition configuration by showing that it igishable iff it is satisfiable in
a finite interval having less than"| states, wher& is any finite set of variables which
includes all variables occurring i andw. If the formula is indeed satisfiable, the
decision procedure in Section 8 can construct an intendabsfthar2!V! states by first
considering all states satisfying. The algorithm then searches for intervals starting

with such a state and in which each pair of adjacent statesnwégarded as a two-
state interval, satisfies the transition form{laand additionally the final state, when
regarded as a one-state interval, also satigfieghis is to ensure that the entire interval
satisfies the formul& 7. A sample interval can then be generated. On the other hand,
if the transition configuration is unsatisfiable and thersuflicient memory available,

the decision procedure will eventually terminate with aateg@ answer.

In Section 10, an axiom system for PTL is given and then a fofraxcomatic
completeness for the various kinds of transition configonstis established. This is
done by proving that any consistent transition configumattbat is, one which is not
deducibly false in the axiom system, is satisfiable.

We later in Section 11 formally extend all of this materiahtandle invariant con-
figurations such a8l A w A finite by reducing them to semantically equivalent
transition configurations. The results for small models dadision procedures for
transition configurations can then be used. Axiomatic cetepless for invariant con-
figurations is shown by noting that an invariant configuraach asl I A w A finite
is deducibly equivalent to its associated transition caméigjon and then making use
of the previously established axiomatic completenesg&msition configurations.

Finally in Section 12 we deal with arbitrary formulas suchthe sample one
OO p A OO —p by systematically reducing them to lower-level invarianhigu-
rations which capture their semantics and normally corgaina auxiliary variables.
The original formula is satisfiable iff the invariant confrgtion is. Furthermore, any
interval satisfying the invariant configuration also d&sthe original formula. The
decision procedures for invariant configurations, whichakeady mentioned, in fact
reduce them to semantically equivalent transition conéiions, can then be applied.
Axiomatic completeness for arbitrary PTL formulas follolsobserving that if such a
formula is consistent, then so is the associated invari@anfiguration. From axiomatic
completeness for invariant configurations, it follows ttiere exists a model for this
particular invariant configuration. Finally, this modehcalso serve as a model for the
original PTL formula.

3.4 Notation for accessing parts of conjunctions

From the examples just given it can be seen that we often miatgformulas which
are conjunctions. For the moment we do not make any partiaskumptions about the
syntax of the individual conjuncts although this will be @an later sections for certain
useful kinds of conjunctions. The next three definitions/mte some helpful notation
for denoting the number of conjuncts of an arbitrary conjiomcand for accessing
one or more of them. In what followg, denotes some conjunction of zero or more
conjuncts. A conjunction with no conjuncts is denotedras.

Definition 3.4 (Size of a conjunction)Let the notatiorjC| denote the number @f’s
conjuncts.

Definition 3.5 (Indexing of a conjunction’s conjunctsfor eachk : 1 < k£ < |C|, we
let C[k] denote the:-th conjunct.

Observe that if a conjunctiof’ has lengthC'| = 0, there are no conjuncts to be
indexed.

Definition 3.6 (Parts of a conjunction)Let £ and [be natural numbers such that
1 <k < |Cland0 < I < |C|. The notationC[k : I] denotes the conjunction of

10

consecutive conjuncts i starting with C'[k] and finishing withC/{], inclusive, i.e.,
C[k] A --- A C[l] (which containg — k + 1 conjuncts).

For example, below is shown a conjunction with three corfaod how to access
them:

C: (pDq) n =(r=0true) n (rvu)
|IC| =3 C[]: pDgq C[2]: —(r = Otrue) C[3]: rvu.

Note that for any conjunctiofy, the formulaC|1 : 0] denotestrue andC|[1 : |C|] is
identical toC'. Also, foranyk : 1 < k < |C|, bothC[k] andC'[k : k| refer to the same
conjunct.

Our analysis will frequently make use of conjunctions of iegiences, as illus-
trated in the previous Subsection 3.3. When doing this, wesemetimes omit the
parentheses around each individual equivalence and thsdééaon both the context
and sufficient spacing between them to avoid ambiguousngarklere is an example:

rm=(ravrs) A 13=0p A 1r3=°34g.

4 Propositional Interval Temporal Logic

We now describe the version of quantifier-free propositidia (PITL) used here
for systematically analysing transition configurationsor®lon ITL can be found in
[37,64—-68,71-73] (see also [49]). The same discrete-tmegvals are used as in PTL.
In addition, all PTL constructs are permitted as well as twleo ones. Hence, any
PTL formula is also a PITL formula.

Here is the syntax of PITL’s two primitive interval-oriedteonstructchopand
chop-star whereA and B are themselves PITL formulas:

A; B (chop) A* (chop-star)

The semantics of the other constructs in PITL is as in PTL anitherefore omitted
here.

Before defining the semantics of chop and chop-star, wedotre some notation
for describing subintervals of an interval For natural numbers j with i < j < |o],
let %7 denotes the subinterval with starting stateand final states? and having
interval lengthj — i (i.e.,j — ¢ + 1 states). Furthermore, déf is an infinite interval, let
o'« denote the (infinite) suffix subinterval starting with state

The formulaA; B is true ono (i.e.,o |= A; B) iff one of the following holds:

e For some natural numbér: 0 < ¢ < |o|, the intervalo can be divided into
two subintervalg’* ando*!?! sharing the state’ such that botlr** |= A and
o1l = B hold.

e The intervalo itself has infinite length and = A holds.
The formulaA* is true ono (i.e.,o = A*) iff one of the following holds:

e The intervalo has finite length and there exists some natural number 0
and finite sequence of natural numbg&s< [, < --- < [, wherely = 0 and
l,, = |o|, such that for each: 0 < i < n, olili+1 = A holds.

11

// ; . ° ° . ° DR
W
A B A B
[] [] [] :.u) [] []
-
A
A* .”w.\./. A* ° <.w .<w. ° :.w- "
A A A
A A A
[] <.w .<w. <.w [] = =
A A A
(@ Informal semantics for (b) Informal semantics for infinite time
finite time
p; P p:t £ £
A e g
p —p
* t ot f
($p) Pt t £
$pSp
ship; p pf t t f
skip p
ﬁzte;ﬁp pf t t f t f
- -~
(©=p) finite —p
(p A O=p);=p pt £ f f t t
—
prO—-p

(c) Some finite-time examples

Figure 2: Informal PITL semantics and examples

e The intervab has infinite length and there exists some 0 and finite sequence
of natural numberg, < [; < --- < [,, wherely = 0, such that for each
i:0<i<n,clli+ = Aholds and alse'*“ = A holds.

e The intervals has infinite length and there exists some countably infinitetky
ascending sequence of natural numbgrs [; < --- wherel, = 0, such that
for eachi : i > 0, o'#*ti+1 |= A holds.

Figure 2 pictorially illustrates the semantics of chop ahdgestar in both finite and
infinite time and also shows some simple PITL formulas togettith intervals which
satisfy them. For some sample formulas we include in paeseth versions using
conventional PTL logic operators which were previouslyoduced in Section 3.

Remark 4.1. The behaviour of chop-star on empty intervals is a frequentce of
confusion and it is therefore important to note that any folemA* (including false™)

12

(oW
[0}
-

At = A A7 Chop-plus

I (A A finite)* A inf Chop-omega

U { ZTZZ/—l gtzefw(i]se Fixed iteration

At Ly, A

Asn Loy Ak

S A o A; true A is true in some initial subinterval
A - & A Ais true in all initial subintervals
o4 ¥ finite; A; true A is true in some subinterval

A Y —e-a Ais true in all subintervals

Table 2: Some useful derived PITL operators

is true on a one-state interval. This is because in the seiggot chop-star for a one-
state interval we can always set= 0 and therefore ignore the values of variables in
the interval.

Table 2 shows several especially useful derived PITL opesaincluding some
variants of chop-star.

The notions of satisfiability and validity already introguakcin Definition 3.1 for
PTL naturally generalize to PITL.

Let PITLy be the set of all PITL formulas only having variablesin

The next definition introduces a special kind of state fommwihich is indispensable
for interval-based reasoning. It plays the role that setsrofiulas typically do in other
analyses of PTL.

Definition 4.2 (Atoms andV-atoms) Anatomis any finite conjunction in which each
conjunct is some propositional variable or its negation aratwo conjuncts share the
same variable. The set of all atoms is denotdms. The Greek letters, 5 and~y
denote individual atoms. For any finite set of propositiovaliablesV, let Atomsy
be some set oflV'I logically distinct atoms containing exactly the variablas/. We
refer to such atoms ag-atoms

For example, we can lettomsy, ., be the set of the four logically distinct atoms
shown below:

pArg pA—Tq pAg pATg.

One simple convention is to assume that the propositionaébas in an atom occur
from left to right in lexical order. For any finite set of vabiasV, this immediately
leads to a suitable set of"| differentV-atoms.

5 Transition configurations

Starting with a finite set of variabldg an NL, formula7 and a state formulanit in
PROR,, we consider small models, decision procedures and axiomamnpleteness

13

for certain low-level formulas referred to hereteansition configurationsThese for-
mulas play a central role in our approach. The analysis ofrarp PTL formulas can
be ultimately reduced to that of transition configurations.

Before actually formally defining transition configurat&rwe need to introduce
the concept of @onditional liveness formulevhich is a specific kind of conjunction
necessary for reasoning about liveness properties imglwafinite time. The definition
therefore makes use of some general notation already inteatin Definitions 3.4-3.6
for manipulating conjunctions.

Definition 5.1 (Conditional liveness formulas, enabling tests and ligsnists) A
conditional liveness formulé is a conjunction of L| implicationsL[1] A - - - A L[| L]].
Each implication has the form > ©®w’, wherew and w’ are two state formulas.
For convenience, we lef. ;) denote the left operand af’s k-th implication L[E].
Similarly, ;) denotes the operand of the formula on the right side of.’s k-th
implication. It follows from all of this that for each : 1 < k < |L|, the implications
L[k] andn) O @ 01 denote the same formula. In addition, eveyy,) andd; is
a state formula.

Eachr) is called anenabling test

Eachd . is called aliveness test

For any V-atoma and anyk : 1 < k < |L|, if the formulac A LK) is satisfiable,
we say thatv enabledl’s k-th implication L[k].

Here is a sample conditional liveness formula:

(pv—-g)D®-p) A (¢D®p=-q) ~r (trued®(p>Dgq). (1)

If we denote the overall formula as, then, for example, the enabling tegt;, is ¢
and liveness test;, 3 isp D q.

Note that® behaves the same &son infinite intervals. However, in finite inter-
vals @, like its dual®@, ignores the final state. In principle, eith@ror & can be used
in conditional liveness formulas and the choice betweemthppears to be largely a
matter of taste. Nevertheless, we choose to@ige part because it facilitates an inter-
esting generalization of both conditional liveness forastdnd another kind of formula
called aninvariantwhich is introduced later in Section 11. This generalizatiall be
mentioned in Subsection 13.3. In addition, the applicabioft naturally complements
our extensive use of its dual.

Here is the definition of transition configurations:

Definition 5.2 (Transition configurations)A transition configurations a formula of
the formO7T A X, where the formuld is in NL,, and thePTL, formula X has
one of the four forms shown below:

Type of transition configuration Syntax &f
Finite-time init A finite
Infinite-time init AOOT L

Final w A empty
Periodic anLAO0T(anl)

Here init is a state formula ilPROR, which corresponds to songitial condition,w
is some state formula IRROR,, L is a conditional liveness formula IRTLy,, anda is
a V-atom. Ifinit is the formulatrue, it can be omitted. The same applies with

14

Type of transition PITL, formula Where

configuration proved
Finite-time ((37)* A init A finite); (T A empty) Theorem 5.10
Infinite-time ((3T)* A init A finite); Theorem 5.19
(ST)* A LAV —V))*
Final T A w A empty straightforward
Periodic (3T)* nan L)¥ Theorem 5.17

Table 3: Reduction of transition configurations to P{Tformulas

For example, the conjuncticA(more D (p = Op)) A p A finite is a finite-time
transition configuration which is true exactly for finite@emtals in whichp is always
true.

Note: Inthe course of analysing transition configurations, wé agsume thav, T,
init and L are fixed.

We will show that finite-time and infinite-time transitionrd@yurations are equiv-
alent to certain PITL: formulas for which we can more readily establish such things
as the existence of periodic models, small models, decmiocedures and axiomatic
completeness. Table 3 shows the corresponding ffokmula for each kind of transi-
tion configuration and where the equivalence of the two isgudo Recall the definition
of chop-omega in Table 2. Also, in Table 3 and elsewhere thredtaV — V denotes
that the initial value of each variable occurring in the detariablesV equals its final
value. It is a natural generalization of the temporal assigmt operator— previously
introduced in Table 1 and can be defined as follows within PTL

o}
—n

Ve~V = [finite> /\((ﬁn v) = 0).

veV

ConsequentlyV —Vis semantically equivalent to the disjunction given below:

\/ (a A fin a).

acAtomsy

In addition to the theorems summarized in Table 3, Theor&df will establish
that an infinite-time transition configuration is satisfedf the next PTL formula is
satisfiable in finite time:

BT A init A O(L A finite A more A (‘7 — {7))

In order to perform interval-based analysis on transitionfigurations, we need
to related 7" to the PITL formula($7")*. Now the PTL formulaz 7", which is very
similar tod 7', was previously defined in Table 1 to be true on an interval'ifé true
in all of the interval’s nonempty suffix subintervals. Itmsrout that due t@ being in
NL!, the formula($ 7)* is semantically equivalent t@ 7'. Intuitively, this is because
an NL! formula cannot probe past the second state of an intervak riEixt lemma
formalizes this:

Lemma 5.3. Let 0 and ¢’ be two nonempty intervals which share the same first two
states (i.e.g” = (/) ando’ = (¢”)!). Then, for any formuld” in NL', o satisfiesT”
iff o satisfiesr.

15

($7) T T T ($(p D O —p))* p2O0—p pOO—p pOO-p
mys E(p > O-p) PO
T p2O-p

p2O—p
Figure 3: lllustration of equivalence ¢$ 7)* and= T’

Proof. Induction on7’s syntax ensures that it cannot distinguish betweendo’.
L

Consequently, if two nonempty intervals share the sametfirststates, then the
truth value ofT" for both intervals is identical. Figure 3 illustrates thigtwtwo in-
stances of an interval containing 4 states. The secondoveusies the concrete NL
formulap D O—-p and shows specific values for the propositional variabléBoth
($7)* and® T test each pair of adjacent states. The equivalence consygpermits
us to expres$$ 7')* in PTL by means of2 T'. In addition, it is often useful to express
T as($7)* because the later turns out to be much more suitable fovaitbased
reasoning involving sequential composition and decontioosi

We now formally establish the semantic equivalence of theédas($7")* and
T

Theorem 5.4. For anyNL' formulaT, thePITL formula($7)* and thePTL formula
T are semantically equivalent and hence the equivaléfi@®* = = T is valid.

Proof. Given an intervab, we can put each two-state (unit) subinterval in one-to-one
correspondence with the suffix (nonempty) subinterval Wwisitares the same first two
states. Now satisfies($T")* iff T"is true on all ofo’s unit subintervals. Similarly,

o satisfiesz T" iff T is true on all ofo’s nonempty suffix subintervals. By the previ-
ous Lemma 5.3 a given unit subinterval satisfiesf the matching suffix (nonempty)
subinterval satisfie®. Consequently, the overall interval satisfi§g")* iff it satisfies

T. O

It is not hard to check that on a one-state (empty) inte™dl, is trivially true. On
a two-state (unit) interval, it is semantically equivalemthe formularl” itself.

Also note that the PTL formul& T is semantically equivalent to the PTL for-
mula® T A fin T. This fact and Theorem 5.4 together establish tAdt is also
semantically equivalent to the PITL formu(&87")* A fin T. Therefore, the formula
O T in transition configurations can be readily re-expressé&l i as the conjunction
($T7)* A fin T. This will assist our interval-based analysis of transitonfigurations.

Remark 5.5. We have discussed the important semantic equivalence tdrtinellas
($37)* and @ T" with quite a few people who themselves have a consideratmeir@m
of experience with botRTL andPITL. Originally we thought that this amounted to a
straightforward application of temporal logic. Howeves, dur surprise, these people
found the equivalence and its applications to be nontriaiadl interesting. For this
reason, we have designated the statement of the equivadé(®@’)* and® 7" to be a
theorem (i.e., the previous Theorem 5.4), rather than mexéémma.

16

It is also worth considering a more syntactic approach to destrating the se-
mantic equivalence df$ 7')* and @ 7" since some readers might find this alternative
way helpful. Recall the unamffL operator<> defined in Table 2 for testing whether
its operand is true in some initial subinterval. Now obsettvat ($7")* is semanti-
cally equivalent to th&ITL formula® & (T A skip) since both formulas examiré
in all two-state subintervals. Furthermore, owingZobeing inNL!, the formulasl’
and<® (T A skip) are semantically equivalent on any nonempty interval siether of
them examines beyond the second state (see Lemma 5.3)gGembg= (7" A skip)
and®@ 7" are equivalent since’s sole operand is only tested on nonempty subintervals.
Therefore($ 7)* and® T are indeed semantically equivalent.

Here is a corollary of Theorem 5.4 for infinite time:

Corollary 5.6. The two formulas] 7" and ($7')* are semantically equivalent on infi-
nite intervals and hence the implicatienf > 0T = ($7)* is valid.

Proof. This readily follows from Theorem 5.4 and the semantic egjence of@ T’
andOd 7" on infinite intervals.]

The next two Lemmas 5.7 and 5.8 subsequently provide a basislating finite-
time transition configurations to final ones and also forthedginfinite-time transition
configurations to periodic ones.

Lemma 5.7. For anyPITL formula A, the next equivalence is valid:
E OTAQCA = ($T)"AO(0T A A).

Proof. We first establish the validity of the PTL formulap = Ep A < Op which
itself leads to the validity of the formuldp A &g = @p A >(Op A q). We then
substituteT” into p and A into ¢q. Finally, Theorem 5.4 permits us to replagel” by
($T)*. O

Lemma 5.8. For any state formulav and PITL formula A, the next equivalence is
valid:
OT ArwaCA = (($T)" Awn finite); (BT A A). 2)

Proof. Lemma 5.7 ensures thatT A ¢ A is semantically equivalent to the conjunc-
tion ($7)* A~ S(OT A A). This is itself semantically equivalent to the next PITL
formula:

((3T)" A finite); ($T)* AOT A A).

Now O T trivially implies 7" which by Theorem 5.4 is semantically equivalent to
($T)*. This consequently permits us to simplify the subform{#@)* A OT into
O T to obtain the next valid equivalence:

E OTACA = (($T)" A finite); (OT A A).

Simple temporal reasoning permits us to suitably add the samulaw to each side
to obtain the validity of the formula (2). O

17

5.1 Analysis of finite-time behaviour

The following Lemma 5.9 and Theorem 5.10 concern reducingigeftime transition
configuration to the associated semantically equivaleht Rdbrmula in Table 3 which
is easier to later analyse.

Lemma 5.9. The following equivalence is valid for finite-time transiticonfigurations
and relates them to final configurations:

= OT ninit A finite = (($T)" A init A finite); (OT A empty). (3)

Proof. The PTL formulafinite is defined to be> empty in Table 1. Lemma 5.8 then
ensures the validity of the equivalence (3). O

Theorem 5.10 builds on Lemma 5.9 by reducing a finite-timeditaon configura-
tion to a chop formula in PITL which is even easier to analyssause its righthand
operand is in NL:

Theorem 5.10. The following equivalence is valid for finite-time transiticonfigura-
tions:

= OT ninit A finite = (($T)" A init A finite); (T A empty).

Proof. This readily follows from Lemma 5.9 and the fact that in an gmpterval, the
formulasd 7" andT are equivalent. O

Note that we can use the unary PTL operdtdpreviously defined in Table 1)
to alternatively express the PITL formul@$T)* A init A finite); (T A empty)
as the semantically equivalent PITL formulast?; (($7)* A finite); T7 andinit A
($T7)* A sfin T. Each form has its benefits. We preférm empty over the equivalent
T'? since some readers might get confused upon seeing the apeveth an operand
which is itself a temporal formula even though this is peteait

5.2 Analysis of infinite-time behaviour

We now turn to analysing infinite-time transition configumas. The first step involves
relating them to periodic transition configurations. Thgtneemma 5.11 does this:

Lemma 5.11. The following equivalence is valid for infinite-time traim@n configu-
rations:

OT A init AOOT L

= ((87)* ainit A finite); \/ (OT ranLAOOT anL)). (4)

acAtomsy

Proof. Observe that in an infinite interval if the conditional live=s formulal is al-
ways eventually true then for at least one of the finite nunolbé+atoms, the conjunc-
tion a A L is also always eventually true. Therefore simple temp@asoning yields
thatd &+ L is semantically equivalent to the disjunctih), ¢ 4;,,,,, OO (o A L),
The subformulad &+ (o A L) can be re-expressed @ga n L A OO (o A L)) SO
the next equivalence concernifg>™ L is valid:

E OOtL =V Olan LAaOOT (anL)).

acAtomsy

18

We can then swap the instances\6ind< to obtain the following valid equivalence:
E DOYL = OVcaime (@n LATOT(@n L)),

This permits us to re-express the infinite-time transitionfgurationO 7" A init A
O <1 L by means of the next valid equivalence:

E OTAinit AOOTL

= OT ainit A\ anLAOO0T (anL)). (5)

aEAtomsv<
We invoke Lemma 5.8 on the righthand operand of this equinado establish the
validity of the equivalence below:

E o OT ainit A OV ge aromsy (@A LAaOOH (@ L))

= ((8T)* ninit A finite); (OT AV e aroms, (@A L ADOT(an L))). (6)

The righthand operand of the chop construct in (6) can bepeessed as shown by
the valid equivalence now given:

): DT/\VQGAtOmsv(aAL/\D<>+(a/\L)>

= Vacatomsy (BT Aan LABOT(anL)).

