
Formal Methods in System Design manuscript No.
(will be inserted by the editor)

Verification and Enforcement of Access Control Policies

Antonio Cau · Helge Janicke · Ben Moszkowski

Received: date / Accepted: date

This is an author-produced version of an article in Formal Methods in System Design
(Springer), December 2014, Volume 43, Issue 3, pp. 450–492.
The final publication is available at Springer via

http://dx.doi.org/10.1007/s10703-013-0187-3

Abstract Access control mechanisms protect critical resources of systems from unautho-
rized access. In a policy-based management approach, administrators define user privileges
as rules that determine the conditions and the extent of users’ access rights. As rules become
more complex, analytical skills are required to identify conflicts and interactions within the
rules that comprise a system policy – especially when rules are stateful and depend on event
histories. Without adequate tool support such an analysis is error-prone and expensive. In
consequence, many policy specifications are inconsistent or conflicting that render the sys-
tem insecure. The security of the system, however, does not only depend on the correct
specification of the security policy, but in a large part also on the correct interpretation of
those rules by the system’s enforcement mechanism.

In this paper, we show how policy rules can be formalized in Fusion Logic, a temporal
logic for the specification of behavior of systems. A symbolic decision procedure for Fusion
Logic based on Binary Decision Diagrams (BDDs) is provided and we introduce a novel
technique for the construction of enforcement mechanisms of access control policy rules
that uses a BDD encoded enforcement automaton based on input traces which reflect state
changes in the system. We provide examples of verification of policy rules, such as absence
of conflicts, and dynamic separation of duty and of the enforcement of policies using our
prototype implementation (FLCheck) for which we detail the underlying theory.

Keywords Access control policy · Policy Enforcement · Policy Verification · Binary
Decision Diagram

A. Cau · H. Janicke · B. Moszkowski
Software Technology Research Laboratory
De Montfort University
LE1 9BH Leicester, UK
Tel.: ++44 (0)116 257 7937
Fax: ++44 (0)116 257 7936
E-mail: acau@dmu.ac.uk, heljanic@dmu.ac.uk, benm@dmu.ac.uk

2 Antonio Cau et al.

1 Introduction

The management of security in large systems is a complex task that requires system admin-
istrators to specify constraints on the usage of system resources. Policy-based management
[4, 63] is a modular approach that keeps the specification and enforcement of these con-
straints loosely coupled from the system. Constraints are expressed in form of a policy,
typically a collection of event-condition-actions rules that determine actions to be taken by
enforcement mechanisms. A commonly used architecture, e.g., in [18, 27, 53], for policy-
based management is defined in [29], separating the decision making (Policy Decision Point)
and the concrete enforcement (Policy Enforcement Point) of that decision on the system.
Here the policy determines the behavior of the Policy Decision Point (PDP), e.g., whether
an access request is permitted or denied. The specification and verification of the policy is
therefore crucial for the administration of the system.

In previous work [31, 33, 62], we presented a formal policy specification language for
history-based policies and have shown how these policies can be refined towards executable
enforcement code [32]. History-based policies [1] are a very expressive class of policies that
can define policy decisions dependent on previously observed behaviors within the system.
Whilst this has immediate advantages, e.g., for the expression of dynamic separation of duty
constraints, it also adds to the complexity of specification and verification of such policies,
especially if such policies are to be enforced in a truly concurrent setting.

A key requirement to successful administration using the policy-based management ap-
proach is that conflicts in policies can be detected before the policy is pushed out to the
PDPs in the system. Whilst traditional conflict analysis of policies [44] is in theory well
understood, history-based policies offer some additional challenges that relate to the inter-
dependencies between past observations and policy decision making. These may require
additional synchronization constraints between several concurrent Policy Decision Points
deployed in the system.

The contribution of this paper is twofold:

– We show how a history-based policy can be specified in Fusion Logic, allowing us to
verify properties of the policy specification, e.g., accessibility, dynamic separation of
duty, dynamic and static conflicts.

– We describe a decision procedure for Fusion Logic we have developed that uses Binary
Decision Diagrams (BDDs), and show how this decision procedure can be adapted to
act as an enforcement mechanism for history-based access control policies.

