
This is a pre-copy-editing, author-produced PDF of an article accepted for publication in the

Journal of Logic and Computation following peer review. The definitive publisher-authenticated version

(Journal of Logic and Computation 2007 17(2):333-409; doi:10.1093/logcom/exm006) is available

online at: http://logcom.oxfordjournals.org/cgi/content/abstract/17/2/333

Using Temporal Logic to Analyse Temporal
Logic: A Hierarchical Approach Based on

Intervals

Ben Moszkowski∗

Software Technology Research Laboratory; Gateway House
De Montfort University; The Gateway; Leicester LE1 9BH; Great Britain

email:benm@dmu.ac.uk

9 January 2007

Abstract

Temporal logic has been extensively utilized in academia and industry to for-
mally specify and verify behavioural properties of numerous kinds of hardware and
software. We present a novel way to apply temporal logic to the study of a version
of itself, namely, propositional linear-time temporal logic (PTL). This involves a
hierarchical framework for obtaining standard results forPTL, including a small
model property, decision procedures and axiomatic completeness. A large number
of the steps involved are expressed in a propositional version of Interval Temporal
Logic (ITL) which is referred to as PITL. It is a natural generalization of PTL
and includes operators for reasoning about periods of time and sequential com-
position. Versions of PTL with finite time and infinite time are both considered
and one benefit of the framework is the ability to systematically reduce infinite-
time reasoning to finite-time reasoning. The treatment of PTL with the operator
until and past time naturally reduces to that for PTL without either one. The
interval-oriented methodology differs from other analyses of PTL which typically
use sets of formulas and sequences of such sets for canonicalmodels. Instead we
represent models as time intervals expressible in PITL. Theanalysis furthermore
relates larger intervals with smaller ones. Being an interval-based formalism, PITL
is well suited for sequentially combining and decomposing the relevant formulas.
Consequently, we can articulate issues of equal significance in more conventional
analyses of PTL but normally only considered at the metalevel. A good example
of this is the existence of bounded models with periodic suffixes for PTL formulas
which are satisfiable in infinite time. We also describe decision procedures based
on binary decision diagrams and exploit some links with finite-state automata.

Beyond the specific issues involving PTL, the research is a significant appli-
cation of ITL and interval-based reasoning and illustratesa general approach to
formally reasoning about sequential and parallel behaviour in discrete linear time.
The work also includes some interesting representation theorems. In addition, it
has relevance to hardware description and verification since the specification lan-
guages PSL/Sugar (IEEE Standard 1850) and “temporal e” (part of IEEE Stan-
dard 1647) both contain temporal constructs concerning intervals of time as does

∗Part of the research described here has been kindly supported byEPSRC research grant GR/K25922.

1

the related SystemVerilog Assertion language contained inSystemVerilog (IEEE
Standard 1800), an extension of the IEEE 1364-2001 Verilog language.

Keywords: temporal logic, interval temporal logic, small models, decision procedures,
axiomatic completeness

1 Introduction

Temporal logic as studied by Prior [80], Rescher and Urquhart [83] and others has its
historical roots in philosophy. However, following the seminal paper by Pnueli [78], it
has become one of the main formalisms used in computer science for reasoning about
the dynamic behaviour of systems [25, 34, 35, 53, 59]. In particular, the version known
as Propositional Linear-Time Temporal Logic(abbreviated as either PTL or PLTL)
and some variants of it have been extensively investigated and applied. In a relatively
recent and significant article, Lichtenstein and Pnueli [57] give a detailed analysis of
PTL which is meant to largely subsume and supercede earlier ones. Indeed, the work
appears to have the rather ambitious goal of coming close to offering the last word on
the subject and is perhaps best described in the authors’ ownwords:

The paper summarizes work of over 20 years and is intended to provide a
definitive reference to the version of propositional temporal logic used for
the specification and verification of reactive systems.

The kind of PTL considered by Lichtenstein and Pnueli has discrete time and past
time. Both decision procedures and axiomatic completenessare discussed and a new
simplified axiom system is presented. The approach makes useof semantic tableaux
and throughout the presentation the treatment of PTL with past-time operators runs in
parallel with the future-only version. The authors choose in particular to use tableaux
since they offer a basis for uniformly showing axiomatic completeness and also obtain-
ing a practical decision procedure. The material about pasttime is distinctly marked so
that one can optionally delete it to obtain an analysis limited to the future fragment of
PTL.

We present a novel framework for investigating PTL which significantly differs
from the methods of Lichtenstein and Pnueli and earlier treatments such as [33,36,53,
95]. It is used to obtain standard results such as a small model property, decision proce-
dures and axiomatic completeness. However, instead of relying on semantic tableaux,
filtration and other previous techniques, our method is based on an interval-oriented
analysis of certain kinds of low-level PTL formulas calledtransition configurations.
An important feature of this approach is that it provides a natural hierarchical means of
reducing full PTL to this subset and also reduces both PTL with theuntil operator and
past time to versions without them. Therefore the overwhelming bulk of the analysis
only involves PTL with neitheruntil nor past time. Moreover, the analysis of PTL
with infinite time naturally reduces to that for PTL with justfinite time. The low-level
formulas also have associated decision procedures, including simple symbolic ones
based on binary decision diagrams (BDDs) [10] which we have implemented. Some
connections with automata-based decision procedures for PTL are discussed.

The basic version of PTL used here is described in detail in Section 3 but we will
now briefly summarize some of the features in order to be able to overview some key
aspects of our work. We postpone the treatment ofuntil and past time in order to later
handle them in a natural hierarchical manner. Both finite andinfinite time are permit-
ted, whereas most versions of PTL deal solely with the latter. One reason for including

2

finite time is to allow us to naturally capture parts of our infinite-time analysis within
PTL formulas concerning finite-time subintervals. The onlytwo primitive temporal
operators initially considered are© (strong next) and3 (eventually) although some
others are definable in terms of them (e.g.,2 (henceforth) and3+ (strict eventually)).

Our analysis of PTL extensively employs intervals of time which are represented as
finite and countably infinite sequences of states and described by formulas in a propo-
sitional version of Interval Temporal Logic (ITL) [37, 64–68, 71–73] (see also [49])
referred to as PITL. By using a hierarchical, interval-oriented framework, the approach
differs from that of Lichtenstein and Pnueli and previous ones which in general utilize
sets of formulas and sequences of such sets (also referred toaspaths). We instead relate
transition configurations to semantically equivalent formulas in PITL. Time intervals
facilitate an analysis which naturally relates larger intervals with smaller ones. The
process of doing this can be explicitly expressed in PITL in away not possible within
previous frameworks which lack both a formalization of intervals and logical operators
concerning various kinds of sequential composition of intervals.

Let us now informally consider as an example a simplified presentation of how we
later establish the existence of periodic models for certain kinds of low-level formulas
involving infinite time. The analysis for temporal logic formulas involving infinite
time needs to consider formulas of the form23

+ A, whereA is itself a restricted
kind of temporal logic formula. Here23+ A is true for an interval, that is, the interval
satisfies23

+ A, iff the interval has infinite length andA itself is satisfied by an infinite
number of the interval’s suffixes. We want to show that if23+ A is satisfied by
some interval, then there also exists a periodic interval which satisfies2 3+ A. We
first show a sufficient condition motivated byA’s restricted syntax which ensures that
23+ A is semantically equivalent to the PITL formulaAω. This formula is true on
an interval if the interval has infinite length and can be split into an infinite sequence
of finite intervals each satisfyingA. We then select one of these finite intervals and
join ω copies of it together to obtain a periodic interval satisfying Aω and hence also
the original formula23+ A. Furthermore, after showing the existence of bounded
models forA, we can then establish similar properties forAω and hence also23

+ A.
We believe that our interval-based analysis complements existing approaches since

it provides a notational way to articulate various issues concerning PTL model con-
struction which are equally relevant within a more conventional analysis but are nor-
mally only considered at the metalevel. It also illustratessome general techniques for
compositional specification and proof in discrete linear time. This all fits nicely with
one of the main purposes of a logic which is to provide a notation for explicitly and
formally expressing reasoning processes. In addition, a number of the temporal logic
formulas encountered can even be used with little or no change as input to a implemen-
tation of a PTL decision procedure which supports both finiteand infinite time. The
analysis itself is performed without the need to add any fundamentally new concepts
to PITL but does require a reader’s willingness to acquire some familiarity with PITL
and various fairly general issues concerning interval-based reasoning.

Another feature of our approach is that it readily generalizes to a finite-time analysis
of an important subset of PITL calledFusion Logic(FL), which was previously used
by us in [73] to hierarchically show the completeness of an axiom system for PITL
with finite time. The analysis of FL uses a reduction of FL formulas to PTL ones.
The prototype implementation of our decision procedure forPTL with finite time also
supports FL. A brief introduction to FL is given in Subsection 13.4 since FL is a
natural extension of our framework for studying PTL and furthermore demonstrates
another connection between PTL and intervals.

3

Our previous work in [74] contains an earlier description ofthis material but was
limited to showing axiomatic completeness for PTL without past time. In the mean
time, we have significantly extended the notation, methods and their scope of applica-
tion. The structure of presentation has also been refined. A preliminary version of the
current work appears in [75], after which further improvements have been subsequently
incorporated.

The use of intervals here seems to go well with a growing general awareness even
in industry of the desirability for temporal logics which gobeyond conventional point-
based constructs to also handle behavioural specificationsinvolving intervals of time.
As evidence for this we mention the Property Specification Language PSL/Sugar [81].
This is a modified version of a language Sugar [3] developed atIBM/Haifa. PSL/Sugar
has been ratified as IEEE Standard 1850 by the IEEE Standards Association [47] and
has the purpose of precisely expressing a hardware system’sdesign properties so that
they can then be tested using simulation and model checking.It includes a temporal
logic with regular expressions and other operators for sequential composition. The
hardware description language SystemVerilog [85] is an extension of the established
IEEE Standard 1364 Verilog language and includes temporal assertions similar to those
in PSL/Sugar. SystemVerilog was itself ratified as a standard by Accellera Organiza-
tion, Inc. and has now been approved as IEEE Standard 1800.

In addition, the IEEE Standards Association has more recently approved Verisity
Ltd.’s [90] e language, which is intended for functional testing and verification, as IEEE
Standard 1647 [48]1. A subset ofe calledtemporal econtains temporal operators for
sequentially composition and was influenced in part by ITL [45,63,91].

Structure of presentation

Let us now summarize the structure of the rest of this paper. Section 2 mentions some
related work and compares it with our approach. Section 3 presents the version of PTL
we use. Section 4 summarizes the propositional version of ITL which we use in the
analysis. Section 5 introduces low level PTL formulas called transition configurations
and relates them to some semantically equivalent propositional ITL formulas which
simplify the subsequent analysis. Section 6 proves the existence of small models for
transition configurations. Section 7 shows how to relate thesatisfiability of the two
main kinds of transition configurations with simple interval-oriented tests. Section 8
deals with BDD-based decision procedures for transition configurations. Section 9
concerns axiomatic completeness for an important subset ofPTL in which the only
temporal operator is© (next). Section 10 looks at a PTL axiom system and axiomatic
completeness for transition configurations. Section 11 presents formulas calledin-
variants and invariant configurationswhich together serve as a bridge between the
previously mentioned transition configurations and arbitrary PTL formulas. Section 12
discusses how to generalize the previous results to work with arbitrary PTL formulas.
Section 13 hierarchically extends our approach to deal withboth the temporal operator
until and past time. It also briefly looks at a superset of PTL calledFusion Logic.
Section 14 concludes with some brief discussion.

1Verisity has been acquired by Cadence Design Systems [16].

4

2 Background

Temporal logics have become a popular topic of study in theoretical computer sci-
ence and are also being utilized by industry to locate faultsin digital circuit designs,
communication protocols and other applications. Issues such as small models, proof
systems, axiomatic completeness and decision procedures for PTL (with time almost
always modelled as discrete and infinite) have been extensively investigated by Gabbay
et al. [33], Sistla and Clarke [84], Wolper [95], Kröger [53], Goldblatt [36], Lichten-
stein and Pnueli [57], Lange and Stirling [55], Pucella [82](who also considers PTL
with finite time) and others. French [32] elaborates on the presentation by Gabbay et
al. [33].

Vardi and Wolper [88] and Bernholtz, Vardi and Wolper [6] give decisions pro-
cedures for some temporal logics based on a reduction toω-automata. They do not
consider axiomatic completeness. Wolper [93] presents a tutorial on such a decision
procedure for PTL with infinite time.

Ben-Ari et al. [4, 5], Wolper [92, 94] and Banieqbal and Barringer [2] develop
closely related proofs of completeness for logics which include PTL as a subset or
are branching-time versions of it. The book by Rescher and Urquhart [83] is an early
source of tableau-based completeness proofs for temporal logics with various mod-
els of time. The survey by Emerson [25] includes material about axiom systems for
both linear and branching-time temporal logic. Burgess [15] and Marx, Mikulas and
Reynolds [61] consider the axiomatization of versions of temporal logic with linear
time but without an assumption of discrete time. The handbooks by Gabbay, Hodkin-
son and Reynolds [35] and Gabbay, Finger and Reynolds [34] give extensive coverage
to various important aspects of temporal logic such as axiomatization.

Fisher [29, 30] (see also later work by Fisher, Dixon and Peim[31] and Bolotov,
Fisher and Dixon [9]) presents a normal form for PTL calledSeparated Normal Form
(SNF) which consists of formulas having the syntax2

∧

i Ai, where eachAi can be
one of the following:

start ⊃
∨

c lc ©
∧

a ka ⊃ ©
∨

d ld ©
∧

b kb ⊃ 3 l.

Here each particularka, kb, l, lc andld is a literal (i.e., a propositional variable or its
negation). Some versions of SNF permit past-time constructs or have other relatively
minor differences. Applications include theorem proving,executable specifications and
representingω-automata. We mention SNF here since it is a PTL normal form which
somewhat resembles what we call invariants and formally introduce in Section 11.

3 Overview of PTL

This section summarizes the basic version of PTL used here. Later on in Section 13 we
augment PTL with the operatoruntil and past time.

3.1 Syntax of PTL

We now describe the syntax of permitted PTL formulas. In whatfollows, p is any
propositional variable and bothX andY denote PTL formulas:

p true ¬X X ∨ Y ©X (strong next) 3 X (eventually).

5

We includetrue as a primitive so as to avoid a definition of it which contains some
specific variable. This is not strictly necessary. Other conventional logic operators
such asfalse, X ∧ Y andX ⊃ Y (X impliesY) are defined in the usual way. Also,
2X (henceforth) is defined as¬3¬X .

3.2 Semantics of PTL

The version of PTL considered here uses discrete, linear time which is represented
by intervals each consisting of a sequence of one or more states. More precisely, an
interval σ is any finite or infinite sequence of one or more statesσ0, σ1, Each
stateσi in σ maps each propositional variablep, q, . . . to one of the boolean values
true andfalse. The value ofp in the stateσi is denotedσi(p). A finite intervalσ has
an interval length|σ| ≥ 0 which equals the number of states minus 1 and is hence
always greater than or equal to 0. We regard the smallest nonzero interval length 1 as
a unit of (abstract) time. For example, an interval with 6 states has interval length 5
or equivalently 5 time units. These units do not correspond to any particular notion
of physical time. The interval length of an infinite intervalis taken to beω. The
termsubintervalrefers to any interval obtained from somecontiguoussubsequence of
another interval’s states.

We call a one-state interval (i.e., one with interval length0) anempty interval. A
two-state interval (i.e., one with interval length 1) is called aunit interval. Both kinds
of intervals play an important role in our analysis.

The notationσ |= X denotes that the intervalσ satisfiesthe PTL formulaX . We
now give a definition of this using induction onX ’s syntax:

• Propositional variable:σ |= p iff p is true in the initial stateσ0 (i.e.,σ0(p) =
true).

• True:σ |= true trivially holds for anyσ.

• Negation:σ |= ¬X iff σ 6|= X .

• Disjunction:σ |= X ∨ Y iff σ |= X or σ |= Y .

• Next: σ |= ©X iff σ′ |= X,

whereσ contains at least two states andσ′ denotes the suffix subintervalσ1σ2 . . .

which starts from second stateσ1 in σ.

• Eventually:σ |= 3 X iff σ′ |= X ,
for some suffix subintervalσ′ of σ (perhapsσ itself).

Table 1 shows a variety of other useful temporal operators which are definable
in PTL. It includes operators for testing whether an interval is finite or infinite and
whether the interval has exactly one state or two states. Most of the operators only
become relevant when finite intervals are permitted. Therefore, readers who are just
familiar with conventional PTL with infinite time will have previously encountered
only a few of the operators.

Note: Some readers may prefer to skim Table 1 for now and laterconsult it in more
detail when the various operators are actually used.

Figure 1 assists in the understanding of Table 1 by illustrating a number of the
operators through sample formulas and intervals. In the figure, the logical valuestrue
andfalse are respectively abbreviated as “t” and “f”. In what follows, we frequently

6

Standard derivedPTL operators:

2X
def
≡ ¬3¬X Henceforth

3
+ X

def
≡ ©3 X Eventually in strict future

2+ X
def
≡ ¬3+ ¬X Henceforth in strict future (not used here)

PTL operators primarily for finite intervals:

more
def
≡ © true More than one state

empty
def
≡ ¬more Only one state (empty interval)

©w X
def
≡ ¬©¬X Weak next (same asmore ⊃ ©X)

skip
def
≡ © empty Exactly two states (unit interval)

X?
def
≡ X ∧ empty Empty interval with test

$X
def
≡ X ∧ skip Unit interval with test

PTL operators for finite and infinite intervals:

finite
def
≡ 3 empty Finite interval

inf
def
≡ ¬finite Infinite interval

sfin X
def
≡ 3(empty ∧ X) Strong test of final state

fin X
def
≡ 2(empty ⊃ X) Weak test of final state

3m X
def
≡ 3(more ∧ X) Sometime before the very end

2m X
def
≡ 2(more ⊃ X) Henceforth except perhaps at very end

X ← Y
def
≡ finite ⊃ (fin X) ≡ Y Temporal assignment

Table 1: Some definable PTL operators

7

p:

p:

p:

p:

p:

2m (p ⊃ ©¬p)

2m (p ⊃ 3¬p)

∧ sfin p

3m p ∧ ¬3m ¬p

∧ 3 p ∧ 3¬p

∧ ¬2(p ⊃ ©¬p)

© $(p ⊃ ©¬p)

∧ ¬ $(p ∧ © p)

skip ∧ sfin ¬p
t f

t t t f

t t tt

f f f tt t

t f

t ft

Figure 1: Some examples of formulas with derived PTL operators

use the operator2m instead of the more conventional PTL operator2 when we need to
test all pairs of adjacent states in a interval. This is because2m is better suited for such
tests on finite-time intervals since it does not “run off the end”. The fourth example in
Figure 1 illustrates this feature. As a consequence,2m is often easier to work with in
our interval-based analysis as is later shown in Theorem 5.4.

Definition 3.1 (Satisfiability and validity). For any intervalσ andPTL formulaX , if
σ satisfiesX (i.e.,σ |= X holds), thenX is said to besatisfiable, denoted as=| X . A
formulaX satisfied by all intervals isvalid, denoted as|= X .

We now define an important subset of PTL involving the operator ©:

Definition 3.2 (Next Logic). The set ofPTL formulas in which the only primitive tem-
poral operator is© is called Next Logic (NL). The subset ofNL in which no© is
nested within another© is denoted asNL1.

For example, the NL formulap ∧ © q is in NL1, whereas the NL formulap ∧ ©(q ∨

© p) is not.
The variablesT , T ′ andT ′′ denote formulas in NL1.

Definition 3.3 (Tautologies). A tautologyis any formula which is a substitution in-
stance of some valid nonmodal propositional formula.

For example, the formula©X ∨ 3 Y ⊃ 3Y is a tautology since it is a substitution
instance of the valid nonmodal formulap ∨ q ⊃ q. It is not hard to show that all
tautologies are themselves valid since intuitively a tautology is any valid formula which
does not require modal reasoning to justify its truth.

Convention for variables denoting individual formulas and sets of formulas: In
what follows, the variablesw, w′ andw′′ refer tostate formulas, that is, formulas with
no temporal operators. Furthermore, PROP denotes the set ofall state formulas. For
any finite set of variablesV, PROPV denotes the set of all state formulas only having

8

variables inV. Likewise, the set PTLV denotes the set of all formulas in PTL only
containing variables inV and NL1V denotes the set of all formulas in NL1 only having
variables inV. For example, the formulap ∧ 3 q is in PTL{p,q} but not in PTL{p}.

3.3 Example of the hierarchical process

Our analysis of PTL reduces arbitrary PTL formulas to lower level ones with a much
more restricted syntax. The next PTL formula serves as a simple example to motivate
some of the notation and conventions later introduced:

23 p ∧ 23¬p.

This is reducible to the formula2 I ∧ w, whereI andw are given below:

I : (r1 ≡ 3 p) ∧ (r2 ≡ 3¬r1) ∧ (r3 ≡ 3¬p) ∧ (r4 ≡ 3¬r3)

w : ¬r2 ∧ ¬r4.

The auxiliary variablesr1, . . . ,r4 provide a natural way to restrict the nesting of tem-
poral operators within the conjunctionI. We callI an invariant and the conjunction
2 I ∧ w an invariant configuration. Both are formally introduced later in Section 11.
It can be shown that the original formula23 p ∧ 23¬p is satisfiable iff the invariant
configuration2 I ∧ w is. Similarly, the original formula is satisfiable in finite time iff
the invariant configuration2 I ∧ w ∧ finite is.

When analysing behaviour in finite time, we further transform the invariant config-
uration2 I ∧ w ∧ finite to a semantically equivalent formula which is a special kind
of conjunction2T ∧ w ∧ finite, whereT andw are as follows:

T : (r1 ≡ (p ∨ © r1)) ∧ (r2 ≡ (¬r1 ∨ © r2))
∧ (r3 ≡ (¬p ∨ © r3)) ∧ (r4 ≡ (¬r3 ∨ © r4))

w : ¬r2 ∧ ¬r4.

HereI ’s first conjunctr1 ≡ 3 p is replaced inT by the3-free formular1 ≡ (p ∨

© r1). The remaining conjuncts inT similarly avoid having any3 constructs. We call
T a transition formulaand2T ∧ w ∧ finite a transition configuration(formally
defined in Section 5). The formulaT is in fact a formula in the important PTL sub-
set called NL1 (formally defined earlier in Definition 3.2) in which the onlytemporal
constructs are© operators not nested within other© operators. In addition, in finite-
time intervals the PTL formulas2 I and2T are semantically equivalent. Moreover,
it can be proved that the original formula23 p ∧ 2 3¬p is satisfiable in finite time
iff the transition configuration2T ∧ w ∧ finite is satisfiable. As is later shown in
Section 5, NL1 formulas such asT play a fundamental role in our analysis of transition
configurations.

Sections 6–10 subsequently consider small models, decision procedures and com-
pleteness of axiom systems for transition configurations such as2 T ∧ w ∧ finite. For
example, in Section 6 in Theorem 6.2, we establish the existence of small models for
this kind of transition configuration by showing that it is satisfiable iff it is satisfiable in
a finite interval having less than2|V | states, whereV is any finite set of variables which
includes all variables occurring inT andw. If the formula is indeed satisfiable, the
decision procedure in Section 8 can construct an interval ofless than2|V | states by first
considering all states satisfyingw. The algorithm then searches for intervals starting

9

with such a state and in which each pair of adjacent states, when regarded as a two-
state interval, satisfies the transition formulaT and additionally the final state, when
regarded as a one-state interval, also satisfiesT . This is to ensure that the entire interval
satisfies the formula2T . A sample interval can then be generated. On the other hand,
if the transition configuration is unsatisfiable and there issufficient memory available,
the decision procedure will eventually terminate with a negative answer.

In Section 10, an axiom system for PTL is given and then a form of axiomatic
completeness for the various kinds of transition configurations is established. This is
done by proving that any consistent transition configuration, that is, one which is not
deducibly false in the axiom system, is satisfiable.

We later in Section 11 formally extend all of this material tohandle invariant con-
figurations such as2 I ∧ w ∧ finite by reducing them to semantically equivalent
transition configurations. The results for small models anddecision procedures for
transition configurations can then be used. Axiomatic completeness for invariant con-
figurations is shown by noting that an invariant configuration such as2 I ∧ w ∧ finite

is deducibly equivalent to its associated transition configuration and then making use
of the previously established axiomatic completeness for transition configurations.

Finally in Section 12 we deal with arbitrary formulas such asthe sample one
23 p ∧ 23¬p by systematically reducing them to lower-level invariant configu-
rations which capture their semantics and normally containextra auxiliary variables.
The original formula is satisfiable iff the invariant configuration is. Furthermore, any
interval satisfying the invariant configuration also satisfies the original formula. The
decision procedures for invariant configurations, which, as already mentioned, in fact
reduce them to semantically equivalent transition configurations, can then be applied.
Axiomatic completeness for arbitrary PTL formulas followsby observing that if such a
formula is consistent, then so is the associated invariant configuration. From axiomatic
completeness for invariant configurations, it follows thatthere exists a model for this
particular invariant configuration. Finally, this model can also serve as a model for the
original PTL formula.

3.4 Notation for accessing parts of conjunctions

From the examples just given it can be seen that we often manipulate formulas which
are conjunctions. For the moment we do not make any particular assumptions about the
syntax of the individual conjuncts although this will be done in later sections for certain
useful kinds of conjunctions. The next three definitions provide some helpful notation
for denoting the number of conjuncts of an arbitrary conjunction and for accessing
one or more of them. In what follows,C denotes some conjunction of zero or more
conjuncts. A conjunction with no conjuncts is denoted astrue.

Definition 3.4 (Size of a conjunction). Let the notation|C| denote the number ofC ’s
conjuncts.

Definition 3.5 (Indexing of a conjunction’s conjuncts). For eachk : 1 ≤ k ≤ |C|, we
let C[k] denote thek-th conjunct.

Observe that if a conjunctionC has length|C| = 0, there are no conjuncts to be
indexed.

Definition 3.6 (Parts of a conjunction). Let k and l be natural numbers such that
1 ≤ k ≤ |C| and 0 ≤ l ≤ |C|. The notationC[k : l] denotes the conjunction of

10

consecutive conjuncts inC starting withC[k] and finishing withC[l], inclusive, i.e.,
C[k] ∧ · · · ∧ C[l] (which containsl − k + 1 conjuncts).

For example, below is shown a conjunction with three conjuncts and how to access
them:

C : (p ⊃ q) ∧ ¬(r ≡ © true) ∧ (r ∨ u)

|C| = 3 C[1] : p ⊃ q C[2] : ¬(r ≡ © true) C[3] : r ∨ u.

Note that for any conjunctionC, the formulaC[1 : 0] denotestrue andC[1 : |C|] is
identical toC. Also, for anyk : 1 ≤ k ≤ |C|, bothC[k] andC[k : k] refer to the same
conjunct.