The justification of this only involves conventional profmsal reasoning. Conse-
qguently, the equivalence (6) can be itself re-expressediias\s:

anLAOOT(an L))
(BT AanLAOOT(anL))). (7)

E 0T adinit A OV e aromsy (
= (($7)* A init A finite); \/

acAtomsy

The second operand of equivalence (5) is identical to thé diperand of equiva-
lence (7). Consequently, the conjunction of these two edeinces implies the initial
equivalence (4). Hence, the validity of (5) and (7) yields goal which is the validity
of (4). O

5.2.1 Reduction using chop-omega operator

Much of the remainder of the analysis of transition configjores consists of showing
how to further reduce a periodic transition configuratioi” A a« A L A OO (o a L)
to the semantically equivalent PITL formul& 7)* A o A L)“. A general class of
formulas which includest A L will now be described. For any PITL formula in
this class, the two formulad » O<C* A and A« will be shown to be semantically
equivalent in Theorem 5.16. We first need to introduce a ddriRITL operator which
turns out to be useful for analysing periodic behaviour fimite intervals.

Definition 5.12 (The operator®). For anyPITL formula A, let thePITL formula® A
is defined to béA A finite); true. Therefore,® A is true on an interval iffA is true
on some finite subinterval starting at the beginning of theral interval.

Note that® A can also be expressed with the derived operat@tself previously
defined in Table 2) a$ (A A finite).
It is worthwhile to define a notion of fixpoints of the operator

19

Definition 5.13 (Fixpoints of the operato®). A PITL formula A is a fixpoint of® iff
the equivalencel = & A is valid.

Fixpoints of & are easier to move out of subintervals than are arbitramuitas.
Incidentally, for any PITL formulad, the formula® A is a trivial fixpoint of & since
& A and® & A are semantically equivalent. We will shortly show that alhditional
liveness formulas aré-fixpoints and later use this in the analysis of infinite iutds.

We extensively investigate fixpoints of various temporam@pors and their appli-
cation to compositional reasoning in [68—71].

The next lemma characterizes a broad syntactic class ofulasrwhich are®-
fixpoints and is easy to check:

Lemma 5.14. Every state formula is &-fixpoint. Furthermore, if th&ITL formulas
A and B are ©-fixpoints, then so are thelTL formulasA A B, Av B, O Aand< A.

Lemma 5.15. Every conditional liveness formula is&fixpoint.

Proof. By Definition 5.1, a conditional liveness formula is a corgtion of impli-
cations each which has the form > © w’ for some state formulas andw’. If
we replace> and © by their definitions, then the implication reduces to therfola
—w v O((Otrue) A w'). Lemma 5.14 then ensures that this i®dixpoint. Conse-
guently, the original implicatiom > ¢ w’ is one as well. Therefore by Lemma 5.14,
the conjunction of such implications which constitutes aditonal liveness formula
is also a®-fixpoint. O

Observe that by Lemmas 5.14 and 5.15, the fornaula L is itself a &-fixpoint
because both and L are ®-fixpoints.

Now the formulace A L A OO (a0 A L) is itself an instance of the PITL formula
A A OOT A, We now proof in Theorem 5.16 that if is a &-fixpoint, then the for-
mulaA A~ O<OT A can be re-expressed as the semantically equivalent PlThufar
A%, This will let us re-expresa A L A O™ (a A L) as the semantically equivalent
PITL formula(a A L)¥. The establishment of this equivalence is a key step in the
reduction of reasoning about infinite time behaviour to érnitme behaviour and con-
sequently proving the existence of periodic models forsfiatile periodic transition
configurations.

Theorem 5.16. For anyPITL formula A which is a®-fixpoint, the next equivalence is
valid:
E A D00TA = A,

Proof. Left side implies right sideSuppose that an interval satisfiesd » OO A,
Now this conjunction is semantically equivalent to the faten® A A O OT & A be-
causeA is a ®-fixpoint. Therefores also satisfies the formul&@ A A~ OOT & A.
Furthermore,s is clearly an infinite interval due to the conjunct contagnin .
Therefore,oc has an infinite number of finite subintervals which all satidfinclud-
ing at least one starting with’s initial statec”. An infinite sequence of nonover-
lapping finite-length subintervals all satisfying can then be selected with the first
one commencing at the beginning ®f Consequentlyy satisfies the PITL formula
((A A finite); true)® which is the same &8> A)“. This and the assumption thatis
a &-fixpoint together yield that satisfiesA“.

Right side implies left sideSuppose that an interval satisfiesA“. Thereforeo
is an infinite interval and has an infinite number of finite siwdivals all satisfyingd,

20

including one starting witla’s initial state. From this we can readily obtain the valid
PITL implication shown below:

=AY D (A finite);true A OOT((A A finite); true).
This can be re-expressed usifxgas follows:
= AY O QA A O0TOA

The assumption that is a ®-fixpoint then yields the desired validity of the semanti-
cally equivalent implicatiom® > A A OOT A, O

The following Theorem 5.17 relates any periodic transitonfiguration with its
associated PITL formula shown in Table 3:

Theorem 5.17.The next equivalence concerning a periodic transition gumétion is
valid:
E OTAranLAaO0T (anLl) = (($T)" AanL)”. (8)

Proof. Lemmas 5.14 and 5.15 ensure that the formula L is itself a ®-fixpoint
because both and L are ®-fixpoints. Therefore Theorem 5.16 yields the validity of
the following equivalence:

E arnLAaO0T(anLl) = (anL)”.

We then conjoind 7" to each side of the equivalence. Recall the fact that and
($T)* are semantically equivalent in infinite time (Corollary 6s® the equivalence
below is valid:

E OTAranLaO0T(anLl) = ($T) A (an L)¥.

Now ($7)* A (a A L)% is an instance of the PITL formul@ B)* A C“ which itself
is semantically equivalent tg$ B)* A~ C')“. The intuition here is that both of them
use$ B to test exactly all the two-state subintervals of the ovém&drval. Finally, we
use this to re-expre$8 7')* A (a A L)* as(($7)* » a A L)%, thereby obtaining the
validity of formula (8).]

The following Lemma 5.18 concerning a disjunction of periddansition configu-
rations is needed to justify our reduction of the satisfigbdf a infinite-time transition
configuration to the associated PITL formula shown in Table 3

Lemma 5.18. The next equivalence is valid:
= Vacatomey BT A0 n LADOT(an L))
= (BT ALAV V)" (9
Proof. Theorem 5.17 ensures that the equivalence given belowid val
E OTAranLaO0T (anl) = ($T)" ranL)v.

We then use some simple temporal reasoning to establisthibagquivalence’s right-
hand operand($ 7))* » a A L)“ can be re-expressed as shown in the next equivalence:

): (($T)* ACA L)“’ = a A (($T)* AL A (‘7 — ‘—/’))w

21

These two equivalences are now combined to obtain the vaédjiven below:
E OTAranLAaOOTHanl) = an (($7) /\L/\(‘7<—‘7))w.

This and some further simple reasoning about the opeXatgelds the validity of the
following equivalence:

): \/aeAtomsV(DT/\Oé/\L/\ D<>+<a/\L))
= \/aEAtomsv (Oé A (<$ T)* A L A (‘7 — ‘7))""')

The righthand side can be re-expressed(8')* A L » (V « V))” and thereby
yields the validity of the equivalence (9). O

The equivalence of an infinite-time transition configuratiwith the associated
PITL formula shown in Table 3 is now established:

Theorem 5.19. The following equivalence is valid for infinite-time traiisn configu-
rations:

E OT ainit A\OOTL
= ((8T)* ainit A finite); (ST)* A L a (V «— V))*.

Proof. This readily follows from Lemma 5.11 which relates infinitexe transition
configurations to periodic transition configurations anchibea 5.18 which re-expresses
the disjunction of several periodic transition configusas using chop-omega. [

5.2.2 Fusion and canonical intervals

Let us consider some general concepts and techniques cong@® TL and its notion
of intervals. They will be extensively used later on.

Definition 5.20(Fusion) Leto ando’ be two intervals. The definition of tifigsionof
them, denoted o ¢’, has two cases, depending on whethdras finite length or not:

e If o has finite length, we require that the last statesodéquals the first state of
o’. The fusion ot with ¢’ is then the interval obtained by appending the two
intervals together so as to include only one copy of the sharate.

e Otherwise, the fusion is itself, no matter what' is.

For example, supposq, s, andss are states. |& is the intervals;s; ando’ is
the intervals, s3, then their fusiorr o o’ equals the three-state intervals, s3, rather
than the four-state interval sos2s3 which concatenation yields. Note that whehas
finite length andr ando’ do not share the relevant state, then their fusion is undkfine
If both o ando’ are finite and compatible, then the intervab ¢’ contains the total
sum of states im ando’ minus one. Hence the interval length®b ¢’ equals the
sum of the interval lengths af ando’. Pratt first defined fusion for describing the
semantics of a process logic [79] and callefugion product(see Harel, Kozen and
Tiuryn [40, Section 17.3] for a tutorial on process logics).

It is worth comparing chop and fusion. Fusion is a generatatpen definable for
such things as strings (i.e., sequences of letters) ownatte(i.e., sequences of states).

22

As used here, it starts with two suitable intervals and jtivesn together. In contrast,
chop is a logical operator which starts with an overall diand then tests for the
existence of a way to split it into two fusible subinterveisirthermore, the semantics
of the chop operator can be defined using fusion, whereasrfissifor our purposes a
semantic concept, not a logical construct.

Here is a lemma relating chop with fusion:

Lemma 5.21. APITL formula 4; B is satisfiable iff there exist two intervadsand o’
such that the fusion of themo ¢’ is defined and one of the following is true:

e The intervalo has finite length, it satisfied and the intervab’ satisfiesB.
e The intervals has infinite length and it satisfies.

This lemma provides a way to reduce the problem of constrgetn interval satis-
fying A; B to that of constructing intervals satisfyingand B.

Before further reducing transition configurations invalyiinfinite time, we intro-
duce the notion o€anonical intervalsand discuss their use in relating the satisfiability
of chop and chop-omega formulas with satisfiability of trogierands.

The next definition of a notion of canonical states and irglsrtogether with the
subsequent Lemma 5.23 will be extensively utilized to fete reasoning about inter-
vals.

Definition 5.22 (Canonical states and intervaldjor any finite set of variable® and
states, we say that is a V-stateif s assigns each variableotin V the valuefalse.
Similarly, for any finite set of variableg and intervalo, we say thav is a V-
intervalif o’'s states all assign each variabl®tin V the valuefalse.
Furthermore, for any set of variablds, we can denote &-state by the unique
V-atom which the state satisfies. In additiori/anterval can be denoted by the unique
sequence of-atoms associated with ilg-states.

For example, for any-atomsa and g, the two-atom sequenegs denotes a finite
V-interval withV-states denoted by and, respectively. Hencey = X denotes that
the two-statéd/-interval a5 satisfies the formul& . If X isin PTLy, thenag E X
holds iff the conjunctiory A O 37 A X is satisfiable. Furthermore a singleatom
can be regarded as a one-stitmterval. For examplex = X denotes that the one-
stateV-interval o satisfiesX. For anyX in PTLy, this is the case iff the conjunction
a n X A empty is satisfiable. Similarly, the notatiomsa = X denotes that the
V-intervalaGa, which has two identical states, satisfies the formXila

The next lemma ensures that any satisfiable RITarmula is satisfied by some
V-interval.

Lemma 5.23. An intervalo satisfies éPITLy formula A iff there exists d/-interval
with the same number of states@sagrees witho on the values of the variables In
and moreover satisfied.

Proof. Let o’ be theV-interval obtained frona by setting all variables not in the sEt
to false in each state. The semantics in PITLA4ignores such variables. O

The following lemma employd-atoms and the PTL construgtiite to express
a simple sufficient condition which ensures that any tworwgks which respectively
satisfy the two operands in a chop formula with a particwatax given in the lemma
can be fused together into an interval which satisfies theatha&op formula.

23

Lemma 5.24. For any V-atom« and PITLy formulas A and B, the following are
equivalent:

(@) The formulaA A finite); (a A B) is satisfiable.
(b) The formulasd A sfin « anda A B are satisfiable.

Proof. (a) = (b): If some intervab satisfies the formuléA A finite); (o A B), then
by the semantics of chop there exist two subintervals denoted here ag’ ando”
such that the subintervat' satisfiesA A finite and moreover i’ has finite length,
theno” satisfies A B. The right subformulginite in A A finite ensures that’ is
indeed finite and therefor€’ does satisfiea » B.

(b) = (a): If the two formulasA A sfin « anda A B are satisfiable, then by
Lemma 5.23 somé&-intervalsc ando’ satisfy them. Nows is finite due to the sub-
formulasfin «. Also, the last state of and the first state of’ both equal thd/-state
denoted by théd-atoma. Hences ando’ can be fused and the fusieno ¢’ satisfies
the formula(A A finite); (o A B). O

5.2.3 Periodic models and reduction to finite-time behaviou

The remaining material in this section deals with relatiransition configurations in-
volving infinite time to other formulas involving periodigias well as to formulas
about finite time. The connections are interesting in théwaseand also later utilized.

The next Lemmas 5.25 and 5.26 help to establish small modetsdability and
axiomatic completeness for periodic transition configores:

Lemma 5.25. For any V-atoma andPITLy formula A, the following are equivalent:
(@) The formulaa A A)“ is satisfiable.
(b) The formulaa A A)“ has a periodic model.
(c) The formulax A A A O sfin « is satisfiable (in some finite-time interval).

Proof. (a) = (c): Suppose the intervat satisfies(a n A)¥. We can assume each
iteration ofa A A occurs in a nonempty, finite interval as expressed by thevadixt
equivalence:

E (anA)Y = (anAn finite A more)”.

Furthermore, each pair of adjacent iterations share a constate satisfyingv and
hence all havey true at the beginning and end as is captured by the followaligl v
equivalence:

E (anA)Y = (anAn finite A more A fin).

Therefore the subformula A A A finite A more A fin a is satisfiable (in some finite-
time interval) and hence the semantically equivalent fdamusn A A O sfin « is also
satisfiable.

(¢c) = (b): Suppose the interval satisfieso A A A O sfin «. As a consequence
of a being aV-atom andA being a PITL, formula together with Lemma 5.23, we
can assume without loss of generality thais a V-interval. We then readily fuse
instances oé together to obtain a periodic interval satisfying the folanux A A)~.

(b) = (a): Clearly if some periodic interval satisfi¢a » A)“, then this formula
is satisfiable. |

24

Lemma 5.26 shows that any satisfiable periodic transitioviigoration has a peri-
odic model. Subsequently, Theorem 5.29 establishes tyatatisfiable infinite-time
transition configuration has an ultimately periodic model.(an interval with a peri-
odic suffix):

Lemma 5.26. For any V-atoma, the following are equivalent:

(@) The periodic transition configuratioR 7 A a n L A OOT (o A L) is satisfiable.

(b) The periodic transition configuratiof T’ A a A L A OOT(a A L) has a
periodic model.

(c) The formula$T)* A o n L A O sfin « is satisfiable (in some finite-time inter-
val).

Proof. Theorem 5.17 reduces the periodic transition configurdbdhe semantically
equivalent PITL, formula(($7)* A a A L)*. We then utilize Lemma 5.25. O

Lemma 5.27. For any V-atoma and PITLy, formulas A and B, the following are
equivalent:

(@) The formulaA A finite); (o A B)“ is satisfiable.

(b) The formula(A A finite); (o A B)“ has an ultimately periodic model (i.e., an
interval with a periodic suffix).

(c) The formula A A finite); (a A B A O sfin «) is satisfiable (in some finite-time
interval).

Proof. (a) = (¢): If the formula(A A finite); (o A B)“ is satisfiable then the PITL
formula (A A finite); (a« A B A Osfin a)® is also satisfiable. From this readily
follows the satisfiability of the formul&A A finite); (o A B A O sfin «).

(¢c) = (b): If the formula(A A finite); (a« A B A O sfin «) is satisfiable then
Lemma 5.24 ensures that the two formukas. finite A fin « anda A B A O sfin «
are also satisfiable. Lemma 5.25 then yields that the forrfaula B)“ has a periodic
model. Suppose the interval satisfiesA A finite n fin o and the intervab’ is a
periodic model of(ae A B)¥. Lemma 5.23 permits us to assume thaand o’ are
V-intervals. We can fuse together withs’ to obtain an ultimately periodic model for
(A A finite); (a A B)“.

(b) = (a): Clearly if some ultimately periodic interval satisfied finite); (a A
B)“, then this formula is satisfiable. O

Lemma 5.28. For anyPITL, formulasA and B, the following are equivalent:
(a) The formula A A finite); (B » (V «— V))¥ is satisfiable.
(b) The formula(A A finite); (B A (V < V))* has an ultimately periodic model.

(c) The formula(A finite); (B A more A finite n (V — V)) is satisfiable (in
some finite-time interval).

Proof. This follows from Lemma 5.27 and simple temporal reasonnwglving chop
and the operatoy/. We also make use of the following valid equivalences camiogr
V « V, the formulaB and anyV-atoma:;

E arBaAOsfina = a/\B/\moreAﬁm'teA(V&f/))
E (@anB)Y = anr(BarV V)~ O

25

Type of transition Upper bounds Where

configuration proved

Finite-time Interval length less thadtomsy | Theorem 6.2

Infinite-time Initial part< |Atomsy|, Theorem 6.9
Period< (|L| + 1) - |Atomsy|

Final Interval length is O straightforward

Periodic PerioK (|L| + 1) - |Atomsy | Lemma 6.8

Table 4: Summary of upper bounds of intervals for transitdonfigurations

Theorem 5.29. The following are equivalent:
(a) The infinite-time transition configuration T’ A init A O <™ L is satisfiable.

(b) The infinite-time transition configuratidnT" A init A O <™ L has an ultimately
periodic model.

(c) ThePITLy formula (($7)* A init A finite); ($7)* A L A more A finite A
(V — 17)) is satisfiable (in some finite-time interval).

(d) ThePTLy formula BT A init n O(L A finite n more A (V «— V))is
satisfiable (in some finite-time interval).

Proof. We need to obtain formulas which are in a form suitable for en®.28. First
of all, Theorem 5.19 permits us to re-express the infiniteettransition configuration
OT A init A OOT L as the formulg($7)* A init A finite); ($T)* A L A (V —
V))w. Recall that Theorem 5.4 shows the semantic equivalendeedbtmulasz 7’
and($7)*. Therefore, simple interval-based temporal reasoningresshat formu-
las in (c) and (d) are semantically equivalent. We complie&groof by invoking
Lemma 5.28.]

6 Small models for transition configurations

We now turn to giving upper bounds on small models for sabi&ransition config-
urations. This is later used in Section 8 to construct a datigrocedure for them.
Table 4 summarizes the upper bounds for intervals satigtyia various kinds of tran-
sition configurations and where the results are proved.

It will be necessary to employ the fact (e.g., in Theorem 6@ kemma 6.6) that
the formulaa: A (37°)* A sfin [is satisfiable iff a simple variant of it is satisfiable in
an interval of bounded interval length. The following lemdeals with this:

Lemma 6.1. For any V-atomsa and 3, the formulaa A ($7)* A sfin (3 is satisfiable
iff the formulaa A ($T)<IAtemsvl A sfin 3 is satisfiable. Hence, the formuta A

($T)* A sfin [is satisfiable iff it is satisfiable in an interval having intal length
less than Atomsy/|.

Proof. Any interval satisfyingy ($ T)<l4%msvl . sfin 3 can be readily seen to also
satisfya A ($7)* A sfin 8. Let us now establish the converse by doing a proof by
contradiction. Suppose » ($7)* A sfin 3 is satisfiable but A ($7)<IAtemsvl 5

sfin B is not. Leto be any interval which has the smallest length of those whatilsfy

26

an ($7)" A sfin 5. Lemma 5.23 permits us to assume thas al-interval. Nowo's
length is greater than or equal|tdtomsy | and therefore contains at leadtomsy |+1
states. Consequently, sofiestate occurs at least twice én Let thelV-atom~ denote
this state. It follows that satisfies the following PIT{. formula:

an ((8T)547(8T) 547 (8T)") A sfin 5.

Therefores contains two proper subintervats andc’ which respectively satisfy the
PITLy formulasa A ($T)* A sfin v andy A ($7)* A sfin 5. In addition, the last
state ofc’ is the same as the first one ®f sos’ andos” can be fused together. The
fusiono’ o ¢” has length strictly less than that efand furthermore, liker, satisfies
the formulac A ($7)* A sfin 8. But this violates the assumption thatvas amongst
the shortest such intervals and yields a contradiction. O

Theorem 6.2. If a finite-time transition configuration T" A init A finite is satisfiable,
then it is satisfied by some finite interval of length less th&iamsy|.