The advantage of our approach is that our formalism can be used for both the analysis and the
enforcement of policies yielding a verifiable framework for policy enforcement that relies
on logic as opposed to reference implementations of software [27, 53]. Figure 1 provides an
overview of our specification/verification and enforcement framework.

The framework consists of three components: Specification, Verification and Enforce-
ment. In the Specification component, one specifies a system by a set of history-based access
control rules. In the Verification component, one takes this set of rules together with prop-
erties that need to hold and check whether this set of rules satisfy these properties. In the
Enforcement component, the set of rules plus inputs, acting as triggers for these rules, are
evaluated to determine whether to grant or deny a particular access.

Woo and Lam [66] have proposed a general framework to specify authorization rules
based on default logic. Positive and negative authorization rules can be specified in their
model. However the approach provides no mechanisms to handle conflicting authorizations
which might be derived using the rules. Jajodia et al. [30] have addressed this problem and

Verification and Enforcement of Access Control Policies 3

requirementrequirement

rule rulerule

system model (FL)

verification

BDD

reduced formula

enforcement

updated BDD

propertyproperty

satisfiable? valid?

input

request granted?

specification

Fig. 1 Overview

provided specific rules (decision rules) to resolve conflicts among authorizations. However
the validity periods of authorization rules cannot be specified nor can temporal dependencies
among authorizations be expressed in their framework.

As pointed out in [5], permissions are often limited in time or may hold for specific
periods of time. An interval-based temporal model for access control has been proposed
by Bertino et al. [5]. A time interval is associated with each authorization to determine the
period of time in which the authorization holds. Temporal dependencies among authoriza-
tions can be expressed. However the framework cannot handle the enforcement of multiple
policies.

Usage Control (UCON) Models [59, 69], similar to Access Control Models, control and
govern the users’ access to resources and services that are available in the system. One of
the major improvements of UCON over traditional access control models is the continuity
of the control and the concept of attribute mutability. The formalization, however, makes
a strong assumption in that only a single usage process is specified. It is assumed that the
time-line is finite, i.e., it starts with the beginning of the single usage request and ends before
the subsequent usage request. This makes it difficult to reason about the interactions of
several concurrent usage requests, or even sequences of usage requests and so complicates
the formal analysis of policies.

The remainder of this paper is organized as follows: In Section 2 we discuss history-
based access control policies and their underlying computational model. In Section 3 we
cover the specification of policies and the formalization of the computational model. We
present Fusion Logic and discuss its syntax and semantics. We show how access control
requirements can be captured as rules in Fusion Logic and how a system model can be ob-
tained. The system model is the starting point for verification and enforcement. In Section 4
we present an automatic way of checking the satisfiability and validity of Fusion Logic for-
mulae. We also describe how one can derive enforcement mechanisms for history-based
access control policies, expressed in Fusion Logic, based on the same techniques that are
used to determine the satisfiability/validity of Fusion Logic formulae. In Section 5 we il-
lustrate the verification of properties and the derivation of an enforcement mechanism for a
policy-based system with the help of case studies. We conclude our paper in Section 6.

4 Antonio Cau et al.

2 Access control policies

We will introduce the computational model that will be used to characterize systems that are
governed by history-based access control rules. Furthermore, we compare our model with
the Flexible Authorization Manager authorization language (FAM) of Jajodia et al. [30],
the Usage Control (UCON) policy language of Sandhu et al. [55, 69], and the Temporal
Role-Based Access Control (TRBAC) model of Bertino et al. [5, 34, 35, 46].

2.1 Computational model for policy based management

Our computational model presented here describes the entities that comprise the system,
their behaviors, and interactions. It represents a suitable abstraction for many real-world im-
plementations that use the Policy Decision Point (PDP) Policy Enforcement Point (PEP) ar-
chitecture [29, 53] to implement policy-based management. For the purpose of specification,
verification, and analysis of dynamic security policies, the externally observable behavior of
a system, i.e., the sequence of actions it does perform, is sufficient. We therefore refrained
from modeling implementation details of the domain-dependent interactions between users
and system.

We distinguish three different entities in the system: subjects, objects, and reference
monitors. Subjects are entities, that (pro-)actively perform actions that affect objects. A
subject can be a human user, role, or a program acting on behalf of a user. Objects are passive
entities that represent shared data-structures in the information system. Reference monitors
control the access to objects and determine whether a specific action can be performed
by a subject or not. The concrete conditions under which a reference monitor permits an
execution request or denies it are specified in the security policy.