Our analysis will frequently make use of conjunctions of equivalences, as illus-
trated in the previous Subsection 3.3. When doing this, we will sometimes omit the
parentheses around each individual equivalence and instead rely on both the context
and sufficient spacing between them to avoid ambiguous parsing. Here is an example:

r1 ≡ (r2 ∨ r3) ∧ r2 ≡ © p ∧ r3 ≡ 3 q.

4 Propositional Interval Temporal Logic

We now describe the version of quantifier-free propositional ITL (PITL) used here
for systematically analysing transition configurations. More on ITL can be found in
[37,64–68,71–73] (see also [49]). The same discrete-time intervals are used as in PTL.
In addition, all PTL constructs are permitted as well as two other ones. Hence, any
PTL formula is also a PITL formula.

Here is the syntax of PITL’s two primitive interval-oriented constructschopand
chop-star, whereA andB are themselves PITL formulas:

A; B (chop) A∗ (chop-star).

The semantics of the other constructs in PITL is as in PTL and is therefore omitted
here.

Before defining the semantics of chop and chop-star, we introduce some notation
for describing subintervals of an intervalσ. For natural numbersi, j with i ≤ j ≤ |σ|,
let σi:j denotes the subinterval with starting stateσi and final stateσj and having
interval lengthj − i (i.e.,j − i + 1 states). Furthermore, ifσ is an infinite interval, let
σi:ω denote the (infinite) suffix subinterval starting with stateσi.

The formulaA; B is true onσ (i.e.,σ |= A; B) iff one of the following holds:

• For some natural numberi : 0 ≤ i ≤ |σ|, the intervalσ can be divided into
two subintervalsσ0:i andσi:|σ| sharing the stateσi such that bothσ0:i |= A and
σi:|σ| |= B hold.

• The intervalσ itself has infinite length andσ |= A holds.

The formulaA∗ is true onσ (i.e.,σ |= A∗) iff one of the following holds:

• The intervalσ has finite length and there exists some natural numbern ≥ 0
and finite sequence of natural numbersl0 ≤ l1 ≤ · · · ≤ ln wherel0 = 0 and
ln = |σ|, such that for eachi : 0 ≤ i < n, σli:li+1 |= A holds.

11

A B

A; B

AA A

A∗

(a) Informal semantics for
finite time

=ω

<ω =ω. . .

A

. . .

. . .

. . .

. . .
AA A

<ω <ω <ω

A B

A; B

AA A

<ω <ω
A∗

=ω. . .

(b) Informal semantics for infinite time

p ∧ ©¬p ¬p

$ p$ p

pskip

¬pfinite

p ¬p

t f f

t t f

f t f

f f t f

f f f t t

tt

t

t

p:

p:

p:

p:

p:

p;¬p

($ p)∗

finite;¬p

(3¬p)

(p ∧ ©¬p);¬p

skip; p

(© p)

(c) Some finite-time examples

Figure 2: Informal PITL semantics and examples

• The intervalσ has infinite length and there exists somen ≥ 0 and finite sequence
of natural numbersl0 ≤ l1 ≤ · · · ≤ ln where l0 = 0, such that for each
i : 0 ≤ i < n, σli:li+1 |= A holds and alsoσln:ω |= A holds.

• The intervalσ has infinite length and there exists some countably infinite strictly
ascending sequence of natural numbersl0 < l1 < · · · wherel0 = 0, such that
for eachi : i ≥ 0, σli:li+1 |= A holds.

Figure 2 pictorially illustrates the semantics of chop and chop-star in both finite and
infinite time and also shows some simple PITL formulas together with intervals which
satisfy them. For some sample formulas we include in parentheses versions using
conventional PTL logic operators which were previously introduced in Section 3.

Remark 4.1. The behaviour of chop-star on empty intervals is a frequent source of
confusion and it is therefore important to note that any formula A∗ (including false∗)

12

A+ def
≡ A; A∗ Chop-plus

Aω def
≡ (A ∧ finite)∗ ∧ inf Chop-omega

An def
≡

{

empty if n = 0
A; An−1 otherwise

Fixed iteration

A≤n def
≡

∨

k≤n Ak

A<n def
≡

∨

k<n Ak

3i A
def
≡ A; true A is true in some initial subinterval

2i A
def
≡ ¬3i ¬A A is true in all initial subintervals

3a A
def
≡ finite; A; true A is true in some subinterval

2a A
def
≡ ¬3a ¬A A is true in all subintervals

Table 2: Some useful derived PITL operators

is true on a one-state interval. This is because in the semantics of chop-star for a one-
state interval we can always setn = 0 and therefore ignore the values of variables in
the interval.

Table 2 shows several especially useful derived PITL operators, including some
variants of chop-star.

The notions of satisfiability and validity already introduced in Definition 3.1 for
PTL naturally generalize to PITL.

Let PITLV be the set of all PITL formulas only having variables inV.
The next definition introduces a special kind of state formula which is indispensable

for interval-based reasoning. It plays the role that sets offormulas typically do in other
analyses of PTL.

Definition 4.2 (Atoms andV-atoms). An atomis any finite conjunction in which each
conjunct is some propositional variable or its negation andno two conjuncts share the
same variable. The set of all atoms is denotedAtoms . The Greek lettersα, β andγ

denote individual atoms. For any finite set of propositionalvariablesV, let AtomsV

be some set of2|V | logically distinct atoms containing exactly the variablesin V. We
refer to such atoms asV-atoms.

For example, we can letAtoms{p,q} be the set of the four logically distinct atoms
shown below:

p ∧ q p ∧ ¬q ¬p ∧ q ¬p ∧ ¬q.

One simple convention is to assume that the propositional variables in an atom occur
from left to right in lexical order. For any finite set of variablesV, this immediately
leads to a suitable set of2|V | differentV-atoms.

5 Transition configurations

Starting with a finite set of variablesV, an NL1V formulaT and a state formulainit in
PROPV , we consider small models, decision procedures and axiomatic completeness

13

for certain low-level formulas referred to here astransition configurations. These for-
mulas play a central role in our approach. The analysis of arbitrary PTL formulas can
be ultimately reduced to that of transition configurations.

Before actually formally defining transition configurations, we need to introduce
the concept of aconditional liveness formulawhich is a specific kind of conjunction
necessary for reasoning about liveness properties involving infinite time. The definition
therefore makes use of some general notation already introduced in Definitions 3.4–3.6
for manipulating conjunctions.

Definition 5.1 (Conditional liveness formulas, enabling tests and liveness tests). A
conditional liveness formulaL is a conjunction of|L| implicationsL[1] ∧ · · · ∧ L[|L|].
Each implication has the formw ⊃ 3m w′, wherew and w′ are two state formulas.
For convenience, we letηL[k] denote the left operand ofL’s k-th implicationL[k].
Similarly, θL[k] denotes the operand of the3m formula on the right side ofL’s k-th
implication. It follows from all of this that for eachk : 1 ≤ k ≤ |L|, the implications
L[k] andηL[k] ⊃ 3m θL[k] denote the same formula. In addition, everyηL[i] andθL[i] is
a state formula.

EachηL[k] is called anenabling test.
EachθL[k] is called aliveness test.
For anyV-atomα and anyk : 1 ≤ k ≤ |L|, if the formulaα ∧ ηL[k] is satisfiable,

we say thatα enablesL’s k-th implicationL[k].

Here is a sample conditional liveness formula:

((p ∨ ¬q) ⊃ 3m ¬p) ∧ (q ⊃ 3m (p ≡ ¬q)) ∧ (true ⊃ 3m (p ⊃ q)). (1)

If we denote the overall formula asL, then, for example, the enabling testηL[2] is q

and liveness testθL[3] is p ⊃ q.
Note that3m behaves the same as3 on infinite intervals. However, in finite inter-

vals3m , like its dual2m , ignores the final state. In principle, either3m or 3 can be used
in conditional liveness formulas and the choice between them appears to be largely a
matter of taste. Nevertheless, we choose to use3m in part because it facilitates an inter-
esting generalization of both conditional liveness formulas and another kind of formula
called aninvariant which is introduced later in Section 11. This generalization will be
mentioned in Subsection 13.3. In addition, the applicationof 3m naturally complements
our extensive use of its dual2m .

Here is the definition of transition configurations:

Definition 5.2 (Transition configurations). A transition configurationis a formula of
the form2T ∧ X , where the formulaT is in NL1

V , and thePTLV formulaX has
one of the four forms shown below:

Type of transition configuration Syntax ofX

Finite-time init ∧ finite

Infinite-time init ∧ 23+ L

Final w ∧ empty

Periodic α ∧ L ∧ 23+(α ∧ L)

Hereinit is a state formula inPROPV which corresponds to someinitial condition,w
is some state formula inPROPV , L is a conditional liveness formula inPTLV andα is
a V-atom. Ifinit is the formulatrue, it can be omitted. The same applies withw.

14

Type of transition PITLV formula Where
configuration proved

Finite-time (($T)∗ ∧ init ∧ finite); (T ∧ empty) Theorem 5.10

Infinite-time (($T)∗ ∧ init ∧ finite);
(

($T)∗ ∧ L ∧ (~V ← ~V)
)ω

Theorem 5.19

Final T ∧ w ∧ empty straightforward

Periodic (($T)∗ ∧ α ∧ L)ω Theorem 5.17

Table 3: Reduction of transition configurations to PITLV formulas

For example, the conjunction2(more ⊃ (p ≡ © p)) ∧ p ∧ finite is a finite-time
transition configuration which is true exactly for finite intervals in whichp is always
true.

Note: In the course of analysing transition configurations, we will assume thatV, T ,
init andL are fixed.

We will show that finite-time and infinite-time transition configurations are equiv-
alent to certain PITLV formulas for which we can more readily establish such things
as the existence of periodic models, small models, decisionprocedures and axiomatic
completeness. Table 3 shows the corresponding PITLV formula for each kind of transi-
tion configuration and where the equivalence of the two is proved. Recall the definition
of chop-omega in Table 2. Also, in Table 3 and elsewhere the formula~V ← ~V denotes
that the initial value of each variable occurring in the set of variablesV equals its final
value. It is a natural generalization of the temporal assignment operator← previously
introduced in Table 1 and can be defined as follows within PTLV :

~V ← ~V
def
≡ finite ⊃

∧

v∈V

((fin v) ≡ v).

Consequently,~V ← ~V is semantically equivalent to the disjunction given below:
∨

α∈AtomsV

(α ∧ fin α).

In addition to the theorems summarized in Table 3, Theorem 5.29 will establish
that an infinite-time transition configuration is satisfiable iff the next PTL formula is
satisfiable in finite time:

2m T ∧ init ∧ 3(L ∧ finite ∧ more ∧ (~V ← ~V)).

In order to perform interval-based analysis on transition configurations, we need
to relate2T to the PITL formula($T)∗. Now the PTL formula2m T , which is very
similar to2T , was previously defined in Table 1 to be true on an interval iffT is true
in all of the interval’s nonempty suffix subintervals. It turns out that due toT being in
NL1, the formula($ T)∗ is semantically equivalent to2m T . Intuitively, this is because
an NL1 formula cannot probe past the second state of an interval. The next lemma
formalizes this:

Lemma 5.3. Let σ andσ′ be two nonempty intervals which share the same first two
states (i.e.,σ0 = (σ′)0 andσ1 = (σ′)1). Then, for any formulaT in NL1, σ satisfiesT
iff σ′ satisfiesT .

15

p⊃©¬p

p ¬p ¬p p

p⊃©¬p

p⊃©¬p

p⊃©¬p

p⊃©¬pp⊃©¬pT T T

T

T

T

($(p ⊃ ©¬p))∗

2m (p ⊃ ©¬p)2m T

($T)∗

Figure 3: Illustration of equivalence of($T)∗ and2m T

Proof. Induction onT ’s syntax ensures that it cannot distinguish betweenσ andσ′.

Consequently, if two nonempty intervals share the same firsttwo states, then the
truth value ofT for both intervals is identical. Figure 3 illustrates this with two in-
stances of an interval containing 4 states. The second version uses the concrete NL1

formula p ⊃ ©¬p and shows specific values for the propositional variablep. Both
($T)∗ and2m T test each pair of adjacent states. The equivalence consequently permits
us to express($T)∗ in PTL by means of2m T . In addition, it is often useful to express
2m T as($T)∗ because the later turns out to be much more suitable for interval-based
reasoning involving sequential composition and decomposition.

We now formally establish the semantic equivalence of the formulas($ T)∗ and
2m T :

Theorem 5.4. For anyNL1 formulaT , thePITL formula($T)∗ and thePTL formula
2m T are semantically equivalent and hence the equivalence($ T)∗ ≡ 2m T is valid.

Proof. Given an intervalσ, we can put each two-state (unit) subinterval in one-to-one
correspondence with the suffix (nonempty) subinterval which shares the same first two
states. Nowσ satisfies($ T)∗ iff T is true on all ofσ’s unit subintervals. Similarly,
σ satisfies2m T iff T is true on all ofσ’s nonempty suffix subintervals. By the previ-
ous Lemma 5.3 a given unit subinterval satisfiesT iff the matching suffix (nonempty)
subinterval satisfiesT . Consequently, the overall interval satisfies($T)∗ iff it satisfies
2m T .

It is not hard to check that on a one-state (empty) interval,2m T is trivially true. On
a two-state (unit) interval, it is semantically equivalentto the formulaT itself.

Also note that the PTL formula2T is semantically equivalent to the PTL for-
mula 2m T ∧ fin T . This fact and Theorem 5.4 together establish that2T is also
semantically equivalent to the PITL formula($ T)∗ ∧ fin T . Therefore, the formula
2T in transition configurations can be readily re-expressed inPITL as the conjunction
($T)∗ ∧ fin T . This will assist our interval-based analysis of transition configurations.

Remark 5.5. We have discussed the important semantic equivalence of theformulas
($T)∗ and2m T with quite a few people who themselves have a considerable amount
of experience with bothPTL andPITL. Originally we thought that this amounted to a
straightforward application of temporal logic. However, to our surprise, these people
found the equivalence and its applications to be nontrivialand interesting. For this
reason, we have designated the statement of the equivalenceof ($T)∗ and2m T to be a
theorem (i.e., the previous Theorem 5.4), rather than merely a lemma.

16

It is also worth considering a more syntactic approach to demonstrating the se-
mantic equivalence of($T)∗ and2m T since some readers might find this alternative
way helpful. Recall the unaryITL operator3i defined in Table 2 for testing whether
its operand is true in some initial subinterval. Now observethat ($T)∗ is semanti-
cally equivalent to thePITL formula2m 3i (T ∧ skip) since both formulas examineT
in all two-state subintervals. Furthermore, owing toT being inNL1, the formulasT
and3i (T ∧ skip) are semantically equivalent on any nonempty interval sinceneither of
them examines beyond the second state (see Lemma 5.3). Consequently,2m 3i (T ∧ skip)
and2m T are equivalent since2m ’s sole operand is only tested on nonempty subintervals.
Therefore($ T)∗ and2m T are indeed semantically equivalent.

Here is a corollary of Theorem 5.4 for infinite time:

Corollary 5.6. The two formulas2T and($T)∗ are semantically equivalent on infi-
nite intervals and hence the implicationinf ⊃ 2T ≡ ($T)∗ is valid.

Proof. This readily follows from Theorem 5.4 and the semantic equivalence of2m T

and2T on infinite intervals.

The next two Lemmas 5.7 and 5.8 subsequently provide a basis for relating finite-
time transition configurations to final ones and also for relating infinite-time transition
configurations to periodic ones.

Lemma 5.7. For anyPITL formulaA, the next equivalence is valid:

|= 2T ∧ 3A ≡ ($T)∗ ∧ 3(2T ∧ A).

Proof. We first establish the validity of the PTL formula2 p ≡ 2m p ∧ 3 2 p which
itself leads to the validity of the formula2 p ∧ 3 q ≡ 2m p ∧ 3(2 p ∧ q). We then
substituteT into p andA into q. Finally, Theorem 5.4 permits us to replace2m T by
($T)∗.

Lemma 5.8. For any state formulaw and PITL formula A, the next equivalence is
valid:

2T ∧ w ∧ 3A ≡ (($T)∗ ∧ w ∧ finite); (2T ∧ A). (2)

Proof. Lemma 5.7 ensures that2T ∧ 3A is semantically equivalent to the conjunc-
tion ($T)∗ ∧ 3(2T ∧ A). This is itself semantically equivalent to the next PITL
formula:

(($T)∗ ∧ finite); (($T)∗ ∧ 2 T ∧ A).

Now 2T trivially implies 2m T which by Theorem 5.4 is semantically equivalent to
($T)∗. This consequently permits us to simplify the subformula($T)∗ ∧ 2T into
2T to obtain the next valid equivalence:

|= 2T ∧ 3A ≡ (($T)∗ ∧ finite); (2T ∧ A).

Simple temporal reasoning permits us to suitably add the state formulaw to each side
to obtain the validity of the formula (2).

17

5.1 Analysis of finite-time behaviour

The following Lemma 5.9 and Theorem 5.10 concern reducing a finite-time transition
configuration to the associated semantically equivalent PITL formula in Table 3 which
is easier to later analyse.

Lemma 5.9. The following equivalence is valid for finite-time transition configurations
and relates them to final configurations:

|= 2 T ∧ init ∧ finite ≡ (($T)∗ ∧ init ∧ finite); (2T ∧ empty). (3)

Proof. The PTL formulafinite is defined to be3 empty in Table 1. Lemma 5.8 then
ensures the validity of the equivalence (3).

Theorem 5.10 builds on Lemma 5.9 by reducing a finite-time transition configura-
tion to a chop formula in PITL which is even easier to analysisbecause its righthand
operand is in NL1:

Theorem 5.10.The following equivalence is valid for finite-time transition configura-
tions:

|= 2T ∧ init ∧ finite ≡ (($T)∗ ∧ init ∧ finite); (T ∧ empty).

Proof. This readily follows from Lemma 5.9 and the fact that in an empty interval, the
formulas2T andT are equivalent.

Note that we can use the unary PTL operator? (previously defined in Table 1)
to alternatively express the PITL formula(($T)∗ ∧ init ∧ finite); (T ∧ empty)
as the semantically equivalent PITL formulasinit?; (($T)∗ ∧ finite); T? andinit ∧

($T)∗ ∧ sfin T . Each form has its benefits. We preferT ∧ empty over the equivalent
T? since some readers might get confused upon seeing the operator ? with an operand
which is itself a temporal formula even though this is permitted.

5.2 Analysis of infinite-time behaviour

We now turn to analysing infinite-time transition configurations. The first step involves
relating them to periodic transition configurations. The next Lemma 5.11 does this:

Lemma 5.11. The following equivalence is valid for infinite-time transition configu-
rations:

2 T ∧ init ∧ 23
+ L

≡ (($T)∗ ∧ init ∧ finite);
∨

α∈AtomsV
(2T ∧ α ∧ L ∧ 23+(α ∧ L)). (4)

Proof. Observe that in an infinite interval if the conditional liveness formulaL is al-
ways eventually true then for at least one of the finite numberof V-atoms, the conjunc-
tion α ∧ L is also always eventually true. Therefore simple temporal reasoning yields
that23+ L is semantically equivalent to the disjunction

∨

α∈AtomsV
23+(α ∧ L).

The subformula23+(α ∧ L) can be re-expressed as3(α ∧ L ∧ 23+(α ∧ L)) so
the next equivalence concerning23+ L is valid:

|= 23
+ L ≡

∨

α∈AtomsV
3(α ∧ L ∧ 23

+(α ∧ L)).

18

We can then swap the instances of
∨

and3 to obtain the following valid equivalence:

|= 23+ L ≡ 3
∨

α∈AtomsV
(α ∧ L ∧ 23+(α ∧ L)).

This permits us to re-express the infinite-time transition configuration2T ∧ init ∧

23+ L by means of the next valid equivalence:

|= 2T ∧ init ∧ 23+ L

≡ 2T ∧ init ∧ 3
∨

α∈AtomsV
(α ∧ L ∧ 23+(α ∧ L)). (5)

We invoke Lemma 5.8 on the righthand operand of this equivalence to establish the
validity of the equivalence below:

|= 2T ∧ init ∧ 3
∨

α∈AtomsV
(α ∧ L ∧ 23+(α ∧ L))

≡ (($T)∗ ∧ init ∧ finite);
(

2T ∧
∨

α∈AtomsV
(α ∧ L ∧ 23+(α ∧ L))

)

. (6)

The righthand operand of the chop construct in (6) can be re-expressed as shown by
the valid equivalence now given:

|= 2T ∧
∨

α∈AtomsV
(α ∧ L ∧ 23+(α ∧ L))

≡
∨

α∈AtomsV

(

2T ∧ α ∧ L ∧ 23+(α ∧ L)
)

.

The justification of this only involves conventional propositional reasoning. Conse-
quently, the equivalence (6) can be itself re-expressed as follows:

|= 2T ∧ init ∧ 3
∨

α∈AtomsV
(α ∧ L ∧ 23

+(α ∧ L))

≡ (($T)∗ ∧ init ∧ finite);
∨

α∈AtomsV

(

2T ∧ α ∧ L ∧ 23+(α ∧ L))
)

. (7)

The second operand of equivalence (5) is identical to the first operand of equiva-
lence (7). Consequently, the conjunction of these two equivalences implies the initial
equivalence (4). Hence, the validity of (5) and (7) yields our goal which is the validity
of (4).

5.2.1 Reduction using chop-omega operator

Much of the remainder of the analysis of transition configurations consists of showing
how to further reduce a periodic transition configuration2T ∧ α ∧ L ∧ 23+(α ∧ L)
to the semantically equivalent PITL formula(($T)∗ ∧ α ∧ L)ω. A general class of
formulas which includesα ∧ L will now be described. For any PITL formulaA in
this class, the two formulasA ∧ 23+ A andAω will be shown to be semantically
equivalent in Theorem 5.16. We first need to introduce a derived PITL operator which
turns out to be useful for analysing periodic behaviour in infinite intervals.

Definition 5.12(The operator3f). For anyPITL formulaA, let thePITL formula3f A

is defined to be(A ∧ finite); true. Therefore,3f A is true on an interval iffA is true
on some finite subinterval starting at the beginning of the overall interval.

Note that3f A can also be expressed with the derived operator3i (itself previously
defined in Table 2) as3i (A ∧ finite).

It is worthwhile to define a notion of fixpoints of the operator3f :

19

Definition 5.13 (Fixpoints of the operator3f). A PITL formulaA is a fixpoint of3f iff
the equivalenceA ≡ 3f A is valid.

Fixpoints of3f are easier to move out of subintervals than are arbitrary formulas.
Incidentally, for any PITL formulaA, the formula3f A is a trivial fixpoint of3f since
3f A and3f 3f A are semantically equivalent. We will shortly show that all conditional
liveness formulas are3f -fixpoints and later use this in the analysis of infinite intervals.

We extensively investigate fixpoints of various temporal operators and their appli-
cation to compositional reasoning in [68–71].

The next lemma characterizes a broad syntactic class of formulas which are3f -
fixpoints and is easy to check:

Lemma 5.14. Every state formula is a3f -fixpoint. Furthermore, if thePITL formulas
A andB are3f -fixpoints, then so are thePITL formulasA ∧ B, A ∨ B, ©A and3 A.

Lemma 5.15. Every conditional liveness formula is a3f -fixpoint.

Proof. By Definition 5.1, a conditional liveness formula is a conjunction of impli-
cations each which has the formw ⊃ 3m w′ for some state formulasw andw′. If
we replace⊃ and3m by their definitions, then the implication reduces to the formula
¬w ∨ 3((© true) ∧ w′). Lemma 5.14 then ensures that this is a3f -fixpoint. Conse-
quently, the original implicationw ⊃ 3m w′ is one as well. Therefore by Lemma 5.14,
the conjunction of such implications which constitutes a conditional liveness formula
is also a3f -fixpoint.

Observe that by Lemmas 5.14 and 5.15, the formulaα ∧ L is itself a3f -fixpoint
because bothα andL are3f -fixpoints.

Now the formulaα ∧ L ∧ 23+(α ∧ L) is itself an instance of the PITL formula
A ∧ 2 3+ A. We now proof in Theorem 5.16 that ifA is a3f -fixpoint, then the for-
mulaA ∧ 23+ A can be re-expressed as the semantically equivalent PITL formula
Aω. This will let us re-expressα ∧ L ∧ 23+(α ∧ L) as the semantically equivalent
PITL formula (α ∧ L)ω. The establishment of this equivalence is a key step in the
reduction of reasoning about infinite time behaviour to finite time behaviour and con-
sequently proving the existence of periodic models for satisfiable periodic transition
configurations.

Theorem 5.16.For anyPITL formulaA which is a3f -fixpoint, the next equivalence is
valid:

|= A ∧ 23
+ A ≡ Aω.

Proof. Left side implies right side:Suppose that an intervalσ satisfiesA ∧ 23+ A.
Now this conjunction is semantically equivalent to the formula 3f A ∧ 23+ 3f A be-
causeA is a 3f -fixpoint. Thereforeσ also satisfies the formula3f A ∧ 23+ 3f A.
Furthermore,σ is clearly an infinite interval due to the conjunct containing 23+.
Therefore,σ has an infinite number of finite subintervals which all satisfy A includ-
ing at least one starting withσ’s initial stateσ0. An infinite sequence of nonover-
lapping finite-length subintervals all satisfyingA can then be selected with the first
one commencing at the beginning ofσ. Consequently,σ satisfies the PITL formula
((A ∧ finite); true)ω which is the same as(3f A)ω. This and the assumption thatA is
a3f -fixpoint together yield thatσ satisfiesAω.

Right side implies left side:Suppose that an intervalσ satisfiesAω. Thereforeσ
is an infinite interval and has an infinite number of finite subintervals all satisfyingA,

20

including one starting withσ’s initial state. From this we can readily obtain the valid
PITL implication shown below:

|= Aω ⊃ (A ∧ finite); true ∧ 23
+((A ∧ finite); true).

This can be re-expressed using3f as follows:

|= Aω ⊃ 3f A ∧ 23
+

3f A.

The assumption thatA is a3f -fixpoint then yields the desired validity of the semanti-
cally equivalent implicationAω ⊃ A ∧ 23+ A.

The following Theorem 5.17 relates any periodic transitionconfiguration with its
associated PITL formula shown in Table 3:

Theorem 5.17.The next equivalence concerning a periodic transition configuration is
valid:

|= 2T ∧ α ∧ L ∧ 23
+(α ∧ L) ≡ (($T)∗ ∧ α ∧ L)ω. (8)

Proof. Lemmas 5.14 and 5.15 ensure that the formulaα ∧ L is itself a3f -fixpoint
because bothα andL are3f -fixpoints. Therefore Theorem 5.16 yields the validity of
the following equivalence:

|= α ∧ L ∧ 23
+(α ∧ L) ≡ (α ∧ L)ω.