Proof. Theorem 5.10 ensures that the finite-time transition cordiian 0 7" A init A
finite is semantically equivalent to the formulgs 7)* A init A finite); (T' n empty).
This is satisfiable iff for som&-atom«, the formula(($7)* A init A finite); (o A
T A empty) is satisfiable. Now Lemma 5.24 ensures that this itself isfsaible iff
the formulas($7)* A init A sfin « anda A T A empty are both satisfiable. By
Lemma 6.1, the first of these is satisfiable iff the form(8&)<IAtomsvl A init A
sfin « is satisfiable. Lemma 5.23 permits us to assume without lbgsreerality that
the intervals satisfying the formuld8 7)) <!4tmsv| A init A sfin o anda A T A
empty are V-intervals. We then fuse the intervals together to obtaia ohinterval
length less thanAtomsy | which satisfieg($T)* A init A finite); (T » empty) and
hence also satisfies the semantically equivalent finite-tramsition configuration. [J

The next definition is required for analysing infinite-tinmartsition configurations
and makes use of the earlier Definitions 3.4-3.6 concerranguactions and Defini-
tion 5.1 concerning conditional liveness formulas:

Definition 6.3 (Enabled liveness formulaspn enabled liveness formulén is a con-
junction of | En| formulas in which for eaclt : 1 < k& < |En/|, the subformula&n[k]
is of the form® w, for some state formula. The state formula8g,,[y), . .., 0 En|)
denote the En| liveness tests ilin so thatEn[k] and © 0, refer to the same for-
mula.

For any V-atoma and conditional liveness formulh, we will also defineny,
to be the enabled liveness formula containing exactly thenkss tests ih which are
enabled by (recall Definition 5.1). LetS be the set of indices af’s implications
which are enabled by. ThenEn, , is the conjunctior)(\jes 0

il
For example, suppodéis the set{p, ¢}, o is theV-atom—p A ¢ andL is the condi-

tional liveness formuld(p v —q) D © —p) A (¢ D @(p = —q)) A (true D &(p D q))
mentioned earlier as formula (1) in Section 5. Them, ,, is the conjunction®(p =

=q) A ®(p D q).

Lemma 6.4. For any V-atoma and conditional liveness formulain PTLy,, the con-
junctionsa: A L anda A Eny, , are semantically equivalent.

27

Not surprisingly, the hardest part of the proof of existenEesmall models for
infinite-time transition configurations involves finding almmodels for periodic tran-
sition configurations. Recall that Lemma 5.26 relates thisfsebility of the periodic
transition configuratiom T n a A L A OO (a A L) to that of the PITL, formula
($T)* A a n L A Osfin a. We will use the equivalence ef A L anda A Eng, ,
to assist in the analysis of bounded model$$f)* A a A L A O sfin a. These can
then be used to obtain a bounded periodic model for the @ligiariodic transition
configuration.

Lemma 6.5. For any V-atoma and conditional liveness formula in PTLy, the fol-
lowing equivalence is valid:

E 3T)*AanLaOsfina = (8T)" ran Eng o A Osfin a.

Proof. This readily follows from the earlier Lemma 6.4 concernihg semantic equiv-
alence of the formulas A L anda A Enyp, . O

The next Lemma 6.6 shortens the nonempty, finite model egpddsy the formula
($T)* A a n En A O sfin o to one having a bounded length by adapting the technique
presented earlier in Lemma 6.1 concerning a bounded modgdddormula($ 7)* A

a A sfin B.

Lemma 6.6. For any V-atom « and enabled liveness formulén in PTLy,, if the
formula($7)* A~ o A En A O sfin « is satisfiable, then it is satisfied by a interval
having interval length at mostEn| + 1) | Atomsy|.

Proof. If the formula($7)* A a A En A O sfin « is satisfiable, then by Lemma 5.23
there exists some satisfyifiginterval. We can fuséEn| + 1 copies of this interval
together to obtain &-interval o which satisfies the formul&($7)* » a r En

ﬁm’te)‘E"'Jrl A Osfin o It is not hard to check than itself satisfies the original
formula($7)* A a A En A O sfin « since each liveness test in is satisfied some-
where ino prior to the last state. Furthermore, there exist a sequefniden| V-atoms
Y1,---,7 En| SUch that for eachj : 1 < j < |En|, the state formulay; A 0,
is satisfied by some state prior to the last one andithaterval o satisfies the next
formula:

o A (($T)*;’yl?;...;($T)*;7‘En‘?; ($T)+) A Osfin a.

If a gap between two of theun| selected states satisfying their respective liveness test
has interval length of at leagtitomsy |, then within the gap, some state occurs twice.
Such a gap can then be shortened in the manner of Lemma 6.1.eByshof this we
obtain from theV-interval o anotherV-interval having bounded length and satisfying
the formula below:

a A (($ T><|AtomSV|;’71?; o ($ T><|AtomSV|§'ﬂEn\?; ($T)§\At0msv\)
A O sfin a.

The resulting new interval is nonempty and has intervaltliemgt exceeding| En| +
1) |[Atomsy |. Moreover it still satisfie$$7")* A a A En A O sfin a. O

Lemma 6.7. If the formula($ T)* A o A L A O sfin « is satisfiable, then it is satisfi-
able on a finite, nonempty interval with interval length atsoL| + 1) |Atomsy |.

28

Proof. From Lemma 6.6 we have that if the formufl")* A a A Eng, o A O sfin «

is satisfiable, then it is satisfiable on a finite, nonemptgrivdl having interval length
at most(|Eng, o| + 1) |[Atomsy|. Lemma 6.4 ensures that the conjunctions. L
anda A Enp . are semantically equivalent. In addition, we ha¥g, .| < |L|.
Therefore, if the formula$ 7')* A o A L A O sfin « is satisfiable, then it is satisfiable
on a finite, nonempty interval with interval length at mQgt| + 1) | Atomsy |.]

Lemma 6.8. If the periodic transition configuratioRl T An a A L A OO (a A L)
is satisfiable, then it is satisfied by a periodic intervallwperiod of interval length at
most(|L| + 1) |Atomsy|.

Proof. Lemma 5.26 ensures that if the periodic transition configomas satisfiable,
then the formula$7)* A o A~ L A Osfin « is satisfiable. By Lemma 6.7, if this
is satisfiable, then it has a satisfying interval havingrivaklength at most|L| +

1) |[Atomsy|. Lemma 5.23 permits us to assume without loss of generdiéy the
interval is aV-interval. We can then fuse copies of it together to obtain a periodic
interval which has a period with interval length at mQgt| + 1) |Atomsy | and also
satisfies the formul&($ T')* A a A L)“. Theorem 5.17 establishes that this formula is
equivalent to the original periodic transition configuoati O

Theorem 6.9. If the infinite-time transition configuratiomT" A init A OOT L s
satisfiable, then it is satisfied by an ultimately perioditeral consisting of an ini-
tial segment having interval length less thadtomsy | fused with a periodic interval
having a period with interval length of at mo$t| + 1) | Atomsy|.

Proof. If some interval satisfies the formulaT A init A O<T L, then Lemma 5.11
ensures that the interval also satisfies the next semdptezplivalent formula:

(BT)* adnit A finite); V qe atoms, (BT ran LaOOF (an L)) (10)

Lemma 5.24 and simple temporal reasoning establish thaoimel-atoma the two
formulas($7)* A init A sfin « andOT A a A L A OOT (o A L) are satisfiable. By
Lemma 6.1, the first formula is satisfiable in some intesvhlving interval length less
than| Atomsy|. Lemma 6.8 yields some periodic interedlwhich satisfies the second
formula and possesses a period with interval length of att fiés$ + 1) |Atomsy |.
Lemma 5.23 permits us to assume thaand o’ are V-intervals. Therefore the last
state ofo is the same as the first one of since both states satisfy. The fusion
o o o’ is itself ultimately periodic and satisfies the formula (18nce it also satisfies
the semantically equivalent original infinite-time trare configuration2 7" A init A
O0<¢T L as well. In addition, the intervat o o’ has an initial segment having interval
length less thahAtomsy | fused with a periodic interval with period of interval lehgt
at most(|L| + 1) |Atomsy|. O

7 Decomposition of transition configurations

We now prove the two Theorems 7.1 and 7.4 which respectieddye the satisfiability
of finite-time and infinite-time transition configurationstivsimple interval-oriented
tests involving finite time. These theorems are later us&eution 8 as part of the jus-
tification of the PTL decision procedures and in Section 1paasof the completeness
proof of an axiom system for PTL.

29

Theorem 7.1(Decomposing finite-time transition configuration3he following are
equivalent:

(&) The finite-time configuratiod T" A init A finite is satisfiable.

(b) For somel-atomsa and 3, the three formulas below are satisfiable:

a A init ($T)" A n sfin B T A B A empty.

Proof. Theorem 5.10 ensures that the finite-time configurationnsaseically equiva-
lent to the next PITk formula:

(($T)* A init A finite); (T A empty).

Now simple interval-based reasoning guarantees thatdlsatisfiable iff for somé-
atomsa andg, the next formula is satisfiable:

((3T)" A a nimit A finite); (T A B A empty).
Lemma 5.24 ensures that this is itself satisfiable iff tha he® formulas are:
($T)* A« A init A sfin B T A B A empty.

Finally, simple temporal reasoning ensures that the firsh@de is itself is satisfiable
iff the following two formulas are satisfiable:

a A init ($T)* A« n sfin . O
We now turn to decomposing an infinite-time transition camfgion:

Lemma 7.2. The infinite-time transition configuration 7" A init A O O L is satisfi-
able iff for somé/-atomsa and 3, the following formulas are satisfiable:

($T)" A A init A sfin 3 (3T) A B A Eng g nOsfin . (11)

Proof. Theorem 5.29 ensures that the infinite-time configuratiosaissfiable iff the
next PITL, formula is satisfiable (in some finite-time interval):

((8T)* A init A finite); ($T)* A L A more A finite n (V — V))

Simple interval-based temporal reasoning ensures thaittalf is satisfiable iff for
somel-atomsa and 3, next formula is satisfiable:

((ST)* A a nimit A finite); ((8T)* A B A L A Osfin). (12)

Now Lemma 6.4 guarantees the semantic equivalence of theraionss » L and
B n Eng, 5. We therefore can repladeby En;, 3 informula (12). Finally, Lemma5.24
yields that the resulting formula is itself satisfiable fflettwo formulas in (11) are
satisfiable. O

The next lemma concerning enabled liveness formulas istlghased in Theo-
rem 7.4 to analyse the satisfiability of infinite-time configfions:

Lemma 7.3. For any V-atom« and enabled liveness formulan, the following are
equivalent:

30

(@) Theformula$7T)* A a A En A O sfin « is satisfiable.

(b) ForsomegEn| V-atomsyy, ...,v g, (NOt necessarily distinct), the following are
all satisfiable:

$T)" rnanrOsfin
foreachy;: (ST)" nansfinyi vinOpay (8T) Avi n sfin o

Proof. Induction on the length ofn and simple interval-based reasoning can be used
to demonstrate that the formul@7)* A~ o A En A Osfin « is satisfiable iff the

formula(37)* A a A O sfin « is satisfiable and also for sonmeatomsy,, ..., 7 gy,
for eachry; the following formula is satisfiable:
($T)" ~nan O nbOgpp) A sfin a. (13)

This guarantees that for each liveness tggt;) in En, theV-atoma can reach some
V-atom-~; which satisfie® z,,;; and thisV-atom~; itself can reach back ta. We can
re-express (13) as the semantically equivalent formulevizel

(8T)* A n finite); (8T)* A i A Opnp A sfin).
Lemma 5.24 ensures that this is satisfiable iff the next twmidas are:
(3T7)" A an sfin ($T)" A7 A Opnp A sfin a.
The second one is satisfiable iff the two formulas shown bel@satisfiable:
Yi A Ogni] ($T)* A A sfin a. O

Theorem 7.4(Decomposing infinite-time transition configurationghe following are
equivalent:

(a) The infinite-time configuration 7' A init A O O L is satisfiable.

(b) For someV-atomsa, 8 and~i, ..., en, 5 (NOt necessarily distinct), the fol-
lowing are all satisfiable:

a A init ($T)* A« n sfin B ($T) A B AOSsfin
foreachy;: ($T)" AB A sfinvi v AO(Engg,i) ($3T)° A~ n sfin .
Proof. Lemma 7.2 establishes that the infinite-time configurafidn A init A O™ L

is satisfiable iff there exist soméatomsa and3 for which the next two formulas are
satisfiable:

($7T)" A A init A sfin 3 (3T) A B A EnggnOsfin . (14)

Now simple temporal reasoning ensures that the first of tisegelf is satisfiable iff
the following two formulas are satisfiable:

a A init ($T)* A a A sfin (.

Furthermore, Lemma 7.3 guarantees that the second formlizd) is satisfiable iff
the formula($ 7)* A B A O sfin [is satisfiable and furthermore for sofffeatoms;,
.+ En, 5 (NOtnecessarily distinct), the following are all satiskeafor eachry;:

($T)* A B A sfin vi A O(Eng g,1) ($T)" A A sfin B.

31

Type of transition config. Max. # of variables to representses

Finite-time \4
Infinite-time (se€8.1) 2|V + |L]
Infinite-time (se€8.2) V] +2|L|

Infinite-time (also ing8.2) |V| + |L| + [logy(|L| + 1)]
Table 5: Number of variables used by decision procedure D8

8 Decision procedures

We now describe decision procedures for finite-time anditefitime transition config-
urations. They are based on binary decision diagrams (BRIDs)L1] which provide
an efficient basis for performing many computational taskelving reductions to rea-
soning about formulas in propositional logic. The approtden here demonstrates
how to use interval-based techniques to naturally desenitteanalyse PTL decision
procedures. We had little difficulty implementing ones foiteé and infinite time us-
ing the popular Colorado University Decision Diagram Paek@CUDD) [24] devel-
oped by Somenzi. Our prototype tool consists of a front-estted in the CLISP [20]
implementation of Common Lisp [1] as well as a back-end caddeerl [76]. The
back-end employs a Perl-oriented interface to CUDD writigrSomenzi and called
PerlDD [77]. The front-end accepts arbitrary PTL formulad aonverts them to transi-
tion configurations using methods later described in Sestid and 12. The transition
configurations are then passed to the back-end which asallysen using BDDs. In
this section we describe the basis for performing this asly

The remainder of this section assumes that the reader glhesdsome familiarity
with BDDs.

For the convenience of readers, Table 5 gives a summary ohdéxénum number
of variables required to represent an individual state irDBDor the three kinds of
decision procedures later discussed as well as for a varidimé third one. We include
this table here since it reflects the size of the state spatéhanefore gives some idea
of the relative efficiency of the techniques. For example, dkcision procedure for
finite time has a state space containing up!td states. In contrast, the first decision
procedure for infinite time requires more than twice as maarjables and can there-
fore take significantly more time and space to run. On therdihed, the remaining
decision procedures for infinite time only require extraialales in proportion to the
number of liveness tests. In each decision procedure, gpital applications of BDD-
based reachability analysis, some of the constructed B@present binary relations
between pairs of states and therefore require twice the auoflvariables.

Our algorithm for finite-time transition configurations at& methods foisym-
bolic state space traversdescribed by Coudert, Berthet and Madre [21-23] (see also
Kropf [54]) for use with BDD-based representations of fotasun propositional logic.
Furthermore, it greatly benefits from closely related md#hforst employed by McMil-
lan in symbolic model checking [14,19,62] which also in@uilde automatic generation
of counterexamples for unsatisfiable formulas and, sitgjlaritnesses for satisfiable
ones.

Recall that Theorem 7.1 shows that the finite-time transitonfigurationd 7" A
init A finite is satisfiable iff for somé-atomsa and 3, the next three formulas are
satisfiable:

32

a A it ($T) A an sfin B T A B A empty.

We can readily search for suitabléatoms using BDDs. Three BDOS,, I'; andI's
are initially constructed. In what follows, please rechk hotion= X introduced in
Definition 3.1 to denote that the formuka is satisfiable. We first describe the roles of
the BDDsI'{, I'; andI'; before actually constructing them:

e The BDD I'; represents the state formulait and hence the set df-atoms
satisfyinginit (i.e., the sef« € Atomsy : a | init}). This is the same as the
set{a € Atomsy: = a A init}.

e The second BDO'y captures all pairs oV-atoms corresponding to unit (i.e.,
two-state) intervals satisfyiri§. In other words, it corresponds to the $ét, 3) €
Atoms3,: a3 = T}. This is the same as the s, 3) € Atoms?: = T A
a A skip A sfin B}.

Note that the formuld” A « A skip A sfin 3 can also be expressed using the
operator$ as$ T » a A sfin (3. Some readers may prefer this second form since
it more closely resembles the frequently occurring form{@I&)* A « A sfin (.

e The third BDDI'3 captures the behaviour @fin an empty interval. Therefore
I's represents the set of dltatoms satisfying the formul& A empty (i.e., the
set{3 € Atomsy: 8 | T}). This is the same as the st € Atomsy: =
T A B A empty}.

In the course of manipulating the BDDs we make use of two fsets of proposi-
tional variables to represent binary relations betweetestal hey include the original
ones (e.g.p, r1, ..., r4) as well as primed versions (e.@/, r1, ..., 7). Therefore,
the BDDs contain at mo&{ V| distinct variables.

For convenience, we often do not distinguish between a BODtfa@ propositional
logic formula it represents.

Let V and V' respectively denote the two sets of variables. We now cocisthe
BDDsTI';, I's andI'; as follows:

e LetI'; be the formulanit.

e ObtainI'; from the formulal’ by replacing all variables in the scope of any
constructs by corresponding onesifiand then deleting alb operators (but not
the associated operands) to obtain a formula in converwopositional logic.
We refer to this process of constructifig from 7" by the termflattening

e ObtainI's from the formulal’ by replacing each> construct byfalse.

The BDDsI'; andI's both only can contain variables i whereasl; can contain
variables inV andV".

Supposd’ andinit are the following formulas mentioned earlier in Subsec8dh
(where the variable is used there in place ofiit):

T: (rir=(pvOry)) a (rg=(-ryvOry))
A (r3=(-pvOrsg)) a (ry =(-r3vOry))

mit: —rg A g,

33

Here are the associatéd, I'; andI's for thesel” andinit:

I'i: —ro Ay

To: (ri=(pvr))) A (ro=(—ryvrd))
A(rs=(pvry)) A (ra=(-rsvry))

Is: (r=(pv false)) n (ro = (—r1 v false))
A (rg = (—p v false)) n (ra = (-3 v false)).

The connection between the BDDs fby andI's and the previously mentioned
sets ofV-atoms they are meant to capture is straightforward. Inromlgustify the
less intuitive relationship between the constructionlfeand the earlier associated set
of pairs ofV-atoms, we shortly present Lemma 8.2 relatihgwith 7. However, the
following lemma concerning NLformulas is first given since it is used in the proof of
Lemma 8.2.

Lemma 8.1. The following are equivalent for afyL' formulaT™
(a) The formuldl is satisfiable in some nonempty interval.
(b) The formulaskip A T is satisfiable.

Proof. (a) = (b): Suppose some nonempty intervakatisfies the formuld’. Now
o contains at least two states. Letdenote the subinterval consisting the first two
states ino. Now o’ satisfies the formulakip. Furthermore, the formul@ is in NL'.
Lemma 5.3 consequently ensures that the interalike o, satisfies the formuld’
because both two intervals share the same first two statesefbines’ satisfies the
formulaskip A T.

(b) = (a): If some intervabr satisfies the PTL formulakip A T', theno is clearly
nonempty and also satisfigs]

Lemma 8.2. For any V-atomsa and 3, the following are equivalent:
(@) The formuldl’ A a A skip A sfin [is satisfiable (i.e.q3 = T).
(b) The propositional logic formul&y A a A ﬁ}//' is satisfiable.

Proof. (a) = (b): Suppose the formul& » « A skip A sfin (3 is satisfiable. Then the
flattening of 7" into I's readily yields that the formulBy A a A B“j/ is satisfiable.
(b) = (a): If the propositional logic formuld, A a A (Y is satisfiable, then

the flattening of> constructs i, readily yields that the NLformulaZT » a A O3

is satisfiable. Clearly any interval satisfying it has atteavo states. Hence by the
previous Lemma 8.1 the formukgip A T' A a A O (is satisfiable. Simple temporal
reasoning then ensures that the semantically equivalenuta? » « A skip A sfin 3

is also satisfiable. O

We usel’; together with the first BDO'; to iteratively calculate a sequence of
BDDs Ay, ...,As, ...sothat for any, A, describes all-atoms which can be reached
from one which satisfiesnit in exactly k steps. In other words)\; represents the
following set:

k

{8 € Atomsy : for somea € Atomsy,= ($T)" A a A init A sfin 3 }.

34

We setA, to bel';. Therefore, every variable iy, isin V. EachAy. is calculated to
be semantically equivalent to the next quantified propaséi logic formula in which
renaming ensures that all free variables ar&in

(3V.(Ak A To))y,,- (15)

Because of the final renaming, the sole variables left in tB®B\, ,, are elements
of V. The only BDD operations required to calculdt¢ ;, from (15) are logical-and,
existential quantification (which actually yields a BDD repenting a semantically
equivalent quantifier-free formula) and renaming whichakstandard ones.

Remark 8.3. Within the CUDD system, the entire calculation for obtagV. (A A
I';) can even be done by a single CUDD operation tailored to harlile specific
kind of common BDD manipulation. Furthermore, the renanohgariables inV’ to
those inVis actually achieved by taking the BDD obtained #f. (A A I's) and then
performing a single CUDD operation which yields another B@vhich the variables
in V are swapped with the corresponding oned/in

For any giverA which has been calculated, we next determine the logiadlein
it with T'5 (i.e., the BDDA A I'3) and then proceed as follows:

1. If the logical-and is not false, then there is sovhatomj3 satisfyingT’ A empty
which can be reached insteps from d-atoma satisfyinginit. Therefore the
next three formulas are all satisfiable:

a A init ($T)% A o n sfin 3 T A B A empty.