The security policy represents an abstract specification of constraints on the interactions
between the subjects and objects in the system. The abstract specification is then construc-
tively refined into the behavior of the reference monitor such that the overall system sat-
isfies the policy. Proving properties of the policy means that ensuring these properties are
preserved by the system if the implementation of the reference monitor is correct, i.e., they
adhere to the constraints specified in the policy.

The behavior of a reference monitor and its interaction with the other system compo-
nents are detailed in Figure 2 as a Statechart [23]. Statecharts constitute an extensive gen-
eralization of state-transition diagrams. They allow for multilevel states decomposed in an
And/Or fashion, and thus support economical specification of concurrency and encapsula-
tion. Concurrency is represented by a dashed line that separates components of a parallel sys-
tem. The labels on the transitions in Statecharts are of the form Trigger[Condition]/Action,
where Trigger determines if and when a transition will be taken and Action is performed
when a transition is taken and the Condition is true. An action includes the generation of
events.

User Model: Every subject S represents a user process (see User process in Figure 2) acting
on behalf of a user. This process can be either in a state idle, wait, or access. Initially, we
assume a user process S to be in its idle state. By raising the event Req(s,o,a), the process S
indicates that it requests the execution of action a on the system object o and moves to the
state wait. It will remain in the waiting state until it is either denied (event Deny(s,o,a)) or
the request is executed (event Exec(s,o,a)).

Verification and Enforcement of Access Control Policies 5

waitidle

Reference Monitor

System

User process

Permit(s,o,a)/Exec(s,o,a)

[not Aut(s,o,a)]/Deny(s,o,a)

process

Done(s,o,a)/

Done(s,o,a)/

[Aut(s,o,a)]
/Permit(s,o,a)

wait

idle

access

execute

/Done(s,o,a)

idle
Exec(s,o,a)//Req(s,o,a)

Deny(s,o,a)/

Req(s,o,a)/

Fig. 2 Computational Model

Reference Monitor Model: The reference monitor (RM), as depicted in Figure 2, is a process
that is initially in its idle state. Upon a user request Req(s,o,a), the RM moves into the
state process in which its behavior is specified by the policy. If the policy grants access
(Aut(s,o,a) is true) it will raise the event Permit(s,o,a); if it denies the access (Aut(s,o,a)
is false), the event Deny(s,o,a) is raised. The RM subsequently returns to its idle state.

System Model: The access to the objects is facilitated by the system process, depicted in
Figure 2. We assume that the system is initially in the state idle. On the event that the con-
troller permits the execution, it will move to the state execute and raise the event Exec(s,o,a)
that synchronizes the states access of the user process and the state execute of the system.
The concrete behaviors of the user process and the system in these states are not explicitly
defined.

The computational model represents a simplification of real information systems, where
not only subjects can concurrently make requests, but also the reference monitors and the
system facilitating access to the shared objects are distributed and can exhibit concurrent
behavior.

6 Antonio Cau et al.

2.2 History-based policies

Policies constrain the behavior of the reference monitors in the information system. More
precisely, access control policies determine the choice of the reference monitor to permit
or deny the execution of a request. A complete specification of the reference monitor can
be given in the form of an access control matrix [42] that fully determines the access rights
at any point in time during the system execution. Example 1 gives a simple access control
matrix.

Example 1 Let Aut(s,o,a) denote that subject s is allowed to perform action a on object
o. Assume we have subjects nurse0 and nurse1, actions read and write, and object epr
(electronic patient record). The following matrix

Aut(s,epr,a) read write
nurse0 true false
nurse1 false false

describes that nurse0 is allowed to read the epr, but nurse1 is not allowed to read it.
Furthermore, both nurse0 and nurse1 are not allowed to write to the epr.

As we are interested in history-based access control [1], this matrix will depend not only on
the current state of the information system, but also on the history of execution. We use a
rule-based approach and specify (sets of) access control rights in terms of policy rules.