We then conjoin2T to each side of the equivalence. Recall the fact that2T and
($T)∗ are semantically equivalent in infinite time (Corollary 5.6) so the equivalence
below is valid:

|= 2T ∧ α ∧ L ∧ 23
+(α ∧ L) ≡ ($T)∗ ∧ (α ∧ L)ω.

Now ($ T)∗ ∧ (α ∧ L)ω is an instance of the PITL formula($ B)∗ ∧ Cω which itself
is semantically equivalent to(($B)∗ ∧ C)ω. The intuition here is that both of them
use$B to test exactly all the two-state subintervals of the overall interval. Finally, we
use this to re-express($ T)∗ ∧ (α ∧ L)ω as(($T)∗ ∧ α ∧ L)ω, thereby obtaining the
validity of formula (8).

The following Lemma 5.18 concerning a disjunction of periodic transition configu-
rations is needed to justify our reduction of the satisfiability of a infinite-time transition
configuration to the associated PITL formula shown in Table 3:

Lemma 5.18. The next equivalence is valid:

|=
∨

α∈AtomsV
(2T ∧ α ∧ L ∧ 23+(α ∧ L))

≡
(

($T)∗ ∧ L ∧ (~V ← ~V)
)ω

. (9)

Proof. Theorem 5.17 ensures that the equivalence given below is valid:

|= 2T ∧ α ∧ L ∧ 23+(α ∧ L) ≡ (($T)∗ ∧ α ∧ L)ω.

We then use some simple temporal reasoning to establish thatthis equivalence’s right-
hand operand(($T)∗ ∧ α ∧ L)ω can be re-expressed as shown in the next equivalence:

|= (($T)∗ ∧ α ∧ L)ω ≡ α ∧
(

($T)∗ ∧ L ∧ (~V ← ~V)
)ω

.

21

These two equivalences are now combined to obtain the valid one given below:

|= 2T ∧ α ∧ L ∧ 23+(α ∧ L) ≡ α ∧
(

($T)∗ ∧ L ∧ (~V ← ~V)
)ω

.

This and some further simple reasoning about the operator
∨

yields the validity of the
following equivalence:

|=
∨

α∈AtomsV
(2T ∧ α ∧ L ∧ 23

+(α ∧ L))

≡
∨

α∈AtomsV

(

α ∧
(

($ T)∗ ∧ L ∧ (~V ← ~V)
)ω

)

.

The righthand side can be re-expressed as
(

($ T)∗ ∧ L ∧ (~V ← ~V)
)ω

and thereby
yields the validity of the equivalence (9).

The equivalence of an infinite-time transition configuration with the associated
PITL formula shown in Table 3 is now established:

Theorem 5.19. The following equivalence is valid for infinite-time transition configu-
rations:

|= 2T ∧ init ∧ 23
+ L

≡ (($T)∗ ∧ init ∧ finite);
(

($T)∗ ∧ L ∧ (~V ← ~V)
)ω

.

Proof. This readily follows from Lemma 5.11 which relates infinite-time transition
configurations to periodic transition configurations and Lemma 5.18 which re-expresses
the disjunction of several periodic transition configurations using chop-omega.

5.2.2 Fusion and canonical intervals

Let us consider some general concepts and techniques concerning PITL and its notion
of intervals. They will be extensively used later on.

Definition 5.20(Fusion). Letσ andσ′ be two intervals. The definition of thefusionof
them, denotedσ ◦ σ′, has two cases, depending on whetherσ has finite length or not:

• If σ has finite length, we require that the last state ofσ equals the first state of
σ′. The fusion ofσ with σ′ is then the interval obtained by appending the two
intervals together so as to include only one copy of the shared state.

• Otherwise, the fusion isσ itself, no matter whatσ′ is.

For example, supposes1, s2 ands3 are states. Ifσ is the intervals1s2 andσ′ is
the intervals2s3, then their fusionσ ◦ σ′ equals the three-state intervals1s2s3, rather
than the four-state intervals1s2s2s3 which concatenation yields. Note that whenσ has
finite length andσ andσ′ do not share the relevant state, then their fusion is undefined.
If both σ andσ′ are finite and compatible, then the intervalσ ◦ σ′ contains the total
sum of states inσ andσ′ minus one. Hence the interval length ofσ ◦ σ′ equals the
sum of the interval lengths ofσ andσ′. Pratt first defined fusion for describing the
semantics of a process logic [79] and called itfusion product(see Harel, Kozen and
Tiuryn [40, Section 17.3] for a tutorial on process logics).

It is worth comparing chop and fusion. Fusion is a general operation definable for
such things as strings (i.e., sequences of letters) or intervals (i.e., sequences of states).

22

As used here, it starts with two suitable intervals and joinsthem together. In contrast,
chop is a logical operator which starts with an overall interval and then tests for the
existence of a way to split it into two fusible subintervals.Furthermore, the semantics
of the chop operator can be defined using fusion, whereas fusion is for our purposes a
semantic concept, not a logical construct.

Here is a lemma relating chop with fusion:

Lemma 5.21. A PITL formulaA; B is satisfiable iff there exist two intervalsσ andσ′

such that the fusion of themσ ◦ σ′ is defined and one of the following is true:

• The intervalσ has finite length, it satisfiesA and the intervalσ′ satisfiesB.

• The intervalσ has infinite length and it satisfiesA.

This lemma provides a way to reduce the problem of constructing an interval satis-
fying A; B to that of constructing intervals satisfyingA andB.

Before further reducing transition configurations involving infinite time, we intro-
duce the notion ofcanonical intervalsand discuss their use in relating the satisfiability
of chop and chop-omega formulas with satisfiability of theiroperands.

The next definition of a notion of canonical states and intervals together with the
subsequent Lemma 5.23 will be extensively utilized to facilitate reasoning about inter-
vals.

Definition 5.22 (Canonical states and intervals). For any finite set of variablesV and
states, we say thats is aV-stateif s assigns each variablenot in V the valuefalse.

Similarly, for any finite set of variablesV and intervalσ, we say thatσ is a V-
interval if σ’s states all assign each variablenot in V the valuefalse.

Furthermore, for any set of variablesV, we can denote aV-state by the unique
V-atom which the state satisfies. In addition, aV-interval can be denoted by the unique
sequence ofV-atoms associated with itsV-states.

For example, for anyV-atomsα andβ, the two-atom sequenceαβ denotes a finite
V-interval withV-states denoted byα andβ, respectively. Hence,αβ |= X denotes that
the two-stateV-intervalαβ satisfies the formulaX . If X is in PTLV , thenαβ |= X

holds iff the conjunctionα ∧ © β? ∧ X is satisfiable. Furthermore a singleV-atom
can be regarded as a one-stateV-interval. For example,α |= X denotes that the one-
stateV-intervalα satisfiesX . For anyX in PTLV , this is the case iff the conjunction
α ∧ X ∧ empty is satisfiable. Similarly, the notationαβα |= X denotes that the
V-intervalαβα, which has two identical states, satisfies the formulaX .

The next lemma ensures that any satisfiable PITLV formula is satisfied by some
V-interval.

Lemma 5.23. An intervalσ satisfies aPITLV formulaA iff there exists aV-interval
with the same number of states asσ, agrees withσ on the values of the variables inV
and moreover satisfiesA.

Proof. Let σ′ be theV-interval obtained fromσ by setting all variables not in the setV

to false in each state. The semantics in PITL ofA ignores such variables.

The following lemma employsV-atoms and the PTL constructfinite to express
a simple sufficient condition which ensures that any two intervals which respectively
satisfy the two operands in a chop formula with a particular syntax given in the lemma
can be fused together into an interval which satisfies the overall chop formula.

23

Lemma 5.24. For any V-atomα and PITLV formulasA and B, the following are
equivalent:

(a) The formula(A ∧ finite); (α ∧ B) is satisfiable.

(b) The formulasA ∧ sfin α andα ∧ B are satisfiable.

Proof. (a)⇒ (b): If some intervalσ satisfies the formula(A ∧ finite); (α ∧ B), then
by the semantics of chop there exist two subintervals ofσ denoted here asσ′ andσ′′

such that the subintervalσ′ satisfiesA ∧ finite and moreover ifσ′ has finite length,
thenσ′′ satisfiesα ∧ B. The right subformulafinite in A ∧ finite ensures thatσ′ is
indeed finite and thereforeσ′′ does satisfiesα ∧ B.

(b) ⇒ (a): If the two formulasA ∧ sfin α andα ∧ B are satisfiable, then by
Lemma 5.23 someV-intervalsσ andσ′ satisfy them. Nowσ is finite due to the sub-
formulasfin α. Also, the last state ofσ and the first state ofσ′ both equal theV-state
denoted by theV-atomα. Henceσ andσ′ can be fused and the fusionσ ◦ σ′ satisfies
the formula(A ∧ finite); (α ∧ B).

5.2.3 Periodic models and reduction to finite-time behaviour

The remaining material in this section deals with relating transition configurations in-
volving infinite time to other formulas involving periodicity as well as to formulas
about finite time. The connections are interesting in themselves and also later utilized.

The next Lemmas 5.25 and 5.26 help to establish small models,decidability and
axiomatic completeness for periodic transition configurations:

Lemma 5.25. For anyV-atomα andPITLV formulaA, the following are equivalent:

(a) The formula(α ∧ A)ω is satisfiable.

(b) The formula(α ∧ A)ω has a periodic model.

(c) The formulaα ∧ A ∧ © sfin α is satisfiable (in some finite-time interval).

Proof. (a) ⇒ (c): Suppose the intervalσ satisfies(α ∧ A)ω. We can assume each
iteration ofα ∧ A occurs in a nonempty, finite interval as expressed by the nextvalid
equivalence:

|= (α ∧ A)ω ≡ (α ∧ A ∧ finite ∧ more)ω.

Furthermore, each pair of adjacent iterations share a common state satisfyingα and
hence all haveα true at the beginning and end as is captured by the following valid
equivalence:

|= (α ∧ A)ω ≡ (α ∧ A ∧ finite ∧ more ∧ fin α)ω.

Therefore the subformulaα ∧ A ∧ finite ∧ more ∧ fin α is satisfiable (in some finite-
time interval) and hence the semantically equivalent formula α ∧ A ∧ © sfin α is also
satisfiable.

(c) ⇒ (b): Suppose the intervalσ satisfiesα ∧ A ∧ © sfin α. As a consequence
of α being aV-atom andA being a PITLV formula together with Lemma 5.23, we
can assume without loss of generality thatσ is a V-interval. We then readily fuseω
instances ofσ together to obtain a periodic interval satisfying the formula (α ∧ A)ω.

(b) ⇒ (a): Clearly if some periodic interval satisfies(α ∧ A)ω, then this formula
is satisfiable.

24

Lemma 5.26 shows that any satisfiable periodic transition configuration has a peri-
odic model. Subsequently, Theorem 5.29 establishes that any satisfiable infinite-time
transition configuration has an ultimately periodic model (i.e., an interval with a peri-
odic suffix):

Lemma 5.26. For anyV-atomα, the following are equivalent:

(a) The periodic transition configuration2T ∧ α ∧ L ∧ 23+(α ∧ L) is satisfiable.

(b) The periodic transition configuration2T ∧ α ∧ L ∧ 23
+(α ∧ L) has a

periodic model.

(c) The formula($T)∗ ∧ α ∧ L ∧ © sfin α is satisfiable (in some finite-time inter-
val).

Proof. Theorem 5.17 reduces the periodic transition configurationto the semantically
equivalent PITLV formula(($T)∗ ∧ α ∧ L)ω. We then utilize Lemma 5.25.

Lemma 5.27. For any V-atomα and PITLV formulasA and B, the following are
equivalent:

(a) The formula(A ∧ finite); (α ∧ B)ω is satisfiable.

(b) The formula(A ∧ finite); (α ∧ B)ω has an ultimately periodic model (i.e., an
interval with a periodic suffix).

(c) The formula(A ∧ finite); (α ∧ B ∧ © sfin α) is satisfiable (in some finite-time
interval).

Proof. (a)⇒ (c): If the formula(A ∧ finite); (α ∧ B)ω is satisfiable then the PITLV
formula (A ∧ finite); (α ∧ B ∧ © sfin α)ω is also satisfiable. From this readily
follows the satisfiability of the formula(A ∧ finite); (α ∧ B ∧ © sfin α).

(c) ⇒ (b): If the formula(A ∧ finite); (α ∧ B ∧ © sfin α) is satisfiable then
Lemma 5.24 ensures that the two formulasA ∧ finite ∧ fin α andα ∧ B ∧ © sfin α

are also satisfiable. Lemma 5.25 then yields that the formula(α ∧ B)ω has a periodic
model. Suppose the intervalσ satisfiesA ∧ finite ∧ fin α and the intervalσ′ is a
periodic model of(α ∧ B)ω. Lemma 5.23 permits us to assume thatσ andσ′ are
V-intervals. We can fuseσ together withσ′ to obtain an ultimately periodic model for
(A ∧ finite); (α ∧ B)ω.

(b)⇒ (a): Clearly if some ultimately periodic interval satisfies(A ∧ finite); (α ∧

B)ω, then this formula is satisfiable.

Lemma 5.28. For anyPITLV formulasA andB, the following are equivalent:

(a) The formula(A ∧ finite); (B ∧ (~V ← ~V))ω is satisfiable.

(b) The formula(A ∧ finite); (B ∧ (~V ← ~V))ω has an ultimately periodic model.

(c) The formula(A ∧ finite); (B ∧ more ∧ finite ∧ (~V ← ~V)) is satisfiable (in
some finite-time interval).

Proof. This follows from Lemma 5.27 and simple temporal reasoning involving chop
and the operator

∨

. We also make use of the following valid equivalences concerning
~V ← ~V , the formulaB and anyV-atomα:

|= α ∧ B ∧ © sfin α ≡ α ∧ B ∧ more ∧ finite ∧ (~V ← ~V)

|= (α ∧ B)ω ≡ α ∧ (B ∧ (~V ← ~V))ω.

25

Type of transition Upper bounds Where
configuration proved

Finite-time Interval length less than|AtomsV | Theorem 6.2

Infinite-time Initial part< |AtomsV |, Theorem 6.9

Period≤ (|L|+ 1) · |AtomsV |

Final Interval length is 0 straightforward

Periodic Period≤ (|L|+ 1) · |AtomsV | Lemma 6.8

Table 4: Summary of upper bounds of intervals for transitionconfigurations

Theorem 5.29. The following are equivalent:

(a) The infinite-time transition configuration2T ∧ init ∧ 23+ L is satisfiable.

(b) The infinite-time transition configuration2T ∧ init ∧ 23+ L has an ultimately
periodic model.

(c) ThePITLV formula
(

($T)∗ ∧ init ∧ finite
)

;
(

($T)∗ ∧ L ∧ more ∧ finite ∧

(~V ← ~V)
)

is satisfiable (in some finite-time interval).

(d) ThePTLV formula 2m T ∧ init ∧ 3(L ∧ finite ∧ more ∧ (~V ← ~V)) is
satisfiable (in some finite-time interval).

Proof. We need to obtain formulas which are in a form suitable for Lemma 5.28. First
of all, Theorem 5.19 permits us to re-express the infinite-time transition configuration
2T ∧ init ∧ 23+ L as the formula(($T)∗ ∧ init ∧ finite);

(

($T)∗ ∧ L ∧ (~V ←
~V)

)ω
. Recall that Theorem 5.4 shows the semantic equivalence of the formulas2m T

and($T)∗. Therefore, simple interval-based temporal reasoning ensures that formu-
las in (c) and (d) are semantically equivalent. We complete the proof by invoking
Lemma 5.28.

6 Small models for transition configurations

We now turn to giving upper bounds on small models for satisfiable transition config-
urations. This is later used in Section 8 to construct a decision procedure for them.
Table 4 summarizes the upper bounds for intervals satisfying the various kinds of tran-
sition configurations and where the results are proved.

It will be necessary to employ the fact (e.g., in Theorem 6.2 and Lemma 6.6) that
the formulaα ∧ ($T)∗ ∧ sfin β is satisfiable iff a simple variant of it is satisfiable in
an interval of bounded interval length. The following lemmadeals with this:

Lemma 6.1. For anyV-atomsα andβ, the formulaα ∧ ($T)∗ ∧ sfin β is satisfiable
iff the formulaα ∧ ($ T)<|AtomsV |

∧ sfin β is satisfiable. Hence, the formulaα ∧

($T)∗ ∧ sfin β is satisfiable iff it is satisfiable in an interval having interval length
less than|AtomsV |.

Proof. Any interval satisfyingα ∧ ($T)<|AtomsV |
∧ sfin β can be readily seen to also

satisfyα ∧ ($T)∗ ∧ sfin β. Let us now establish the converse by doing a proof by
contradiction. Supposeα ∧ ($T)∗ ∧ sfin β is satisfiable butα ∧ ($T)<|AtomsV |

∧

sfin β is not. Letσ be any interval which has the smallest length of those which satisfy

26

α ∧ ($T)∗ ∧ sfin β. Lemma 5.23 permits us to assume thatσ is aV-interval. Nowσ’s
length is greater than or equal to|AtomsV | and therefore contains at least|AtomsV |+1
states. Consequently, someV-state occurs at least twice inσ. Let theV-atomγ denote
this state. It follows thatσ satisfies the following PITLV formula:

α ∧
(

($T)∗; γ?; ($T)+; γ?; ($T)∗
)

∧ sfin β.

Thereforeσ contains two proper subintervalsσ′ andσ′′ which respectively satisfy the
PITLV formulasα ∧ ($T)∗ ∧ sfin γ andγ ∧ ($T)∗ ∧ sfin β. In addition, the last
state ofσ′ is the same as the first one ofσ′′ soσ′ andσ′′ can be fused together. The
fusionσ′ ◦ σ′′ has length strictly less than that ofσ and furthermore, likeσ, satisfies
the formulaα ∧ ($T)∗ ∧ sfin β. But this violates the assumption thatσ was amongst
the shortest such intervals and yields a contradiction.

Theorem 6.2. If a finite-time transition configuration2T ∧ init ∧ finite is satisfiable,
then it is satisfied by some finite interval of length less than|AtomsV |.

Proof. Theorem 5.10 ensures that the finite-time transition configuration2T ∧ init ∧

finite is semantically equivalent to the formula(($T)∗ ∧ init ∧ finite); (T ∧ empty).
This is satisfiable iff for someV-atomα, the formula(($T)∗ ∧ init ∧ finite); (α ∧

T ∧ empty) is satisfiable. Now Lemma 5.24 ensures that this itself is satisfiable iff
the formulas($T)∗ ∧ init ∧ sfin α andα ∧ T ∧ empty are both satisfiable. By
Lemma 6.1, the first of these is satisfiable iff the formula($T)<|AtomsV |

∧ init ∧

sfin α is satisfiable. Lemma 5.23 permits us to assume without loss of generality that
the intervals satisfying the formulas($T)<|AtomsV |

∧ init ∧ sfin α andα ∧ T ∧

empty areV-intervals. We then fuse the intervals together to obtain one of interval
length less than|AtomsV | which satisfies(($T)∗ ∧ init ∧ finite); (T ∧ empty) and
hence also satisfies the semantically equivalent finite-time transition configuration.

The next definition is required for analysing infinite-time transition configurations
and makes use of the earlier Definitions 3.4–3.6 concerning conjunctions and Defini-
tion 5.1 concerning conditional liveness formulas:

Definition 6.3 (Enabled liveness formulas). An enabled liveness formulaEn is a con-
junction of|En| formulas in which for eachk : 1 ≤ k ≤ |En|, the subformulaEn[k]
is of the form3m w, for some state formulaw. The state formulasθEn[1], . . . ,θEn[|En|]

denote the|En| liveness tests inEn so thatEn[k] and3m θEn[k] refer to the same for-
mula.

For anyV-atomα and conditional liveness formulaL, we will also defineEnL,α

to be the enabled liveness formula containing exactly the liveness tests inL which are
enabled byα (recall Definition 5.1). LetS be the set of indices ofL’s implications
which are enabled byα. ThenEnL,α is the conjunction

∧

j∈S
3m θL[j].

For example, supposeV is the set{p, q}, α is theV-atom¬p ∧ q andL is the condi-
tional liveness formula((p ∨ ¬q) ⊃ 3m ¬p) ∧ (q ⊃ 3m (p ≡ ¬q)) ∧ (true ⊃ 3m (p ⊃ q))
mentioned earlier as formula (1) in Section 5. ThenEnL,α is the conjunction3m (p ≡
¬q) ∧ 3m (p ⊃ q).

Lemma 6.4. For anyV-atomα and conditional liveness formulaL in PTLV , the con-
junctionsα ∧ L andα ∧ EnL,α are semantically equivalent.

27

Not surprisingly, the hardest part of the proof of existenceof small models for
infinite-time transition configurations involves finding small models for periodic tran-
sition configurations. Recall that Lemma 5.26 relates the satisfiability of the periodic
transition configuration2T ∧ α ∧ L ∧ 23+(α ∧ L) to that of the PITLV formula
($T)∗ ∧ α ∧ L ∧ © sfin α. We will use the equivalence ofα ∧ L andα ∧ EnL,α

to assist in the analysis of bounded models of($T)∗ ∧ α ∧ L ∧ © sfin α. These can
then be used to obtain a bounded periodic model for the original periodic transition
configuration.

Lemma 6.5. For anyV-atomα and conditional liveness formulaL in PTLV , the fol-
lowing equivalence is valid:

|= ($T)∗ ∧ α ∧ L ∧ © sfin α ≡ ($T)∗ ∧ α ∧ EnL,α ∧ © sfin α.

Proof. This readily follows from the earlier Lemma 6.4 concerning the semantic equiv-
alence of the formulasα ∧ L andα ∧ EnL,α.

The next Lemma 6.6 shortens the nonempty, finite model expressed by the formula
($T)∗ ∧ α ∧ En ∧ © sfin α to one having a bounded length by adapting the technique
presented earlier in Lemma 6.1 concerning a bounded model for the formula($T)∗ ∧

α ∧ sfin β.

Lemma 6.6. For any V-atom α and enabled liveness formulaEn in PTLV , if the
formula ($T)∗ ∧ α ∧ En ∧ © sfin α is satisfiable, then it is satisfied by a interval
having interval length at most(|En|+ 1) |AtomsV |.

Proof. If the formula($T)∗ ∧ α ∧ En ∧ © sfin α is satisfiable, then by Lemma 5.23
there exists some satisfyingV-interval. We can fuse|En| + 1 copies of this interval
together to obtain aV-interval σ which satisfies the formula

(

($ T)∗ ∧ α ∧ En ∧

finite
)|En|+1

∧ © sfin α. It is not hard to check thanσ itself satisfies the original
formula($T)∗ ∧ α ∧ En ∧ © sfin α since each liveness test inEn is satisfied some-
where inσ prior to the last state. Furthermore, there exist a sequenceof |En| V-atoms
γ1, . . . , γ|En| such that for eachj : 1 ≤ j ≤ |En|, the state formulaγj ∧ θEn[j]

is satisfied by some state prior to the last one and theV-interval σ satisfies the next
formula:

α ∧
(

($T)∗; γ1?; . . . ; ($T)∗; γ|En|?; ($T)+
)

∧ © sfin α.

If a gap between two of the|En| selected states satisfying their respective liveness tests
has interval length of at least|AtomsV |, then within the gap, some state occurs twice.
Such a gap can then be shortened in the manner of Lemma 6.1. By means of this we
obtain from theV-intervalσ anotherV-interval having bounded length and satisfying
the formula below:

α ∧
(

($T)<|AtomsV |; γ1?; . . . ; ($T)<|AtomsV |; γ|En|?; ($T)≤|AtomsV |
)

∧ © sfin α.

The resulting new interval is nonempty and has interval length not exceeding(|En| +
1) |AtomsV |. Moreover it still satisfies($T)∗ ∧ α ∧ En ∧ © sfin α.

Lemma 6.7. If the formula($T)∗ ∧ α ∧ L ∧ © sfin α is satisfiable, then it is satisfi-
able on a finite, nonempty interval with interval length at most (|L|+ 1) |AtomsV |.

28

Proof. From Lemma 6.6 we have that if the formula($T)∗ ∧ α ∧ EnL,α ∧ © sfin α

is satisfiable, then it is satisfiable on a finite, nonempty interval having interval length
at most(|EnL,α| + 1) |AtomsV |. Lemma 6.4 ensures that the conjunctionsα ∧ L

andα ∧ EnL,α are semantically equivalent. In addition, we have|EnL,α| ≤ |L|.
Therefore, if the formula($ T)∗ ∧ α ∧ L ∧ © sfin α is satisfiable, then it is satisfiable
on a finite, nonempty interval with interval length at most(|L|+ 1) |AtomsV |.

Lemma 6.8. If the periodic transition configuration2T ∧ α ∧ L ∧ 23
+(α ∧ L)

is satisfiable, then it is satisfied by a periodic interval with period of interval length at
most(|L|+ 1) |AtomsV |.

Proof. Lemma 5.26 ensures that if the periodic transition configuration is satisfiable,
then the formula($T)∗ ∧ α ∧ L ∧ © sfin α is satisfiable. By Lemma 6.7, if this
is satisfiable, then it has a satisfying interval having interval length at most(|L| +
1) |AtomsV |. Lemma 5.23 permits us to assume without loss of generality that the
interval is aV-interval. We can then fuseω copies of it together to obtain a periodic
interval which has a period with interval length at most(|L| + 1) |AtomsV | and also
satisfies the formula(($T)∗ ∧ α ∧ L)ω. Theorem 5.17 establishes that this formula is
equivalent to the original periodic transition configuration.

Theorem 6.9. If the infinite-time transition configuration2T ∧ init ∧ 23+ L is
satisfiable, then it is satisfied by an ultimately periodic interval consisting of an ini-
tial segment having interval length less than|AtomsV | fused with a periodic interval
having a period with interval length of at most(|L|+ 1) |AtomsV |.

Proof. If some interval satisfies the formula2T ∧ init ∧ 23+ L, then Lemma 5.11
ensures that the interval also satisfies the next semantically equivalent formula:

(($T)∗ ∧ init ∧ finite);
∨

α∈AtomsV
(2T ∧ α ∧ L ∧ 2 3+(α ∧ L)). (10)

Lemma 5.24 and simple temporal reasoning establish that forsomeV-atomα the two
formulas($T)∗ ∧ init ∧ sfin α and2T ∧ α ∧ L ∧ 23+(α ∧ L) are satisfiable. By
Lemma 6.1, the first formula is satisfiable in some intervalσ having interval length less
than|AtomsV |. Lemma 6.8 yields some periodic intervalσ′ which satisfies the second
formula and possesses a period with interval length of at most (|L| + 1) |AtomsV |.
Lemma 5.23 permits us to assume thatσ andσ′ areV-intervals. Therefore the last
state ofσ is the same as the first one ofσ′ since both states satisfyα. The fusion
σ ◦ σ′ is itself ultimately periodic and satisfies the formula (10). Hence it also satisfies
the semantically equivalent original infinite-time transition configuration2T ∧ init ∧

23+ L as well. In addition, the intervalσ ◦ σ′ has an initial segment having interval
length less than|AtomsV | fused with a periodic interval with period of interval length
at most(|L|+ 1) |AtomsV |.