Now the second formula ensures the satisfiability of the tdan($7)* » a A
sfin 8. Therefore Theorem 7.1 can be invoked to obtain the satiktyabf the
original finite-time transition configuratidai 7" A init A finite. We therefore do
not need to calculate any furthéw,’s.

2. Otherwise, the logical-and is false so we must continutetate.

During the iteration process, we maintain a BDD represegntie set of alll’-atoms
so far reachable from one satisfyirigit. This BDD corresponds to the formula
Vo<i<r Ai Which equals the next set:

{3 € Atomsy : for somea € Atomsy,= ($T)=F A a A init A sfin ().

If no suchg exists which also satisfiés » empty, the BDD eventually converges to
a value corresponding to the set of Blatoms reachable from-atoms which satisfy
init. The following set denotes this:

{8 € Atomsy : for somea € Atomsy, = ($T)" A a n init A sfin 5}. (16)

We then terminate the algorithm with a report that the oagtransition configuration
OT A init A finite is unsatisfiable. Even though Theorem 6.2 bounds the nuniber o
iterations, in some cases convergence takes too long. €bésaitates a preset iteration
limit or a facility for manual intervention in order to forggemature termination of the
loop. It can also happen that memory is exhausted beforartation occurs.

If for somen, the algorithm succeeds afteriterations and determines that the
transition configuration is satisfiable, then a sanipiaterval having: + 1 states and

35

which satisfies the formula can be calculated. This invostasdard BDD methods
for constructing such examples, also referred taviisessesand is done by working
backward through the BDDA,,, A,,_1, ...4A(to find a suitable sequence of+ 1
V-atoms to serve as&interval satisfying the transition configuration. Thea&ithm
can be also readily adapted to only determine values for seswb the variables ii.

8.1 Dealing with infinite time

For testing an infinite-time transition configuratiorl” A init A O <T L, we can make
use of Theorem 5.29 which guarantees that this formulaisfigdiie iff the next PTk,
formula is satisfiable:

T a init » O(L A finite n more n (V «— V). (17)

The previously described satisfiability algorithm for fexstime can therefore be uti-
lized. However, we must first transform this second formolaame suitable finite-
time transition configuration using techniques later descrin Sections 11 and 12 for
reducing arbitrary PTL formulas to them.

Quite sophisticated and efficient algorithms can presuyniablemployed to anal-
yse the infinite-time transition configuration by adaptingseng BDD-based tech-
niques such as those we will later mention in Subsection &i@nvwe consider our
second decision procedure for infinite time. However, we firesent a method which
is relatively straightforward to describe and which we igmpknted with not much
more difficulty than for the version for finite-time transiti configurations. Within
this approach for infinite time, once a formula is determiteebe satisfiable, it is rela-
tively easy to determine a witness of it. The decision pracedor finite time can even
be used to naturally justify some of the interval-basedoeiag) involved. However, a
major computational disadvantage of this particular deniprocedure for infinite time
is that it requires the introduction of a significant numbgextra variables, namely,
V| + |L|. Therefore the total number of variables used to repressitighe state is
2|V| + |L|, and the number to represent a binary relation between pastates is
double this. Thus at least twice as many variables are redjais for the decision pro-
cedure for finite time. On the other hand, the second, morieat¢ decision procedure
later presented in Subsection 8.2 requires at g5t extra variables and possibly
fewer. Consequently, this second infinite-time decisimtpdure appears to lend itself
to more efficient implementations, although we ourselve® mat yet carried out one.

The basic idea in the first, simpler decision procedure fénite time is to use
BDDs to solve for atoms: and 3 which ensure that the following three formulas are
satisfied:

a A inat ($T)* A« n sfin B $ST)E ABALA(V —T). (18)

The third formula guarantees that the atGrhas some associated periodic transition
configuration (see the earlier Lemma 5.26). Note the use @f-ghus here i($7)"

to force a nonempty interval. As in the case for finite-time, fivst calculate a BDD
which denotes the previously described set (16) of all ateashable in 0 or more
steps vidl’ from one satisfying the formulait. Let us call this BDDA'.

The next step is to search for some elemeat A’ with an associated periodic tran-
sition configuration. This involves finding a nonempty finrteerval satisfying the third
formula in (18) containing as conjuncts bathandV — V. However these conjuncts
cannot be directly used for reachability analysis sincéheeiis expressed by means of

36

an accessibility relation between adjacent states. Wedweniés by constructing two
suitable groups of formulas. Each contains three formuldgdaes permit the required
reachability analysis:

e The first group consists of the state formutat’, the transition configuratiof”
and the state formula’ and ensures that the formula< V" holds.

e The second group is similarly made up of the state formmi#’, the transition
configurationZ”” and the state formula’ and ensures thdt is true.

The details of constructions will be given shortly. The teiciues for handling7 —V
are somewhat easier to understand and we have therefomadsddhem with the first
of the two groups of formulas. After obtaining both groups,ean search for a suitable
atomg by doing the following:

1. Use BDDs to calculate all atoms in the state formivlan init’ A init”.

2. Next, determine the BDD equalling the set of all atomshabte by one or more
steps from any of these via the transition configurafion 77 A T" .

3. Finally, logically-and the resulting BDD with the statgrulaw’ A w” to obtain
the set of all atoms which can serve(as

Let us now look in more detail at the construction of each groithree formulas
and how they work.

Construction of first group of formulas init’, 7 and w’ The first group of three
formulas must ensure that the following implication comireg finite time is valid:

= (8T A init’ A sfinw’ D V<V, (19)
Without loss of generality, assume that the variables irstt& arepy, ..., py|. Let
q1, ---,q)v| be|V| distinct propositional variables not occurringliih Then letinit’,

T’ andw’ be the following formulas:

wmit's qu=pr oA - A Qv =DV
T: ©O@q)=¢a ~ - ~ (Oqv)=qv
w': same asgnit’.

The purpose of eachy is to record the initial value of the correspondingso as to
ensure that the initial and final values fhere equal. Itis not hard to see that the use of
the extra propositional variables, . . ., g together with the use of the formulasit’,

T’ andw’ force eachp;’s initial and final values to be equal. The desired behaviour
for any pair of variableg; andg; is captured by the valid implication now given which
contains just two propositional variablesndg:

F qg=p A B(0q)=q) A sfin(g=p) D pep

Note that the instange < p of the binarytemporal assignmermperator— is, follow-

ing the definition earlier in Table 1, the same as the PTL fdanfiwite O (fin p) =

p. Ittests thap’s initial and final values are equal in finite intervals. Ceqsently, the
implication (19) involving the variables i andqy, ..., gy is indeed valid. In fact,
for any given triple ofl”, init’ andw’ we can employ the PTL decision procedure for

37

finite time (described later in Section 12) to check validifythe next formula which
is semantically equivalent to (19) in finite intervals:

= BT A init' A sfinw D V<V,

Here we make use of Lemma 5.4 concerning the semanticalagnoe of the formulas
Tand($T)*.

It is straightforward to add a kind of existential quantifioa to PTL and PITL
to hide one or more variables. In the case, of PTL, the regulogic is called com-
monly referred to afuantified PTL(QPTL) or alternatively afQuantified Proposi-
tional Linear-Time Temporal Logi(QPLTL) (see, e.g., [25,51,58]). For any interval
o, propositional variable and formulaA, we say that satisfies the formulap. A
iff there exists some interval’ which is identical tar in its length and assignments to
variables, except that the valuesdififor p can be different. If we use existential quan-
tification around the lefthand formula in the valid implicat (19) to hide the variables
q, ---»qv|, then the resulting formula (itself in quantified PITL) arettone on the
righthand side of the implication are in fact semanticatjyiealent in finite intervals:

= finite D (E|q1 cquy- ((8T)* A inat’ A sfin w’)) =V V. (20)

Construction of second group of formulasinit”, T"” and w” The second group
must ensure the implication below concerning finite timegisoz

E (8T A dnit" A sfinw” D L. (21)
Now letuy, ..., u;z| be V| distinct propositional variables not occurring ¥inor
amongstyy, ...,qy|. Here are the definitions afiit”, 7" andw":
init”: up = “Mrp) At A UL = TMLL)
T”I (O'U,l) = (u1 \Y QLM) A s A (OU|L‘) = ('LL‘L| \Y eLHLH)
w” : U1 A ce A ULl

The purpose of each; is to guarantee that the liveness requirements imposedeby th
conditional liveness formuld’s conjunctn.;; O © 6.}, are fulfilled. Everyu; is
initially set to the value of-;,;. Subsequently, the values of the state formulzand
01 in a state uniquely determine the value of eagin the next state. We now show
that the temporal assignment « (n.;; O ©0r;) is true for the overall interval.
There are two cases to consider:

o Ifthe enabling tesy; ;) is initially false, theny; is initially set to true and remains
so for the rest of the interval. In this case we haye— true. Hence, we also
trivially haveu; « () O @ 01;)) since—ny; is initially true and hence so is
the implicationn;;; O ® 0.

o Otherwise, ify,j; is initially true, thenu; is initially set to false and is true in the
last state iff the liveness teg} ; is true sometime strictly before the last state.
In this case we have; — @ 0;;, and consequently alsg « (1. D ©0rp)
sinceny; Is initially true.

The next valid implication combines the two cases:

= finite A (u; = —mpp) A ((O ui) = (ui v eL[i]))
O u — (r D @ 0np).

38

It is natural to view this implication as a substitution exste of a simpler PTL formula
which is itself valid and has only three propositional valesp,, p, andps. Herep;
representsy;, p» representd; ;) andps represents;:

= finite A (p3=-p1) A ((Ops) = (p3 \/PQ)) D p3 (p1 D Opa).

One benefit of this formula is that it can be readily tested/édidity using the decision
procedure for finite time extended to handle full PTL as dbscrlater in Section 12.
We can also employ the decision procedure to check the tabfl(21) for any given
instances of_, 7", init” andw”. Lemma 5.4, which deals with the semantical equiv-
alence of the formula@ 7" and($ 7")*, permits us to express (21) in PTL as follows:

E 8T A init” A sfinw” D L.

Below is a formula which uses existential quantification tdehuq, ..., UL and
thereby expresses the equivalence of the two sides in firidevials.

E finite D <E|u1 oy ((8T)* A inat” A sfin w”)) = L. (22)

This is similar to the earlier implication (20) concerniﬁgH V.

We can now regard the BDRY’, which represents the set (16), as a state formula
and locate suitable periodic transition configurationsdlguating the set of all atoms
reachable from\’ in one or more steps using the binary relation over atom<éassd
with the NL' formulaT ~ T" A T”. This is done in a similar manner as before. Next,
the resulting BDD is logically and-ed with the test A w”. Let the BDDA” denote
the resulting set of atoms. An atofhis consequently id\” iff the following formula
is satisfiable:

(S$(T AT AT"NY A A Ainit’ A init” A sfin (B A w' Aw”). (23)

The reasoning so far given ensures that this is satisfiableaforiginal conjunction
associated with a periodic transition configuration (itee third formula in (18)) is
itself satisfiable. If we use existential quantification tdehthe variablegs, ..., qv|
anduy, ...,u|z| in the formula (23) (as in formulas (20) and (22)) and we alsat the
atomg, then the resulting formula is semantically equivalenti® éne shown below:

($T)Y AA" A (V —V) L.

Furthermore, the BDIA” can be seen to be the set of all atofhis:i A’ for which the
following formula is satisfiable in finite time.

($T)+/\5AL/\(‘7<—‘7).

HenceA” does not equafalse iff the three formulas in (18) are all satisfiable. As
we mentioned earlier, they in turn are satisfiable iff thgioal infinite-time transition
configuration is satisfiable.

8.2 A decision procedure for infinite time motivated by autonata

The BDD-based decision procedure for infinite-time justspréed has been success-
fully used on a range of simple examples. However, a diffeaend presumably more
efficient decision procedure for infinite-time transitianéigurations can be developed

39

which reflects the connection between PTL formulas and tip®itant class of finite-
state automata over infinite words known as nondetermiriétchi automata [12] (see
also Thomas [86, 87]). They are like conventional nondei@stic finite-state au-
tomata but have a set of accepting states with a differewt &ddrmcceptance condition.
An infinite word is accepted iff there exists a run for it in whisome element of the
set of accepting states occurs infinitely often. The linkuaetn Bichi automata and
temporal logic was originally observed by Vardi, Wolper &isdtla [88, 89, 96].

Our second decision procedure for infinite-time transitonfigurations can alter-
natively be obtained by an analysis which totally avoidemrefce to Biichi automata.
We instead construct from an infinite-time transition comfagion the previously dis-
cussed formula (17) which can be tested for satisfiabilifynite-time intervals. How-
ever, rather than using this formula itself, we transforimtib another one which has a
simpler kind of conditional liveness formula. The resultloé transformation can be
checked for finite-time satisfiability.

The decision procedure has the advantage over the previmoo infinite time
in Subsection 8.1 of only requiring for the representatibstates at mos2|L| extra
variables (i.e.]V'| + 2|L| variables in total), rather thai’| + |L| extra variables. It
therefore is potentially much more efficient to execute. sy, it is more compli-
cated to explain and implement and we do not yet have a worengjon. The earlier
decision procedures for finite and infinite time can be usathéxk some of the steps
in the construction as we later show.

Because of the popularity of Biichi automata, in most of thesentation of our
decision procedure we will use PTL formulas which have aekisuctural similarity
to them. Nevertheless, unlike the work of Vardi, Wolper amgtl&, an understanding
of the role of the corresponding PTL formulas does not atexjuire the formal in-
troduction of such automata. Rather, we can simply view ppr@ach as converting
an infinite-time transition configuration into another inialhnthe conditional liveness
formula is expressible as a state formula. Such transittoriigurations are easier to
analyse. Consequently, we omit a formal definition of Biaiomata here. Later on,
Remark 8.4 outlines the alternative approach which toalbjids Buchi automata.

The presentation of this decision procedure can be skipjpbdut a loss of conti-
nuity in the rest of this work.

Let us now consider the construction in more detail. We c&a & infinite-time
transition configuration with transition formulg initial conditionin:t and conditional
liveness formuld. and transform it into another transition configuration elgselated
to conventional nondeterministic Biichi automata:

O(T ATy) A (init A dnity) A OOT wy,. (24)

Here the transition formuld’, and state formulasnit; andw; are specially con-
structed from the conditional liveness formulaand do not depend o' and init.
This is not an actual finite-state automaton since there division of variables into
those which serve as the automaton state and those whicé asrthe input. Al-
though it is possible to existentially quantify over sometad variables to sharpen the
automata-theoretic connection, we will not do this here.

Note that strictly speaking the new transition configumrat{@4) is not a well-
formed infinite-time transition configuration because ttadesformulaw, is itself not
a well-formed conditional liveness formula (recall Defioit 5.1). Howeveruwy, is
semantically equivalent to the simple conditional livenesmula—w; O @ false.
This equivalence can be justified as a substitution instafitee next PTL equivalence

40

which is itself valid:
E p = (-p D> @ false). (25)

The validity of the equivalence (25) uses the fact that thd@mula® false (the same
as<(more A false) by the definition of® in Table 1) is itself semantically equivalent
to < false and hence also tfulse. This is combined together with the simple proposi-
tional tautologyp = (—p D false). We can check the validity of (25) by using the two
decision procedures already presented for finite and iaftmte and extending them
to handle arbitrary PTL formulas as later shown in Section 12

It seems reasonable to call any transition configuratioh s8q24) aBiichi transi-
tion configurationif its rightmost conjunct is a PTL formula of the form < w, for
some state formula sinced & w is true on an infinite-time interval iff some atom in
Atomsy which satisfiesv occurs infinitely often in the interval. This in a sense misnic
the standard Buchi acceptance condition which, as alreatsd, requires that some
element of the set of accepting states occurs infinitely mangs for an automaton
run to be considered an accepting run. Sophisticated tgebsiapplicable to BDDs
such as those of Emerson and Lei [26] for jhealculus (see also Clarke et al. [19])
and more recent ones by Hardin et al. [38], Xie and Beere [8d@]Bloem, Gabow and
Somenzi [8] for analysing strongly connected componentsddcpresumably be ap-
plied to test for the satisfiability of the Buchi transitioanfiguration (24) by adapting
methods for checking for the emptiness of Buchi-automathanstructing withnesses
when appropriate.

The technique we later describe for actually obtaining tlietB transition con-
figuration (24) is comparable to the automata-theoretichoetbf Vardi, Wolper and
Sistla [88, 89, 96] which combines what they refer to decal Buchi automaton for
checking just the behaviour of adjacent states with anahentualityBlchi automa-
ton which checks for liveness requirements. We can regaitdmour framework the
original infinite-time transition configuration’s subfouta @ 7" A init as being the
analogue of a local Buichi automaton. Similarly the autandike construction later
obtained by us to simulate the formula®™ L corresponds to an eventuality Biichi
automaton.

A simplified illustration of the construction The technique employed here can be
demonstrated by means of a simplified example which focusdbkekey ideas. We
will encode the infinite-time behaviour of the PTL formulH{<C py A O pa A O p3)
within another one which only contains a singteand makes use of three extra propo-
sitional variables/}, v, anduj. LetT” be the transition configuration given below:

T': (Ou)) = (if (u} A uh A ufy) then py else (u) v p1))

if (U} A ufhy A ub) then py else (uh v ps))

N—
Il
—~~ >

if (uy A uhy A ub) then ps else (uf v ps)).

Eachu, tracks the corresponding and records whether it becomes true. As witfin
the previous Subsection 8.1, the values of the variablesyirstate uniquely determine
the value of each’, in the next state. Whenever, p, andps have all become true, all
three variables/, 5 andu} are simultaneously true and are then reinitialized to track
another potential set of occurrencef p, andps.

The following valid implication concerning finite, nonempitervals holds for

41

eachi: 1 <i < 3 and illustrates how tracks the behaviour gf;:

E BT A u) oA uy A ouf A OB =(ul Auh A ub)
D @(more D u)«+— ®p;)). (26)

This uses the PITL operat6r defined in Table 2 to test all initial subintervals. Here is
a variant of this in PTL which does not contdih

= BT Auoaub Aty A OB aufauy) D ul—®p. (27)

The decision procedure for finite time extended to handleHuL (see later in Sec-
tion 12) can be used to confirm the implication’s validity.
The valid formula below concerns one cyclepf p, andps being true:

E BT A ul A uy A uj A more
O (Ot (W Auy aufl) = (©pr A @pyaDps)). (28)

It shows how the testing for the thr&e-formulas involvingp,, p» andps can be si-
multaneously carried out by means of a singfe formula containing a conjunction of
the variables:;, v}, anduj. We can use the previous two decision procedures for finite
time and infinite time extended to handle full PTL to checkhakdity of (28).

It can be established from this and induction over time thattext implication is
valid:

- / / / /
Eoinf A BT A ul A ug A ouf

O (OOT(uy nug nuz) = O(Op1a Opan©ps)). (29)

The first decision procedure for infinite time, when extenttedandle full PTL, can
be used to confirm the validity of this.

Construction of the Buichi transition configuration Let us now turn to constructing

the formulasl’;,, init;, andwy,. This is more complicated than in the example because

a conditional liveness formula contains enabling testg, (1, ..., 7.z Which can

alternatively enable and disable the corresponding lisetest® (1}, ..., 0. -
Suppose, ...,r(; andu, ..., u[; are2|L| propositional variables not occurring

in V. Here are the roles played by each of these groups of vasiable

e Thevariables, ... ,?""L| can be seen as guessing in the initial state some subset
of the enabling testgyij, ...,z in the conditional liveness formula.
From then on, each, remains stable. This permits us to subsequently check
whether there are infinitely many states in which exactlgégarticular enabling
tests are simultaneously true (see below the second hadffiviition of w;) and
whether each correspondifig; is itself infinitely often true (as tracked by the
associated).

e The variablesu}, ..., u|; are used to ensure that the subset of liveness tests
Orp)s - - -, 01y corresponding to the selected subset of enabling igsts - . . ,
nLy | are each infinitely often true. This does not necessarilyioccone state
so a more complicated tracking system is required than teendrich monitors
nip) foreachi: 1 <i < |L|.

42

With this in mind, we now define the state formulasgt; andw; and the transitional
configurationl,:

. . . /
inity, : AlSiSIL\ u

wy, ity A Algigw(rg =nL1)

Ty : Or)=ry, A oA (OT‘/M)ET‘/L'
n o (Ou)) = (if wr then (=r] v Orp)) else (u) v Orpa))
A

A (OUTM) = (zf wy, then (—|7"|'L‘ v OrL)) else (UTL| v GLHLH)).
Here is a description of each of these:

e The initial conditioninit;, sets each:; to true to naturally force a resetting at
the beginning of the tracking of the selected subset of trenéss test8;),
..., 0. We do not similarly initialize each;. Instead, when we test the
Buchi transition configuration for satisfiability, all pgible combinations of val-
ues forry, ... ,7”|’L‘ are automatically considered. As long as at least one seitab
selection exists, the transition configuration is sati$éi@md hence the original
infinite-time one is as well.

e The testw; serves as the new conditional liveness formula and assisiap-
turing the behaviour of the original conditional livenessnula L. It thereby
ensures that there are infinitely many states in which theegabfr/, ..., 7“|'L‘
agree in value with the respective valuesngf, ..., nz) and that at these
times eachy; is true, thereby ensuring that each seledgg is infinitely often
true. It plays the role which the conjunctiaf A u, A uf does in the simplified
example already presented but needs to also deal with comalihature of the
enabling testg,1}, - .., nL[L)]-

e The transition formuld’;, ensures that the variables, ...,r"L| do not change
over time. It also controls the variables, ..., u|; . Eachu; tracks the live-
ness requirements imposed by the conditional livenessuiarm’s conjunct
ney O © 0. Whenever the acceptance test is true, the tracking is reset.