Our framework uses a rule-based conflict resolution approach similar to the one pre-
sented by [30] that allows for the expression of hybrid policies, i.e., policies that can express
both positive and negative authorizations. Conflicts in the specification are eliminated by
dedicated decision rules that define the precedence of positive and negative authorizations
with respect to each other. Policy rules define the behavior of the following access control
variables:

Aut+(s,o,a) : Subject s is authorized to perform action a on object o.
Aut−(s,o,a) : Subject s is not authorized to perform action a on object o.
Autd(s,o,a) : Subject s is authorized to perform action a on object o in case of conflicts.

The superscript + here indicates a positive authorization, − indicates a negative authoriza-
tion, and d indicates a decision rule1. By employing decision rules for every access control
request, the policy decision is conclusive. Ideally, however, the policy writer should be aware
of potentially conflicting rules in order to adequately define these decision rules.

In our work, the operator always-followed-by [31, 33, 62], denoted by Pre 7→W , will
be used to describe history-based access control policies. This operator captures the relation
between the premise of a rule Pre and its consequence W . The intuition is that whenever Pre
holds for a history of states, then W holds in the last state of that history. The consequence W
can only contain access control variables, while the premise Pre is a formula capturing the
history leading to the consequence. Example 2 describes informally various sample policies.

Example 2 Let us illustrate simple policies by an example. Consider a health care service
where mr stands for a medical record, owner(pat,mr) is a predicate denoting that patient
pat is the owner of medical record mr, the predicate treated(pat,phy) means that the pa-
tient pat is being treated by the physician phy, and role(S,nurse) means that subject S is a

1 For readability we use Autd in the context of Policy, and Aut in the context of the Enforcement Mecha-
nism.

Verification and Enforcement of Access Control Policies 7

nurse. Here are some policy rules with their informal description. pat,mr, and phy are free
variables ranging over respectively, the set of patients, medical records, and physicians. The
free variable S ranges over the set of all subjects. The semantics of policy rules is such that
one universally quantifies over the free variables appearing in a policy rule. The constants
in a policy rule are indicated by a bold font.

– Patients are allowed read access to their medical records.
owner(pat,mr) 7→ Aut+(pat,mr,read)

– Physicians are allowed to read their patients’ medical records.
treated(pat,phy) and owner(pat,mr) 7→ Aut+(phy,mr,read)

– Nurses are forbidden read access to patient records.
role(S,nurse) 7→ Aut−(S,mr,read)

Conflicting authorizations can be derived, for instance, when a nurse is at the same time
a patient in the clinic. In this case, the first rule states that (s)he is allowed to read his/her
record, while the third rule forbids him/her to do so. The conflict resolution mechanism is
specified by the following policy rule that gives precedence to permission in the event of
such a conflict. So, the policy does allow nurses read access to their own personal health
information.

– Allowed access takes precedence over denied access.
Aut+(S,mr,read) 7→ Autd(S,mr,read)

The following example we list policy rules we would like to express in our policy specifica-
tion language.

Example 3 We wish to express access control decisions based on past observed behavior of
the system.

– Conditional on the current state:
0 : (owner(s,o) and account(o)) 7→ Aut+(s,o,withdraw)
where n : W denotes that W holds n states from the end of the history. Only the current
owner of a bank account can withdraw money.

– Conditional on the history:
sometimes done(s,o,a) 7→ Aut−(s,o,a)
A subject must not perform an action on the same object twice. After the action has
been executed once, all further requests will be denied. The condition is evaluated over
the whole execution history. sometimes here should check whether in any suffix of the
history the requested action has been done. done(s,o,a) refers to the event raised by
the system when an authorized action has been successfully performed. The use of the
same variable names in the consequence and the premise of the rule means that the same
subject, object, and action are referred to.

– Conditional on the history:
sometimes done(s2,o,a) and s1 6= s2 7→ Aut−(s1,o,a)
A subject is denied to perform an action if this action has already been performed by
another subject. The above rule allows to model exclusive resource access.

– Conditional on the history:
sometimes (signinhj ; always(not signouthj)) 7→ Aut+(hj,door,open)
where always W denotes that for every state W holds and ‘;’ denotes the sequential
composition of two histories. Allow the user hj to open doors as long as he has registered
his visit at the reception desk.

8 Antonio Cau et al.

– Invariant:
always not bankrupt(s) 7→ Aut+(s, loan, take)
A subject is only allowed to take a loan if (s)he was never bankrupt.