7 Decomposition of transition configurations

We now prove the two Theorems 7.1 and 7.4 which respectively relate the satisfiability
of finite-time and infinite-time transition configurations with simple interval-oriented
tests involving finite time. These theorems are later used inSection 8 as part of the jus-
tification of the PTL decision procedures and in Section 10 aspart of the completeness
proof of an axiom system for PTL.

29

Theorem 7.1(Decomposing finite-time transition configurations). The following are
equivalent:

(a) The finite-time configuration2T ∧ init ∧ finite is satisfiable.

(b) For someV-atomsα andβ, the three formulas below are satisfiable:

α ∧ init ($T)∗ ∧ α ∧ sfin β T ∧ β ∧ empty .

Proof. Theorem 5.10 ensures that the finite-time configuration is semantically equiva-
lent to the next PITLV formula:

(($T)∗ ∧ init ∧ finite); (T ∧ empty).

Now simple interval-based reasoning guarantees that this is satisfiable iff for someV-
atomsα andβ, the next formula is satisfiable:

(($T)∗ ∧ α ∧ init ∧ finite); (T ∧ β ∧ empty).

Lemma 5.24 ensures that this is itself satisfiable iff the next two formulas are:

($T)∗ ∧ α ∧ init ∧ sfin β T ∧ β ∧ empty .

Finally, simple temporal reasoning ensures that the first ofthese is itself is satisfiable
iff the following two formulas are satisfiable:

α ∧ init ($T)∗ ∧ α ∧ sfin β.

We now turn to decomposing an infinite-time transition configuration:

Lemma 7.2. The infinite-time transition configuration2T ∧ init ∧ 23+ L is satisfi-
able iff for someV-atomsα andβ, the following formulas are satisfiable:

($T)∗ ∧ α ∧ init ∧ sfin β ($T)∗ ∧ β ∧ EnL,β ∧ © sfin β. (11)

Proof. Theorem 5.29 ensures that the infinite-time configuration issatisfiable iff the
next PITLV formula is satisfiable (in some finite-time interval):

(

($T)∗ ∧ init ∧ finite
)

;
(

($T)∗ ∧ L ∧ more ∧ finite ∧ (~V ← ~V)
)

.

Simple interval-based temporal reasoning ensures that this itself is satisfiable iff for
someV-atomsα andβ, next formula is satisfiable:

(

($T)∗ ∧ α ∧ init ∧ finite
)

;
(

($ T)∗ ∧ β ∧ L ∧ © sfin β
)

. (12)

Now Lemma 6.4 guarantees the semantic equivalence of the conjunctionsβ ∧ L and
β ∧ EnL,β. We therefore can replaceL byEnL,β in formula (12). Finally, Lemma 5.24
yields that the resulting formula is itself satisfiable iff the two formulas in (11) are
satisfiable.

The next lemma concerning enabled liveness formulas is shortly used in Theo-
rem 7.4 to analyse the satisfiability of infinite-time configurations:

Lemma 7.3. For anyV-atomα and enabled liveness formulaEn, the following are
equivalent:

30

(a) The formula($T)∗ ∧ α ∧ En ∧ © sfin α is satisfiable.

(b) For some|En| V-atomsγ1, . . . ,γ|En| (not necessarily distinct), the following are
all satisfiable:

($T)∗ ∧ α ∧ © sfin α

for eachγi : ($T)∗ ∧ α ∧ sfin γi γi ∧ θEn [i] ($T)∗ ∧ γi ∧ sfin α.

Proof. Induction on the length ofEn and simple interval-based reasoning can be used
to demonstrate that the formula($T)∗ ∧ α ∧ En ∧ © sfin α is satisfiable iff the
formula($T)∗ ∧ α ∧ © sfin α is satisfiable and also for someV-atomsγ1, . . . ,γ|En|,
for eachγi the following formula is satisfiable:

($T)∗ ∧ α ∧ 3(γi ∧ θEn [i]) ∧ sfin α. (13)

This guarantees that for each liveness testθEn [i] in En, theV-atomα can reach some
V-atomγi which satisfiesθEn[i] and thisV-atomγi itself can reach back toα. We can
re-express (13) as the semantically equivalent formula below:

(

($T)∗ ∧ α ∧ finite
)

;
(

($T)∗ ∧ γi ∧ θEn[i] ∧ sfin α
)

.

Lemma 5.24 ensures that this is satisfiable iff the next two formulas are:

($T)∗ ∧ α ∧ sfin γi ($T)∗ ∧ γi ∧ θEn[i] ∧ sfin α.

The second one is satisfiable iff the two formulas shown beloware satisfiable:

γi ∧ θEn[i] ($ T)∗ ∧ γi ∧ sfin α.

Theorem 7.4(Decomposing infinite-time transition configurations). The following are
equivalent:

(a) The infinite-time configuration2T ∧ init ∧ 23+ L is satisfiable.

(b) For someV-atomsα, β andγ1, . . . , γ|EnL,β| (not necessarily distinct), the fol-
lowing are all satisfiable:

α ∧ init ($T)∗ ∧ α ∧ sfin β ($ T)∗ ∧ β ∧ © sfin β

for eachγi : ($T)∗ ∧ β ∧ sfin γi γi ∧ θ(EnL,β, i) ($T)∗ ∧ γi ∧ sfin β.

Proof. Lemma 7.2 establishes that the infinite-time configuration2T ∧ init ∧ 23+ L

is satisfiable iff there exist someV-atomsα andβ for which the next two formulas are
satisfiable:

($T)∗ ∧ α ∧ init ∧ sfin β ($T)∗ ∧ β ∧ EnL,β ∧ © sfin β. (14)

Now simple temporal reasoning ensures that the first of theseis itself is satisfiable iff
the following two formulas are satisfiable:

α ∧ init ($T)∗ ∧ α ∧ sfin β.

Furthermore, Lemma 7.3 guarantees that the second formula in (14) is satisfiable iff
the formula($T)∗ ∧ β ∧ © sfin β is satisfiable and furthermore for someV-atomsγ1,
. . . ,γ|EnL,β| (not necessarily distinct), the following are all satisfiable for eachγi:

($T)∗ ∧ β ∧ sfin γi γi ∧ θ(EnL,β, i) ($ T)∗ ∧ γi ∧ sfin β.

31

Type of transition config. Max. # of variables to represent a state

Finite-time |V |
Infinite-time (see§8.1) 2|V |+ |L|
Infinite-time (see§8.2) |V |+ 2|L|
Infinite-time (also in§8.2) |V |+ |L|+ ⌈log2(|L|+ 1)⌉

Table 5: Number of variables used by decision procedures in BDDs

8 Decision procedures

We now describe decision procedures for finite-time and infinite-time transition config-
urations. They are based on binary decision diagrams (BDDs)[10, 11] which provide
an efficient basis for performing many computational tasks involving reductions to rea-
soning about formulas in propositional logic. The approachtaken here demonstrates
how to use interval-based techniques to naturally describeand analyse PTL decision
procedures. We had little difficulty implementing ones for finite and infinite time us-
ing the popular Colorado University Decision Diagram Package (CUDD) [24] devel-
oped by Somenzi. Our prototype tool consists of a front-end coded in the CLISP [20]
implementation of Common Lisp [1] as well as a back-end codedin Perl [76]. The
back-end employs a Perl-oriented interface to CUDD writtenby Somenzi and called
PerlDD [77]. The front-end accepts arbitrary PTL formulas and converts them to transi-
tion configurations using methods later described in Sections 11 and 12. The transition
configurations are then passed to the back-end which analyses them using BDDs. In
this section we describe the basis for performing this analysis.

The remainder of this section assumes that the reader already has some familiarity
with BDDs.

For the convenience of readers, Table 5 gives a summary of themaximum number
of variables required to represent an individual state in BDDs for the three kinds of
decision procedures later discussed as well as for a variantof the third one. We include
this table here since it reflects the size of the state space and therefore gives some idea
of the relative efficiency of the techniques. For example, the decision procedure for
finite time has a state space containing up to2|V | states. In contrast, the first decision
procedure for infinite time requires more than twice as many variables and can there-
fore take significantly more time and space to run. On the other hand, the remaining
decision procedures for infinite time only require extra variables in proportion to the
number of liveness tests. In each decision procedure, as in typical applications of BDD-
based reachability analysis, some of the constructed BDDs represent binary relations
between pairs of states and therefore require twice the number of variables.

Our algorithm for finite-time transition configurations adapts methods forsym-
bolic state space traversaldescribed by Coudert, Berthet and Madre [21–23] (see also
Kropf [54]) for use with BDD-based representations of formulas in propositional logic.
Furthermore, it greatly benefits from closely related methods first employed by McMil-
lan in symbolic model checking [14,19,62] which also include the automatic generation
of counterexamples for unsatisfiable formulas and, similarly, witnesses for satisfiable
ones.

Recall that Theorem 7.1 shows that the finite-time transition configuration2T ∧

init ∧ finite is satisfiable iff for someV-atomsα andβ, the next three formulas are
satisfiable:

32

α ∧ init ($T)∗ ∧ α ∧ sfin β T ∧ β ∧ empty .

We can readily search for suitableV-atoms using BDDs. Three BDDsΓ1, Γ2 andΓ3

are initially constructed. In what follows, please recall the notion=| X introduced in
Definition 3.1 to denote that the formulaX is satisfiable. We first describe the roles of
the BDDsΓ1, Γ2 andΓ3 before actually constructing them:

• The BDD Γ1 represents the state formulainit and hence the set ofV-atoms
satisfyinginit (i.e., the set{α ∈ AtomsV : α |= init}). This is the same as the
set{α ∈ AtomsV : =| α ∧ init}.

• The second BDDΓ2 captures all pairs ofV-atoms corresponding to unit (i.e.,
two-state) intervals satisfyingT . In other words, it corresponds to the set{〈α, β〉 ∈
Atoms2

V : αβ |= T}. This is the same as the set{〈α, β〉 ∈ Atoms2
V : =| T ∧

α ∧ skip ∧ sfin β}.

Note that the formulaT ∧ α ∧ skip ∧ sfin β can also be expressed using the
operator$ as$ T ∧ α ∧ sfin β. Some readers may prefer this second form since
it more closely resembles the frequently occurring formula($T)∗ ∧ α ∧ sfin β.

• The third BDDΓ3 captures the behaviour ofT in an empty interval. Therefore
Γ3 represents the set of allV-atoms satisfying the formulaT ∧ empty (i.e., the
set{β ∈ AtomsV : β |= T}). This is the same as the set{β ∈ AtomsV : =|

T ∧ β ∧ empty}.

In the course of manipulating the BDDs we make use of two finitesets of proposi-
tional variables to represent binary relations between states. They include the original
ones (e.g.,p, r1, . . . , r4) as well as primed versions (e.g.,p′, r′1, . . . , r′4). Therefore,
the BDDs contain at most2|V | distinct variables.

For convenience, we often do not distinguish between a BDD and the propositional
logic formula it represents.

Let V andV ′ respectively denote the two sets of variables. We now construct the
BDDsΓ1, Γ3 andΓ2 as follows:

• Let Γ1 be the formulainit.

• ObtainΓ2 from the formulaT by replacing all variables in the scope of any©
constructs by corresponding ones inV ′and then deleting all© operators (but not
the associated operands) to obtain a formula in conventional propositional logic.
We refer to this process of constructingΓ2 from T by the termflattening.

• ObtainΓ3 from the formulaT by replacing each© construct byfalse.

The BDDsΓ1 andΓ3 both only can contain variables inV whereasΓ2 can contain
variables inV andV ′.

SupposeT andinit are the following formulas mentioned earlier in Subsection3.3
(where the variablew is used there in place ofinit):

T : (r1 ≡ (p ∨ © r1)) ∧ (r2 ≡ (¬r1 ∨ © r2))
∧ (r3 ≡ (¬p ∨ © r3)) ∧ (r4 ≡ (¬r3 ∨ © r4))

init : ¬r2 ∧ ¬r4.

33

Here are the associatedΓ1, Γ2 andΓ3 for theseT andinit :

Γ1 : ¬r2 ∧ ¬r4

Γ2 : (r1 ≡ (p ∨ r′1)) ∧ (r2 ≡ (¬r1 ∨ r′2))
∧ (r3 ≡ (¬p ∨ r′3)) ∧ (r4 ≡ (¬r3 ∨ r′4))

Γ3 : (r1 ≡ (p ∨ false)) ∧ (r2 ≡ (¬r1 ∨ false))
∧ (r3 ≡ (¬p ∨ false)) ∧ (r4 ≡ (¬r3 ∨ false)).

The connection between the BDDs forΓ1 andΓ3 and the previously mentioned
sets ofV-atoms they are meant to capture is straightforward. In order to justify the
less intuitive relationship between the construction forΓ2 and the earlier associated set
of pairs ofV-atoms, we shortly present Lemma 8.2 relatingΓ2 with T . However, the
following lemma concerning NL1 formulas is first given since it is used in the proof of
Lemma 8.2.

Lemma 8.1. The following are equivalent for anyNL1 formulaT :

(a) The formulaT is satisfiable in some nonempty interval.

(b) The formulaskip ∧ T is satisfiable.

Proof. (a) ⇒ (b): Suppose some nonempty intervalσ satisfies the formulaT . Now
σ contains at least two states. Letσ′ denote the subinterval consisting the first two
states inσ. Now σ′ satisfies the formulaskip. Furthermore, the formulaT is in NL1.
Lemma 5.3 consequently ensures that the intervalσ′, like σ, satisfies the formulaT
because both two intervals share the same first two states. Thereforeσ′ satisfies the
formulaskip ∧ T .

(b)⇒ (a): If some intervalσ satisfies the PTL formulaskip ∧ T , thenσ is clearly
nonempty and also satisfiesT .

Lemma 8.2. For anyV-atomsα andβ, the following are equivalent:

(a) The formulaT ∧ α ∧ skip ∧ sfin β is satisfiable (i.e.,αβ |= T).

(b) The propositional logic formulaΓ2 ∧ α ∧ βV ′

V is satisfiable.

Proof. (a)⇒ (b): Suppose the formulaT ∧ α ∧ skip ∧ sfin β is satisfiable. Then the
flattening ofT into Γ2 readily yields that the formulaΓ2 ∧ α ∧ βV ′

V is satisfiable.
(b) ⇒ (a): If the propositional logic formulaΓ2 ∧ α ∧ βV ′

V is satisfiable, then
the flattening of© constructs inΓ2 readily yields that the NL1 formulaT ∧ α ∧ © β

is satisfiable. Clearly any interval satisfying it has at least two states. Hence by the
previous Lemma 8.1 the formulaskip ∧ T ∧ α ∧ © β is satisfiable. Simple temporal
reasoning then ensures that the semantically equivalent formulaT ∧ α ∧ skip ∧ sfin β

is also satisfiable.

We useΓ2 together with the first BDDΓ1 to iteratively calculate a sequence of
BDDs∆0, . . . ,∆k, . . . so that for anyk, ∆k describes allV-atoms which can be reached
from one which satisfiesinit in exactlyk steps. In other words,∆k represents the
following set:

{ β ∈ AtomsV : for someα ∈ AtomsV , =| ($T)k
∧ α ∧ init ∧ sfin β }.

34

We set∆0 to beΓ1. Therefore, every variable in∆0 is in V. Each∆k+1 is calculated to
be semantically equivalent to the next quantified propositional logic formula in which
renaming ensures that all free variables are inV:

(

∃V. (∆k ∧ Γ2)
)V

V ′
. (15)

Because of the final renaming, the sole variables left in the BDD ∆k+1 are elements
of V. The only BDD operations required to calculate∆k+1 from (15) are logical-and,
existential quantification (which actually yields a BDD representing a semantically
equivalent quantifier-free formula) and renaming which areall standard ones.

Remark 8.3. Within the CUDD system, the entire calculation for obtaining∃V. (∆k ∧

Γ2) can even be done by a single CUDD operation tailored to handlethis specific
kind of common BDD manipulation. Furthermore, the renamingof variables inV ′ to
those inV is actually achieved by taking the BDD obtained for∃V. (∆k ∧ Γ2) and then
performing a single CUDD operation which yields another BDDin which the variables
in V are swapped with the corresponding ones inV ′.

For any given∆k which has been calculated, we next determine the logical-and of
it with Γ3 (i.e., the BDD∆k ∧ Γ3) and then proceed as follows:

1. If the logical-and is not false, then there is someV-atomβ satisfyingT ∧ empty

which can be reached ink steps from aV-atomα satisfyinginit . Therefore the
next three formulas are all satisfiable:

α ∧ init ($ T)k
∧ α ∧ sfin β T ∧ β ∧ empty .

Now the second formula ensures the satisfiability of the formula ($T)∗ ∧ α ∧

sfin β. Therefore Theorem 7.1 can be invoked to obtain the satisfiability of the
original finite-time transition configuration2T ∧ init ∧ finite. We therefore do
not need to calculate any further∆k ’s.

2. Otherwise, the logical-and is false so we must continue toiterate.

During the iteration process, we maintain a BDD representing the set of allV-atoms
so far reachable from one satisfyinginit . This BDD corresponds to the formula
∨

0≤i≤k ∆i which equals the next set:

{ β ∈ AtomsV : for someα ∈ AtomsV , =| ($ T)≤k
∧ α ∧ init ∧ sfin β }.

If no suchβ exists which also satisfiesT ∧ empty , the BDD eventually converges to
a value corresponding to the set of allV-atoms reachable fromV-atoms which satisfy
init . The following set denotes this:

{ β ∈ AtomsV : for someα ∈ AtomsV , =| ($T)∗ ∧ α ∧ init ∧ sfin β }. (16)

We then terminate the algorithm with a report that the original transition configuration
2T ∧ init ∧ finite is unsatisfiable. Even though Theorem 6.2 bounds the number of
iterations, in some cases convergence takes too long. This necessitates a preset iteration
limit or a facility for manual intervention in order to forcepremature termination of the
loop. It can also happen that memory is exhausted before termination occurs.

If for somen, the algorithm succeeds aftern iterations and determines that the
transition configuration is satisfiable, then a sampleV-interval havingn + 1 states and

35

which satisfies the formula can be calculated. This involvesstandard BDD methods
for constructing such examples, also referred to aswitnesses, and is done by working
backward through the BDDs∆n, ∆n−1, . . .∆0 to find a suitable sequence ofn + 1
V-atoms to serve as aV-interval satisfying the transition configuration. The algorithm
can be also readily adapted to only determine values for a subset of the variables inV.

8.1 Dealing with infinite time

For testing an infinite-time transition configuration2T ∧ init ∧ 23+ L, we can make
use of Theorem 5.29 which guarantees that this formula is satisfiable iff the next PTLV
formula is satisfiable:

2m T ∧ init ∧ 3(L ∧ finite ∧ more ∧ (~V ← ~V)). (17)

The previously described satisfiability algorithm for finite-time can therefore be uti-
lized. However, we must first transform this second formula to some suitable finite-
time transition configuration using techniques later described in Sections 11 and 12 for
reducing arbitrary PTL formulas to them.

Quite sophisticated and efficient algorithms can presumably be employed to anal-
yse the infinite-time transition configuration by adapting existing BDD-based tech-
niques such as those we will later mention in Subsection 8.2 when we consider our
second decision procedure for infinite time. However, we first present a method which
is relatively straightforward to describe and which we implemented with not much
more difficulty than for the version for finite-time transition configurations. Within
this approach for infinite time, once a formula is determinedto be satisfiable, it is rela-
tively easy to determine a witness of it. The decision procedure for finite time can even
be used to naturally justify some of the interval-based reasoning involved. However, a
major computational disadvantage of this particular decision procedure for infinite time
is that it requires the introduction of a significant number of extra variables, namely,
|V | + |L|. Therefore the total number of variables used to represent asingle state is
2|V | + |L|, and the number to represent a binary relation between pairsof states is
double this. Thus at least twice as many variables are required as for the decision pro-
cedure for finite time. On the other hand, the second, more intricate decision procedure
later presented in Subsection 8.2 requires at most2|L| extra variables and possibly
fewer. Consequently, this second infinite-time decision procedure appears to lend itself
to more efficient implementations, although we ourselves have not yet carried out one.

The basic idea in the first, simpler decision procedure for infinite time is to use
BDDs to solve for atomsα andβ which ensure that the following three formulas are
satisfied:

α ∧ init ($T)∗ ∧ α ∧ sfin β ($T)+ ∧ β ∧ L ∧ (~V ← ~V). (18)

The third formula guarantees that the atomβ has some associated periodic transition
configuration (see the earlier Lemma 5.26). Note the use of chop-plus here in($T)+

to force a nonempty interval. As in the case for finite-time, we first calculate a BDD
which denotes the previously described set (16) of all atomsreachable in 0 or more
steps viaT from one satisfying the formulainit . Let us call this BDD∆′.

The next step is to search for some elementβ of ∆′ with an associated periodic tran-
sition configuration. This involves finding a nonempty finiteinterval satisfying the third
formula in (18) containing as conjuncts bothL and~V ← ~V . However these conjuncts
cannot be directly used for reachability analysis since neither is expressed by means of

36

an accessibility relation between adjacent states. We remedy this by constructing two
suitable groups of formulas. Each contains three formulas and does permit the required
reachability analysis:

• The first group consists of the state formulainit ′, the transition configurationT ′

and the state formulaw′ and ensures that the formula~V ← ~V holds.

• The second group is similarly made up of the state formulainit ′′, the transition
configurationT ′′ and the state formulaw′′ and ensures thatL is true.

The details of constructions will be given shortly. The techniques for handling~V ← ~V

are somewhat easier to understand and we have therefore associated them with the first
of the two groups of formulas. After obtaining both groups, we can search for a suitable
atomβ by doing the following:

1. Use BDDs to calculate all atoms in the state formula∆′
∧ init ′ ∧ init ′′.

2. Next, determine the BDD equalling the set of all atoms reachable by one or more
steps from any of these via the transition configurationT ∧ T ′

∧ T ′′.

3. Finally, logically-and the resulting BDD with the state formulaw′
∧ w′′ to obtain

the set of all atoms which can serve asβ.

Let us now look in more detail at the construction of each group of three formulas
and how they work.

Construction of first group of formulas init ′, T ′ and w′ The first group of three
formulas must ensure that the following implication concerning finite time is valid:

|= ($T ′)∗ ∧ init ′ ∧ sfin w′ ⊃ ~V ← ~V . (19)

Without loss of generality, assume that the variables in thesetV arep1, . . . ,p|V |. Let
q1, . . . , q|V | be |V | distinct propositional variables not occurring inV. Then letinit ′,
T ′ andw′ be the following formulas:

init ′ : q1 ≡ p1 ∧ · · · ∧ q|V | ≡ p|V |

T ′ : (© q1) ≡ q1 ∧ · · · ∧ (© q|V |) ≡ q|V |

w′ : same asinit ′.

The purpose of eachqi is to record the initial value of the correspondingpi so as to
ensure that the initial and final values thepi are equal. It is not hard to see that the use of
the extra propositional variablesq1, . . . ,q|V | together with the use of the formulasinit ′,
T ′ andw′ force eachpi’s initial and final values to be equal. The desired behaviour
for any pair of variablespi andqi is captured by the valid implication now given which
contains just two propositional variablesp andq:

|= q ≡ p ∧ 2m ((© q) ≡ q) ∧ sfin (q ≡ p) ⊃ p← p.

Note that the instancep← p of the binarytemporal assignmentoperator← is, follow-
ing the definition earlier in Table 1, the same as the PTL formula finite ⊃ (fin p) ≡
p. It tests thatp’s initial and final values are equal in finite intervals. Consequently, the
implication (19) involving the variables inV andq1, . . . , q|V | is indeed valid. In fact,
for any given triple ofT ′, init ′ andw′ we can employ the PTL decision procedure for

37

finite time (described later in Section 12) to check validityof the next formula which
is semantically equivalent to (19) in finite intervals:

|= 2m T ′
∧ init ′ ∧ sfin w′ ⊃ ~V ← ~V .

Here we make use of Lemma 5.4 concerning the semantical equivalence of the formulas
2m T and($T)∗.

It is straightforward to add a kind of existential quantification to PTL and PITL
to hide one or more variables. In the case, of PTL, the resulting logic is called com-
monly referred to asQuantified PTL(QPTL) or alternatively asQuantified Proposi-
tional Linear-Time Temporal Logic(QPLTL) (see, e.g., [25, 51, 58]). For any interval
σ, propositional variablep and formulaA, we say thatσ satisfies the formula∃p. A

iff there exists some intervalσ′ which is identical toσ in its length and assignments to
variables, except that the values inσ′ for p can be different. If we use existential quan-
tification around the lefthand formula in the valid implication (19) to hide the variables
q1, . . . , q|V |, then the resulting formula (itself in quantified PITL) and the one on the
righthand side of the implication are in fact semantically equivalent in finite intervals:

|= finite ⊃
(

∃q1 . . . q|V |.
(

($T ′)∗ ∧ init ′ ∧ sfin w′
)

)

≡ ~V ← ~V . (20)

Construction of second group of formulasinit ′′, T ′′ and w′′ The second group
must ensure the implication below concerning finite time is valid:

|= ($ T ′′)∗ ∧ init ′′ ∧ sfin w′′ ⊃ L. (21)

Now let u1, . . . , u|L| be |V | distinct propositional variables not occurring inV nor
amongstq1, . . . ,q|V |. Here are the definitions ofinit ′′, T ′′ andw′′:

init ′′ : u1 ≡ ¬ηL[1] ∧ · · · ∧ u|L| ≡ ¬ηL[|L|]

T ′′ : (©u1) ≡ (u1 ∨ θL[1]) ∧ · · · ∧ (©u|L|) ≡ (u|L| ∨ θL[|L|])

w′′ : u1 ∧ · · · ∧ u|L|.

The purpose of eachui is to guarantee that the liveness requirements imposed by the
conditional liveness formulaL’s conjunctηL[i] ⊃ 3m θL[i] are fulfilled. Everyui is
initially set to the value of¬ηL[i]. Subsequently, the values of the state formulasui and
θL[i] in a state uniquely determine the value of eachui in the next state. We now show
that the temporal assignmentui ← (ηL[i] ⊃ 3m θL[i]) is true for the overall interval.
There are two cases to consider:

• If the enabling testηL[i] is initially false, thenui is initially set to true and remains
so for the rest of the interval. In this case we haveui ← true. Hence, we also
trivially haveui ← (ηL[i] ⊃ 3m θL[i]) since¬ηL[i] is initially true and hence so is
the implicationηL[i] ⊃ 3m θL[i].

• Otherwise, ifηL[i] is initially true, thenui is initially set to false and is true in the
last state iff the liveness testθL[i] is true sometime strictly before the last state.
In this case we haveui ← 3m θL[i], and consequently alsoui ← (ηL[i] ⊃ 3m θL[i])
sinceηL[i] is initially true.