By the definition ofwy, this is the same as testing fof, ..., |, all simulta-
neously being true and in addition eachequallingz ;. At this time a kind
of reinitialization ofu/, ...,um is performed in order to start the tracking of

another cycle of liveness tests. More precisely, at thig @achu; is set to true
if either r; is false or. ;) are true (i.e.;-r; v 01, or equivalentlyr; O 6r;)
and set to false otherwise. At all other time$only changes from false to true
if 07,1, becomes true for the first time in the current tracking cycle.

The following valid implication concerning finite, nonempntervals holds for
eachi: 1 < i < |L| and illustrates how tracks the behaviour cﬁfL[i]. It corresponds
to the valid implication (26) in our simplified example.

= BT A initp A OB-wyp D D(more D uj «— (r; D S0rp)).

Now wy, itself impliesinit;, sinceinity, is itself a conjunct inv;,. Therefore if a finite
nonempty interval satisfies 7, and has its first state satisfying;,, but no others,
except for possibly the last one, then the final value odgrees with the value of the
implicationr; > @ 61, on the interval.:

= BTy A wp A OB-wy, D wuj— (rf D ®fp).

43

This PTL formula is analogous to the earlier valid formul&)(#h our illustrative ex-
ample.
The valid formula below is comparable to the earlier valiglication (28):

= BTy, A dnitp, A more D ((<>+wL) = L).

By using this valid implication and induction over time, wancobtain the validity of
the next formula concerning the formul&sTy,, init;, andwy,. It permits us to replace
O <T L with the structurally simpler formulal &+ w;, and corresponds to the valid
implication (29) in our example:

= BTy A dnitp; D (OOCTwp, = OOTL).

The construction of the formulds, , init;, andw;, ensures that the original infinite-
time transition configuration is satisfiable iff the new Bilone (24) is and any interval
satisfying the Biichi one also satisfies the original one Blichi transition configura-
tion is itself satisfiable iff the following PTL formula is ssfiable in finite time:

B(T A TL) A (init A inity) A O(wyg A finite n more n (V! — V'),

whereV’is the set of all variables i together with the| | new ones. The proof of
this is just an application of Theorem 5.29 where, as alreedgd, we re-express;,
as the well-formed conditional liveness formwla;, O @ false.

The behaviour imposed ¥, is only really relevant in the righthand subformula
contained within the> operator. Consequently, it suffices to test for satisfighali the
variant formula given below which can omit the formuta . :

BT A init A <>(Tr A wp A finite A more A (17' — ‘7')) (30)

We can similarly omitinit;, in the Buchi transition configuration (24) for the same
reason.

As mentioned earlier, at mo&tL| extra variables are needed. It is sometimes
possible that fewer suffice. If any;;; happens to be the formutaue or a formula
which @ 7" ensures never changes its value within an interval, thenovetineed the
corresponding’; and can instead simply usg,; itself. The equivalence; = 7;
associated with can be omitted fromw;, and similarly the equivalende r}) = r;
can be deleted froriiz,. Finally, the implication-; > 6; in T, can be replaced by
the implicationn;; O 61};). Therefore it is possible that strictly less thi.| extra
variables might suffice. However, at lea{ are necessary since we still need all of
the | L| variablesu/, ...,um to track the behaviour of liveness tesig), ..., 01|
unless somej;) is false in which case the behaviour 6f ; is irrelevant. One way
to establish this is by symbolically examining the conjumct 7" A init to determine
whether it forces) ;) to be false.

A further reduction in variables is possible by monitorihg fiveness testg, [,
..., 0z) using a counter ranging over the values, ..., |L|, inclusive, instead of
the L] variablesus, ..., u;,. This counter only requireflog,(|L| + 1)] variables
which serve as bits to represent its values. It can be iizi@dlto any value less than or
equal to|L|. The behaviour in subsequent states is as follows:

e When the counter equals some valukess thar |, there are two possibilities:

— If the liveness test ;1) is true orr;_, is false (i.e., the implication
"1 O Orpk41 IS true), then counter’s value in the next staté is 1.

44

Axioms:

N1 (K). FOXDODX') D @Xo>eX’
N2 (D). FOX D> ®X

Inference rules:

NRI1. If X is atautology, their X
NR2 (MP). If - X D X’ andr X, then- X’
NR3 (RN). If - X, thenk ® X

Table 6: Complete axiom system for NL (Modal syst&mD..)

— Otherwise the counter’s value in the next state remains
e Whenever the counter equals| it is set to0 in the next state.

The Buchi acceptance test checks that the counter equpisfinitely often. The
number of extra variables needed to represent a singleisttenost L| + [log, (| L|+
1)] so at mostV| + |L| + [logy(|L| + 1)] variables are needed in total. If all of the
enabling testgy,(y), . ..,n.(| are vacuously true or formulas whiehl" ensures never
change value, then even jysbg, (| L| + 1)] new variables suffice.

Remark 8.4. One interesting aspect of our framework stems from the obsen
already mentioned that it is not strictly necessary to maerence to Bchi automata
and use the associatedighi transition configurations in the justification of thecead
infinite-time decision procedure. This is because the besights of the decision
procedure can be largely considered within the context dgtefitime by viewing it as
transforming one formula concerning finite time into anethklore specifically, as
we already noted at the beginning of Subsection 8.1 in regarthe first decision
procedure for infinite time, the original infinite-time trsition configuration for7" is
satisfiable iff the neXTL formula (i.e., the earlier formul@l7)) is in finite time:

BT A init A O(L A finite A more A (‘7 — {7))

We then employ the formuld3 andw;, to obtain the formulg30)which is satisfiable
iff the previous one is. Any model (80) can be used for the original formuld7) as
well. The methods previously cited from the literature asdpsuitable for BDD-based
reachability analysis of Bchi automata can presumably be adapted for use here.

9 Axiom system for NL

In preparation for the proof of axiomatic completeness oL Fwe now consider an
axiom system for NL. The axiomatic completeness of NL lalay® a major role in
the completeness proof for PTL.

Within this section, the variable¥, X'/, X, and X, denoteNL formulas.

Table 6 contains a complete axiom system for NL adapted fleemitodal logic
K+D.. Here® (weak next), previously defined in Table 1 to be a derived @iperis
instead regarded as a primitive construct. We can considérto be an abbreviation
for =® - X. Hughes and Cresswell [46, Problem 6.8 on p. 123 with saludiop. 379]
briefly discuss how to show deductive completeness of thie I§g-D..

Table 7 contains a complete axiom system for NL in whighrather thar®, is the
primitive operator. Consequently,is derived in the manner already shown in Table 1.

45

Axioms:

N1/ (NO). =0 false
N2/ (CO). FO(XvX') D OX vOX
N3’ (D). FOX D ®@X

Inference rules:

NR1'. If X is atautology, ther X
NR2' (MP). If - X > X’ and- X, then- X’
NR3' (RM®). If - X D X/, then- O X > O X’

Table 7: Alternative complete axiom system for NL basedon

The axiom system is essentially one of sevevilbased axiomatizations of normal
systems of modal logic covered by Chellas [17] with the addibf the axiomD..
This second axiom system appears preferable for our pusEasee our definition of
PTL also take® to be primitive. We therefore use this axiom system hereoatjh
the methods employed can be easily adapted to the first Nloesystem.

Definition 9.1 (Theoremhood and consistency for NUj someNL formula X is de-
ducible from the axiom system, we call itldh theoremand denote this theoremhood
astnL X. We defineX to beNL-consistentf —X isnotanNL theorem, i.el/\. = X.

Below are some representative lemmas about satisfiabiidycansistency of NL
formulas. They are subsequently used in the completenesd far the NL axiom
system in Table 7.

Lemma 9.2. For any state formulav andNL formula X, if w is satisfiable, then the
NL conjunctionw A = O X is satisfied by some one-state interval.

Lemma 9.3. For any state formulav andNL formula X, if bothw and X are satisfi-
able, then so is the formula » O X.

In such as case, IX itself is satisfied by an interval having at moststates, then
w A O X is satisfied by an interval having at mostt 1 states,

Lemma 9.4. For anyNL formula X, if O X is NL-consistent, then s& .

For any NL formulasX and X’, the following are deducible as NL theorems and
shortly used to combine two (possibly negatédiprmulas into one:

I_NL O(X /\X/) = 00X A oX’ (31)
I_NL O(X A _|X/) = 0X A -0 X' (32)
l_NL ﬁO(XVX/) = 20X A —|OX/ . (33)

Axiomatic completeness is usually defined to mean that evadigt formula is de-
ducible as a theorem. However, we will make use of the folgwariant way of
expressing completeness:

Lemma 9.5(Alternative notion of completenessA logic’s axiom system is complete
iff each consistent formula is satisfiable.

Theorem 9.6(Completeness of alternative NL axiom systernipeNL axiom system
in Table 7 is complete.

46

Axioms: Inference rules:

Tl. FO(X DY) D 0X>O0OY Rl If Xisatautology, thefr X
T2. FOX D ®X R2. If- X DY and- X, then-Y
T3. FO(XDY) D> OX>O0Y R3. If- X, then-OX

T4, FOX D X A@O0X

T5. FOXDo®X) D XOo0OX

Table 8: Modified version of Pnueli’s complete PTL axiom sysDX

Proof. The proof involves the kind of consistency-based reasoaisg found in later
sections when we hierarchically establish axiomatic cetapless for PTL. Using
Lemma 9.5, we show that any NL formul& which is NL-consistent (i.el/n. —Xo)
has a satisfying finite interval. Let be the next-height oy, i.e., the maximum
nesting ofOs in X.

We now do induction om to show thatX| is satisfied by some interval with at
mostn + 1 states. Ifn = 0, thenX, is in PROP and hence satisfied by some one-state
interval sinceX’s consistency ensures thaf(, cannot be a tautology (see Inference
RuleNR1’). Forn > 0, we regard the temporal constructsiz which are not nested
in other temporal constructs as being primitive. Then caheeal propositional rea-
soning yields a deducibly equivalent formula in disjunethormal form. As least one
disjunct is consistent. Equivalences (31)—(33) are inddkeobtain from such a dis-
junct a deducibly equivalent NL formulg with the same next-height and having the
formw A OX orw A -OX. Induction onn and Lemmas 9.2-9.4 then together
ensure thal” is satisfiable. Henc& is as well. O

10 Axiomatic completeness for transition configurations

We now describe a PTL axiom system and then prove axiomatigptzieness for
transition configurations. Later Sections 11 and 12 hidieadly extend axiomatic
completeness to all of PTL.

The PTL axiom system used here is shown in Table 8 and is atl&pta another
similar PTL axiom systenbX proposed by Pnueli [78]. Gabbay et al. [33] showed
thatDX is complete. Pnueli’s original system uses strict versming andO (which
we respectively denote &™ and O™ in the earlier Table 1) which do not examine
the current state. In addition, Pnueli’s system only deail wfinite time. Gabbay et
al. [33] also include a variant system callBd4X based on the convention&l and O
operators which examine the current state. The versiomrpted here does this as well
and furthermore permits both finite and infinite time.

Definition 10.1(Theoremhood and consistency for PTlf)the PTL formula X is de-
ducible from the axiom system, we call iPAL theoremand denote this theoremhood
ast X. We defineX to beconsistentf —.X is nota theorem, i.el/ - X.

In the course of proving completeness for PTL we make use ddfimition of
completeness for sets of formulas such as sets of transit@mfigurations:

Definition 10.2 (Completeness for a set of formulasin axiom system is said to be
complete for a set of formulas if every consistent formulh@set is also satisfiable.

a7

Lemma Summary

104 HH4BT AaAOf, then= T A a A skip A sfin B
106 BT AraaOp, thend ($T)* A an sfin B
10.7 ABET Aa AT B, then= ($T)* A a A Osfin 3

Table 9: Summary of some basic lemmas for consistency argdiability

Now the Alternative Notion of Completeness (Lemma 9.5) clo &e readily
adapted to sets of formulas. Indeed, our goal in the restisfsiction is to show
that any consistent transition configuration is also satii.

The next lemma permits us to utilize within PTL the axiomatenpleteness of the
NL proof system:

Theorem 10.3(Completeness for NL in PTL)ThePTL axiom system is complete for
the set ofNL formulas.

Proof. Theorem 9.6 establishes the completeness of the altezrdlivaxiom system
in Table 7. We then show that any NL theorem is also a PTL thmeor€his can be
done by demonstrating that all axioms and inferences rolgsei NL axiom system are
derivable from PTL ones. O

10.1 Some basic lemmas for completeness

In this subsection, we deal with another part of the compkss proof. We utilize
ways to go from certain specific kinds of consistent formutaslving reachability to
intervals in order to later construct models for consistesnsition configurations in
Subsection 10.2. Table 9 summarizes the basic lemmas phaved Within the table,
we use the notation X already introduced in Definition 3.1 to denote that the fdamu
X is satisfiable anei X to denote thaX is consistent.

Lemma 10.4. For any V-atomsa and g3, if the formula@ 7" A a A O 3 is consistent,
then the formuld™ A a A skip A sfin (is satisfiable.

Proof. From the consistency of the formuta7T » a A O 8 and simple temporal rea-
soning, we obtain the consistency of the{NformulaT A o » O 3. Theorem 10.3

concerning axiomatic completeness for NL formulas in thé BXiom system then

ensures that this is satisfiable. Clearly any interval §aitig it has at least two states.
Hence by the earlier Lemma 8.1 the formuldp A T A o A O3 is also satisfiable.

Consequently, simple temporal reasoning yields that theasécally equivalent for-

mulaT A a A skip A sfin 3 is satisfiable as well.]

For anyV-atom «, within the next two lemmas we |ei, denote the subset of
Atomsy containing exactly every-atom~ for which the following formula, which
concerns reachability from, is satisfiable:

($T)" A an sfin .

Here is a more formal definition &, :

S, {~y € Atomsy : 2 ($T)" ra a sfin v}.

48

Lemma 10.5. For any V-atome, the following formula is &@TL theorem:

F BTAra >0\ 1 (34)

YESa

Proof. The following formulas are valid and in NLHence, they are theorems by the
completeness of the PTL axiom system for'Narmulas (Theorem 10.3):

I—aD\/v I—moreAT/\\/vDO\/fy.

’YESa ’YES@ 'Yesa

From these and simple temporal reasoning we can readilyceealur goal (34). O

Lemma 10.6. For any V-atomsa and g3, if the formula® 7" A o A & 3 is consistent,
then the formuld$7)* A a A sfin (3 is satisfiable.

Proof. Suppose on the contrary thét7)* A a A sfin 3 is unsatisfiable. Now is in
the setS,, whereass is not. Hence, the following formula concerniggnot being in
S, is valid and thus a propositional tautology:

/v o 8 (35)

YESa

Furthermore, the previous Lemma 10.5 ensures that the mgication is a PTL the-
orem:
+ TAO&DD\/’}/. (36)
YESa
The two implications (35) and (36) together with some sintptaporal reasoning let
us deduce that can never reach:

F BT Ara D OSS.

From this and the general equivalencé& -3 = - < 3 we can deduce the following
PTL theorem:
- Tra D =08

Therefore, the formul@ 7' A o A < 3 is inconsistent. This contradicts the lemma’s
assumption.]

Lemma 10.7. For any V-atomsa and 3, if the formula@ 7' A o A O 3 is consistent,
then the formuld$7")* A o A O sfin 3 is satisfiable.

Proof. From the consistency of the formuiaT » o A T 3, we readily deduce for
someV-atom~ the consistency of the two PTLformulas below:

BT Aoy BT AyAOpB.

The consistency of the first formulaT A~ a A~ ¢~ and Lemma 10.6 yield that the
formula (37)* A o A sfin v is satisfiable. Lemma 10.4 and the second formula
@ T A~ A Op then guarantee that the formulan v A skip A sfin 3 is satisfiable.
Lemma 5.24 then yields that the next formula is satisfiable:

(($T)* A a n finite); (T A~y A skip n sfin 3).

From this and some further simple interval-based reasomnegan establish our goal,
namely, that the formul& 7')* A « A O sfin (3 is satisfiable. O

49

10.2 Completeness for transition configurations

We now apply the material presented in the previous Sulmsedid.1 to ultimately
establish completeness for finite- and infinite-time traosiconfigurations. Here is a
summary of the completeness theorems for them:

Type of transition configuration Where proved

Finite-time Theorem 10.8
Infinite-time Theorem 10.9

The remaining two kinds of transition configurations aressdimate to these. For the
sake of brevity, we do not consider them here.

Theorem 10.8. Completeness holds for any finite-time transition configareD 7" A
it A finite.

Proof. From the consistency of the finite-time transition confiioraO 7" A init A
finite and simple temporal reasoning we can demonstrate thatrioe Beatomsa and
[, the next formula is consistent:

BT A aninit A sfin (T A 5).

From this and further simple temporal reasoning it is regafdilows that the following
formulas are all consistent:

a A init BT Aanlp T n B A empty.

The first of these is itself satisfiable since any consistamfila in PROP is satisfiable.
The second one and Lemma 10.6 yields that the PITL for®&)* A o A sfin [is
satisfiable. The third formul@ » 8 A empty is in NL' and hence by Theorem 10.3
satisfiable. Hence the following formulas are all satisBabl

a A it ST ransfin T A B A empty.

This and Theorem 7.1 then yield the satisfiability of the &rtitme transition configu-
rationO T A init A finite. O

Theorem 10.9.Completeness holds for any infinite-time transition comigan C© 7" A
init AOOT L.

Proof. From the consistency of the infinite-time transition confegion 0 T" A init A
O <O L and simple temporal reasoning we can demonstrate that fioe 8eatomsa
andg, the next formula is consistent:

BT Aaninit nOOT(3 A L). (37)

Lemma 6.4 ensures that the formulas. L and A Eny, g are semantically equiva-
lent. The proof of this only requires simple propositioredsoning not involving the
temporal operators i,. Hence the next equivalence is readily deducible as a PTL
theorem using substitution into a propositional tautol¢gge Definition 3.3 and PTL
inference rule R1 in Table 8):

F BAL = B A Engpg. (38)

50

From the consistency of formula (37) and the deducibilitjosmula (38), we can
show the consistency of the next formula:

LT A A nit A E|<>+(ﬁ A EnL,B)~

This and simple temporal reasoning then together yieldaéhsistency of the following
formulas involving some addition&tatomsy,, ..., ;| (NOt necessarily distinct):

a A it BT Aandf BT ABAOTS
foreachy,: BT ABACYy, v A0(Enpg,i) BT Ay AOL.

The consistency of the propositional formutas. init and~y; » (Eny, g, 1) for each
V-atom~; ensures they are satisfiable. Lemma 10.6 is then applieceteethaining
consistent formulas, except f&tT" A 8 A T 3 which requires Lemma 10.7. The
combined result is that the following formulas are all datlde:

a A init ($T)* A n sfin B ($T)* A B AOSsfin g
foreachy,: (ST)" A B asfiny, ~vinO(Enpg,i) ($3T) Ay n sfin S.

Hence by Theorem 7.4, the original consistent infinite-ttra@sition configuration is
indeed satisfiable. O

11 Invariants and related formulas

We will shortly introduce the concepts of invariants andaim&nt configurations which
together act as a natural middle level between transitiorigorations and full PTL
and involve the use of auxiliary variables. These variapleside a way to reduce
the nesting of temporal operators within other temporalajoes and thereby simplify
further analysis. Satisfiability, existence of small magelecidability and axiomatic
completeness for invariant configurations can be readifyed to the analysis of tran-
sition configurations. Furthermore, it is not hard to redadatrary PTL formulas to
invariant configurations by utilising such auxiliary vdies.

The analysis of invariant configurations and arbitrary Pdtnfulas does not re-
quire any further interval-based reasoning or PITL.

Definition 11.1 (Invariants and dependencieddn invariantis any finite conjunction
of zero or more equivalences in which each equivalencd'siéé is a distinct propo-
sitional variable and each equivalence’s right side is ohéhe following:

e SomePTL formula of the form® w, for some state formula.
e Some\L! formula.

The variables occurring on the left sides of equivalencesalleddependent variables
and any other variables are calléddependent variablesThe right sides are called
dependent formulaand each equivalence is itself calleddapendencyHence for a
given invariant/, it follows that|/| denotes the number of dependencieg.imAlso,
foranyk : 1 < k < |I|, I[k] denote thek-th dependency id. Each dependency
containing< is referred to as a>-dependency

51

Below is a sample invariant referred to s
Ii: m=3(ppa—q) A ro=(r1 AOrs). (39)

Here|l;| equals 2, the first dependentyf1] is the equivalence; = <(p A —¢) and
the second dependen£y[2] is the equivalence, = (r; A Org). Adependent variable
can be referenced in any dependent formula including theasseciated with it. The
dependent variabls, in the invariant/, illustrates this.

Note that an invariant is not necessarily satisfiable as ig= —r;. Also note that
dependencies of the two forms= w andr = Ow, for some propositional variable
r and state formulaw, are both subsumed by the second case in Definition 11.1. If
desired, a more restrictive definition of invariants lindit® dependencies of the form
w, Ow and< w is possible.

We can view an invariant as being any conjunction of the forf, ., ;. o (ux =
¢) SO thatuy, is thek-th dependent variable angl, is thek-th dependent formula in
I. Observe that for ank : 1 < k < |I|, the conjunct[k] has the formu;, = ¢, andI
itself can be expressed Ag, ., <.« I[k].