– Choice:
s1 6= s2 and parent(s1,s) and parent(s2,s) and
((age less 10(s) and sometimes done(s1,o,consent(a)) and
sometimes done(s2,o,consent(a))) or
(not age less 10(s) and (sometimes done(s1,o,consent(a)) or
sometimes done(s2,o,consent(a)))))

 7→Aut+(s,o,a)

For a child younger than 10, both parents need to give consent, otherwise one parent’s
consent suffices.

– Collaboration:(
5 : (sometimes req(s1,door,open) and

sometimes req(s2,door,open) and s1 6= s2)

)
7→ Aut+(s,door,open)

The door can only be opened if at least two subjects requested the door to be opened
within the last 5 states of the history. Notice that in the above rule the outcome of the
previous request is not decisive, i.e., even if both previous requests were denied, the con-
dition is met. The order in which these requests were made is arbitrary and the requests
could even be made concurrently.

– Sequential access:not(sometimes done(s, invoice,receive);
sometimes done(sa, invoice,authorize)))

and 0 : role(sa,accountant)

 7→ Aut−(s,bank,pay(invoice))

An invoice cannot be payed unless it has been received and was authorized by an ac-
countant. This rule enforces a sequence of two actions (receive and authorize) to be
successfully performed prior to the invoice being payed.

– Counting states in the history:
exists 0<= i<=3 (i : deleg(s,s′,o,a)) and 0 : Aut+(s,o,a) 7→ Aut+(s′,o,a)
If a right has been delegated in the last 4 states of the history, and the person delegating
currently holds this right, the same right is also held by the delegatee. In this example
delegation is captured by the event deleg(s,s′,o,a) that denotes the delegation of the
right a on o from s to s′. The defined period of time is here assumed to be 4 states.

– Cardinality on history:
sometimes ((req(s,o,a) ; sometimes req(s,o,a))∗) 7→ Aut+(s,o,a)
where f ∗ denotes the sequential composition of f a finite number of times. A subject s
is allowed to perform action a on object o if an even number of requests have been made
before.

2.3 Comparison with other access control models

Our policy language has similarities with the Flexible Authorization Manager authorization
language (FAM) of Jajodia et al. [30] in that both permissions and denials can be explicitly
stated and conflict resolution takes place using dedicated decisions rules. The key difference
is that the premise of rules is not only a condition on the current state of the system, but
it can describe a set of behaviors that when observed will trigger the rule. In terms of ex-
pressiveness, the policy language is similar to Usage Control (UCON) models of [55, 69].
In [5], a Temporal Role-Based Access Control (TRBAC) model is introduced that enables
one to express temporal constraints for an Role-Based Access Control model. With these
constraints one can restrict users to assume roles only at predefined time periods. In the

Verification and Enforcement of Access Control Policies 9

following, we will discuss the UCON, FAM, and TRBAC access control models in more
detail.

2.3.1 Flexible Authorization Manager authorization language

The work by Jajodia et al. [30] identifies that most policy languages allow only the specifi-
cation of two specific types of policies. These are namely:

– Open Policies: Everybody is allowed access unless denied. A blacklist is a typical ex-
ample.

– Closed Policies: Everybody is denied access unless explicitly allowed. This is for exam-
ple the case for Java policy files.

Jajodia et al. then propose the use of positive and negative authorizations rules and show
how conflicts are resolved by decision rules. They introduce the rule-based Flexible Autho-
rization Manager (FAM) authorization language. Here positive and negative authorizations
for a subject (or group) to perform an action on a specific object can be expressed. The
example below shows a positive and a negative authorization rule:

cando(file,s,+read)← in(s,Employee)
cando(file,s,−read)← in(s,Employee).

This rule defines that if subject s is a member of the group Employee, then it can read the
file. Negative authorization would be denoted by a - sign in front of the read action. FAM
also allows expressing authorizations based on a previous access using so-called done rules.
These are essentially facts that are created by the system (FAM) during runtime and reflect
the access executed by a user. This helps for example to express the Chinese Wall Policy.
The final decision about whether to grant access or deny a request is then resolved by a
so-called decision rule. Consider for example the following rule:

do(file,s,+a)← dercando(file,s,+a)&¬dercando(file,s,−a).