The next valid implication combines the two cases:

|= finite ∧ (ui ≡ ¬ηL[i]) ∧ 2m
(

(©ui) ≡ (ui ∨ θL[i])
)

⊃ ui ← (ηL[i] ⊃ 3m θL[i]).

38

It is natural to view this implication as a substitution instance of a simpler PTL formula
which is itself valid and has only three propositional variablesp1, p2 andp3. Herep1

representsηL[i], p2 representsθL[i] andp3 representsui:

|= finite ∧ (p3 ≡ ¬p1) ∧ 2m
(

(© p3) ≡ (p3 ∨ p2)
)

⊃ p3 ← (p1 ⊃ 3m p2).

One benefit of this formula is that it can be readily tested forvalidity using the decision
procedure for finite time extended to handle full PTL as described later in Section 12.
We can also employ the decision procedure to check the validity of (21) for any given
instances ofL, T ′′, init ′′ andw′′. Lemma 5.4, which deals with the semantical equiv-
alence of the formulas2m T and($T)∗, permits us to express (21) in PTL as follows:

|= 2m T ′′
∧ init ′′ ∧ sfin w′′ ⊃ L.

Below is a formula which uses existential quantification to hide u1, . . . , u|L| and
thereby expresses the equivalence of the two sides in finite intervals.

|= finite ⊃
(

∃u1 . . . u|L|.
(

($T ′′)∗ ∧ init ′′ ∧ sfin w′′
)

)

≡ L. (22)

This is similar to the earlier implication (20) concerning~V ← ~V .
We can now regard the BDD∆′, which represents the set (16), as a state formula

and locate suitable periodic transition configurations by calculating the set of all atoms
reachable from∆′ in one or more steps using the binary relation over atoms associated
with the NL1 formulaT ∧ T ′

∧ T ′′. This is done in a similar manner as before. Next,
the resulting BDD is logically and-ed with the testw′

∧ w′′. Let the BDD∆′′ denote
the resulting set of atoms. An atomβ is consequently in∆′′ iff the following formula
is satisfiable:

($(T ∧ T ′
∧ T ′′))+ ∧ ∆′

∧ init ′ ∧ init ′′ ∧ sfin (β ∧ w′
∧ w′′). (23)

The reasoning so far given ensures that this is satisfiable iff the original conjunction
associated with a periodic transition configuration (i.e.,the third formula in (18)) is
itself satisfiable. If we use existential quantification to hide the variablesq1, . . . , q|V |

andu1, . . . ,u|L| in the formula (23) (as in formulas (20) and (22)) and we also omit the
atomβ, then the resulting formula is semantically equivalent to the one shown below:

($T)+ ∧ ∆′
∧ (~V ← ~V) ∧ L.

Furthermore, the BDD∆′′ can be seen to be the set of all atomsβ in ∆′ for which the
following formula is satisfiable in finite time.

($T)+ ∧ β ∧ L ∧ (~V ← ~V).

Hence∆′′ does not equalfalse iff the three formulas in (18) are all satisfiable. As
we mentioned earlier, they in turn are satisfiable iff the original infinite-time transition
configuration is satisfiable.

8.2 A decision procedure for infinite time motivated by automata

The BDD-based decision procedure for infinite-time just presented has been success-
fully used on a range of simple examples. However, a different and presumably more
efficient decision procedure for infinite-time transition configurations can be developed

39

which reflects the connection between PTL formulas and the important class of finite-
state automata over infinite words known as nondeterministic Büchi automata [12] (see
also Thomas [86, 87]). They are like conventional nondeterministic finite-state au-
tomata but have a set of accepting states with a different kind of acceptance condition.
An infinite word is accepted iff there exists a run for it in which some element of the
set of accepting states occurs infinitely often. The link between Büchi automata and
temporal logic was originally observed by Vardi, Wolper andSistla [88,89,96].

Our second decision procedure for infinite-time transitionconfigurations can alter-
natively be obtained by an analysis which totally avoids reference to Büchi automata.
We instead construct from an infinite-time transition configuration the previously dis-
cussed formula (17) which can be tested for satisfiability infinite-time intervals. How-
ever, rather than using this formula itself, we transform itinto another one which has a
simpler kind of conditional liveness formula. The result ofthe transformation can be
checked for finite-time satisfiability.

The decision procedure has the advantage over the previous one for infinite time
in Subsection 8.1 of only requiring for the representation of states at most2|L| extra
variables (i.e.,|V | + 2|L| variables in total), rather than|V | + |L| extra variables. It
therefore is potentially much more efficient to execute. However, it is more compli-
cated to explain and implement and we do not yet have a workingversion. The earlier
decision procedures for finite and infinite time can be used tocheck some of the steps
in the construction as we later show.

Because of the popularity of Büchi automata, in most of the presentation of our
decision procedure we will use PTL formulas which have a close structural similarity
to them. Nevertheless, unlike the work of Vardi, Wolper and Sistla, an understanding
of the role of the corresponding PTL formulas does not at all require the formal in-
troduction of such automata. Rather, we can simply view our approach as converting
an infinite-time transition configuration into another in which the conditional liveness
formula is expressible as a state formula. Such transition configurations are easier to
analyse. Consequently, we omit a formal definition of Büchiautomata here. Later on,
Remark 8.4 outlines the alternative approach which totallyavoids Büchi automata.

The presentation of this decision procedure can be skipped without a loss of conti-
nuity in the rest of this work.

Let us now consider the construction in more detail. We can take an infinite-time
transition configuration with transition formulaT , initial conditioninit and conditional
liveness formulaL and transform it into another transition configuration closely related
to conventional nondeterministic Büchi automata:

2(T ∧ TL) ∧ (init ∧ initL) ∧ 2 3
+ wL. (24)

Here the transition formulaTL and state formulasinitL and wL are specially con-
structed from the conditional liveness formulaL and do not depend onT and init.
This is not an actual finite-state automaton since there is nodivision of variables into
those which serve as the automaton state and those which serve as the input. Al-
though it is possible to existentially quantify over some ofthe variables to sharpen the
automata-theoretic connection, we will not do this here.

Note that strictly speaking the new transition configuration (24) is not a well-
formed infinite-time transition configuration because the state formulawL is itself not
a well-formed conditional liveness formula (recall Definition 5.1). However,wL is
semantically equivalent to the simple conditional liveness formula¬wL ⊃ 3m false.
This equivalence can be justified as a substitution instanceof the next PTL equivalence

40

which is itself valid:
|= p ≡ (¬p ⊃ 3m false). (25)

The validity of the equivalence (25) uses the fact that the subformula3m false (the same
as3(more ∧ false) by the definition of3m in Table 1) is itself semantically equivalent
to 3 false and hence also tofalse. This is combined together with the simple proposi-
tional tautologyp ≡ (¬p ⊃ false). We can check the validity of (25) by using the two
decision procedures already presented for finite and infinite time and extending them
to handle arbitrary PTL formulas as later shown in Section 12.

It seems reasonable to call any transition configuration such as (24) aBüchi transi-
tion configurationif its rightmost conjunct is a PTL formula of the form23+ w, for
some state formulaw since23+ w is true on an infinite-time interval iff some atom in
AtomsV which satisfiesw occurs infinitely often in the interval. This in a sense mimics
the standard Büchi acceptance condition which, as alreadynoted, requires that some
element of the set of accepting states occurs infinitely manytimes for an automaton
run to be considered an accepting run. Sophisticated techniques applicable to BDDs
such as those of Emerson and Lei [26] for theµ-calculus (see also Clarke et al. [19])
and more recent ones by Hardin et al. [38], Xie and Beere [97] and Bloem, Gabow and
Somenzi [8] for analysing strongly connected components could presumably be ap-
plied to test for the satisfiability of the Büchi transitionconfiguration (24) by adapting
methods for checking for the emptiness of Büchi-automata and constructing witnesses
when appropriate.

The technique we later describe for actually obtaining the Büchi transition con-
figuration (24) is comparable to the automata-theoretic method of Vardi, Wolper and
Sistla [88, 89, 96] which combines what they refer to as alocal Büchi automaton for
checking just the behaviour of adjacent states with anothereventualityBüchi automa-
ton which checks for liveness requirements. We can regard within our framework the
original infinite-time transition configuration’s subformula 2m T ∧ init as being the
analogue of a local Büchi automaton. Similarly the automaton-like construction later
obtained by us to simulate the formula23+ L corresponds to an eventuality Büchi
automaton.

A simplified illustration of the construction The technique employed here can be
demonstrated by means of a simplified example which focuses on the key ideas. We
will encode the infinite-time behaviour of the PTL formula2(3 p1 ∧ 3 p2 ∧ 3 p3)
within another one which only contains a single3 and makes use of three extra propo-
sitional variablesu′

1, u′
2 andu′

3. Let T ′ be the transition configuration given below:

T ′ : (© u′
1) ≡

(

if (u′
1 ∧ u′

2 ∧ u′
3) then p1 else (u′

1 ∨ p1)
)

∧ (©u′
2) ≡

(

if (u′
1 ∧ u′

2 ∧ u′
3) then p2 else (u′

2 ∨ p2)
)

∧ (©u′
3) ≡

(

if (u′
1 ∧ u′

2 ∧ u′
3) then p3 else (u′

3 ∨ p3)
)

.

Eachu′
i tracks the correspondingpi and records whether it becomes true. As withui in

the previous Subsection 8.1, the values of the variables in any state uniquely determine
the value of eachu′

i in the next state. Wheneverp1, p2 andp3 have all become true, all
three variablesu′

1, u′
2 andu′

3 are simultaneously true and are then reinitialized to track
another potential set of occurrences ofp1, p2 andp3.

The following valid implication concerning finite, nonempty intervals holds for

41

eachi : 1 ≤ i ≤ 3 and illustrates howu′
i tracks the behaviour ofpi:

|= 2m T ′
∧ u′

1 ∧ u′
2 ∧ u′

3 ∧ ©2m ¬(u′
1 ∧ u′

2 ∧ u′
3)

⊃ 2i (more ⊃ u′
i ← 3m pi)). (26)

This uses the PITL operator2i defined in Table 2 to test all initial subintervals. Here is
a variant of this in PTL which does not contain2i :

|= 2m T ′
∧ u′

1 ∧ u′
2 ∧ u′

3 ∧ ©2m ¬(u′
1 ∧ u′

2 ∧ u′
3) ⊃ u′

i ← 3m pi. (27)

The decision procedure for finite time extended to handle full PTL (see later in Sec-
tion 12) can be used to confirm the implication’s validity.

The valid formula below concerns one cycle ofp1, p2 andp3 being true:

|= 2m T ′
∧ u′

1 ∧ u′
2 ∧ u′

3 ∧ more

⊃
(

3
+(u′

1 ∧ u′
2 ∧ u′

3) ≡ (3m p1 ∧ 3m p2 ∧ 3m p3)
)

. (28)

It shows how the testing for the three3m -formulas involvingp1, p2 andp3 can be si-
multaneously carried out by means of a single3+ formula containing a conjunction of
the variablesu′

1, u′
2 andu′

3. We can use the previous two decision procedures for finite
time and infinite time extended to handle full PTL to check thevalidity of (28).

It can be established from this and induction over time that the next implication is
valid:

|= inf ∧ 2m T ′
∧ u′

1 ∧ u′
2 ∧ u′

3

⊃ (23
+(u′

1 ∧ u′
2 ∧ u′

3) ≡ 2(3 p1 ∧ 3 p2 ∧ 3 p3)). (29)

The first decision procedure for infinite time, when extendedto handle full PTL, can
be used to confirm the validity of this.

Construction of the Büchi transition configuration Let us now turn to constructing
the formulasTL, initL andwL. This is more complicated than in the example because
a conditional liveness formulaL contains enabling testsηL[1], . . . , ηL[|L|] which can
alternatively enable and disable the corresponding liveness testsθL[1], . . . ,θL[|L|].

Supposer′1, . . . ,r′|L| andu′
1, . . . ,u′

|L| are2|L| propositional variables not occurring
in V. Here are the roles played by each of these groups of variables:

• The variablesr′1, . . . ,r′|L| can be seen as guessing in the initial state some subset
of the enabling testsηL[1], . . . , ηL[|L|] in the conditional liveness formulaL.
From then on, eachr′i remains stable. This permits us to subsequently check
whether there are infinitely many states in which exactly these particular enabling
tests are simultaneously true (see below the second half of definition ofwL) and
whether each correspondingθL[i] is itself infinitely often true (as tracked by the
associatedu′

i).

• The variablesu′
1, . . . , u′

|L| are used to ensure that the subset of liveness tests
θL[1], . . . ,θL[|L|] corresponding to the selected subset of enabling testsηL[1], . . . ,
ηL[|L|] are each infinitely often true. This does not necessarily occur in one state
so a more complicated tracking system is required than the one which monitors
ηL[i] for eachi : 1 ≤ i ≤ |L|.

42

With this in mind, we now define the state formulasinitL andwL and the transitional
configurationTL:

initL :
∧

1≤i≤|L| u
′
i

wL : initL ∧
∧

1≤i≤|L|(r
′
i ≡ ηL[i])

TL : (© r′1) ≡ r′1 ∧ · · · ∧ (© r′|L|) ≡ r′|L|

∧ (©u′
1) ≡

(

if wL then (¬r′1 ∨ θL[1]) else (u′
1 ∨ θL[1])

)

∧ · · ·
∧ (©u′

|L|) ≡
(

if wL then (¬r′|L| ∨ θL[|L|]) else (u′
|L| ∨ θL[|L|])

)

.

Here is a description of each of these:

• The initial conditioninitL sets eachu′
i to true to naturally force a resetting at

the beginning of the tracking of the selected subset of the liveness testsθL[1],
. . . , θL[|L|]. We do not similarly initialize eachr′i. Instead, when we test the
Büchi transition configuration for satisfiability, all possible combinations of val-
ues forr′1, . . . ,r′|L| are automatically considered. As long as at least one suitable
selection exists, the transition configuration is satisfiable and hence the original
infinite-time one is as well.

• The testwL serves as the new conditional liveness formula and assists in cap-
turing the behaviour of the original conditional liveness formulaL. It thereby
ensures that there are infinitely many states in which the values ofr′1, . . . , r′|L|
agree in value with the respective values ofηL[1], . . . , ηL[|L|] and that at these
times eachu′

i is true, thereby ensuring that each selectedθL[i] is infinitely often
true. It plays the role which the conjunctionu′

1 ∧ u′
2 ∧ u′

3 does in the simplified
example already presented but needs to also deal with conditional nature of the
enabling testsηL[1], . . . ,ηL[|L|].

• The transition formulaTL ensures that the variablesr′1, . . . , r′|L| do not change
over time. It also controls the variablesu′

1, . . . , u′
|L|. Eachu′

i tracks the live-
ness requirements imposed by the conditional liveness formula L’s conjunct
ηL[i] ⊃ 3m θL[i]. Whenever the acceptance testwL is true, the tracking is reset.
By the definition ofwL, this is the same as testing foru′

1, . . . , u′
|L| all simulta-

neously being true and in addition eachr′i equallingηL[i]. At this time a kind
of reinitialization ofu′

1, . . . , u′
|L| is performed in order to start the tracking of

another cycle of liveness tests. More precisely, at this time eachu′
i is set to true

if either r′i is false orθL[i] are true (i.e.,¬r′i ∨ θL[i] or equivalentlyr′i ⊃ θL[i])
and set to false otherwise. At all other times,u′

i only changes from false to true
if θL[i] becomes true for the first time in the current tracking cycle.

The following valid implication concerning finite, nonempty intervals holds for
eachi : 1 ≤ i ≤ |L| and illustrates howu′

i tracks the behaviour ofθL[i]. It corresponds
to the valid implication (26) in our simplified example.

|= 2m TL ∧ initL ∧ ©2m ¬wL ⊃ 2i (more ⊃ u′
i ← (r′i ⊃ 3m θL[i])).

Now wL itself impliesinitL sinceinitL is itself a conjunct inwL. Therefore if a finite
nonempty interval satisfies2m TL and has its first state satisfyingwL, but no others,
except for possibly the last one, then the final value ofu′

i agrees with the value of the
implicationr′i ⊃ 3m θL[i] on the interval:

|= 2m TL ∧ wL ∧ ©2m ¬wL ⊃ u′
i ← (r′i ⊃ 3m θL[i]).

43

This PTL formula is analogous to the earlier valid formula (27) in our illustrative ex-
ample.

The valid formula below is comparable to the earlier valid implication (28):

|= 2m TL ∧ initL ∧ more ⊃
(

(3+ wL) ≡ L
)

.

By using this valid implication and induction over time, we can obtain the validity of
the next formula concerning the formulasL, TL, initL andwL. It permits us to replace
23+ L with the structurally simpler formula23+ wL and corresponds to the valid
implication (29) in our example:

|= 2m TL ∧ initL ⊃ (23
+ wL ≡ 23

+ L).

The construction of the formulasTL, initL andwL ensures that the original infinite-
time transition configuration is satisfiable iff the new Büchi one (24) is and any interval
satisfying the Büchi one also satisfies the original one. The Büchi transition configura-
tion is itself satisfiable iff the following PTL formula is satisfiable in finite time:

2m (T ∧ TL) ∧ (init ∧ initL) ∧ 3(wL ∧ finite ∧ more ∧ (~V ′ ← ~V ′)),

whereV ′ is the set of all variables inV together with the2|L| new ones. The proof of
this is just an application of Theorem 5.29 where, as alreadynoted, we re-expresswL

as the well-formed conditional liveness formula¬wL ⊃ 3m false.
The behaviour imposed byTL is only really relevant in the righthand subformula

contained within the3 operator. Consequently, it suffices to test for satisfiability of the
variant formula given below which can omit the formulainitL:

2m T ∧ init ∧ 3
(

2m TL ∧ wL ∧ finite ∧ more ∧ (~V ′ ← ~V ′)
)

. (30)

We can similarly omitinitL in the Büchi transition configuration (24) for the same
reason.

As mentioned earlier, at most2|L| extra variables are needed. It is sometimes
possible that fewer suffice. If anyηL[i] happens to be the formulatrue or a formula
which2m T ensures never changes its value within an interval, then we do not need the
correspondingr′i and can instead simply useηL[i] itself. The equivalencer′i ≡ ηL[i]

associated withr′i can be omitted fromwL and similarly the equivalence(© r′i) ≡ r′i
can be deleted fromTL. Finally, the implicationr′i ⊃ θL[i] in TL can be replaced by
the implicationηL[i] ⊃ θL[i]. Therefore it is possible that strictly less than2|L| extra
variables might suffice. However, at least|L| are necessary since we still need all of
the |L| variablesu′

1, . . . ,u′
|L| to track the behaviour of liveness testsθL[1], . . . , θL[|L|]

unless someηL[i] is false in which case the behaviour ofθL[i] is irrelevant. One way
to establish this is by symbolically examining the conjunction 2m T ∧ init to determine
whether it forcesηL[i] to be false.

A further reduction in variables is possible by monitoring the liveness testsθL[1],
. . . , θL[|L|] using a counter ranging over the values0, 1, . . . , |L|, inclusive, instead of
the |L| variablesu′

1, . . . , u′
|L|. This counter only requires⌈log2(|L| + 1)⌉ variables

which serve as bits to represent its values. It can be initialized to any value less than or
equal to|L|. The behaviour in subsequent states is as follows:

• When the counter equals some valuek less than|L|, there are two possibilities:

– If the liveness testθL[k+1] is true orr′k+1 is false (i.e., the implication
r′k+1 ⊃ θL[k+1] is true), then counter’s value in the next state isk + 1.

44

Axioms:

N1 (K). ⊢ ©w (X ⊃ X ′) ⊃ ©w X ⊃ ©w X ′

N2 (Dc). ⊢ ©X ⊃ ©w X

Inference rules:

NR1. If X is a tautology, then⊢ X

NR2 (MP). If ⊢ X ⊃ X ′ and⊢ X , then⊢ X ′

NR3 (RN). If ⊢ X , then⊢ ©w X

Table 6: Complete axiom system for NL (Modal systemK+Dc)

– Otherwise the counter’s value in the next state remainsk.

• Whenever the counter equals|L| it is set to0 in the next state.

The Büchi acceptance test checks that the counter equals|L| infinitely often. The
number of extra variables needed to represent a single stateis at most|L|+⌈log2(|L|+
1)⌉ so at most|V | + |L| + ⌈log2(|L| + 1)⌉ variables are needed in total. If all of the
enabling testsηL[1], . . . ,ηL[|L|] are vacuously true or formulas which2m T ensures never
change value, then even just⌈log2(|L|+ 1)⌉ new variables suffice.

Remark 8.4. One interesting aspect of our framework stems from the observation
already mentioned that it is not strictly necessary to make reference to B̈uchi automata
and use the associated Büchi transition configurations in the justification of the second
infinite-time decision procedure. This is because the basicinsights of the decision
procedure can be largely considered within the context of finite time by viewing it as
transforming one formula concerning finite time into another. More specifically, as
we already noted at the beginning of Subsection 8.1 in regardto the first decision
procedure for infinite time, the original infinite-time transition configuration forT is
satisfiable iff the nextPTL formula (i.e., the earlier formula(17)) is in finite time:

2m T ∧ init ∧ 3(L ∧ finite ∧ more ∧ (~V ← ~V)).

We then employ the formulasTL andwL to obtain the formula(30)which is satisfiable
iff the previous one is. Any model of(30) can be used for the original formula(17) as
well. The methods previously cited from the literature as being suitable for BDD-based
reachability analysis of B̈uchi automata can presumably be adapted for use here.

9 Axiom system for NL

In preparation for the proof of axiomatic completeness for PTL, we now consider an
axiom system for NL. The axiomatic completeness of NL later plays a major role in
the completeness proof for PTL.

Within this section, the variablesX , X ′, X0 andX ′
0 denoteNL formulas.

Table 6 contains a complete axiom system for NL adapted from the modal logic
K+Dc. Here©w (weak next), previously defined in Table 1 to be a derived operator, is
instead regarded as a primitive construct. We can consider©X to be an abbreviation
for ¬©w ¬X . Hughes and Cresswell [46, Problem 6.8 on p. 123 with solution on p. 379]
briefly discuss how to show deductive completeness of the logic K+Dc.

Table 7 contains a complete axiom system for NL in which©, rather than©w , is the
primitive operator. Consequently,©w is derived in the manner already shown in Table 1.

45

Axioms:

N1′ (N3). ⊢ ¬© false

N2′ (C3). ⊢ ©(X ∨ X ′) ⊃ ©X ∨ ©X ′

N3′ (Dc). ⊢ ©X ⊃ ©w X

Inference rules:

NR1′. If X is a tautology, then⊢ X

NR2′ (MP). If ⊢ X ⊃ X ′ and⊢ X , then⊢ X ′

NR3′ (RM3). If ⊢ X ⊃ X ′, then⊢ ©X ⊃ ©X ′

Table 7: Alternative complete axiom system for NL based on©

The axiom system is essentially one of severalM -based axiomatizations of normal
systems of modal logic covered by Chellas [17] with the addition of the axiomDc.
This second axiom system appears preferable for our purposes since our definition of
PTL also takes© to be primitive. We therefore use this axiom system here although
the methods employed can be easily adapted to the first NL axiom system.

Definition 9.1 (Theoremhood and consistency for NL). If someNL formulaX is de-
ducible from the axiom system, we call it anNL theoremand denote this theoremhood
as⊢NL X . We defineX to beNL-consistentif ¬X is notanNL theorem, i.e.,6⊢NL ¬X .

Below are some representative lemmas about satisfiability and consistency of NL
formulas. They are subsequently used in the completeness proof for the NL axiom
system in Table 7.

Lemma 9.2. For any state formulaw andNL formulaX , if w is satisfiable, then the
NL conjunctionw ∧ ¬©X is satisfied by some one-state interval.

Lemma 9.3. For any state formulaw andNL formulaX , if bothw andX are satisfi-
able, then so is the formulaw ∧ ©X .
In such as case, ifX itself is satisfied by an interval having at mostn states, then
w ∧ ©X is satisfied by an interval having at mostn + 1 states,

Lemma 9.4. For anyNL formulaX , if ©X is NL-consistent, then soX .

For any NL formulasX andX ′, the following are deducible as NL theorems and
shortly used to combine two (possibly negated)©-formulas into one:

⊢NL ©(X ∧ X ′) ≡ ©X ∧ ©X ′ (31)

⊢NL ©(X ∧ ¬X ′) ≡ ©X ∧ ¬©X ′ (32)

⊢NL ¬©(X ∨ X ′) ≡ ¬©X ∧ ¬©X ′ . (33)

Axiomatic completeness is usually defined to mean that everyvalid formula is de-
ducible as a theorem. However, we will make use of the following variant way of
expressing completeness:

Lemma 9.5(Alternative notion of completeness). A logic’s axiom system is complete
iff each consistent formula is satisfiable.

Theorem 9.6(Completeness of alternative NL axiom system). TheNL axiom system
in Table 7 is complete.

46

Axioms:

T1. ⊢ 2(X ⊃ Y) ⊃ 2X ⊃ 2 Y

T2. ⊢ ©X ⊃ ©w X

T3. ⊢ ©(X ⊃ Y) ⊃ ©X ⊃ ©Y

T4. ⊢ 2X ⊃ X ∧ ©w 2X

T5. ⊢ 2(X ⊃ ©w X) ⊃ X ⊃ 2X

Inference rules:

R1. If X is a tautology, then⊢ X

R2. If ⊢ X ⊃ Y and⊢ X , then⊢ Y

R3. If ⊢ X , then⊢ 2X

Table 8: Modified version of Pnueli’s complete PTL axiom systemDX

Proof. The proof involves the kind of consistency-based reasoningalso found in later
sections when we hierarchically establish axiomatic completeness for PTL. Using
Lemma 9.5, we show that any NL formulaX0 which is NL-consistent (i.e.,6⊢NL ¬X0)
has a satisfying finite interval. Letn be the next-height ofX0, i.e., the maximum
nesting of©s inX0.

We now do induction onn to show thatX0 is satisfied by some interval with at
mostn+1 states. Ifn = 0, thenX0 is in PROP and hence satisfied by some one-state
interval sinceX0’s consistency ensures that¬X0 cannot be a tautology (see Inference
RuleNR1′). Forn > 0, we regard the temporal constructs inX0 which are not nested
in other temporal constructs as being primitive. Then conventional propositional rea-
soning yields a deducibly equivalent formula in disjunctive normal form. As least one
disjunct is consistent. Equivalences (31)–(33) are invoked to obtain from such a dis-
junct a deducibly equivalent NL formulaY with the same next-height and having the
form w ∧ ©X or w ∧ ¬©X . Induction onn and Lemmas 9.2–9.4 then together
ensure thatY is satisfiable. HenceX0 is as well.

10 Axiomatic completeness for transition configurations

We now describe a PTL axiom system and then prove axiomatic completeness for
transition configurations. Later Sections 11 and 12 hierarchically extend axiomatic
completeness to all of PTL.