Starting with an invarianf, we analyse certain low-level formulas referred to here
asinvariant configurations

Definition 11.2 (Invariant configurations)An invariant configurations a formula of
the formO I A X where thePTL formulaX isin one of three categories shown below:

Type of invariant configuration Syntax &f

Basic w
Finite-time w A finite
Infinite-time w A nf

Herew is a state formula.

For example, the conjunction I; A r, is a basic invariant configuration which
is true for intervals which are infinite, have andr, always true angp and—q both
always eventually true.

Let us now introduce some simple notation needed for reagaaibout liveness
and C-dependencies. This will be used in the definition of an imardis associated
conditional liveness formula.

Definition 11.3 (Liveness tests of an invariantjor any invariant/ and anyk : 1 <
k < |1|, if the dependency[k] is a ©-dependency, define titieeness test ;) to be
the state formula which is the operand of theconstruct inI [k].

For instance, the sample invariahtin (39) contains exactly on€-dependency
I,[1]. Thereforel, has a single liveness tet ;) which denotes the formulan —g.
Observe that for any invariadt if the dependency[k] is a<>-dependency, then it has
the formu, = ¢ w, whereuy, is I's k-th dependent variable, and therefdiié] can
also be expressed ag = < 0.

The next definition of a restricted kind of invariant helpsstmplify the notation
used in the reduction of invariant configurations to traositonfigurations:

Definition 11.4 (Ordered invariants)An invariant is said to berderedif all of its
<-dependencies precede any others.

52

The sample invariani; in (39) is itself such an ordered invariant. It is not hard
to rearrange an arbitrary invariant’s dependencies toimbtgemantically equivalent
ordered invariant. In the rest of this section, we will with¢oss of generality limit our
attention to ordered invariants and invariant configuretibased on them.

We now associate with an ordered invaridra transition formuld’; and a condi-
tional liveness formuld ;. They serve to expeditiously reduce invariant configuretio
to transition configurations previously analysed in eadections. Definition 11.5 be-
low described’;. The subsequent Definition 11.6 describes the forrh of

Definition 11.5(Transition formula for an ordered invariantjor an ordered invariant
I, the associated transition formulg; is anNL! formula which captureg’s transi-

tional behaviour between pairs of adjacent states. It isaoted from/ by replacing
each ¢-dependency with another dependency not contaidingnd leaving the re-
maining<-free dependencies unchanged. More precisely, each depeyndh! of the

formr = O w, for some propositional variable and state formulav, is replaced by
the O-free equivalence = (w v Or).

Observe that the transition formula is in NL' and is also a well-formed invariant.
Also, for anyk : 1 < k < |I|, if the dependency k| does not contair>, then it and
T;’s corresponding dependen@y|k] are identical.

Here is the transition formuld;, associated with the sample invaridqtin (39):

Tr,: m=((par—q)vOry) A 19 =(r1 AOry).

Given an ordered invariardt we now associate a specific conditional liveness for-
mula L ; with it:

Definition 11.6 (Conditional liveness formula of an ordered invariarfgpr any or-
dered invariant/ having exactlyn <-dependencies for some let the conditional
liveness formulal; be a conjunction of: implications now described. For each
k1 < k < n, thek-th implication is obtained by simply replacing the outesho
equivalence operator ii’s k-th &-dependency by the implication operator and using
® instead of>. Therefore, for eactk : 1 < k < n, the dependency]k] has the form
uy, = < 0y, and the implication; (k] has the formu;, O @ 0.

The definition ofl’s conditional liveness formul&; intentionally ignores any NL
dependencies ih sinceT; already adequately deals with them. As a resljt,can
contain fewer conjuncts thahand7;. Below is the conditional liveness formulg,
associated with ordered invariahtin (39):

L[li D @(p A —|q).

It is not hard to see that, unlik€s transition formulaZ;, the conditional liveness
formula L ; associated witll is not a well-formed invariant, in part because the main
operator in each conjunct @f; is D rather thare.

Let us define a convenient notion for measuring how many sysithere are in a
formula:

Definition 11.7 (Formula size) For any formula, the number of symbols in it, exclud-
ing parentheses, is called itsrmula size

For simplicity when determining formula size, we will redaall conventional
propositional operators such as O and = as being primitives. For example, the
formula size of each of the two formulas, ((O¢) A r) and(p = ¢q) » Oris 6.

53

It also seems reasonable to regard the operatior conditional liveness formulas
as a primitive when calculating formula size since the deniprocedures for infinite
time treat it as such. Alternatively, one can expand it usisglefinition in Table 1.
This requires two extra symbols. Another possibility is 8@ ¢ instead, as discussed
after Definition 5.1 of conditional liveness formulas.

One reason we ignore parentheses in formula size is thaatlkeyot relevant to the
kind of internal data representations such as trees and BDBsally encountered in
implementations. In addition, for the sake of readabititgny of our sample transition
formulas, invariants and other formulas often use spacistgad of parentheses. This
makes any consistent counting of bracket symbols more dliffic

The formula size of a conjunctiaii such as any invariant and conditional liveness
formula should not be confused with its size as a conjunciitwe later was previously
defined in Definition 3.4 to be the number of conjuncts and isoted as/C|. For
example, the conjunctiop » ¢ has formula size 3, whereas its size n ¢| as a
conjunction is 2.

The formula size of an invariants associated transition formulB; and condi-
tional liveness formuld.; are related to the formula size of the invariant but are also
affected by any>-dependencies in the invariant. The next lemma makes thie mo
precise:

Lemma 11.8(Upper bounds on formula size ©f andL;). Suppose that an invariant
I has formula sizé. Letm be the number of instances of the operatom I. Then
the formula size of the transition configurati@i is at most + 3m.

If we regard the operatof> used by the conditional liveness formula as prim-
itive, then the formula size df; never exceeds that df and only depends on the
number o> operators inf and the formula size of their operands. More precisély,
has the same formula size as the conjunction oPatlependencies ih and therefore
has formula size no larger thafis.

Proof. In the case of the transition formulg, each operand> w in I is replaced in
Ty by the formula® (w v Or), for some dependent variable This has the three extra
symbolsv O r since we ignore bracketing. Within the conditional livemésmulal;,
each<-dependency i of the formr = ¢ w is simply replaced by the implication
r O ©®w which has the same formula size. O

11.1 Reduction of basic invariant configurations

Starting with an ordered invariait let us now consider the relationship between its
basic invariant configuration and the associated finitetand infinite-time invariant
configurations. This permits us to focus the remaining asiglgn the two later kinds
of invariant configurations.

Lemma 11.9. A basic invariant configuratiof) I A w is satisfiable iff at least one of
its associated finite-time and infinite-time invariant cgafations is satisfiable.

Proof. This follows from the validity of the formulginite v inf and simple proposi-
tional reasoning.]

The finite-time and infinite-time invariant configuratioms the ordered invariant
each have a corresponding semantically equivalent trangsibnfiguration of the same
kind now described and shortly proved:

54

Invariant Transition Where
configuration configuration proved

Finitetime O7 A w A finite OTr A w A finite Theorem 11.11
Infinitetime Ol Arwnainf OT;arwaO0CTL; Theorem 11.14

Observe that the reductions from the two types of the inmaiganfigurations to the
corresponding transition configurations do not introdutgextra variables.

In what follows we will often abstract the behaviour oKadependency by us-
ing two propositional variables and ¢ and representing the dependency as the PTL
equivalence = < q. This technique is used to establish the next lemma:

Lemma 11.10. The formulasd I andO T} are semantically equivalent on finite inter-
vals. In other words, the following implication is valid:

= finite O OI = O1T7.

Proof. We can represent I as the conjunctiof\, , ., - © I[k] and similarly repre-
sentd 7} as the conjunctiof\,., ., D77 [k]. Foranyk : 1 < k < [I|, if I[k] isin
NL'! thenT}[k] is identical to it and henc@ I[k] andO T} [k] are identical. Otherwise,
I[k] is a<-dependency. In such a case, the formulH%| can be seen as a substitution
instance of the PTL formul&(p = < ¢) containing the two propositional variablgs
andq. Now O T [k] therefore corresponds to the formuldp = (¢ v Op)). Simple
temporal reasoning can then be used to show that each ofitheles the other in any
finite interval. O

Let us note that the validity for finite time of the relevanueglenceld(p = ¢ q) =
O(p = (¢ v Op)) can even be readily checked by a computer implementation of a
decision procedure for PTL with finite time.

Theorem 11.11. The finite-time invariant configuration fdris semantically equiva-
lent to the associated finite-time transition configuration

Proof. This readily follows from Lemma 11.10 and propositionals@ang.]

Unfortunately, the equivalencel = O T can fail to be valid for infinite time iff
contains®-dependencies becausg does not fully capture the liveness requirements
of such dependencies. Lemma 11.13 later on corrects foptbidem by showing that
in infinite time the two formulagl I andO 77 A O <™ Ly are semantically equivalent.
The reason thdll I = O T} is not necessarily valid is because when we consider an
individual <&-dependency, the formulas(p = ¢ ¢) andO(p = (¢ v Op)) are not
semantically equivalent on infinite-time intervals sinage such an interval, the first
formula can be false and the second one true. An examplesobdaurs in any infinite
interval wherep is always true and is always false. Therefore, if contains<-
dependencies, then I can be false on an infinite-time interval even thougfi’ is
true on the interval. However, the next lemma holds evenrfamite time:

Lemma 11.12. ThePTL implication@ 1 D> O7T7y is valid.

Proof. The NI}-dependencies id and T are identical. Furthermore, for thé-
dependencies we make use of the next valid PTL formula:

F OpE=<q) D O(@=(qvOp)). O

95

We see from Lemma 11.12 that the form@lal > O7T7 is valid for both finite
and infinite time. However iff contains®-dependencies, then the converse impli-
cationOT; D O[T is not necessarily valid for infinite time because the imgdimn
Op=(¢v Op) D O(p= <g) fails to be valid. We now discuss the principles
which successfully correct for this. First of all, the follmg weakened implication
concerning an individuab-dependency is valid:

F Op=(@vOp) D O(Cq D p).

Here we use the formul& ¢ O p instead of the stronger equivalenee= < ¢. The
following equivalence then strengthens the effectigh = (¢ v O p)) by adding the
formulaC(p D <g):

F Bp=<q = DOp=(vOop)rOp > <q).

In fact, we can even replace the conjunp O < ¢) by the weaker formul& ¢(p D
<& q) which adds &°:

F Op=<¢q = B=(vOop) Do > Cg).

All three valid formulas only contain the propositional idriesp andg and can conse-
guently be readily checked for infinite-time validity by aogmputer implementation
of a decision procedure for PTL with infinite time.

Now suppose the ordered invarignbhasm <-dependencies and henee= |L;|.
If we havem pairs of propositional variables, q1, .. .,pm, ¢ (corresponding td’s
&-dependencies) then the following generalization of thevijmus valid equivalence is
itself valid:

E 0 A =)

1<k<m

= 0O A =@vom) 00 A (D Oaq).
1<k<m 1<k<m

The left side of the equivalence corresponds to the invadigin: m]. Similarly, the
first conjunct on the right side correspondsTigl : m] and the second one tby,
except for the use of instead of®.

Now within infinite time,0 ¢ andO & have the same behaviour and in addition
< and © act identically. We use this to obtain the next lemma whicpregsed in
terms of7; andL;:

Lemma 11.13. The formulainf > (01 = (BT A8OT Ly)) is valid.

Theorem 11.14. An infinite-time invariant configuratio® I A w A inf for the or-
dered invariant/ is semantically equivalent to the associated infinite-ttra@sition
configurationd 77 A w A OOT Ly,

Proof. This readily follows from Lemma 11.13 and simple temporals@ning. [

11.2 Bounded models for basic invariant configurations

The theorem given below gives the small model property ferdiavariant configura-
tions:

56

Type of invariant config. Max. # of variables to representaest

Finite-time \4
Infinite-time (se€;8.1) 21V +n
Infinite-time (se€8.2) V] +2n

Infinite-time (also ing8.2) |V| 4+ n + [logy(n + 1)],
wheren is the number of> operators in the invariant.

Table 10: Variables used by decision procedures for inatgia

Theorem 11.15. Supposé/is a finite set of variables and the variables in the ordered
invariant I and the state formulav are all elements o¥/. Then the basic invariant
configurationD I A w is satisfiable iff it is satisfied by some some finite intervigh w
interval length less thapAtomsy/| or by an infinite, ultimately periodic one consisting
of an initial segment with interval length less thafitomsy | fused with a remaining
infinite periodic part with a period having interval lengthmost(|L;|+ 1) | Atomsy/|.

Proof. Supposed I A w is satisfiable. We will consider the two cases of finite and
infinite intervals separately:

Case for finite intervalsTheorem 11.11 ensures that the finite-time invariant con-
figurationO I A w A finite and its associated finite-time transition configuration
OT; A~ w A finite are semantically equivalent. The constructiori/fensures that
any variable occurring in it is a member of the $etLemma 6.2 therefore establishes
that if the conjunctioid 77 A w A finite is satisfiable, then a satisfying interval exists
having less interval length thad tomsy |. This interval consequently also satisfies the
basic invariant configuration I A w.

Case for infinite intervalsTheorem 11.14 ensures that the infinite-time invariant
configurationd I A w A inf and its associated infinite-time transition configuration
OT; ~ w A~ OOT Ly are semantically equivalent. From Lemma 6.9 we have that
this second formula is satisfied by an infinite interval cstisg of an initial segment
having interval length less thgaltomsy | fused with a periodic interval with period
having interval length at mostL;| + 1) |Atomsy|. The overall ultimately periodic
interval therefore also satisfies the formald A w. O

11.3 Decision procedures for invariant configurations

The decision procedures for transition configurationsgaesl earlier in Section 8 can
also be applied to invariant configurations by means of tbeipusly described reduc-
tions from invariant configurations to transition configioas. The earlier Lemma 11.8
gives upper bounds on the formula size for an invari&associated transition formula
T; and conditional liveness formuli;. Furthermore, the information in the previous
Table 5 about the maximum number of variables required by#neus BDD-based
decision procedures to symbolically represent a single $ta a transition configu-
ration can be adapted to invariant configurations. Tablehbivs four cases. Recall
that the decision procedures construct some BDDs whiclesept states and others
which represent binary relations over pairs of states. fbeg, the number of variables
required for the second kind of BDDs is double that shown iol&4.0.

57

11.4 Axiomatic completeness for invariant configurations

Theorem 11.16. Completeness holds for finite- and infinite-time invariaonfigura-
tions.

Proof. Suppose we have some invariant Assume without loss of generality that
I is ordered since otherwise we can trivially rearrange ifsedelencies to obtain an
ordered invariant which is both semantically and deducégjyivalent to/. Subsec-
tion 11.1 already described how to construct a semantiegjlyvalent transition con-
figuration from any finite-time or infinite-time invariantefiguration associated with
I. The various valid formulas mentioned there can be dedusdelTa theorems to
establish that each such finite-time and infinite-time iargrconfiguration is also de-
ducibly equivalent to the associated transition configomat This and the previously
shown axiomatic completeness for finite-time and infinieet transition configura-
tions respectively proved in Theorems 10.8 and 10.9 enbateahy consistent finite-
time or infinite-time invariant configuration associatedhwl is satisfiable. Hence,
we establish our immediate goal of completeness for finite-iafinite-time invariant
configurations. O

Theorem 11.17.Completeness holds for basic invariant configurations.

Proof. Suppose we have some consistent basic invariant confignfati A w. Now
the disjunctionfinite v inf is easily deduced as a propositional tautology singe

is defined to be-finite (see Table 1). It is then straightforward to show using purel
propositional reasoning that/ A w is deducibly equivalent to the disjunction of its
associated finite-time or infinite-time invariant configioas:

F Ol aw = (O Awa finite) v (O A w A inf).

Hence at least one of the latter is also consistent. Thequeviheorem 11.16 ensures
that any such consistent finite- or infinite-time invariaabfiguration is satisfiable as
well. An interval which satisfies it can also serve as a maooietife basic invariant con-
figuration. This demonstrates the desired axiomatic cotapéss for all basic invariant
configurations.]

12 Dealing with arbitrary PTL formulas

So far we have only looked at bounded models and axiomatiplieness for certain
kinds of PTL formulas. For an arbitrary PTL formulg, it is straightforward to con-
struct an invariant with formula size (recall Definition 11.7) which is lineattpyunded
by X's formula size. The invariant contains a finite number ofafegent variables, ,
2, ..., 77 NOt themselves occurring iX. We can then mimic the semantics &f
since it is satisfiable iff the invariant configuratiGh/ A r; is satisfiable. In addition,
the implicationD I D (r; = X)) is valid.

Assume that the only temporal operatorsXnare O and <& with others such as
O expressed using them (e.gl,p becomes- <& —p). The most straightforward way
to construct the invariant foX is to first start with the equivalencg = X, where
the variabler; does not occur inX. Now replace each a subformula haviagr <
as its main operator in this righthand instanceXoby a distinct dependent variable.
The original equivalence now becomes = w for some state formula». We then
construct a conjunction of additional dependencies (recall Definition 11.1), where

58

is the number ofX’s temporal operators. For example, here is a suitable ienviafor
the PTL formula(Op) v &(O g v = O¢'):

rm=(ravrs) A Ta=0p A r3=<(rgv—rs) A Ta=0q A 15 =04 (40)

It is easy to check by doing induction o¥i’'s syntactic structure thakX is satis-
fiable iff the basic invariant configuration I A r; is satisfiable. Furthermore, the
implicationO I O (r; = X)) can be shown to be valid. Consequently] » 7, can
be used to represet’s behaviour (modulo the dependent variables which act &s au
iliary ones). The bounded model for the invariant configora{see Theorem 11.15)
satisfiesX as well.

The decision procedure described in Section 8 can be utitzeheck the satisfia-
bility of arbitrary PTL formulas by reducing them first to l@swariant configurations
and then testing the associated finite-time and infinitetiransition configurations
(see Subsection 11.1). As detailed there, we transformntraiant into a transition
formula and conditional liveness formula using Definitidids5 and 11.3, respectively.
No new dependent variables are needed. The resulting fagrhdve formula size
which is linear in that of the invariant and henceXbfitself.

Axiomatic completeness fak readily reduces to that for the invariant configura-
tionO1 A 7.

Let us now look in more detail at the formula size of an invatrigenerated for
some arbitrary PTL formul& . The invariant contains one new dependent variable
for the overall formulaX and at most one new dependent variable for each temporal
operator inX. Hence, the total number of dependencies and dependeablexiin
the invariant (including the original one fo¥ itself) is bounded by the formula size
of X. In fact we have the following lemma concerning the formute ©f invariants
generated from PTL formulas:

Lemma 12.1(Formula size of generated invariantset X be aPTL formula, let/ be
its formula size and let: be the number of temporal operatorsih The formula size
of the invariant generated fronX is linearly bounded byX's formula size and is in
fact less thard + 4(m + 1).

Proof. The introduction of a dependency for each temporal operatprires at most
four additional symbols. The first dependency for the ovéoainula X requires just
one instance of the dependent variabjeand a single logical equivalence operator.
Any further new dependencies are introduced because of#isepce of temporal op-
erators inX . Each such dependency requires within the final invariaatibstances of
the associated dependent variable, one instance of theadgquie operatae and one
logical-and operatox to include the dependency in the final invariant.]

For example, le®™ p denoten instances of> followed by the variable. Here is
the form of an invariant for this for some > 1:

rMm=3<rg A 1=r3 A - A 1, =)

The original formula®™ p has formula sizer + 1 and the invariant has formula size
5n — 1. This example is a kind of worst case since many PTL formutasat contain
such a high density of temporal operators.

59

12.1 Two simple improvements

Let us now consider two simple improvements to the transébion of arbitrary PTL
formulas into invariants which can yield shorter invarsaobntaining fewer dependent
variables. For the firstimprovement, note that just priontooducing a new dependent
variable for a subformula, we can check whether the sam@sulbfa has already been
encountered elsewhere i and previously assigned a dependent variable. If so, this
dependent variable can be used and further (redundant@ssing of the subformula
can be skipped. This technique both reduces the number ehdept variables and
the formula size of the final invariant. For exampleXifis (¢ p) A O(g v Op), we

can obtain the following invariant:

ri=(ranrrs) A 12=p A T3 =(qvr). (41)

Here the dependent variabte corresponding toX’s subformulal p occurs twice in
dependent formulas on the righthand sides of equivalences.

The second improvement concerns the state formula in aniamiaonfiguration.
If the dependent formula associated with the first dependembler; is a state for-
mula, then we can eliminate from the invariant and use the state formula in its place
as the initial state formula in any associated invarianfigomation. For example, the
invariant (41) can be shortened to the following one:

ro=Cp A r3=<(qvr).

The original formulg < p) A O(g v © p) can then be represented by the basic invariant
configuration now given:

O(ro=Cp A r3=C(gvr)) A (raars).

Therefore if the original formula contains temporal operators, at most new de-
pendencies and dependent variables are required in thei@ssbinvariant rather than
m + 1.

Table 11 shows the number of variables required to represstate in the various
BDD-based decision procedures. The bounds can be obtajneliserving that the
reduction to an invariant requires at mestnew variables, where: is the number
of temporal operators in the original PTL formula. The earlfable 10 can then be
used to calculate the values by replacing each instan¢® joby |V| + m. Recall
that the decision procedures construct some BDDs whiclesepit states and others
which represent binary relations over pairs of states. 8foeg, the number of variables
required for the second kind of BDDs is double that shown iold4.1.