This specifies that if it can be derived that s is allowed to perform action a on file, and it
cannot be derived that s is denied to perform action a on file, then s is effectively allowed
to perform a on file. There is no notion of time or temporal dependency between the done
events. The expression of history-based access control requirements is supported. The his-
tory is modeled as a table where each row represents a single access. A row is structured
as (Object,User,Role,Action,Time). The history is represented formally by the predicate
done with a matching list of parameters. It is, however, not clear how the history table is
actually updated. The explicit representation of time makes also temporal relations difficult
to express at a higher level of abstraction.

2.3.2 Temporal Role-Based Access Control

Role-based Access Control (RBAC) policies regulate the access of users to the information
on the basis of the organizational activities and responsibility that users have in a system. In
RBAC, a role is defined as the set of privileges associated with a particular position within an
organization, or a particular working activity. Authorizations are assigned to roles and roles
are assigned to users. The user playing a role is allowed to execute all accesses for which the
role is authorized. This mechanism greatly simplifies the management of security policies

10 Antonio Cau et al.

in that the assignment of roles to users is separated from the assignment of authorizations to
roles. Therefore each of these assignments can be manipulated independently.

In [5], a Temporal Role-Based Access Control (TRBAC) model is introduced that ad-
dresses temporal constraints for a Role-Based Access Control (RBAC) model. With these
constraints one can restrict users to assume roles only at predefined time periods. These time
periods are represented by using calenders, a countable set of contiguous intervals, num-
bered by integers called indexes of the intervals. Examples of calenders are Hours, Days,
Weeks, Months, and Years, where Hours is the calendar with the finest granularity. These
calenders can be combined to represent more general periodic expressions, denoting peri-
odic instants not necessarily contiguous, such as, for instance, the set of Mondays or the set
of The third hour of the first day of each month. The Role Enabling Base contains temporal
constraints on the enabling of roles. Roles can be enabled and disabled at run-time by means
of Run-time Request Expressions of the form p : E after ∆ t, where p : E is a prioritized event
expression, and ∆ t a duration expression. These requests do not depend on the occurrence
of other events and/or the satisfaction of some conditions. The following example involving
the medical domain, is from [5]:

Example 4 Let V H (Very High) and H (High) denote priorities with H ≺V H. Let Night-time
and Day-time be periodic expressions. Let PEi denote a periodic event and RTj denote a role
trigger. Then, the following is a Role Enabling Base (REB):

(PE1) ([1/1/2000,∞],Night-time,VH : enable doctor-on-night-duty)
(PE2) ([1/1/2000,∞],Day-time,VH : disable doctor-on-night-duty)
(PE3) ([1/1/2000,∞],Day-time,VH : enable doctor-on-day-duty)
(PE4) ([1/1/2000,∞],Night-time,VH : disable doctor-on-day-duty)
(RT1) enable doctor-on-night-duty→ H : enable nurse-on-night-duty
(RT2) disable doctor-on-night-duty→ H : disable nurse-on-night-duty
(RT3) enable doctor-on-day-duty→ H : enable nurse-on-day-duty
(RT4) disable doctor-on-day-duty→ H : disable nurse-on-day-duty
(RT5) enable nurse-on-day-duty→ H : enable nurse-on-training after 2
(RT6) disable nurse-on-day-duty→ VH : disable nurse-on-training

The periodic events and role triggers in the REB state that the doctor-on-night-duty role must
be enabled during the night (such constraint is imposed by periodic events PE1 and PE2),
whereas the role doctor-on-day-duty must be enabled during the day (periodic events PE3
and PE4). Moreover, role triggers RT1 and RT2 state that the role nurse-on-night-duty must
be enabled whenever the role doctor-on-night-duty is. Role triggers RT3 and RT4 impose the
same constraint for doctor-on-day-duty and nurse-on-day-duty, respectively. Finally, role
triggers RT5 and RT6 specify that the role nurse-on-training must be enabled only during
the daytime when the role nurse-on-day-duty is enabled. Moreover, role nurse-on-training
must be enabled two hours after role nurse-on-day-duty is enabled (for instance, because
within the first two hours nurses must perform urgent activities and they cannot take care
of nurses on training). The following are examples of run-time requests made by a system
administrator: disable nurse-on-training and enable emergency-doctor. The first request has
the effect of disabling role nurse-on-training, whereas the second is a request to enable role
emergency-doctor.