The PTL axiom system used here is shown in Table 8 and is adapted from another
similar PTL axiom systemDX proposed by Pnueli [78]. Gabbay et al. [33] showed
thatDX is complete. Pnueli’s original system uses strict versionsof 3 and2 (which
we respectively denote as3+ and2+ in the earlier Table 1) which do not examine
the current state. In addition, Pnueli’s system only deals with infinite time. Gabbay et
al. [33] also include a variant system calledD0X based on the conventional3 and2

operators which examine the current state. The version presented here does this as well
and furthermore permits both finite and infinite time.

Definition 10.1(Theoremhood and consistency for PTL). If thePTL formulaX is de-
ducible from the axiom system, we call it aPTL theoremand denote this theoremhood
as⊢ X . We defineX to beconsistentif ¬X is not a theorem, i.e.,6⊢ ¬X .

In the course of proving completeness for PTL we make use of a definition of
completeness for sets of formulas such as sets of transitions configurations:

Definition 10.2 (Completeness for a set of formulas). An axiom system is said to be
complete for a set of formulas if every consistent formula inthe set is also satisfiable.

47

Lemma Summary

10.4 If⊣ 2m T ∧ α ∧ © β, then=| T ∧ α ∧ skip ∧ sfin β

10.6 If⊣ 2m T ∧ α ∧ 3 β, then=| ($T)∗ ∧ α ∧ sfin β

10.7 If⊣ 2m T ∧ α ∧ 3+ β, then=| ($T)∗ ∧ α ∧ © sfin β

Table 9: Summary of some basic lemmas for consistency and satisfiability

Now the Alternative Notion of Completeness (Lemma 9.5) can also be readily
adapted to sets of formulas. Indeed, our goal in the rest of this section is to show
that any consistent transition configuration is also satisfiable.

The next lemma permits us to utilize within PTL the axiomaticcompleteness of the
NL proof system:

Theorem 10.3(Completeness for NL in PTL). ThePTL axiom system is complete for
the set ofNL formulas.

Proof. Theorem 9.6 establishes the completeness of the alternative NL axiom system
in Table 7. We then show that any NL theorem is also a PTL theorem. This can be
done by demonstrating that all axioms and inferences rules in the NL axiom system are
derivable from PTL ones.

10.1 Some basic lemmas for completeness

In this subsection, we deal with another part of the completeness proof. We utilize
ways to go from certain specific kinds of consistent formulasinvolving reachability to
intervals in order to later construct models for consistenttransition configurations in
Subsection 10.2. Table 9 summarizes the basic lemmas provedhere. Within the table,
we use the notation=| X already introduced in Definition 3.1 to denote that the formula
X is satisfiable and⊣ X to denote thatX is consistent.

Lemma 10.4. For anyV-atomsα andβ, if the formula2m T ∧ α ∧ ©β is consistent,
then the formulaT ∧ α ∧ skip ∧ sfin β is satisfiable.

Proof. From the consistency of the formula2m T ∧ α ∧ ©β and simple temporal rea-
soning, we obtain the consistency of the NL1

V formulaT ∧ α ∧ ©β. Theorem 10.3
concerning axiomatic completeness for NL formulas in the PTL axiom system then
ensures that this is satisfiable. Clearly any interval satisfying it has at least two states.
Hence by the earlier Lemma 8.1 the formulaskip ∧ T ∧ α ∧ © β is also satisfiable.
Consequently, simple temporal reasoning yields that the semantically equivalent for-
mulaT ∧ α ∧ skip ∧ sfin β is satisfiable as well.

For anyV-atomα, within the next two lemmas we letSα denote the subset of
AtomsV containing exactly everyV-atomγ for which the following formula, which
concerns reachability fromα, is satisfiable:

($ T)∗ ∧ α ∧ sfin γ.

Here is a more formal definition ofSα:

Sα
def
= { γ ∈ AtomsV : =| ($T)∗ ∧ α ∧ sfin γ }.

48

Lemma 10.5. For anyV-atomα, the following formula is aPTL theorem:

⊢ 2m T ∧ α ⊃ 2

∨

γ∈Sα

γ. (34)

Proof. The following formulas are valid and in NL1. Hence, they are theorems by the
completeness of the PTL axiom system for NL1 formulas (Theorem 10.3):

⊢ α ⊃
∨

γ∈Sα

γ ⊢ more ∧ T ∧

∨

γ∈Sα

γ ⊃ ©
∨

γ∈Sα

γ.

From these and simple temporal reasoning we can readily deduce our goal (34).

Lemma 10.6. For anyV-atomsα andβ, if the formula2m T ∧ α ∧ 3 β is consistent,
then the formula($T)∗ ∧ α ∧ sfin β is satisfiable.

Proof. Suppose on the contrary that($T)∗ ∧ α ∧ sfin β is unsatisfiable. Nowα is in
the setSα, whereasβ is not. Hence, the following formula concerningβ not being in
Sα is valid and thus a propositional tautology:

⊢
∨

γ∈Sα

γ ⊃ ¬β. (35)

Furthermore, the previous Lemma 10.5 ensures that the next implication is a PTL the-
orem:

⊢ 2m T ∧ α ⊃ 2

∨

γ∈Sα

γ. (36)

The two implications (35) and (36) together with some simpletemporal reasoning let
us deduce thatα can never reachβ:

⊢ 2m T ∧ α ⊃ 2¬β.

From this and the general equivalence⊢ 2¬β ≡ ¬3 β we can deduce the following
PTL theorem:

⊢ 2m T ∧ α ⊃ ¬3β.

Therefore, the formula2m T ∧ α ∧ 3β is inconsistent. This contradicts the lemma’s
assumption.

Lemma 10.7. For anyV-atomsα andβ, if the formula2m T ∧ α ∧ 3+ β is consistent,
then the formula($T)∗ ∧ α ∧ © sfin β is satisfiable.

Proof. From the consistency of the formula2m T ∧ α ∧ 3+ β, we readily deduce for
someV-atomγ the consistency of the two PTLV formulas below:

2m T ∧ α ∧ 3 γ 2m T ∧ γ ∧ ©β.

The consistency of the first formula2m T ∧ α ∧ 3 γ and Lemma 10.6 yield that the
formula ($T)∗ ∧ α ∧ sfin γ is satisfiable. Lemma 10.4 and the second formula
2m T ∧ γ ∧ ©β then guarantee that the formulaT ∧ γ ∧ skip ∧ sfin β is satisfiable.
Lemma 5.24 then yields that the next formula is satisfiable:

(

($ T)∗ ∧ α ∧ finite
)

; (T ∧ γ ∧ skip ∧ sfin β).

From this and some further simple interval-based reasoningwe can establish our goal,
namely, that the formula($T)∗ ∧ α ∧ © sfin β is satisfiable.

49

10.2 Completeness for transition configurations

We now apply the material presented in the previous Subsection 10.1 to ultimately
establish completeness for finite- and infinite-time transition configurations. Here is a
summary of the completeness theorems for them:

Type of transition configuration Where proved

Finite-time Theorem 10.8
Infinite-time Theorem 10.9

The remaining two kinds of transition configurations are subordinate to these. For the
sake of brevity, we do not consider them here.

Theorem 10.8. Completeness holds for any finite-time transition configuration 2T ∧

init ∧ finite.

Proof. From the consistency of the finite-time transition configuration 2T ∧ init ∧

finite and simple temporal reasoning we can demonstrate that for someV-atomsα and
β, the next formula is consistent:

2m T ∧ α ∧ init ∧ sfin (T ∧ β).

From this and further simple temporal reasoning it is readily follows that the following
formulas are all consistent:

α ∧ init 2m T ∧ α ∧ 3 β T ∧ β ∧ empty .

The first of these is itself satisfiable since any consistent formula in PROP is satisfiable.
The second one and Lemma 10.6 yields that the PITL formula($ T)∗ ∧ α ∧ sfin β is
satisfiable. The third formulaT ∧ β ∧ empty is in NL1 and hence by Theorem 10.3
satisfiable. Hence the following formulas are all satisfiable:

α ∧ init ($ T)∗ ∧ α ∧ sfin β T ∧ β ∧ empty .

This and Theorem 7.1 then yield the satisfiability of the finite-time transition configu-
ration2T ∧ init ∧ finite.

Theorem 10.9.Completeness holds for any infinite-time transition configuration2 T ∧

init ∧ 23+ L.

Proof. From the consistency of the infinite-time transition configuration2T ∧ init ∧

23+ L and simple temporal reasoning we can demonstrate that for someV-atomsα
andβ, the next formula is consistent:

2m T ∧ α ∧ init ∧ 23
+(β ∧ L). (37)

Lemma 6.4 ensures that the formulasβ ∧ L andβ ∧ EnL,β are semantically equiva-
lent. The proof of this only requires simple propositional reasoning not involving the
temporal operators inL. Hence the next equivalence is readily deducible as a PTL
theorem using substitution into a propositional tautology(see Definition 3.3 and PTL
inference rule R1 in Table 8):

⊢ β ∧ L ≡ β ∧ EnL,β. (38)

50

From the consistency of formula (37) and the deducibility offormula (38), we can
show the consistency of the next formula:

2m T ∧ α ∧ init ∧ 23
+(β ∧ EnL,β).

This and simple temporal reasoning then together yield the consistency of the following
formulas involving some additionalV-atomsγ1, . . . ,γ|EnL,β| (not necessarily distinct):

α ∧ init 2m T ∧ α ∧ 3β 2m T ∧ β ∧ 3
+ β

for eachγi : 2m T ∧ β ∧ 3 γi γi ∧ θ(EnL,β, i) 2m T ∧ γi ∧ 3β.

The consistency of the propositional formulasα ∧ init andγi ∧ θ(EnL,β, i) for each
V-atomγi ensures they are satisfiable. Lemma 10.6 is then applied to the remaining
consistent formulas, except for2m T ∧ β ∧ 3+ β which requires Lemma 10.7. The
combined result is that the following formulas are all satisfiable:

α ∧ init ($T)∗ ∧ α ∧ sfin β ($T)∗ ∧ β ∧ © sfin β

for eachγi : ($ T)∗ ∧ β ∧ sfin γi γi ∧ θ(EnL,β, i) ($T)∗ ∧ γi ∧ sfin β.

Hence by Theorem 7.4, the original consistent infinite-timetransition configuration is
indeed satisfiable.

11 Invariants and related formulas

We will shortly introduce the concepts of invariants and invariant configurations which
together act as a natural middle level between transition configurations and full PTL
and involve the use of auxiliary variables. These variablesprovide a way to reduce
the nesting of temporal operators within other temporal operators and thereby simplify
further analysis. Satisfiability, existence of small models, decidability and axiomatic
completeness for invariant configurations can be readily related to the analysis of tran-
sition configurations. Furthermore, it is not hard to reducearbitrary PTL formulas to
invariant configurations by utilising such auxiliary variables.

The analysis of invariant configurations and arbitrary PTL formulas does not re-
quire any further interval-based reasoning or PITL.

Definition 11.1 (Invariants and dependencies). An invariant is any finite conjunction
of zero or more equivalences in which each equivalence’s left side is a distinct propo-
sitional variable and each equivalence’s right side is one of the following:

• SomePTL formula of the form3 w, for some state formulaw.

• SomeNL1 formula.

The variables occurring on the left sides of equivalences are calleddependent variables
and any other variables are calledindependent variables. The right sides are called
dependent formulasand each equivalence is itself called adependency. Hence for a
given invariantI, it follows that|I| denotes the number of dependencies inI. Also,
for any k : 1 ≤ k ≤ |I|, I[k] denote thek-th dependency inI. Each dependency
containing3 is referred to as a3-dependency.

51

Below is a sample invariant referred to asI1:

I1 : r1 ≡ 3(p ∧ ¬q) ∧ r2 ≡ (r1 ∧ © r2). (39)

Here|I1| equals 2, the first dependencyI1[1] is the equivalencer1 ≡ 3(p ∧ ¬q) and
the second dependencyI1[2] is the equivalencer2 ≡ (r1 ∧ © r2). A dependent variable
can be referenced in any dependent formula including the oneassociated with it. The
dependent variabler2 in the invariantI1 illustrates this.

Note that an invariant is not necessarily satisfiable as inr1 ≡ ¬r1. Also note that
dependencies of the two formsr ≡ w andr ≡ ©w, for some propositional variable
r and state formulaw, are both subsumed by the second case in Definition 11.1. If
desired, a more restrictive definition of invariants limited to dependencies of the form
w, ©w and3w is possible.

We can view an invariantI as being any conjunction of the form
∧

k:1≤k≤|I|(uk ≡

φk) so thatuk is thek-th dependent variable andφk is thek-th dependent formula in
I. Observe that for anyk : 1 ≤ k ≤ |I|, the conjunctI[k] has the formuk ≡ φk andI

itself can be expressed as
∧

k:1≤k≤|I| I[k].
Starting with an invariantI, we analyse certain low-level formulas referred to here

asinvariant configurations.

Definition 11.2 (Invariant configurations). An invariant configurationis a formula of
the form2 I ∧ X where thePTL formulaX is in one of three categories shown below:

Type of invariant configuration Syntax ofX

Basic w

Finite-time w ∧ finite

Infinite-time w ∧ inf

Herew is a state formula.

For example, the conjunction2 I1 ∧ r2 is a basic invariant configuration which
is true for intervals which are infinite, haver1 andr2 always true andp and¬q both
always eventually true.

Let us now introduce some simple notation needed for reasoning about liveness
and3-dependencies. This will be used in the definition of an invariant’s associated
conditional liveness formula.

Definition 11.3 (Liveness tests of an invariant). For any invariantI and anyk : 1 ≤
k ≤ |I|, if the dependencyI[k] is a 3-dependency, define theliveness testθI[k] to be
the state formula which is the operand of the3-construct inI[k].

For instance, the sample invariantI1 in (39) contains exactly one3-dependency
I1[1]. ThereforeI1 has a single liveness testθI1[1] which denotes the formulap ∧ ¬q.
Observe that for any invariantI, if the dependencyI[k] is a3-dependency, then it has
the formuk ≡ 3 w, whereuk is I ’s k-th dependent variable, and thereforeI[k] can
also be expressed asuk ≡ 3 θI[k].

The next definition of a restricted kind of invariant helps tosimplify the notation
used in the reduction of invariant configurations to transition configurations:

Definition 11.4 (Ordered invariants). An invariant is said to beorderedif all of its
3-dependencies precede any others.

52

The sample invariantI1 in (39) is itself such an ordered invariant. It is not hard
to rearrange an arbitrary invariant’s dependencies to obtain a semantically equivalent
ordered invariant. In the rest of this section, we will without loss of generality limit our
attention to ordered invariants and invariant configurations based on them.

We now associate with an ordered invariantI a transition formulaTI and a condi-
tional liveness formulaLI . They serve to expeditiously reduce invariant configurations
to transition configurations previously analysed in earlier sections. Definition 11.5 be-
low describesTI . The subsequent Definition 11.6 describes the form ofLI .

Definition 11.5(Transition formula for an ordered invariant). For an ordered invariant
I, the associated transition formulaTI is an NL1 formula which capturesI ’s transi-
tional behaviour between pairs of adjacent states. It is obtained fromI by replacing
each3-dependency with another dependency not containing3 and leaving the re-
maining3-free dependencies unchanged. More precisely, each dependency inI of the
form r ≡ 3w, for some propositional variabler and state formulaw, is replaced by
the3-free equivalencer ≡ (w ∨ © r).

Observe that the transition formulaTI is in NL1 and is also a well-formed invariant.
Also, for anyk : 1 ≤ k ≤ |I|, if the dependencyI[k] does not contain3, then it and
TI ’s corresponding dependencyTI [k] are identical.

Here is the transition formulaTI1 associated with the sample invariantI1 in (39):

TI1 : r1 ≡ ((p ∧ ¬q) ∨ © r1) ∧ r2 ≡ (r1 ∧ © r2).

Given an ordered invariantI, we now associate a specific conditional liveness for-
mulaLI with it:

Definition 11.6 (Conditional liveness formula of an ordered invariant). For any or-
dered invariantI having exactlyn 3-dependencies for somen, let the conditional
liveness formulaLI be a conjunction ofn implications now described. For each
k : 1 ≤ k ≤ n, thek-th implication is obtained by simply replacing the outermost
equivalence operator inI ’s k-th 3-dependency by the implication operator and using
3m instead of3. Therefore, for eachk : 1 ≤ k ≤ n, the dependencyI[k] has the form
uk ≡ 3 θI[k] and the implicationLI [k] has the formuk ⊃ 3m θI[k].

The definition ofI ’s conditional liveness formulaLI intentionally ignores any NL1

dependencies inI sinceTI already adequately deals with them. As a result,LI can
contain fewer conjuncts thanI andTI . Below is the conditional liveness formulaLI1

associated with ordered invariantI1 in (39):

LI1 : r1 ⊃ 3m (p ∧ ¬q).

It is not hard to see that, unlikeI ’s transition formulaTI , the conditional liveness
formulaLI associated withI is not a well-formed invariant, in part because the main
operator in each conjunct ofLI is⊃ rather than≡.

Let us define a convenient notion for measuring how many symbols there are in a
formula:

Definition 11.7 (Formula size). For any formula, the number of symbols in it, exclud-
ing parentheses, is called itsformula size.

For simplicity when determining formula size, we will regard all conventional
propositional operators such as∧, ⊃ and≡ as being primitives. For example, the
formula size of each of the two formulasp ∨ ((© q) ∧ r) and(p ≡ q) ∧ © r is 6.

53

It also seems reasonable to regard the operator3m in conditional liveness formulas
as a primitive when calculating formula size since the decision procedures for infinite
time treat it as such. Alternatively, one can expand it usingits definition in Table 1.
This requires two extra symbols. Another possibility is to use3 instead, as discussed
after Definition 5.1 of conditional liveness formulas.

One reason we ignore parentheses in formula size is that theyare not relevant to the
kind of internal data representations such as trees and BDDsnormally encountered in
implementations. In addition, for the sake of readability,many of our sample transition
formulas, invariants and other formulas often use spacing instead of parentheses. This
makes any consistent counting of bracket symbols more difficult.

The formula size of a conjunctionC such as any invariant and conditional liveness
formula should not be confused with its size as a conjunction. The later was previously
defined in Definition 3.4 to be the number of conjuncts and is denoted as|C|. For
example, the conjunctionp ∧ q has formula size 3, whereas its size|p ∧ q| as a
conjunction is 2.

The formula size of an invariantI ’s associated transition formulaTI and condi-
tional liveness formulaLI are related to the formula size of the invariant but are also
affected by any3-dependencies in the invariant. The next lemma makes this more
precise:

Lemma 11.8(Upper bounds on formula size ofTI andLI). Suppose that an invariant
I has formula sizel. Let m be the number of instances of the operator3 in I. Then
the formula size of the transition configurationTI is at mostl + 3m.

If we regard the operator3m used by the conditional liveness formulaLI as prim-
itive, then the formula size ofLI never exceeds that ofI and only depends on the
number of3 operators inI and the formula size of their operands. More precisely,LI

has the same formula size as the conjunction of all3-dependencies inI and therefore
has formula size no larger thanI ’s.

Proof. In the case of the transition formulaTI , each operand3w in I is replaced in
TI by the formula3(w ∨ © r), for some dependent variabler. This has the three extra
symbols∨ © r since we ignore bracketing. Within the conditional liveness formulaLI ,
each3-dependency inI of the formr ≡ 3w is simply replaced by the implication
r ⊃ 3m w which has the same formula size.

11.1 Reduction of basic invariant configurations

Starting with an ordered invariantI, let us now consider the relationship between its
basic invariant configuration and the associated finite-time and infinite-time invariant
configurations. This permits us to focus the remaining analysis on the two later kinds
of invariant configurations.

Lemma 11.9. A basic invariant configuration2 I ∧ w is satisfiable iff at least one of
its associated finite-time and infinite-time invariant configurations is satisfiable.

Proof. This follows from the validity of the formulafinite ∨ inf and simple proposi-
tional reasoning.

The finite-time and infinite-time invariant configurations for the ordered invariantI
each have a corresponding semantically equivalent transition configuration of the same
kind now described and shortly proved:

54

Invariant Transition Where
configuration configuration proved

Finite time 2 I ∧ w ∧ finite 2TI ∧ w ∧ finite Theorem 11.11

Infinite time 2 I ∧ w ∧ inf 2TI ∧ w ∧ 23+ LI Theorem 11.14

Observe that the reductions from the two types of the invariant configurations to the
corresponding transition configurations do not introduce any extra variables.

In what follows we will often abstract the behaviour of a3-dependency by us-
ing two propositional variablesp andq and representing the dependency as the PTL
equivalencep ≡ 3 q. This technique is used to establish the next lemma:

Lemma 11.10.The formulas2 I and2TI are semantically equivalent on finite inter-
vals. In other words, the following implication is valid:

|= finite ⊃ 2 I ≡ 2TI .

Proof. We can represent2 I as the conjunction
∧

k:1≤k≤|I| 2 I[k] and similarly repre-
sent2TI as the conjunction

∧

k:1≤k≤|I| 2TI [k]. For anyk : 1 ≤ k ≤ |I|, if I[k] is in

NL1 thenTI [k] is identical to it and hence2 I[k] and2TI [k] are identical. Otherwise,
I[k] is a3-dependency. In such a case, the formula2 I[k] can be seen as a substitution
instance of the PTL formula2(p ≡ 3 q) containing the two propositional variablesp

andq. Now 2TI [k] therefore corresponds to the formula2(p ≡ (q ∨ © p)). Simple
temporal reasoning can then be used to show that each of theseimplies the other in any
finite interval.

Let us note that the validity for finite time of the relevant equivalence2(p ≡ 3 q) ≡
2(p ≡ (q ∨ © p)) can even be readily checked by a computer implementation of a
decision procedure for PTL with finite time.

Theorem 11.11.The finite-time invariant configuration forI is semantically equiva-
lent to the associated finite-time transition configuration.

Proof. This readily follows from Lemma 11.10 and propositional reasoning.

Unfortunately, the equivalence2 I ≡ 2TI can fail to be valid for infinite time ifI
contains3-dependencies becauseTI does not fully capture the liveness requirements
of such dependencies. Lemma 11.13 later on corrects for thisproblem by showing that
in infinite time the two formulas2 I and2TI ∧ 23+ LI are semantically equivalent.
The reason that2 I ≡ 2TI is not necessarily valid is because when we consider an
individual 3-dependency, the formulas2(p ≡ 3 q) and2(p ≡ (q ∨ © p)) are not
semantically equivalent on infinite-time intervals since on such an interval, the first
formula can be false and the second one true. An example of this occurs in any infinite
interval wherep is always true andq is always false. Therefore, ifI contains3-
dependencies, then2 I can be false on an infinite-time interval even though2TI is
true on the interval. However, the next lemma holds even for infinite time:

Lemma 11.12. ThePTL implication2 I ⊃ 2TI is valid.

Proof. The NL1-dependencies inI and TI are identical. Furthermore, for the3-
dependencies we make use of the next valid PTL formula:

|= 2(p ≡ 3 q) ⊃ 2(p ≡ (q ∨ © p)).

55

We see from Lemma 11.12 that the formula2 I ⊃ 2TI is valid for both finite
and infinite time. However ifI contains3-dependencies, then the converse impli-
cation2TI ⊃ 2 I is not necessarily valid for infinite time because the implication
2(p ≡ (q ∨ © p)) ⊃ 2(p ≡ 3 q) fails to be valid. We now discuss the principles
which successfully correct for this. First of all, the following weakened implication
concerning an individual3-dependency is valid:

|= 2(p ≡ (q ∨ © p)) ⊃ 2(3 q ⊃ p).

Here we use the formula3 q ⊃ p instead of the stronger equivalencep ≡ 3 q. The
following equivalence then strengthens the effect of2(p ≡ (q ∨ © p)) by adding the
formula2(p ⊃ 3 q):

|= 2(p ≡ 3 q) ≡ 2(p ≡ (q ∨ © p)) ∧ 2(p ⊃ 3 q).

In fact, we can even replace the conjunct2(p ⊃ 3 q) by the weaker formula23(p ⊃
3 q) which adds a3:

|= 2(p ≡ 3 q) ≡ 2(p ≡ (q ∨ © p)) ∧ 23(p ⊃ 3 q).

All three valid formulas only contain the propositional variablesp andq and can conse-
quently be readily checked for infinite-time validity by anycomputer implementation
of a decision procedure for PTL with infinite time.

Now suppose the ordered invariantI hasm 3-dependencies and hencem = |LI |.
If we havem pairs of propositional variablesp1, q1, . . . ,pm, qm (corresponding toI ’s
3-dependencies) then the following generalization of the previous valid equivalence is
itself valid:

|= 2

∧

1≤k≤m

(pk ≡ 3 qk)

≡ 2

∧

1≤k≤m

(pk ≡ (qk ∨ © pk)) ∧ 23

∧

1≤k≤m

(pk ⊃ 3 qk).

The left side of the equivalence corresponds to the invariant I[1 : m]. Similarly, the
first conjunct on the right side corresponds toTI [1 : m] and the second one toLI ,
except for the use of3 instead of3m .

Now within infinite time,23 and23+ have the same behaviour and in addition
3 and3m act identically. We use this to obtain the next lemma which expressesI in
terms ofTI andLI :

Lemma 11.13. The formulainf ⊃
(

2 I ≡ (2TI ∧ 23+ LI)
)

is valid.

Theorem 11.14. An infinite-time invariant configuration2 I ∧ w ∧ inf for the or-
dered invariantI is semantically equivalent to the associated infinite-timetransition
configuration2TI ∧ w ∧ 23+ LI .

Proof. This readily follows from Lemma 11.13 and simple temporal reasoning.

11.2 Bounded models for basic invariant configurations

The theorem given below gives the small model property for basic invariant configura-
tions:

56

Type of invariant config. Max. # of variables to represent a state

Finite-time |V |
Infinite-time (see§8.1) 2|V |+ n

Infinite-time (see§8.2) |V |+ 2n

Infinite-time (also in§8.2) |V |+ n + ⌈log2(n + 1)⌉,

wheren is the number of3 operators in the invariant.

Table 10: Variables used by decision procedures for invariants

Theorem 11.15.SupposeV is a finite set of variables and the variables in the ordered
invariant I and the state formulaw are all elements ofV. Then the basic invariant
configuration2 I ∧ w is satisfiable iff it is satisfied by some some finite interval with
interval length less than|AtomsV | or by an infinite, ultimately periodic one consisting
of an initial segment with interval length less than|AtomsV | fused with a remaining
infinite periodic part with a period having interval length at most(|LI |+1) |AtomsV |.