12.2 A way to obtain even smaller invariants

We now describe another way of construct invariants withefedependencies and
dependent variables. It makes use of dependencies comjairbitrarily complex NL
formulas. For example, iX is the earlier formuldOp) v ¢(Oq v = 0O¢’), we can
obtain the following invariant containing only 3 dependescand with formula size
20:

rm=0Opvry) A 12=(0qv-0¢q) r r3=C70. (42)

This is smaller than the earlier invariant (40) which has petelencies and formula
size 28.

60

Type of interval Max. # of variables to represent a state
Finite-time \V]i+m
Infinite-time (usingg8.1) 2(|V|+m) +n
Infinite-time (usingg8.2) |V|+m +2n
Infinite-time (also ing8.2) |V 4+ m +n + [logy(n + 1),
wherem is the number of temporal operators
andn is the number of> operators in the formula.

Table 11: Variables used by decision procedures for argifcamulas

We start with the equivalenege = X, wherer; is a new dependent variable. Now
check whether the equivalence = X is already itself a well-formed dependency.
Recall Definition 11.1, concerning invariants and depena=s) which states that for
any propositional variable, the equivalence = X is a dependency ifX is either
of the form< w for some state formula or X is in NL'. We will now give a lemma
which states an alternative characterization of an eqemad such as, = X being a
dependency. This is done using two conditions. By exprgdsia requirements fak'
in terms of these conditions, we can more clearly see how taimla invariant from
the initial equivalence; = X.

Within this approach, let the terstrict NL' formuladenote an NLformula con-
taining at least one instance of the operatorObserve that an NLformula cannot
itself contain a strict NL formula within the scope of @& operator since this would
nest oned in another.

Lemma 12.2 (Alternative characterization of dependencyet » be some proposi-
tional variable andX be aPTL formula. The following are equivalent:

(a) The equivalence = X is a dependency.
(b) The following two conditions hold fox:
1. X does not contain a subformufaw, for some state formula, nested
within any operator.
2. X does not contain a stridiiL* subformula nested within some temporal
operator.

Proof. (a) = (b): From the definition of invariants and dependencies in Defini-
tion 11.1 it is not hard to see that# = X is a dependency, then both conditions
are observed. We show this by considering the two possibhed® can have:

e X has the formC w: Clearly Condition 1 holds sinc itself is not nested in
any temporal operators. Also Condition 2 holds sikceontains na> at all.

e X is a formula in NE: Such anX observes Condition 1 sinc& does not
contains any® operator. Also, as already noted, an'Narmula cannot contain
a strict NI! subformula within the scope of artyoperator. Therefore Condition
2 holds.

(b) = (a): We first consider the case wheke contains a® and then the case
where it does not contain one:

61

e X contains &: Condition 1 ensures that thi® must be exactly the outermost
operator. Also, by Condition 2, no can occur within the scope of the so X
has the form® w for some state formula.

e X does not contain &: Condition 2 guarantees that afyin X does not occur
in anothelO so sinceX has no® in it then X itself is in NL'. O

Now let us obtain an invariant from the equivalenge= X, wherer; is a propo-
sitional variable not occurring i . By Lemma 12.2, this equivalence is a dependency
iff both alternative Conditions 1 and 2 in (b) hold far. If either condition is violated
by X and hence; = X is not a dependency, we replace some offending temporal
subformula, say’, in X by a new distinct dependent variable, sayto obtain from
X a smaller formulaX’. Indeed,X can be viewed as a substitution instanceXdf
that is,X’;:. The equivalence associated wikh now becomes; = X’. We also
associate, with the additional equivalence, = Y, which is a well-formed depen-
dency since by the two alternative Conditions 1 and 2 in LemM&2 the offending
subformula is either of the fornd® w, for some state formula, or is in NL'. The
process is repeated oft’ to check whether it fulfils the alternative Conditions 1 and 2
in Lemma 12.2. If not, this results in more new dependentdes and equivalences,
as well as a new formulX”” which used in the next iteration instead Xf. Eventu-
ally, we terminate with a finite nonempty set of equivalenssch are well-formed
dependencies and can be conjoined together to obtain ananva with the valid
implicationC I O (r; = X).

As we previously noted, the invariant (42) can be construatethis way from
the formula(Op) v ©(O¢ v ~O¢'). First observe that the strict Nisubformula
Ogq v = O¢ violates Lemma 12.2’s Condition 2 since it occurs withi® @onstruct.
Therefore, we replace it iX by the new dependent variablgto obtain a new overall
formulaOp v ¢ ry. Then observe that the subformular, violates Lemma 12.2’s
Condition 1 so replace it by the new dependent varialle The resulting overall
formulaOp v 73 is in NL' and is therefore suitable for used in the first dependency
r1 = (Op v r3). A variation of the technique based on recursive descenfses a
possible but we omit the details here.

A generalized kind of invariant later described in Subgecti3.3 can further re-
duce the need for dependent variables by permitting theanpeof al-formula in a
<-dependency to be an arbitrary Niormula, rather than just a state formula. More
compact list-based representations of invariants arepaissible.

13 Some additional features

This section describes a number of extensions to our apiprddey include the tem-
poral operatoruntil and past-time constructs (both extensively discusseddrith
erature which is surveyed by Emerson [25], Lichtenstein Bndeli [57] and other
researchers cited elsewhere in our presentation). Iniaddihe liveness tests found
in conditional liveness formulas and invariants can be gaized to be NL formulas,
rather than just state formulas. Another feature consitleeze concerns a subset of
PITL calledFusion Logic(FL) which includes constructs of the sort found in Proposi-
tional Dynamic Logic (PDL) [27,28,39-41,52]. We will look each of these issues
in turn. For the sake of brevity, the presentation is briefed less formal than in the
previous sections.

62

13.1 The operatoruntil

The operatountil is a binary operator with the synta&i/ Y, whereX andY are PTL
formulas. Recall from Section 4 that for any intergalnd natural numbet which
does not exceed’s interval length,c*1?| denotes the suffix subinterval obtained by
deleting the firsk states fronv. Here is the semantics afitil:

oEXUY iff
for somek < |0, ¥l = Y and forallj : 0 < j < k, o717l |= X.

Observe that the operatér can be expressed in terms @ftil since® X is seman-
tically equivalent to the formuldarue until X. Kamp [50] first proposed and ex-
tensively studied a version afntil which ignores the present state (together with a
past-time analogue callednce). He looked at the semantic expressivenessatl
within different models of time (see also Prior [80], Regcéwed Urquhart [83], Emer-
son [25], Gabbay, Hodkinson and Reynolds [35] and BlackbdenRijke and Ven-
ema [7]). The influential analyses by Gabbay et al. [33] arahtanstein, Pnueli and
Zuck [58] of PTL withuntil and a discrete linear model of time are also of particular
note. Burgess [15] shows the completeness of an axiom systd?i L with until and
since . However, time is modelled as being linear but not necdgsdiscrete. Marx,
Mikulas and Reynolds [61] consider the complexity of debitity and axiomatic com-
pleteness of PTL with various versions of linear time andLide an analysis witlhintil
andsince . Like Burgess, they do not restrict time to being discrete.

We can alter the definition of invariants by replacitgdependencies with depen-
dencies of the form = (wl w’), wherew andw’ are state formulas. If thg-th
dependency|j] of an invariantl is such a dependency (called antil -dependengy
then the corresponding conjuncti@f|j] in I's transition formulaZ; has the form
r = (w' v (w A Or)). The associated conjunctidiy[j] in Ly isr D ®w'. Itis not
hard to modify the material in Section 11 to ensure that fititee and infinite-time in-
variant configurations remain semantically equivalenhdssociated transition con-
figurations.

Alternatively, we can transform an invariant witlntil in it to one without it.
Each dependency ih of the formu;,, = (w until w') is replaced by the dependency
up = (u), A (W v (w A Ouy))), Whereu], is a new dependent variable with the
associated dependengy = < w’. This approach is more hierarchical than the first
one but increases the number of dependencies used.

13.2 Pasttime

Prior [80], Rescher and Urquhart [83] and others originaliydied temporal logics
having models of time with both a future and a past and inclggast-time ana-
logues of> andO. Time in such frameworks is not necessarily discrete or énear.
Prior [80] credits Scott with the first versions©fand a past-time analogue (referred to
by Prior asomorrowandyesterdayrespectively) for use with discrete models of time.
Gabbay et al. [33] strongly argue that PTL without past tissufficiently expressive
for many purposes within the context of computer sciencemeéyehat later, Licht-
enstein, Pnueli and Zuck [58] argue the case for past time Eveomputer science
applications of temporal logic. Lichtenstein and Pnueli][Subsequently describe this
reevaluation as “A major reversal of our view about the eissltly of the past oper-
ators...”. More recently, Laroussinie, Markey and Schrede [56] have formally
shown that PTL with past time can be exponentially more swt¢hat PTL without it.

63

Let us now consider PTL with a linear, discrete model of tinagihg a bounded
past. The syntax is modified to include the two additionahgive operator® X (read
previousX) and< X (readonce X). The set of PTL formulas including past-time
constructs is denoted as PTL The semantics of a PTL formul& is now expressed
as(o,k) = X wherek is any natural number not exceedifig. For example, the
semantics ob and< are as follows:

(o,k)=oX iff k>0and(o,k—1) =X
(0,k) <X iff forsomej:0<j<k, (0,5)FX.

We define the operatde X (readso-far X) as—<© —X and the operatop X (read
weak previousX) as—© —-X. The operatofirst is defined to be-© true and tests
for the first state of an interval. The past-time versiorunfil calledsince can also
be included but we omit the detalils.

A PTL™ formula X is defined to satisfiable iffo, k) &= X holds for some pair
(o, k) with k < |o|. The formulaX is valid iff (o, k) = X holds for every paifo, k)
with & < |o|. Note that these straightforward definitions of satisfigbdnd validity
correspond to the so-call@édating frameworlof PTL with past time. However, Manna
and Pnueli propose another interesting approach calledribleored framework60]
(also discussed by Lichtenstein and Pnueli in [57]) whiakythrgue is superior. In
this framework, satisfiability and validity only examineigseof the form(e, 0). There
exist ways to go between the two conventions but we will nbtel@to this here and
instead simply assume the more traditional floating inetgiron.

We now define an analogue of the set of formulas NL.:

Definition 13.1(Previous Logic) The set oPTL formulas in which the only primitive
temporal operator i® is called herePrevious Logic (PrevL)The subset d?revLwith
no © nested in anothe® is denoted a®revl.

We let the variablesZ and Z’ denote formulas in PrevL Also, Prevl;, denotes
the set of all formulas in Prevlonly having variables ifv.

The following definitions extend the notation of transitioonfigurations to deal
with past time:

Definition 13.2 (Past-time transition configurationsA past-time transition configura-
tion is any formula of the forr@0(T A Z) A X, whereT is inNL},, Z is in PrevL},,
and the formulaX is in PTLy, and is in one of the two categories shown below:

Type of configuration Syntax &f
Finite-time w A finite
Infinite-time wAOOTL

Herew is a state formula iPROR, and L is a conditional liveness formula IATL,, .

The formulaB0(T" A Z) contains boti? andU to ensure that boti’ and Z are
true everywhere in the interval.

The analysis of a finite-time or infinite-time past-time s#ion configurations can
be easily reduced to reasoning in PTL without past time. Iselemonstrate this by
first examining how to test the satisfiability of a finite-tirpast-time transition con-
figurationB0(T A Z) A w A finite. This involves finding an intervat and natural
numberk < |o|, such that{o, k) = EB0(T A Z) A w A finite holds. Note that this

64

past-time transition configuration is satisfiable iff thddaing formula, which shifts
reasoning back to an interval’s starting state, is satigfiab

O(O(T A Z) A first A Ow A finite). (43)

Here we can dispense with the operatosince2 0 andO have the same semantics at
the starting state.

Now for any PTL formula X, the formula® X is satisfiable iffX is satisfiable.
Hence, the formula (43) is satisfiable iff its subformUél’ A Z) A first A Cw A
finite is satisfiable. Let us now define the NiformulaT’ by replacing eack® con-
struct inZ by its operand and by taking each state formul&iwhich does not occur
in © and enclosing it irD. For example, ifZ is the formulap v ©(q A r), thenT”’
is (Op) v (g A r). Furthermore, letv’ be the state formula in PR@Pobtained from
Z by replacing eaclv construct byfalse. In our examplew’ is p v false. It can be
readily checked that the following formula relatictgand7” is true at any interval’s
firststate:0 Z = @ T’ A w'. In other words, the next implication is valid:

E first D (O0Z = @7 Arw').

Therefore, the original finite-time past-time transiti@m@iguration is satisfiable iff the
following formula in PTL without past time is satisfiable:

O(T A (more D T")) A w' A Cw A finite. (44)

This is still not a well-formed finite-time transition contigation due to the presence
of the formula® w. However,& w can be reduced by introducing a new propositional
variabler as shown in the next formula:

O(T A (more DT') A (r = (wv Or))) Aw AT A finite. (45)

The reduction of the original past-time transition confagion B0(T A Z) A w A
finite to the finite-time transition configuration (45) systemallicrelates all aspects of
the analysis of the past-time transition configuration oghrely future-only reasoning
presented earlier. This includes bounded models, decmioredures and axiomatic
completeness.

An alternative way to reduce the PTL formula (44) involveteinal-based rea-
soning. We first re-express the formula in PTL as the next s&oaly equivalent
conjunction:

(T A (more DT)) Anw' A Cw A sfin T. (46)

This makes use of the valid PTL equivaleri€éX a finite) = (2 X A sfin X), for
any PTL formulaX. However, in our case we can omit the subformulere > T’
in the sfin construct since the operatorore ensures that the implication is trivially
true in the associated empty interval. LBt denote the subformul@ A (more D
T"). Theorem 5.4 ensures the semantic equivalence Bf and ($7"”)*. Now the
formula (46) can in turn be itself re-expressed as the faligvehop-formula:

(T A w' A finite); ((T")* A w A sfin T). 47)

Let w” denote a state formula obtained by replacing evegonstruct inT" by false.
Consequentlyw” is true exactly in states for which A empty is true. It follows that

65

we can test for satisfiability of formula (47) by adapting gyenbolic methods men-
tioned in Section 8 to solve fdr-atomsc, (5 and~ for which the following formulas
are satisfiable:

arw STV nansfin B Baw' STV ABnrsfiny vyaw’.

Further details are omitted here.

The treatment for a infinite-time past-time transition cguafation is nearly identi-
cal to that for a finite-time one since the assumption of a dedrpast still applies and
avoids the need for a past-time conditional liveness foamkirst of all, we replace the
subformulafinite by O O L.

D(TAT')/\w//\Qw/\D<>+L.

The use of infinite time ensures we can omit the instance®f found in the finite-
time formulas (44) and (45) sincé andmore D T are semantically equivalent on an
infinite interval. The formula> w is itself reduced by introducing a new propositional
variabler and conjoining a new implication tb to obtain the well-formed infinite-time
transition configuration below:

O(TATYAw' Ar A OOT(LA(r D ow)).

So far we have only considered finite- and infinite-time titéms configurations.
Invariants (and hence also invariant configurations) caexpended to support past-
time reasoning by adding two new kinds of dependencies. TheHas the form
v = Z, whereZ is a formula in Prevl, and the second has the form= < w.
The use of> does not involvd'’s conditional liveness formuléd; due to the assump-
tion of a bounded past. The definitions of invariant confijares remain the same and
the reduction of them to past-time transition configuratianstraightforward since no
dependency contains both future- and past-time temporataats. Furthermore, de-
pendencies containing the temporal operaiare (a conventional past-time analogue
of the operatountil) are not much harder to handle th&rdependencies. The reduc-
tion of an arbitrary PTL formula to an invariant with past time is also straightfordia

13.3 Generalized conditional liveness formulas and invaaints

Conditional liveness formulas and invariants require thair liveness tests, which re-
spectively occur as operands®fand<, must be state formulas (recall Definitions 5.1
and 11.3). We can slightly relax this requirement and peanitrary formulas in NL
This makes invariants more succinct since a formula sucffiasw can now be ex-
pressed using only one dependency suclas: < (empty A w) instead of requiring
two. The formulaD &+ w can be expressed with the invariant= < (w A Ouyg). The
overall analysis of such invariants only differs slightiprih that for the basic version
of invariants. Invariants withuntil -dependencies (see Subsection 13.1) can be anal-
ogously generalized to permittil -dependencies of the form, = (TU T"), where
bothT andT” are in NL.

Transition configurations containing generalized liverfesmulas might be of use
as a notation for representing deterministic and nondetestit w-automata in tempo-
ral logic. However, we need to employ Quantified PTL (QPTLgxastentially quan-
tify over the variables which collectively encode such atomaton’s internal state.
Further details of this are omitted here.

66

13.4 Fusion Logic

Regular expressions are a standard notation for repraegemtular languages. How-
ever, within PITL, it is more appropriate to use languagesedaon fusion (recall Defi-
nition 5.20) rather than conventional concatenation. irviglves a variation of regular
expressions called hefasion expressionsWe now define a PITL-based representa-
tion of them which is in fact a special subset of PITL formuld@&is subset will then
provide the basis for a generalization of PTL calfeasion Logic(FL) which is also
itself a subset of PITL. We originally used Fusion Logic ir8][as a kind of interme-
diate logic when we reduced the problem of showing axion@tipleteness of PITL
with finite time to showing axiomatic completeness for PTlusien Logic is closely
related to Propositional Dynamic Logic (PDL) [27, 28, 39;-84]. A major reason for
discussing Fusion Logic here is because it is not hard tonebaear decision procedure
for PTL with finite time to also handle more expressive in&riented FL formulas
by simply reducing FL formulas to lower level PTL formulastbé kinds already dis-
cussed. This demonstrates another link between PTL andatdeand has practical
applications.

Definition 13.3 (Fusion-expression formulasYhe set offusion-expression formulas
denotedrE, consists oPITL formulas with the syntax given below, wheres a state
formula, T is in NL! and E and F' themselves denofE formulas:

w? EvF $T E; F E*.

The syntax ofE formulas is like that of programs in Propositional Dynamiodic
without rich tests. HowevefE has a semantics based on sequences of states rather
than binary relations.

For any set of variabled’, let FE;, denote the set dfE formulas containing only
variables inV.

Unlike letters in conventional regular expressions, angmodal formula can be
used inw?. For examplefalse? is permitted even though it is unsatisfiable. Consider
the following FE formula:

((50p); (¢7) v ($—q)".

This is true on an interval if either the interval has exabilp states ang andq are
both true in the second state or it has some arbitrary nunfostates, say, with ¢
false in each of the firgt — 1 states.

Remark 13.4(Expressing concatenationl} is important to note that the conventional
concatenation of tw&E formulasE and F' can be achieved through the use of B
formulaF; ($ true); F. Here$ true is itself anFE formula which is an alternative way
to express th@TL operator skip. This temporal operation ot and F' is sometimes
called “chomp, since itis a slight variation of chop. Hence, in the corttektemporal
logic, FE formulas can largely subsume regular expressions althdbgte are slightly
different conventions for such things as empty words. Wetbmdetails.

We now present the sublogic of PITL called here Fusion Logdicessence, Fu-
sion Logic augments conventional PTL with the fusion-egpien formulas already
introduced.

67

Definition 13.5 (Fusion Logic) Here is the syntax dfL wherep is any propositional
variable, E' is anyFE formula andX andY are themselves formulas FL:

p -X XvY 0X ©X (E)X.

We define the new construdt) X (called “FL-chop) and its dual [E] X (called “FL-
yields’) using the primitivePITL constructs chop anek:

EXEYEx (Ex Y m-x

Within an FL formula O, ¢ and FL-chop are treated as primitive constructs. Unlike
PITL, FL limits the left sides of chop to being FE formulas.

In [73], we described an earlier version of FL haviigp as a primitive FE formula
instead of$ 7. As we noted previously in Remark 13.4, the PTL formsigp can
be expressed in FE dstrue. The two versions of FL can readily be shown to be
equally expressive sindel’ can be replaced with a semantically equivalent disjunction
of formulas by using of, skip and chop. For example, the FE formdlg > Oq) is
semantically equivalent to the FE formule-p)?; skip) v (skip;q?). In practice, the
version described here is much more natural and succinct.

Henriksen and Thiagarajan [43, 44] investigate a formatisiated to Wolper’s Ex-
tended Temporal Logic (ETL) [92,94] and callBgnamic Linear Time Temporal Logic
which combines PTL and PDL in a linear-time framework withinite time. It is sim-
ilar to our Fusion Logic and uses multiple atomic progranssdad of the FE operators
7 and$.

Remark 13.6. The temporal operator® and < which are primitives irFL can actu-
ally be expressed as instanced=afchop if finite time is assumed:

E OX = ($true)X E OX = (($true)")X.

In spite of FL being a proper subset of PITL, they have the sexpeessiveness.
We discussed this in [73], where a hierarchical reductioRloformulas to PTL for-
mulas is also given but is limited to dealing with finite-tinmeervals. This reduction
provides the basis of a decision procedure for FL with fitiitee. An alternative hi-
erarchical reduction to transition configurations in PThlso possible and indeed we
have implemented a version of it. Such transition configongtcan be tested with the
decision procedure for finite time described in Section &elthe approach in [73],
this reduction could be used for proving the completenessatxiom system for FL
with finite time.

14 Discussion

We conclude with a look at some issues connected with PTL &and F

As noted earlier, a number of PTL decision procedures aredakbased algo-
rithms. These include ones described by Wolper [95], Enmej85] and Lichtenstein
and Pnueli [57]. It appears that with some care a tableaeeb@sproach can be hierar-
chically reduced to our framework. It might therefore be thahile to investigate the
relationship between the two approaches in more detail.