Proof. Suppose2 I ∧ w is satisfiable. We will consider the two cases of finite and
infinite intervals separately:

Case for finite intervals:Theorem 11.11 ensures that the finite-time invariant con-
figuration 2 I ∧ w ∧ finite and its associated finite-time transition configuration
2TI ∧ w ∧ finite are semantically equivalent. The construction ofTI ensures that
any variable occurring in it is a member of the setV. Lemma 6.2 therefore establishes
that if the conjunction2TI ∧ w ∧ finite is satisfiable, then a satisfying interval exists
having less interval length than|AtomsV |. This interval consequently also satisfies the
basic invariant configuration2 I ∧ w.

Case for infinite intervals:Theorem 11.14 ensures that the infinite-time invariant
configuration2 I ∧ w ∧ inf and its associated infinite-time transition configuration
2TI ∧ w ∧ 23+ LI are semantically equivalent. From Lemma 6.9 we have that
this second formula is satisfied by an infinite interval consisting of an initial segment
having interval length less than|AtomsV | fused with a periodic interval with period
having interval length at most(|LI | + 1) |AtomsV |. The overall ultimately periodic
interval therefore also satisfies the formula2 I ∧ w.

11.3 Decision procedures for invariant configurations

The decision procedures for transition configurations presented earlier in Section 8 can
also be applied to invariant configurations by means of the previously described reduc-
tions from invariant configurations to transition configurations. The earlier Lemma 11.8
gives upper bounds on the formula size for an invariantI ’s associated transition formula
TI and conditional liveness formulaLI . Furthermore, the information in the previous
Table 5 about the maximum number of variables required by thevarious BDD-based
decision procedures to symbolically represent a single state for a transition configu-
ration can be adapted to invariant configurations. Table 10 shows four cases. Recall
that the decision procedures construct some BDDs which represent states and others
which represent binary relations over pairs of states. Therefore, the number of variables
required for the second kind of BDDs is double that shown in Table 10.

57

11.4 Axiomatic completeness for invariant configurations

Theorem 11.16.Completeness holds for finite- and infinite-time invariant configura-
tions.

Proof. Suppose we have some invariantI. Assume without loss of generality that
I is ordered since otherwise we can trivially rearrange its dependencies to obtain an
ordered invariant which is both semantically and deduciblyequivalent toI. Subsec-
tion 11.1 already described how to construct a semanticallyequivalent transition con-
figuration from any finite-time or infinite-time invariant configuration associated with
I. The various valid formulas mentioned there can be deduced as PTL theorems to
establish that each such finite-time and infinite-time invariant configuration is also de-
ducibly equivalent to the associated transition configuration. This and the previously
shown axiomatic completeness for finite-time and infinite-time transition configura-
tions respectively proved in Theorems 10.8 and 10.9 ensure that any consistent finite-
time or infinite-time invariant configuration associated with I is satisfiable. Hence,
we establish our immediate goal of completeness for finite- and infinite-time invariant
configurations.

Theorem 11.17.Completeness holds for basic invariant configurations.

Proof. Suppose we have some consistent basic invariant configuration2 I ∧ w. Now
the disjunctionfinite ∨ inf is easily deduced as a propositional tautology sinceinf

is defined to be¬finite (see Table 1). It is then straightforward to show using purely
propositional reasoning that2 I ∧ w is deducibly equivalent to the disjunction of its
associated finite-time or infinite-time invariant configurations:

⊢ 2 I ∧ w ≡ (2 I ∧ w ∧ finite) ∨ (2 I ∧ w ∧ inf).

Hence at least one of the latter is also consistent. The previous Theorem 11.16 ensures
that any such consistent finite- or infinite-time invariant configuration is satisfiable as
well. An interval which satisfies it can also serve as a model for the basic invariant con-
figuration. This demonstrates the desired axiomatic completeness for all basic invariant
configurations.

12 Dealing with arbitrary PTL formulas

So far we have only looked at bounded models and axiomatic completeness for certain
kinds of PTL formulas. For an arbitrary PTL formulaX , it is straightforward to con-
struct an invariantI with formula size (recall Definition 11.7) which is linearlybounded
by X ’s formula size. The invariant contains a finite number of dependent variablesr1,
r2, . . . , r|I| not themselves occurring inX . We can then mimic the semantics ofX

since it is satisfiable iff the invariant configuration2 I ∧ r1 is satisfiable. In addition,
the implication2 I ⊃ (r1 ≡ X) is valid.

Assume that the only temporal operators inX are© and3 with others such as
2 expressed using them (e.g.,2 p becomes¬3¬p). The most straightforward way
to construct the invariant forX is to first start with the equivalencer1 ≡ X , where
the variabler1 does not occur inX . Now replace each a subformula having© or 3

as its main operator in this righthand instance ofX by a distinct dependent variable.
The original equivalence now becomesr1 ≡ w for some state formulaw. We then
construct a conjunction ofn additional dependencies (recall Definition 11.1), wheren

58

is the number ofX ’s temporal operators. For example, here is a suitable invariant for
the PTL formula(© p) ∨ 3(© q ∨ ¬© q′):

r1 ≡ (r2 ∨ r3) ∧ r2 ≡ © p ∧ r3 ≡ 3(r4 ∨ ¬r5) ∧ r4 ≡ © q ∧ r5 ≡ © q′. (40)

It is easy to check by doing induction onX ’s syntactic structure thatX is satis-
fiable iff the basic invariant configuration2 I ∧ r1 is satisfiable. Furthermore, the
implication2 I ⊃ (r1 ≡ X) can be shown to be valid. Consequently,2 I ∧ r1 can
be used to representX ’s behaviour (modulo the dependent variables which act as aux-
iliary ones). The bounded model for the invariant configuration (see Theorem 11.15)
satisfiesX as well.

The decision procedure described in Section 8 can be utilized to check the satisfia-
bility of arbitrary PTL formulas by reducing them first to basic invariant configurations
and then testing the associated finite-time and infinite-time transition configurations
(see Subsection 11.1). As detailed there, we transform the invariant into a transition
formula and conditional liveness formula using Definitions11.5 and 11.3, respectively.
No new dependent variables are needed. The resulting formulas have formula size
which is linear in that of the invariant and hence ofX itself.

Axiomatic completeness forX readily reduces to that for the invariant configura-
tion 2 I ∧ r1.

Let us now look in more detail at the formula size of an invariant generated for
some arbitrary PTL formulaX . The invariant contains one new dependent variable
for the overall formulaX and at most one new dependent variable for each temporal
operator inX . Hence, the total number of dependencies and dependent variables in
the invariant (including the original one forX itself) is bounded by the formula size
of X . In fact we have the following lemma concerning the formula size of invariants
generated from PTL formulas:

Lemma 12.1(Formula size of generated invariants). LetX be aPTL formula, letl be
its formula size and letm be the number of temporal operators inX . The formula size
of the invariant generated fromX is linearly bounded byX ’s formula size and is in
fact less thanl + 4(m + 1).

Proof. The introduction of a dependency for each temporal operatorrequires at most
four additional symbols. The first dependency for the overall formula X requires just
one instance of the dependent variabler1 and a single logical equivalence operator.
Any further new dependencies are introduced because of the presence of temporal op-
erators inX . Each such dependency requires within the final invariant two instances of
the associated dependent variable, one instance of the equivalence operator≡ and one
logical-and operator∧ to include the dependency in the final invariant.

For example, let3n p denoten instances of3 followed by the variablep. Here is
the form of an invariant for this for somen ≥ 1:

r1 ≡ 3 r2 ∧ r2 ≡ 3 r3 ∧ · · · ∧ rn ≡ 3 p.

The original formula3n p has formula sizen + 1 and the invariant has formula size
5n− 1. This example is a kind of worst case since many PTL formulas do not contain
such a high density of temporal operators.

59

12.1 Two simple improvements

Let us now consider two simple improvements to the transformation of arbitrary PTL
formulas into invariants which can yield shorter invariants containing fewer dependent
variables. For the first improvement, note that just prior tointroducing a new dependent
variable for a subformula, we can check whether the same subformula has already been
encountered elsewhere inX and previously assigned a dependent variable. If so, this
dependent variable can be used and further (redundant) processing of the subformula
can be skipped. This technique both reduces the number of dependent variables and
the formula size of the final invariant. For example, ifX is (3 p) ∧ 3(q ∨ 3 p), we
can obtain the following invariant:

r1 ≡ (r2 ∧ r3) ∧ r2 ≡ 3 p ∧ r3 ≡ 3(q ∨ r2). (41)

Here the dependent variabler2 corresponding toX ’s subformula3 p occurs twice in
dependent formulas on the righthand sides of equivalences.

The second improvement concerns the state formula in an invariant configuration.
If the dependent formula associated with the first dependentvariabler1 is a state for-
mula, then we can eliminater1 from the invariant and use the state formula in its place
as the initial state formula in any associated invariant configuration. For example, the
invariant (41) can be shortened to the following one:

r2 ≡ 3 p ∧ r3 ≡ 3(q ∨ r1).

The original formula(3 p) ∧ 3(q ∨ 3 p) can then be represented by the basic invariant
configuration now given:

2
(

r2 ≡ 3 p ∧ r3 ≡ 3(q ∨ r1)
)

∧ (r2 ∧ r3).

Therefore if the original formula containsm temporal operators, at mostm new de-
pendencies and dependent variables are required in the associated invariant rather than
m + 1.

Table 11 shows the number of variables required to representa state in the various
BDD-based decision procedures. The bounds can be obtained by observing that the
reduction to an invariant requires at mostm new variables, wherem is the number
of temporal operators in the original PTL formula. The earlier Table 10 can then be
used to calculate the values by replacing each instance of|V | by |V | + m. Recall
that the decision procedures construct some BDDs which represent states and others
which represent binary relations over pairs of states. Therefore, the number of variables
required for the second kind of BDDs is double that shown in Table 11.

12.2 A way to obtain even smaller invariants

We now describe another way of construct invariants with fewer dependencies and
dependent variables. It makes use of dependencies containing arbitrarily complex NL1

formulas. For example, ifX is the earlier formula(© p) ∨ 3(© q ∨ ¬© q′), we can
obtain the following invariant containing only 3 dependencies and with formula size
20:

r1 ≡ (© p ∨ r3) ∧ r2 ≡ (© q ∨ ¬© q′) ∧ r3 ≡ 3 r2. (42)

This is smaller than the earlier invariant (40) which has 5 dependencies and formula
size 28.

60

Type of interval Max. # of variables to represent a state

Finite-time |V |+ m

Infinite-time (using§8.1) 2(|V |+ m) + n

Infinite-time (using§8.2) |V |+ m + 2n

Infinite-time (also in§8.2) |V |+ m + n + ⌈log2(n + 1)⌉,

wherem is the number of temporal operators
andn is the number of3 operators in the formula.

Table 11: Variables used by decision procedures for arbitrary formulas

We start with the equivalencer1 ≡ X , wherer1 is a new dependent variable. Now
check whether the equivalencer1 ≡ X is already itself a well-formed dependency.
Recall Definition 11.1, concerning invariants and dependencies, which states that for
any propositional variabler, the equivalencer ≡ X is a dependency iffX is either
of the form3w for some state formulaw or X is in NL1. We will now give a lemma
which states an alternative characterization of an equivalence such asr1 ≡ X being a
dependency. This is done using two conditions. By expressing the requirements forX
in terms of these conditions, we can more clearly see how to obtain a invariant from
the initial equivalencer1 ≡ X .

Within this approach, let the termstrict NL1 formuladenote an NL1 formula con-
taining at least one instance of the operator©. Observe that an NL1 formula cannot
itself contain a strict NL1 formula within the scope of a© operator since this would
nest one© in another.

Lemma 12.2 (Alternative characterization of dependency). Let r be some proposi-
tional variable andX be aPTL formula. The following are equivalent:

(a) The equivalencer ≡ X is a dependency.

(b) The following two conditions hold forX :

1. X does not contain a subformula3w, for some state formulaw, nested
within any operator.

2. X does not contain a strictNL1 subformula nested within some temporal
operator.

Proof. (a) ⇒ (b): From the definition of invariants and dependencies in Defini-
tion 11.1 it is not hard to see that ifr ≡ X is a dependency, then both conditions
are observed. We show this by considering the two possible formsX can have:

• X has the form3 w: Clearly Condition 1 holds sinceX itself is not nested in
any temporal operators. Also Condition 2 holds sinceX contains no© at all.

• X is a formula in NL1: Such anX observes Condition 1 sinceX does not
contains any3 operator. Also, as already noted, an NL1 formula cannot contain
a strict NL1 subformula within the scope of any© operator. Therefore Condition
2 holds.

(b) ⇒ (a): We first consider the case whereX contains a3 and then the case
where it does not contain one:

61

• X contains a3: Condition 1 ensures that this3 must be exactly the outermost
operator. Also, by Condition 2, no© can occur within the scope of the3 soX

has the form3w for some state formulaw.

• X does not contain a3: Condition 2 guarantees that any© in X does not occur
in another© so sinceX has no3 in it thenX itself is in NL1.

Now let us obtain an invariant from the equivalencer1 ≡ X , wherer1 is a propo-
sitional variable not occurring inX . By Lemma 12.2, this equivalence is a dependency
iff both alternative Conditions 1 and 2 in (b) hold forX . If either condition is violated
by X and hencer1 ≡ X is not a dependency, we replace some offending temporal
subformula, sayY , in X by a new distinct dependent variable, sayr2, to obtain from
X a smaller formulaX ′. Indeed,X can be viewed as a substitution instance ofX ′,
that is,X ′Y

r2
. The equivalence associated withX now becomesr1 ≡ X ′. We also

associater2 with the additional equivalencer2 ≡ Y , which is a well-formed depen-
dency since by the two alternative Conditions 1 and 2 in Lemma12.2 the offending
subformula is either of the form3 w, for some state formulaw, or is in NL1. The
process is repeated onX ′ to check whether it fulfils the alternative Conditions 1 and 2
in Lemma 12.2. If not, this results in more new dependent variables and equivalences,
as well as a new formulaX ′′ which used in the next iteration instead ofX ′. Eventu-
ally, we terminate with a finite nonempty set of equivalenceswhich are well-formed
dependencies and can be conjoined together to obtain an invariant I with the valid
implication2 I ⊃ (r1 ≡ X).

As we previously noted, the invariant (42) can be constructed in this way from
the formula(© p) ∨ 3(© q ∨ ¬© q′). First observe that the strict NL1 subformula
© q ∨ ¬© q′ violates Lemma 12.2’s Condition 2 since it occurs within a3 construct.
Therefore, we replace it inX by the new dependent variabler2 to obtain a new overall
formula© p ∨ 3 r2. Then observe that the subformula3 r2 violates Lemma 12.2’s
Condition 1 so replace it by the new dependent variabler3. The resulting overall
formula© p ∨ r3 is in NL1 and is therefore suitable for used in the first dependency
r1 ≡ (© p ∨ r3). A variation of the technique based on recursive descent is also
possible but we omit the details here.

A generalized kind of invariant later described in Subsection 13.3 can further re-
duce the need for dependent variables by permitting the operand of a3-formula in a
3-dependency to be an arbitrary NL1 formula, rather than just a state formula. More
compact list-based representations of invariants are alsopossible.

13 Some additional features

This section describes a number of extensions to our approach. They include the tem-
poral operatoruntil and past-time constructs (both extensively discussed in the lit-
erature which is surveyed by Emerson [25], Lichtenstein andPnueli [57] and other
researchers cited elsewhere in our presentation). In addition, the liveness tests found
in conditional liveness formulas and invariants can be generalized to be NL1 formulas,
rather than just state formulas. Another feature considered here concerns a subset of
PITL calledFusion Logic(FL) which includes constructs of the sort found in Proposi-
tional Dynamic Logic (PDL) [27, 28, 39–41, 52]. We will look at each of these issues
in turn. For the sake of brevity, the presentation is brieferand less formal than in the
previous sections.

62

13.1 The operatoruntil

The operatoruntil is a binary operator with the syntaxX U Y , whereX andY are PTL
formulas. Recall from Section 4 that for any intervalσ and natural numberk which
does not exceedσ’s interval length,σk:|σ| denotes the suffix subinterval obtained by
deleting the firstk states fromσ. Here is the semantics ofuntil :

σ |= X U Y iff

for somek ≤ |σ|, σk:|σ| |= Y and for allj : 0 ≤ j < k, σj:|σ| |= X.

Observe that the operator3 can be expressed in terms ofuntil since3 X is seman-
tically equivalent to the formulatrue until X . Kamp [50] first proposed and ex-
tensively studied a version ofuntil which ignores the present state (together with a
past-time analogue calledsince). He looked at the semantic expressiveness ofuntil

within different models of time (see also Prior [80], Rescher and Urquhart [83], Emer-
son [25], Gabbay, Hodkinson and Reynolds [35] and Blackburn, de Rijke and Ven-
ema [7]). The influential analyses by Gabbay et al. [33] and Lichtenstein, Pnueli and
Zuck [58] of PTL withuntil and a discrete linear model of time are also of particular
note. Burgess [15] shows the completeness of an axiom systemfor PTL withuntil and
since . However, time is modelled as being linear but not necessarily discrete. Marx,
Mikulas and Reynolds [61] consider the complexity of decidability and axiomatic com-
pleteness of PTL with various versions of linear time and include an analysis withuntil

andsince . Like Burgess, they do not restrict time to being discrete.
We can alter the definition of invariants by replacing3-dependencies with depen-

dencies of the formr ≡ (wU w′), wherew andw′ are state formulas. If thej-th
dependencyI[j] of an invariantI is such a dependency (called anuntil -dependency),
then the corresponding conjunctionTI [j] in I ’s transition formulaTI has the form
r ≡ (w′

∨ (w ∧ © r)). The associated conjunctionLI [j] in LI is r ⊃ 3m w′. It is not
hard to modify the material in Section 11 to ensure that finite-time and infinite-time in-
variant configurations remain semantically equivalent to the associated transition con-
figurations.

Alternatively, we can transform an invariant withuntil in it to one without it.
Each dependency inI of the formuk ≡ (w until w′) is replaced by the dependency
uk ≡

(

u′
k ∧ (w′

∨ (w ∧ ©uk))
)

, whereu′
k is a new dependent variable with the

associated dependencyu′
k ≡ 3w′. This approach is more hierarchical than the first

one but increases the number of dependencies used.

13.2 Past time

Prior [80], Rescher and Urquhart [83] and others originallystudied temporal logics
having models of time with both a future and a past and including past-time ana-
logues of3 and2. Time in such frameworks is not necessarily discrete or evenlinear.
Prior [80] credits Scott with the first versions of© and a past-time analogue (referred to
by Prior astomorrowandyesterday, respectively) for use with discrete models of time.
Gabbay et al. [33] strongly argue that PTL without past time is sufficiently expressive
for many purposes within the context of computer science. Somewhat later, Licht-
enstein, Pnueli and Zuck [58] argue the case for past time even in computer science
applications of temporal logic. Lichtenstein and Pnueli [57] subsequently describe this
reevaluation as “A major reversal of our view about the essentiality of the past oper-
ators. . . ”. More recently, Laroussinie, Markey and Schnoebelen [56] have formally
shown that PTL with past time can be exponentially more succinct that PTL without it.

63

Let us now consider PTL with a linear, discrete model of time having a bounded
past. The syntax is modified to include the two additional primitive operators©X (read
previousX) and3X (readonceX). The set of PTL formulas including past-time
constructs is denoted as PTL−. The semantics of a PTL formulaX is now expressed
as (σ, k) |= X wherek is any natural number not exceeding|σ|. For example, the
semantics of© and3 are as follows:

(σ, k) |= ©X iff k > 0 and(σ, k − 1) |= X

(σ, k) |= 3X iff for somej : 0 ≤ j ≤ k, (σ, j) |= X.

We define the operator2X (readso-far X) as¬3¬X and the operator©∼ X (read
weak previousX) as¬©¬X . The operatorfirst is defined to be¬© true and tests
for the first state of an interval. The past-time version ofuntil calledsince can also
be included but we omit the details.

A PTL− formula X is defined to satisfiable iff(σ, k) |= X holds for some pair
(σ, k) with k ≤ |σ|. The formulaX is valid iff (σ, k) |= X holds for every pair(σ, k)
with k ≤ |σ|. Note that these straightforward definitions of satisfiability and validity
correspond to the so-calledfloating frameworkof PTL with past time. However, Manna
and Pnueli propose another interesting approach called theanchored framework[60]
(also discussed by Lichtenstein and Pnueli in [57]) which they argue is superior. In
this framework, satisfiability and validity only examine pairs of the form(σ, 0). There
exist ways to go between the two conventions but we will not delve into this here and
instead simply assume the more traditional floating interpretation.

We now define an analogue of the set of formulas NL:

Definition 13.1(Previous Logic). The set ofPTL formulas in which the only primitive
temporal operator is© is called herePrevious Logic (PrevL). The subset ofPrevLwith
no© nested in another© is denoted asPrevL1.

We let the variablesZ andZ ′ denote formulas in PrevL1. Also, PrevL1V denotes
the set of all formulas in PrevL1 only having variables inV.

The following definitions extend the notation of transitionconfigurations to deal
with past time:

Definition 13.2(Past-time transition configurations). A past-time transition configura-
tion is any formula of the form22(T ∧ Z) ∧ X , whereT is in NL1

V , Z is in PrevL1V ,
and the formulaX is in PTLV and is in one of the two categories shown below:

Type of configuration Syntax ofX

Finite-time w ∧ finite

Infinite-time w ∧ 23+ L

Herew is a state formula inPROPV andL is a conditional liveness formula inPTLV .

The formula22(T ∧ Z) contains both2 and2 to ensure that bothT andZ are
true everywhere in the interval.

The analysis of a finite-time or infinite-time past-time transition configurations can
be easily reduced to reasoning in PTL without past time. Let us demonstrate this by
first examining how to test the satisfiability of a finite-timepast-time transition con-
figuration22(T ∧ Z) ∧ w ∧ finite. This involves finding an intervalσ and natural
numberk ≤ |σ|, such that(σ, k) |= 22(T ∧ Z) ∧ w ∧ finite holds. Note that this

64

past-time transition configuration is satisfiable iff the following formula, which shifts
reasoning back to an interval’s starting state, is satisfiable:

3
(

2(T ∧ Z) ∧ first ∧ 3 w ∧ finite
)

. (43)

Here we can dispense with the operator2 since22 and2 have the same semantics at
the starting state.

Now for any PTL− formulaX , the formula3 X is satisfiable iffX is satisfiable.
Hence, the formula (43) is satisfiable iff its subformula2(T ∧ Z) ∧ first ∧ 3w ∧

finite is satisfiable. Let us now define the NL1
V formulaT ′ by replacing each© con-

struct inZ by its operand and by taking each state formula inZ which does not occur
in © and enclosing it in©. For example, ifZ is the formulap ∨ ©(q ∧ r), thenT ′

is (© p) ∨ (q ∧ r). Furthermore, letw′ be the state formula in PROPV obtained from
Z by replacing each© construct byfalse. In our example,w′ is p ∨ false. It can be
readily checked that the following formula relatingZ andT ′ is true at any interval’s
first state:2Z ≡ 2m T ′

∧ w′. In other words, the next implication is valid:

|= first ⊃ (2Z ≡ 2m T ′
∧ w′).

Therefore, the original finite-time past-time transition configuration is satisfiable iff the
following formula in PTL without past time is satisfiable:

2(T ∧ (more ⊃ T ′)) ∧ w′
∧ 3w ∧ finite. (44)

This is still not a well-formed finite-time transition configuration due to the presence
of the formula3w. However,3 w can be reduced by introducing a new propositional
variabler as shown in the next formula:

2
(

T ∧ (more ⊃ T ′) ∧ (r ≡ (w ∨ © r))
)

∧ w′
∧ r ∧ finite. (45)

The reduction of the original past-time transition configuration 22(T ∧ Z) ∧ w ∧

finite to the finite-time transition configuration (45) systematically relates all aspects of
the analysis of the past-time transition configuration to the purely future-only reasoning
presented earlier. This includes bounded models, decisionprocedures and axiomatic
completeness.

An alternative way to reduce the PTL formula (44) involves interval-based rea-
soning. We first re-express the formula in PTL as the next semantically equivalent
conjunction:

2m (T ∧ (more ⊃ T ′)) ∧ w′
∧ 3w ∧ sfin T . (46)

This makes use of the valid PTL equivalence(2X ∧ finite) ≡ (2m X ∧ sfin X), for
any PTL formulaX . However, in our case we can omit the subformulamore ⊃ T ′

in the sfin construct since the operatormore ensures that the implication is trivially
true in the associated empty interval. LetT ′′ denote the subformulaT ∧ (more ⊃
T ′). Theorem 5.4 ensures the semantic equivalence of2m T ′′ and($ T ′′)∗. Now the
formula (46) can in turn be itself re-expressed as the following chop-formula:

((T ′′)∗ ∧ w′
∧ finite); ((T ′′)∗ ∧ w ∧ sfin T). (47)

Let w′′ denote a state formula obtained by replacing every© construct inT by false.
Consequently,w′′ is true exactly in states for whichT ∧ empty is true. It follows that

65

we can test for satisfiability of formula (47) by adapting thesymbolic methods men-
tioned in Section 8 to solve forV-atomsα, β andγ for which the following formulas
are satisfiable:

α ∧ w ($T ′′)∗ ∧ α ∧ sfin β β ∧ w′ ($T ′′)∗ ∧ β ∧ sfin γ γ ∧ w′′.

Further details are omitted here.
The treatment for a infinite-time past-time transition configuration is nearly identi-

cal to that for a finite-time one since the assumption of a bounded past still applies and
avoids the need for a past-time conditional liveness formula. First of all, we replace the
subformulafinite by 23+ L.

2(T ∧ T ′) ∧ w′
∧ 3w ∧ 23

+ L.

The use of infinite time ensures we can omit the instance ofmore found in the finite-
time formulas (44) and (45) sinceT andmore ⊃ T are semantically equivalent on an
infinite interval. The formula3 w is itself reduced by introducing a new propositional
variabler and conjoining a new implication toL to obtain the well-formed infinite-time
transition configuration below:

2(T ∧ T ′) ∧ w′
∧ r ∧ 23

+(L ∧ (r ⊃ 3m w)).

So far we have only considered finite- and infinite-time transition configurations.
Invariants (and hence also invariant configurations) can beextended to support past-
time reasoning by adding two new kinds of dependencies. The first has the form
u ≡ Z, whereZ is a formula in PrevL1, and the second has the formu ≡ 3w.
The use of3 does not involveI ’s conditional liveness formulaLI due to the assump-
tion of a bounded past. The definitions of invariant configurations remain the same and
the reduction of them to past-time transition configurations is straightforward since no
dependency contains both future- and past-time temporal constructs. Furthermore, de-
pendencies containing the temporal operatorsince (a conventional past-time analogue
of the operatoruntil) are not much harder to handle than3-dependencies. The reduc-
tion of an arbitrary PTL− formula to an invariant with past time is also straightforward.

13.3 Generalized conditional liveness formulas and invariants

Conditional liveness formulas and invariants require thattheir liveness tests, which re-
spectively occur as operands of3m and3, must be state formulas (recall Definitions 5.1
and 11.3). We can slightly relax this requirement and permitarbitrary formulas in NL1.
This makes invariants more succinct since a formula such assfin w can now be ex-
pressed using only one dependency such asuk ≡ 3(empty ∧ w) instead of requiring
two. The formula23+ w can be expressed with the invariantuk ≡ 3(w ∧ ©uk). The
overall analysis of such invariants only differs slightly from that for the basic version
of invariants. Invariants withuntil -dependencies (see Subsection 13.1) can be anal-
ogously generalized to permituntil -dependencies of the formuk ≡ (T U T ′), where
bothT andT ′ are in NL1.

Transition configurations containing generalized liveness formulas might be of use
as a notation for representing deterministic and nondeterministicω-automata in tempo-
ral logic. However, we need to employ Quantified PTL (QPTL) toexistentially quan-
tify over the variables which collectively encode such an automaton’s internal state.
Further details of this are omitted here.

66

13.4 Fusion Logic

Regular expressions are a standard notation for representing regular languages. How-
ever, within PITL, it is more appropriate to use languages based on fusion (recall Defi-
nition 5.20) rather than conventional concatenation. Thisinvolves a variation of regular
expressions called herefusion expressions. We now define a PITL-based representa-
tion of them which is in fact a special subset of PITL formulas. This subset will then
provide the basis for a generalization of PTL calledFusion Logic(FL) which is also
itself a subset of PITL. We originally used Fusion Logic in [73] as a kind of interme-
diate logic when we reduced the problem of showing axiomaticcompleteness of PITL
with finite time to showing axiomatic completeness for PTL. Fusion Logic is closely
related to Propositional Dynamic Logic (PDL) [27, 28, 39–41, 52]. A major reason for
discussing Fusion Logic here is because it is not hard to extend our decision procedure
for PTL with finite time to also handle more expressive interval-oriented FL formulas
by simply reducing FL formulas to lower level PTL formulas ofthe kinds already dis-
cussed. This demonstrates another link between PTL and intervals and has practical
applications.

Definition 13.3 (Fusion-expression formulas). The set offusion-expression formulas,
denotedFE, consists ofPITL formulas with the syntax given below, wherew is a state
formula,T is in NL1 andE andF themselves denoteFE formulas:

w? E ∨ F $ T E; F E∗.

The syntax ofFE formulas is like that of programs in Propositional Dynamic Logic
without rich tests. HoweverFE has a semantics based on sequences of states rather
than binary relations.

For any set of variablesV, let FEV denote the set ofFE formulas containing only
variables inV.

Unlike letters in conventional regular expressions, any nonmodal formula can be
used inw?. For example,false? is permitted even though it is unsatisfiable. Consider
the following FE formula:

(

($© p); (q?)
)

∨ ($¬q)∗.

This is true on an interval if either the interval has exactlytwo states andp andq are
both true in the second state or it has some arbitrary number of states, sayk, with q

false in each of the firstk − 1 states.

Remark 13.4(Expressing concatenation). It is important to note that the conventional
concatenation of twoFE formulasE andF can be achieved through the use of theFE
formulaE; ($ true); F . Here$ true is itself anFE formula which is an alternative way
to express thePTL operatorskip. This temporal operation onE andF is sometimes
called “chomp”, since it is a slight variation of chop. Hence, in the context of temporal
logic,FE formulas can largely subsume regular expressions althoughthere are slightly
different conventions for such things as empty words. We omit the details.

We now present the sublogic of PITL called here Fusion Logic.In essence, Fu-
sion Logic augments conventional PTL with the fusion-expression formulas already
introduced.

67

Definition 13.5 (Fusion Logic). Here is the syntax ofFL wherep is any propositional
variable,E is anyFE formula andX andY are themselves formulas inFL:

p ¬X X ∨ Y ©X 3X 〈E〉X.

We define the new construct〈E〉X (called “FL-chop”) and its dual [E]X (called “FL-
yields”) using the primitivePITL constructs chop and¬:

〈E〉X
def
≡ E;X [E]X

def
≡ ¬〈E〉¬X.

Within an FL formula,©, 3 and FL-chop are treated as primitive constructs. Unlike
PITL, FL limits the left sides of chop to being FE formulas.

In [73], we described an earlier version of FL havingskip as a primitive FE formula
instead of$T . As we noted previously in Remark 13.4, the PTL formulaskip can
be expressed in FE as$ true. The two versions of FL can readily be shown to be
equally expressive since$T can be replaced with a semantically equivalent disjunction
of formulas by using of?, skip and chop. For example, the FE formula$(p ⊃ © q) is
semantically equivalent to the FE formula((¬p)?; skip) ∨ (skip; q?). In practice, the
version described here is much more natural and succinct.

Henriksen and Thiagarajan [43,44] investigate a formalismrelated to Wolper’s Ex-
tended Temporal Logic (ETL) [92,94] and calledDynamic Linear Time Temporal Logic
which combines PTL and PDL in a linear-time framework with infinite time. It is sim-
ilar to our Fusion Logic and uses multiple atomic programs instead of the FE operators
? and$.

Remark 13.6. The temporal operators© and3 which are primitives inFL can actu-
ally be expressed as instances ofFL-chop if finite time is assumed:

|= ©X ≡ 〈$ true〉X |= 3X ≡ 〈($ true)∗〉X.

In spite of FL being a proper subset of PITL, they have the sameexpressiveness.
We discussed this in [73], where a hierarchical reduction ofFL formulas to PTL for-
mulas is also given but is limited to dealing with finite-timeintervals. This reduction
provides the basis of a decision procedure for FL with finite-time. An alternative hi-
erarchical reduction to transition configurations in PTL isalso possible and indeed we
have implemented a version of it. Such transition configurations can be tested with the
decision procedure for finite time described in Section 8. Like the approach in [73],
this reduction could be used for proving the completeness ofan axiom system for FL
with finite time.

14 Discussion

We conclude with a look at some issues connected with PTL and FL.
As noted earlier, a number of PTL decision procedures are tableau-based algo-

rithms. These include ones described by Wolper [95], Emerson [25] and Lichtenstein
and Pnueli [57]. It appears that with some care a tableau-based approach can be hierar-
chically reduced to our framework. It might therefore be worthwhile to investigate the
relationship between the two approaches in more detail.

The BDD-based techniques described in Section 8 can be adapted to check in real
time that an executing system is not violating assertions expressed in PTL or FL as

68

it runs. Whether FL in particular is useful for this in practice is unclear. In addition,
it would appear that the reachability analysis employed by us could, in the manner of
Bounded Model Checking (BMC) [18], utilize SAT-based techniques for PTL and FL
instead of BDDs. However, such a SAT-based approach, unlikethe BDD-based one,
normally cannot exhaustively test for unsatisfiability because of the lack of a notion
corresponding to the convergence of BDDs to the set of all atoms reachable from some
starting one. Rather BMC typically works by employing SAT tofind at most a single
solution not exceeding some predetermined maximum boundednumber of states which
for practical reasons is generally much less than the worst-case bounds derived from
formula syntax. If a solution is not found, this is typicallynot by itself sufficient to
exclude the existence of larger satisfying intervals. Nevertheless, Heljanko, Junttila
and Latvala in a recent paper [42] describe a BMC-based complete decision procedure
for PTL and its implementation and also mention other related work on this promising
topic.

Although our primary application of invariants, transition formulas and conditional
liveness formulas has been to temporal logics, we have also used versions of them
to analyse Propositional Dynamic Logic (PDL) without the need for Fischer-Ladner
closures. Indeed, this was the original motivation for conditional liveness formulas.
However, at present the benefits and novelty of utilizing ourapproach for PDL are less
compelling than for PTL.

Acknowledgements

We thank Antonio Cau, Jordan Dimitrov, Rodolfo Gómez, Helge Janicke and an anony-
mous referee for comments on this work. In the course of discussions, Howard Bow-
man, Shmuel Katz, Maciej Koutny and Simon Thompson also madehelpful sugges-
tions leading to improvements in the presentation of the material. We are especially
grateful to Hussein Zedan for his patience and encouragement during the time this
research was undertaken.

References

[1] ANSI. Common Lisp: Standard ANSI INCITS 226-1994 (R1999) (formerly
ANSI X3.226-1994 (R1999)).http://www.ansi.org, 1999.

[2] B. Banieqbal and H. Barringer. A study of an extended temporal logic and a tem-
poral fixed point calculus. Technical Report UMCS-86-10-2,Dept. of Computer
Science, University of Manchester, England, Oct. 1986. revised June 1987.

[3] I. Beer, S. Ben-David, et al. The temporal logic Sugar. InG. Berry, H. Comon,
and A. Finkel, editors,13th Conference on Computer-Aided Verification (CAV01),
Paris, France, 18–22 July 2001, volume 2102 ofLNCS, pages 363–367, Berlin,
2001. Springer-Verlag.

[4] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic ofbranching time.
In Proc. 8th ACM Symp. on Principles of Programming Languages (POPL ’81),
pages 164–176. ACM, Jan. 1981.

[5] M. Ben-Ari, Z. Manna, and A. Pnueli. The temporal logic ofbranching time.
Acta Informatica, 20(3):207–226, 1983.

69

[6] O. Bernholtz, M. Y. Vardi, and P. Wolper. An automata-theoretic approach to
branching-time model checking. InComputer Aided Verification, Proc. 6th Int’l.
Workshop, volume 818 ofLNCS, pages 142–155, Stanford, California, June 1994.
Springer-Verlag.

[7] P. Blackburn, M. de Rijke, and Y. Venema.Modal Logic. Number 53 in Theoret-
ical Tracts in Computer Science. Cambridge University Press, 2001.

[8] R. Bloem, H. N. Gabow, and F. Somenzi. An algorithm for strongly connected
component analysis inn log n symbolic steps.Formal Methods in System Design,
28:37–56, 2006.

[9] A. Bolotov, M. Fisher, and C. Dixon. On the relationship betweenω-automata
and temporal logic normal forms.Journal of Logic and Computation, 12(4):561–
581, Aug. 2002. Available ashttp://www3.oup.co.uk/logcom/hdb/
Volume 12/Issue 04/pdf/120561.pdf.

[10] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.IEEE
Transactions on Computers, C-35(8), 1986.

[11] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision dia-
grams.ACM Comput. Surv., 24(3):293–318, Sept. 1992.

[12] J. R. Büchi. On a decision method in restricted second-order arithmetic. InProc.
Int. Congress on Logic, Methodology, and Philosophy of Science 1960, pages 1–
12, Stanford, California, 1962. Stanford University Press. Reprinted in [13, pp.
425–435].

[13] J. R. Büchi. The Collected Works of J. Richard Büchi, S. Mac Lane and
D. J. Siefkes, editors. Springer-Verlag, New York, 1990.

[14] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang. Symbolic
model checking:1020 states and beyond.Inf. and Comp., 98(2):142–170, June
1992.

[15] J. P. Burgess. Axioms for tense logic I: “Since” and “until”. Notre Dame Journal
of Formal Logic, 1982.

[16] Cadence Design Systems.http://www.cadence.com/.

[17] B. F. Chellas.Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge, England, 1980.

[18] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using satis-
fiability solving. Formal Methods in System Design, 19(1), July 2001.

[19] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT Press,
Cambridge, Massachusetts, 1999.

[20] CLISP: An ANSI Common Lisp implementation.http://clisp.cons.
org.

[21] O. Coudert, C. Berthet, and J. C. Madre. Verification of sequential machines
using boolean functional vectors. In L. Claesen, editor,Proc. IFIP International
Workshop on Applied Formal Methods for Correct VLSI Design, pages 111–128,
Leuven, Belgium, Nov. 1989.

70

[22] O. Coudert, C. Berthet, and J. C. Madre. Verification of synchronous sequential
machines based on symbolic execution. In J. Sifakis, editor, Automatic Verifica-
tion Methods for Finite State Systems, International Workshop, Grenoble, France,
June 12-14, 1989, Proceedings, volume 407 ofLNCS, pages 365–373. Springer-
Verlag, 1989.

[23] O. Coudert, C. Berthet, and J. C. Madre. A unified framework for the formal
verification of sequential circuits. InProc. IEEE International Conf. on Computer
Aided Design, pages 126–129, Nov. 1990.

[24] Colorado University Decision Diagram Package (CUDD).Available athttp:
//vlsi.colorado.edu/∼fabio.

[25] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,Hand-
book of Theoretical Computer Science, volume B: Formal Models and Semantics,
chapter 16, pages 995–1072. Elsevier/MIT Press, Amsterdam, 1990.

[26] E. A. Emerson and C.-L. Lei. Efficient model checking in fragments of the propo-
sitional mu-calculus (extended abstract). In A. Meyer, editor,Proc. 1st Ann. IEEE
Symp. on Logic in Computer Science (LICS ’86), pages 267–278. IEEE Computer
Society Press, June 1986.

[27] M. J. Fischer and R. E. Ladner. Propositional modal logic of programs (extended
abstract). InConference Record of the 9th Ann. ACM Symp. on Theory of Com-
puting (STOC), pages 286–294, Boulder, Colorado, 2–4 May 1977. ACM.

[28] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs.
J. Comput. Syst. Sci., 18(2):194–211, Apr. 1979.

[29] M. Fisher. A normal form for first-order temporal formulae. In D. Kapur, ed-
itor, Automated Deduction - CADE-11, 11th Int’l. Conf. on Automated Deduc-
tion, Saratoga Springs, NY, USA, June 15-18, 1992, Proceedings, volume 607 of
LNCS, pages 370–384. Springer-Verlag, 1992.

[30] M. Fisher. A normal form for temporal logic and its application in theorem-
proving and execution.Journal of Logic and Computation, 7(4):429–456, Aug.
1997.

[31] M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Transac-
tions on Computational Logic, 2(1):12–56, Jan. 2001.

[32] T. French. A proof of the completeness of PLTL. Available ashttp://www.
cs.uwa.edu.au/∼tim/papers/pltlcomp.ps, 2000.

[33] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal analysis of fairness.
In Proc. 7th Ann. ACM Symp. on Principles of Programming Languages (POPL
’80), pages 163–173. ACM, 1980.

[34] D. M. Gabbay, M. Finger, and M. Reynolds.Temporal Logic: Mathematical
Foundations and Computational Aspects, Volume 2. Number 40 in Oxford Logic
Guides. Oxford University Press, 2000.

[35] D. M. Gabbay, I. Hodkinson, and M. Reynolds.Temporal Logic: Mathematical
Foundations and Computational Aspects, Volume 1. Number 28 in Oxford Logic
Guides. Clarendon Press, 1994.

71

[36] R. Goldblatt.Logics of Time and Computation, volume 7 ofCSLI Lecture Notes.
CLSI/SRI International, Menlo Park, California, 1987.

[37] J. Halpern, Z. Manna, and B. Moszkowski. A hardware semantics based on tem-
poral intervals. In J. Diaz, editor,Proc. 10th Int’l. Colloquium on Automata, Lan-
guages and Programming (ICALP ’83), volume 154 ofLNCS, pages 278–291,
Berlin, 1983. Springer-Verlag.

[38] R. H. Hardin, R. P. Kurshan, S. K. Shukla, and M. Y. Vardi.A new heuristic for
bad cycle detection using BDDs.Formal Methods in System Design, 18(2):131–
140, 2001.

[39] D. Harel. Dynamic logic. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, volume II, pages 497–604. Reidel Publishing Company,
Dordrecht, 1st edition, 1984.

[40] D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. MIT Press, Cambridge,
Massachusetts, 2000.

[41] D. Harel, D. Kozen, and J. Tiuryn. Dynamic logic. In D. Gabbay and F. Guenth-
ner, editors,Handbook of Philosophical Logic, volume 4, pages 99–217. Kluwer
Academic Publishers, Dordrecht, 2nd edition, 2002.

[42] K. Heljanko, T. A. Junttila, and T. Latvala. Incremental and complete bounded
model checking for full PLTL. In K. Etessami and S. K. Rajamani, editors,Com-
puter Aided Verification, 17th International Conference, CAV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedings, pages 98–111, 2005.

[43] J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic. Tech-
nical Report RS-97-8, BRICS, Department of Computer Science, University of
Aarhus, Aarhus, Denmark, Apr. 1997. Available athttp://www.brics.dk/
RS/97/8/.

[44] J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic.An-
nals of Pure and Applied Logic, 96(1-3):187–207, 1999.

[45] Y. Hollander, M. Morley, and A. Noy. Thee language: A fresh separation of
concerns. InTechnology of Object-Oriented Languages and Systems (Proc. 38th
Int’l. TOOLS Conference, TOOLS Europe 2001), pages 41–50. IEEE Computer
Society Press, Mar. 2001.

[46] G. E. Hughes and M. J. Cresswell.A New Introduction to Modal Logic. Rout-
ledge, London, 1996.

[47] IEEE Standards Association.http://standards.ieee.org/.

[48] IEEE Standard 1647. Produced by theeFunctional Verification Language Work-
ing Group.http://www.ieee1647.org/.

[49] Interval Temporal Logic (ITL) homepage.http://www.cse.dmu.ac.uk/
STRL/ITL/.

[50] J. A. W. Kamp.Tense Logic and the Theory of Linear Order. PhD thesis, Univer-
sity of California, Los Angeles, 1968.

72

[51] Y. Kesten and A. Pnueli. Complete proof system for QPTL.Journal of Logic and
Computation, 12(5):701–745, Dec. 2002.

[52] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor,Handbook
of Theoretical Computer Science, volume B, pages 789–840. Elsevier Science
Publishers, Amsterdam, 1990.

[53] F. Kröger. Temporal Logic of Programs, volume 8 ofEATCS Monographs on
Theoretical Computer Science. Springer-Verlag, 1987.

[54] T. Kropf. Introduction to Formal Hardware Verification. Springer-Verlag, Hei-
delberg, Germany, 1999.

[55] M. Lange and C. Stirling. Focus games for satisfiabilityand completeness of
temporal logic. InProc. 16th Ann. IEEE Symp. on Logic in Computer Science
(LICS 2001), pages 357–365, Boston, Mass., USA, June 2001. IEEE Computer
Society Press.

[56] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Temporal logic with forgettable
past. InProc. 17th Ann. IEEE Symp. on Logic in Computer Science (LICS2002),
pages 383–392, Washington, D.C., USA, 2002. IEEE Computer Society Press.

[57] O. Lichtenstein and A. Pnueli. Propositional temporallogics: Decidability and
completeness.Logic Journal of the IGPL, 8(1):55–85, 2000. Available athttp:
//www3.oup.co.uk/igpl/Volume 08/Issue 01/#Lichtenstein.

[58] O. Lichtenstein, A. Pnueli, and L. Zuck. The glory of thepast. In R. Parikh et al.,
editors,Logics of Programs, volume 193 ofLNCS, pages 196–218, Berlin, 1985.
Springer-Verlag.

[59] Z. Manna and A. Pnueli. Verification of concurrent programs: the temporal
framework. In R. S. Boyer and J. S. Moore, editors,The Correctness Problem
in Computer Science, pages 215–273, New York, 1981. Academic Press.

[60] Z. Manna and A. Pnueli. The anchored version of the temporal framework.
In J. W. D. Bakker, W.-P. de Roever, and G. Rozenberg, editors, Linear Time,
Branching Time, and Partial Order in Logics and Models for Concurrency (REX
Workshop 1988), volume 354 ofLNCS, pages 201–284. Springer-Verlag, 1989.

[61] M. Marx, S. Mikulas, and M. Reynolds. The mosaic method for temporal logics.
In R. Dyckhoff, editor,Automated Reasoning with Analytic Tableaux and Related
Methods, International Conference, TABLEAUX 2000, St Andrews, Scotland, UK,
July 3-7, 2000, Proceedings, volume 1847 ofLNCS, pages 324–340. Springer-
Verlag, 2000.

[62] K. L. McMillan. Symbolic model checking. Kluwer Academic Publishers, Boston,
Mass., 1993.

[63] M. J. Morley. Semantics of temporale. In T. F. Melham and F. G. Moller, editors,
Banff’99 Higher Order Workshop: Formal Methods in Computation, Ullapool,
Scotland, 9–11 Sept. 1999, pages 138–142. University of Glasgow, Department
of Computing Science Technical Report, 1999.

73

[64] B. Moszkowski. Reasoning about Digital Circuits. PhD thesis, Department of
Computer Science, Stanford University, June 1983. Technical report STAN–CS–
83–970.

[65] B. Moszkowski. A temporal logic for multi-level reasoning about hardware. In
Proc. 6th Int’l. Symp. on Computer Hardware Description Languages, pages 79–
90, Pittsburgh, Pennsylvania, 1983. North-Holland Pub. Co.

[66] B. Moszkowski. A temporal logic for multilevel reasoning about hardware.Com-
puter, 18:10–19, 1985.

[67] B. Moszkowski. Executing Temporal Logic Programs. Cambridge University
Press, Cambridge, England, 1986.

[68] B. Moszkowski. Some very compositional temporal properties. In E.-R. Olderog,
editor, Programming Concepts, Methods and Calculi, volume A-56 of IFIP
Transactions, pages 307–326. IFIP, Elsevier Science B.V. (North–Holland), 1994.

[69] B. Moszkowski. Compositional reasoning about projected and infinite time.
In Proc. 1st IEEE Int’l Conf. on Engineering of Complex Computer Systems
(ICECCS’95), pages 238–245. IEEE Computer Society Press, 1995.

[70] B. Moszkowski. Using temporal fixpoints to compositionally reason about live-
ness. In He Jifeng, J. Cooke, and P. Wallis, editors,BCS-FACS 7th Refine-
ment Workshop, electronic Workshops in Computing, London, 1996. BCS-FACS,
Springer-Verlag and British Computer Society.

[71] B. Moszkowski. Compositional reasoning using Interval Temporal Logic and
Tempura. In W.-P. de Roever, H. Langmaack, and A. Pnueli, editors, Compo-
sitionality: The Significant Difference, volume 1536 ofLNCS, pages 439–464,
Berlin, 1998. Springer-Verlag.

[72] B. Moszkowski. An automata-theoretic completeness proof for Interval Temporal
Logic (extended abstract). In U. Montanari, J. Rolim, and E.Welzl, editors,
Proc. 27th Int’l. Colloquium on Automata, Languages and Programming (ICALP
2000), volume 1853 ofLNCS, pages 223–234, Geneva, Switzerland, July 2000.
Springer-Verlag.

[73] B. Moszkowski. A hierarchical completeness proof for Propositional Interval
Temporal Logic with finite time.Journal of Applied Non-Classical Logics, 14(1–
2):55–104, 2004. Special issue on Interval Temporal Logicsand Duration Calculi.
V. Goranko and A. Montanari guest eds.

[74] B. Moszkowski. A hierarchical completeness proof for propositional temporal
logic. In N. Dershowitz, editor,Verification: Theory and Practice: Essays Ded-
icated to Zohar Manna on the Occasion of His 64th Birthday, volume 2772 of
LNCS, pages 480–523. Springer-Verlag, Heidelberg, 2004.

[75] B. Moszkowski. A hierarchical analysis of propositional temporal logic based
on intervals. In S. Artemov, H. Barringer, A. S. d’Avila Garcez, L. C. Lamb,
and J. Woods, editors,We Will Show Them: Essays in Honour of Dov Gabbay,
volume 2, pages 371–440. College Publications (formerly KCL Publications),
King’s College, London, 2005.

74

[76] The Perl programming language.http://www.perl.org.

[77] PerlDD: Perl extensions to CUDD [24]. Available athttp://vlsi.
colorado.edu/∼fabio.

[78] A. Pnueli. The temporal logic of programs. InProc. 18th Ann. IEEE Symp. on the
Foundation of Computer Science (FOCS), pages 46–57. IEEE Computer Society
Press, 1977.

[79] V. R. Pratt. Process logic. InProc. Sixth Ann. ACM Symp. on Principles of
Programming Languages, pages 93–100. ACM, 1979.

[80] A. Prior. Past, Present and Future. Oxford University Press, London, 1967.

[81] PSL/Sugar Consortium.http://www.pslsugar.org.

[82] R. Pucella. Logic column 11: The finite and the infinite intemporal logic.
SIGACT News, 36(1):86–99, 2005. Available at Computing Research Repository
(CoRR):http://arxiv.org/abs/cs.LO/0502031.

[83] N. Rescher and A. Urquhart.Temporal Logic. Springer-Verlag, New York, 1971.

[84] A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, July 1985.

[85] SystemVerilog website.http://www.systemverilog.org.

[86] W. Thomas. Automata on infinite objects. In J. van Leeuwen, editor,Handbook of
Theoretical Computer Science, volume B: Formal Models and Semantics, chap-
ter 4, pages 133–191. Elsevier/MIT Press, Amsterdam, 1990.

[87] W. Thomas. Languages, automata, and logic. In G. Rozenburg and A. Salomaa,
editors,Handbook of Formal Languages, volume 3: Beyond words, chapter 7,
pages 389–455. Springer-Verlag, Berlin, 1997.

[88] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic program
verification. In A. Meyer, editor,Proc. 1st Ann. IEEE Symp. on Logic in Computer
Science (LICS ’86), pages 322–331. IEEE Computer Society Press, June 1986.

[89] M. Y. Vardi and P. L. Wolper. Reasoning about infinite computations. Inf. and
Control, 115(1):1–37, 15 Nov. 1994.

[90] Verisity Ltd. (acquired by Cadence Design Systems [16]in 2005). http://
www.cadence.com/verisity/.

[91] Verisity Ltd. Semantics of temporale. Revised version of Morley [63]. Available
from website of IEEE candidate standard 1647 ashttp://www.ieee1647.
org/downloads/temporale denotational.pdf, Dec. 2003.

[92] P. Wolper. Temporal logic can be more expressive. InProc. 22nd Ann. IEEE
Symp. on Foundations of Computer Science (FOCS), pages 340–348, Nashville,
Tennessee, Oct. 1981. IEEE Computer Society Press.

[93] P. Wolper. Constructing automata from temporal logic formulas: A tutorial. In
Lectures on Formal Methods in Performance Analysis (First EEF/Euro Summer
School on Trends in Computer Science), volume 2090 ofLNCS, pages 261–277.
Springer-Verlag, July 2001.

75

[94] P. L. Wolper. Temporal logic can be more expressive.Information and Control,
56(1-2):72–99, 1983.

[95] P. L. Wolper. The tableau method for temporal logic: An overview. Logique et
Analyse, 110–111:119–136, 1985.

[96] P. L. Wolper, M. Y. Vardi, and A. P. Sistla. Reasoning about infinite computa-
tion paths. InProc. 24th Ann. IEEE Symp. on Foundations of Computer Science
(FOCS), pages 185–194, Tucson, Arizona, Nov. 1983. IEEE Computer Society
Press.

[97] A. Xie and P. A. Beerel. Implicit enumeration of strongly connected components.
In ICCAD ’99: Proc. of the 1999 IEEE/ACM Int’l. Conf. on Computer-Aided
Design, pages 37–40, Piscataway, NJ, USA, 1999. IEEE Press.

76