The BDD-based techniques described in Section 8 can beextiaptheck in real
time that an executing system is not violating assertiomsessed in PTL or FL as

68

it runs. Whether FL in particular is useful for this in praetiis unclear. In addition,
it would appear that the reachability analysis employed $gauld, in the manner of
Bounded Model Checking (BMC) [18], utilize SAT-based teicjues for PTL and FL
instead of BDDs. However, such a SAT-based approach, utiiik&DD-based one,
normally cannot exhaustively test for unsatisfiability dese of the lack of a notion
corresponding to the convergence of BDDs to the set of athat@achable from some
starting one. Rather BMC typically works by employing SATfitad at most a single
solution not exceeding some predetermined maximum boumaiadber of states which
for practical reasons is generally much less than the wias¢- bounds derived from
formula syntax. If a solution is not found, this is typicatpt by itself sufficient to
exclude the existence of larger satisfying intervals. Mdndess, Heljanko, Junttila
and Latvala in a recent paper [42] describe a BMC-based atmgecision procedure
for PTL and its implementation and also mention other relaterk on this promising
topic.

Although our primary application of invariants, transititormulas and conditional
liveness formulas has been to temporal logics, we have aed uersions of them
to analyse Propositional Dynamic Logic (PDL) without theeddor Fischer-Ladner
closures. Indeed, this was the original motivation for gbadal liveness formulas.
However, at present the benefits and novelty of utilizingagpproach for PDL are less
compelling than for PTL.

Acknowledgements

We thank Antonio Cau, Jordan Dimitrov, Rodolfo Gomez, Kelgnicke and an anony-
mous referee for comments on this work. In the course of dsons, Howard Bow-
man, Shmuel Katz, Maciej Koutny and Simon Thompson also nhadlgful sugges-
tions leading to improvements in the presentation of theenmadt We are especially
grateful to Hussein Zedan for his patience and encouragetweing the time this
research was undertaken.

References

[1] ANSI. Common Lisp: Standard ANSI INCITS 226-1994 (R199®rmerly
ANSI X3.226-1994 (R1999))ht t p: / / www. ansi . or g, 1999.

[2] B. Baniegbal and H. Barringer. A study of an extended teraplogic and a tem-
poral fixed point calculus. Technical Report UMCS-86-1M2pt. of Computer
Science, University of Manchester, England, Oct. 1986isezl/June 1987.

[3] I. Beer, S. Ben-David, et al. The temporal logic SugarGnBerry, H. Comon,
and A. Finkel, editors] 3th Conference on Computer-Aided Verification (CAV01),
Paris, France, 18—-22 July 200¥olume 2102 oLNCS pages 363-367, Berlin,
2001. Springer-Verlag.

[4] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic lmfanching time.
In Proc. 8th ACM Symp. on Principles of Programming Langua&3RL '81),
pages 164-176. ACM, Jan. 1981.

[5] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic lmfanching time.
Acta Informatica 20(3):207-226, 1983.

69

[6] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automatahetic approach to
branching-time model checking. omputer Aided Verification, Proc. 6th Int’l.
Workshopvolume 818 oL NCS pages 142-155, Stanford, California, June 1994.
Springer\erlag.

[7] P.Blackburn, M. de Rijke, and Y. Venemilodal Logic Number 53 in Theoret-
ical Tracts in Computer Science. Cambridge University §r2801.

[8] R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm foosgly connected
component analysis imlog n symbolic stepsFormal Methods in System Design
28:37-56, 2006.

[9] A. Bolotov, M. Fisher, and C. Dixon. On the relationshiptlyeenw-automata
and temporal logic normal formgournal of Logic and Computatioi2(4):561—
581, Aug. 2002. Available ast t p: / / ww3. oup. co. uk/ | ogcont hdb/
Vol une_12/ 1 ssue_04/ pdf / 120561. pdf .

[10] R. E. Bryant. Graph-based algorithms for Boolean fiorctmanipulation.|EEE
Transactions on Computer€-35(8), 1986.

[11] R. E. Bryant. Symbolic Boolean manipulation with oréeébinary-decision dia-
grams.ACM Comput. Sury24(3):293-318, Sept. 1992.

[12] J. R. Buchi. On a decision method in restricted secortkr arithmetic. IrProc.
Int. Congress on Logic, Methodology, and Philosophy ofi@ael 960 pages 1—
12, Stanford, California, 1962. Stanford University PreReprinted in [13, pp.
425-435].

[13] J. R. Buchi. The Collected Works of J. Richardiuéhi, S. Mac Lane and
D. J. Siefkes, editors. Springer\erlag, New York, 1990.

[14] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and LJ. Hwang. Symbolic
model checking:10?° states and beyondnf. and Comp.98(2):142-170, June
1992.

[15] J. P. Burgess. Axioms for tense logic I: “Since” and ‘ilintNotre Dame Journal
of Formal Logic 1982.

[16] Cadence Design Systentst t p: / / www. cadence. cont .

[17] B. F. ChellasModal Logic: An Introduction Cambridge University Press, Cam-
bridge, England, 1980.

[18] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded modecking using satis-
fiability solving. Formal Methods in System Desidi9(1), July 2001.

[19] E. M. Clarke, O. Grumberg, and D. A. PeledModel Checking MIT Press,
Cambridge, Massachusetts, 1999.

[20] CLISP: An ANSI Common Lisp implementationhttp://cl i sp. cons.
org.

[21] O. Coudert, C. Berthet, and J. C. Madre. Verification efjgential machines
using boolean functional vectors. In L. Claesen, edRooc. IFIP International
Workshop on Applied Formal Methods for Correct VLSI Despages 111-128,
Leuven, Belgium, Nov. 1989.

70

[22] O. Coudert, C. Berthet, and J. C. Madre. Verificationyichronous sequential
machines based on symbolic execution. In J. Sifakis, edMaiomatic Verifica-
tion Methods for Finite State Systems, International Wooks Grenoble, France,
June 12-14, 1989, Proceeding®lume 407 olLNCS pages 365—-373. Springer-
Verlag, 1989.

[23] O. Coudert, C. Berthet, and J. C. Madre. A unified framewfor the formal
verification of sequential circuits. lroc. IEEE International Conf. on Computer
Aided Designpages 126-129, Nov. 1990.

[24] Colorado University Decision Diagram Package (CUDB)ailable atht t p:
/'1vlsi.col orado. edu/ ~f abi o.

[25] E. A. Emerson. Temporal and modal logic. In J. van Leeuvesitor,Hand-
book of Theoretical Computer Scienpgelume B: Formal Models and Semantics,
chapter 16, pages 995-1072. Elsevier/MIT Press, Amstertiagao.

[26] E. A. Emerson and C.-L. Lei. Efficient model checkingliagments of the propo-
sitional mu-calculus (extended abstract). In A. MeyenadiProc. 1st Ann. IEEE
Symp. on Logic in Computer Science (LICS ;§8)ges 267-278. IEEE Computer
Society Press, June 1986.

[27] M. J. Fischer and R. E. Ladner. Propositional modaldagiprograms (extended
abstract). InConference Record of the 9th Ann. ACM Symp. on Theory of Com-
puting (STOC)pages 286—294, Boulder, Colorado, 2—4 May 1977. ACM.

[28] M. J. Fischer and R. E. Ladner. Propositional dynamgid@f regular programs.
J. Comput. Syst. S¢il8(2):194-211, Apr. 1979.

[29] M. Fisher. A normal form for first-order temporal fornag. In D. Kapur, ed-
itor, Automated Deduction - CADE-11, 11th Int’l. Conf. on AutoataDeduc-
tion, Saratoga Springs, NY, USA, June 15-18, 1992, Pronggdiolume 607 of
LNCS pages 370-384. Springer-Verlag, 1992.

[30] M. Fisher. A normal form for temporal logic and its apgation in theorem-
proving and executionJournal of Logic and Computatior’(4):429-456, Aug.
1997.

[31] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resoh. ACM Transac-
tions on Computational Logj@(1):12-56, Jan. 2001.

[32] T. French. A proof of the completeness of PLTL. Avaikalalsht t p: / / www.
CS. uwa. edu. au/ ~ti m papers/ pltl conp. ps, 2000.

[33] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the teadjanalysis of fairness.
In Proc. 7th Ann. ACM Symp. on Principles of Programming Lamgsa(POPL
'80), pages 163-173. ACM, 1980.

[34] D. M. Gabbay, M. Finger, and M. ReynoldsTemporal Logic: Mathematical
Foundations and Computational Aspects, Volumdl@mber 40 in Oxford Logic
Guides. Oxford University Press, 2000.

[35] D. M. Gabbay, I. Hodkinson, and M. Reynoldsemporal Logic: Mathematical
Foundations and Computational Aspects, Volumbdldmber 28 in Oxford Logic
Guides. Clarendon Press, 1994.

71

[36] R. Goldblatt.Logics of Time and Computatipmolume 7 ofCSLI Lecture Notes
CLSI/SRI International, Menlo Park, California, 1987.

[37] J. Halpern, Z. Manna, and B. Moszkowski. A hardware setina based on tem-
poral intervals. In J. Diaz, edito®roc. 10th Int’l. Colloquium on Automata, Lan-
guages and Programming (ICALP '83yolume 154 ofLNCS pages 278-291,
Berlin, 1983. Springer\erlag.

[38] R. H. Hardin, R. P. Kurshan, S. K. Shukla, and M. Y. Vardinew heuristic for
bad cycle detection using BDD&ormal Methods in System Desjdi8(2):131—
140, 2001.

[39] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthnelitaes, Handbook
of Philosophical Logicvolume Il, pages 497—-604. Reidel Publishing Company,
Dordrecht, 1st edition, 1984.

[40] D. Harel, D. Kozen, and J. TiurynDynamic Logic MIT Press, Cambridge,
Massachusetts, 2000.

[41] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In D. Iy and F. Guenth-
ner, editorsHandbook of Philosophical Logizolume 4, pages 99-217. Kluwer
Academic Publishers, Dordrecht, 2nd edition, 2002.

[42] K. Heljanko, T. A. Junttila, and T. Latvala. Incremeingad complete bounded
model checking for full PLTL. In K. Etessami and S. K. Rajamadlitors,Com-
puter Aided Verification, 17th International Conferencé\C2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedinpages 98-111, 2005.

[43] J. G. Henriksen and P. S. Thiagarajan. Dynamic lineae tiemporal logic. Tech-
nical Report RS-97-8, BRICS, Department of Computer S@ghmiversity of
Aarhus, Aarhus, Denmark, Apr. 1997. Availablénat p: / / www. bri cs. dk/
RS/ 97/ 8/ .

[44] J. G. Henriksen and P. S. Thiagarajan. Dynamic lineae tiemporal logicAn-
nals of Pure and Applied Logi®6(1-3):187-207, 1999.

[45] Y. Hollander, M. Morley, and A. Noy. The language: A fresh separation of
concerns. Infechnology of Object-Oriented Languages and Systems.(B8tic
Int’l. TOOLS Conference, TOOLS Europe 200dages 41-50. IEEE Computer
Society Press, Mar. 2001.

[46] G. E. Hughes and M. J. CresswelA New Introduction to Modal LogicRout-
ledge, London, 1996.

[47] IEEE Standards Associatioht t p: / / st andar ds. i eee. or g/ .

[48] IEEE Standard 1647. Produced by theunctional Verification Language Work-
ing Group.htt p: / / www. i eeel647. org/ .

[49] Interval Temporal Logic (ITL) homepagét t p: / / www. cse. dmu. ac. uk/
STRL/ I TL/ .

[50] J. A. W. Kamp.Tense Logic and the Theory of Linear Ord&hD thesis, Univer-
sity of California, Los Angeles, 1968.

72

[51] Y. Kesten and A. Pnueli. Complete proof system for QPJaurnal of Logic and
Computation12(5):701-745, Dec. 2002.

[52] D.Kozenand J. Tiuryn. Logics of programs. In J. van been, editorHandbook
of Theoretical Computer Scienceolume B, pages 789-840. Elsevier Science
Publishers, Amsterdam, 1990.

[53] F. Kroger. Temporal Logic of Programssolume 8 of EATCS Monographs on
Theoretical Computer Scienc8pringer-\erlag, 1987.

[54] T. Kropf. Introduction to Formal Hardware VerificationSpringer-Verlag, Hei-
delberg, Germany, 1999.

[55] M. Lange and C. Stirling. Focus games for satisfiabitityd completeness of
temporal logic. InProc. 16th Ann. IEEE Symp. on Logic in Computer Science
(LICS 2001) pages 357-365, Boston, Mass., USA, June 2001. IEEE Compute
Society Press.

[56] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Tealpogic with forgettable
past. InProc. 17th Ann. IEEE Symp. on Logic in Computer Science (2@x)
pages 383—-392, Washington, D.C., USA, 2002. IEEE Computele Press.

[57] O. Lichtenstein and A. Pnueli. Propositional tempdogjics: Decidability and
completenesd.ogic Journal of the IGPL8(1):55-85, 2000. Available at t p:
[1 ww3. oup. co. uk/ i gpl / Vol une 08/ | ssue 01/ #Li cht enst ei n.

[58] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of thast. In R. Parikh et al.,
editors,Logics of Programsvolume 193 olLNCS pages 196-218, Berlin, 1985.
Springer\erlag.

[59] Z. Manna and A. Pnueli. Verification of concurrent pragns: the temporal
framework. In R. S. Boyer and J. S. Moore, editoree Correctness Problem
in Computer Scienggages 215-273, New York, 1981. Academic Press.

[60] Z. Manna and A. Pnueli. The anchored version of the temapfvamework.
In J. W. D. Bakker, W.-P. de Roever, and G. Rozenberg, editongar Time,
Branching Time, and Partial Order in Logics and Models forr€arrency (REX
Workshop 1988)\olume 354 olLNCS pages 201-284. Springererlag, 1989.

[61] M. Marx, S. Mikulas, and M. Reynolds. The mosaic methodtémporal logics.
In R. Dyckhoff, editorAutomated Reasoning with Analytic Tableaux and Related
Methods, International Conference, TABLEAUX 2000, St &ndr Scotland, UK,
July 3-7, 2000, Proceedingsolume 1847 ofLNCS pages 324-340. Springer-
Verlag, 2000.

[62] K.L.McMillan. Symbolic model checkingluwer Academic Publishers, Boston,
Mass., 1993.

[63] M. J. Morley. Semantics of temporal In T. F. Melham and F. G. Moller, editors,
Banff’'99 Higher Order Workshop: Formal Methods in Computation, gbal,
Scotland, 9-11 Sept. 199Pages 138-142. University of Glasgow, Department
of Computing Science Technical Report, 1999.

73

[64] B. Moszkowski. Reasoning about Digital CircuitsPhD thesis, Department of
Computer Science, Stanford University, June 1983. Teahmport STAN-CS—
83-970.

[65] B. Moszkowski. A temporal logic for multi-level reasog about hardware. In
Proc. 6th Int’l. Symp. on Computer Hardware Description baagespages 79—
90, Pittsburgh, Pennsylvania, 1983. North-Holland Pub. Co

[66] B. Moszkowski. A temporal logic for multilevel reasogj about hardwareéCom-
puter, 18:10-19, 1985.

[67] B. Moszkowski. Executing Temporal Logic Program<Cambridge University
Press, Cambridge, England, 1986.

[68] B. Moszkowski. Some very compositional temporal pmbies. In E.-R. Olderog,
editor, Programming Concepts, Methods and Calculolume A-56 of IFIP
Transactionspages 307-326. IFIP, Elsevier Science B.V. (North—Haol)ah994.

[69] B. Moszkowski. Compositional reasoning about pragecand infinite time.
In Proc. 1st IEEE Int'| Conf. on Engineering of Complex Compusgstems
(ICECCS’95) pages 238-245. IEEE Computer Society Press, 1995.

[70] B. Moszkowski. Using temporal fixpoints to compositatly reason about live-
ness. In He Jifeng, J. Cooke, and P. Wallis, edit®@€S-FACS 7th Refine-
ment Workshaopelectronic Workshops in Computing, London, 1996. BCS-EAC
Springer-Verlag and British Computer Society.

[71] B. Moszkowski. Compositional reasoning using IntérVamporal Logic and
Tempura. In W.-P. de Roever, H. Langmaack, and A. PnueltpegiCompo-
sitionality: The Significant Differencevolume 1536 ofLNCS pages 439-464,
Berlin, 1998. Springer\erlag.

[72] B. Moszkowski. An automata-theoretic completenes®pfor Interval Temporal
Logic (extended abstract). In U. Montanari, J. Rolim, and\&lzl, editors,
Proc. 27th Int’l. Colloquium on Automata, Languages anddg?eanming (ICALP
2000) volume 1853 oLLNCS pages 223-234, Geneva, Switzerland, July 2000.
Springer-\erlag.

[73] B. Moszkowski. A hierarchical completeness proof fappositional Interval
Temporal Logic with finite timeJournal of Applied Non-Classical Logic$4(1—
2):55-104, 2004. Special issue on Interval Temporal LagicsDuration Calculi.
V. Goranko and A. Montanari guest eds.

[74] B. Moszkowski. A hierarchical completeness proof foogositional temporal
logic. In N. Dershowitz, editofyerification: Theory and Practice: Essays Ded-
icated to Zohar Manna on the Occasion of His 64th Birthdegiume 2772 of
LNCS pages 480-523. Springer-\Verlag, Heidelberg, 2004.

[75] B. Moszkowski. A hierarchical analysis of propositedriemporal logic based
on intervals. In S. Artemov, H. Barringer, A. S. d’Avila Gar; L. C. Lamb,
and J. Woods, editor$\Ve Will Show Them: Essays in Honour of Dov Gahbay
volume 2, pages 371-440. College Publications (formerly. K&iblications),
King’s College, London, 2005.

74

[76] The Perl programming languagiet t p: / / www. per | . org.

[77] PerIDD: Perl extensions to CUDD [24]. Available &ittp://vl si.
col or ado. edu/ ~f abi o.

[78] A.Pnueli. The temporal logic of programs.Pmoc. 18th Ann. IEEE Symp. on the
Foundation of Computer Science (FOCRages 46-57. IEEE Computer Society
Press, 1977.

[79] V. R. Pratt. Process logic. IRroc. Sixth Ann. ACM Symp. on Principles of
Programming Languagepages 93—-100. ACM, 1979.

[80] A. Prior. Past, Present and Futuré®xford University Press, London, 1967.
[81] PSL/Sugar Consortiunht t p: // www. psl sugar. org.

[82] R. Pucella. Logic column 11: The finite and the infinitetemporal logic.
SIGACT News36(1):86—99, 2005. Available at Computing Research Repgs
(CoRR):http://arxiv.org/abs/cs. LO 0502031.

[83] N. Rescher and A. Urquhartemporal Logic Springer\erlag, New York, 1971.

[84] A. P. Sistla and E. M. Clarke. The complexity of propasial linear temporal
logics.J. ACM 32(3):733-749, July 1985.

[85] SystemVerilog websiteht t p: // www. syst enveri | og. org.

[86] W. Thomas. Automata on infinite objects. In J. van Leenyveslitor,Handbook of
Theoretical Computer Scienceolume B: Formal Models and Semantics, chap-
ter 4, pages 133-191. Elsevier/MIT Press, Amsterdam, 1990.

[87] W. Thomas. Languages, automata, and logic. In G. Rargndind A. Salomaa,
editors,Handbook of Formal Languagesolume 3: Beyond words, chapter 7,
pages 389-455. Springer-Verlag, Berlin, 1997.

[88] M.Y. Vardi and P. Wolper. An automata-theoretic apmtoto automatic program
verification. In A. Meyer, editoiRroc. 1st Ann. IEEE Symp. on Logic in Computer
Science (LICS '86)ages 322-331. IEEE Computer Society Press, June 1986.

[89] M. Y. Vardi and P. L. Wolper. Reasoning about infinite qmuations. Inf. and
Control, 115(1):1-37, 15 Nov. 1994.

[90] Verisity Ltd. (acquired by Cadence Design Systems [©62005). http://
www. cadence. confverisity/.

[91] Verisity Ltd. Semantics of temporal Revised version of Morley [63]. Available
from website of IEEE candidate standard 164 hasp: / / www. | eeel647.
or g/ downl oads/ t enpor al e_.denot ati onal . pdf , Dec. 2003.

[92] P. Wolper. Temporal logic can be more expressive.Ptac. 22nd Ann. IEEE
Symp. on Foundations of Computer Science (FO@8&)es 340-348, Nashville,
Tennessee, Oct. 1981. IEEE Computer Society Press.

[93] P. Wolper. Constructing automata from temporal logimfulas: A tutorial. In
Lectures on Formal Methods in Performance Analysis (FISEEEuro Summer
School on Trends in Computer Scienoglume 2090 oLNCS pages 261-277.
Springer-erlag, July 2001.

75

[94] P. L. Wolper. Temporal logic can be more expressivéormation and Contrgl
56(1-2):72-99, 1983.

[95] P. L. Wolper. The tableau method for temporal logic: Arerview. Logique et
Analyse110-111:119-136, 1985.

[96] P. L. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning abmfinite computa-
tion paths. InProc. 24th Ann. IEEE Symp. on Foundations of Computer Seienc
(FOCS) pages 185-194, Tucson, Arizona, Nov. 1983. IEEE Compuderes/
Press.

[97] A. Xie and P. A. Beerel. Implicit enumeration of stropglonnected components.
In ICCAD '99: Proc. of the 1999 IEEE/ACM Int’l. Conf. on ComputsEded
Design pages 37-40, Piscataway, NJ, USA, 1999. IEEE Press.

76