A system trace is modeled as a sequence of snapshots, where each snapshot corresponds
to the current set of events and the status of roles. Unfortunately, because of the expressive
power provided by TRBAC, some REB specifications may be ambiguous; that is, they may

Verification and Enforcement of Access Control Policies 11

lead to states where there is no unique way of deciding which roles are enabled. There-
fore, a notion of safeness is introduced which guarantees the absence of ambiguities and
inconsistencies in the specification. A polynomial algorithm for testing the safety of REB
specifications has been given in [5].

Compared with our approach one can see clear differences: TRBAC is mainly concerned
with the assignment of roles, whereas our approach is concerned with the assignment of
authorizations. Furthermore, TRBAC uses explicit time to model temporal dependencies
and incorporates temporal constraints on the role enabling only.

In [35], a generalization of the TRBAC model (GTRBAC) is presented for expressing
periodic as well as duration constraints on roles, user-role assignments, and role-permission
assignments. In a time interval, activation of a role can further be restricted as a result of
numerous activation constraints including cardinality constraints and maximum active dura-
tion constraints. The GTRBAC model extends the syntactic structure of the TRBAC model
and its event and trigger expressions subsume those of TRBAC. Furthermore, GTRBAC
allows expressing role hierarchies and separation of duty (SoD) constraints for specifying
fine-grained temporal semantics. In [34], the expressiveness of the constructs provided by
the GTBRC is analyzed. It is shown that the constraints-set of GTRBAC is not minimal
and that there is a subset of GTRBAC constraints that is sufficient to express all the access
constraints that can be expressed using the full set. It is also illustrated that a non-minimal
GTRBAC constraint set can provide better flexibility and lower complexity of constraint
representation. An approach for the conformance testing of implementations required to en-
force access control policies specified using the TRBAC model is proposed in [46]. This
uses Timed Input-Output Automata (TIOA) to model the behavior specified by a TRBAC
policy. The generated conformance test suite provides complete fault coverage with respect
to the proposed fault model for TRBAC specifications.

2.3.3 Usage Control Model

Usage Control (UCON) Models [59, 69], similar to Access Control Models, control and
govern the users’ access to resources and services that are available in the system. One of
the major improvements of UCON over traditional access control models is the continuity
of the control and the concept of attribute mutability. The UCON model [59] describes the
enforcement of a given policy on a session-based single usage process, i.e., between the
start of a usage request and its termination the user can perform a number of actions. The
novelty of the approach is that it addresses mutable attributes [56] and the continuity of the
enforcement. Mutable attributes are associated with the subjects, objects or the system and
are updated as side-effects of usage processes. They can be used for example to count the
number of times a resource has been accessed. The continuity of enforcement means that a
UCON process can be revoked based on conditions that are expressed in terms of attributes.

The UCON model supports authorization, obligation and conditions. Authorization is
concerned with the authorization of a subject to exercise a specific right. Obligations are
concerned with actions the user must perform. Conditions are somewhat similar to autho-
rizations, as they also determine the access of a subject — however they depend on a spe-
cific class of attributes that are not modified as a part of the system execution. Conditions
are described to depend on the environment of the usage process that can for example be
influenced by administrative actions.

The UCON model has been first formalized using an extension of the temporal logic of
actions (TLA) [41] by Zhang et al. [67, 68]. Here a single usage process is described in the
form of a state diagram. System and user actions represent the transitions in the diagram.

12 Antonio Cau et al.

UCON policies are then defined as logical formulae that postulate temporal relationships
between system and user actions of a single usage process. The formalization, however,
makes a strong assumption in that only a single usage process is specified. It is assumed that
the time-line is finite, i.e., it starts with the beginning of the single usage request and ends
with the subsequent usage request. This makes it difficult to reason about the interactions of
several concurrent usage requests, or even sequences of usage requests, thus complicating
the formal analysis of policies. The (side-) effects of a usage process are captured in mu-
table attributes which are assumed to be persistent over usage processes and can influence
subsequent usage control decisions.

A UCON usage process is characterized by the triplet (s,o,r), where s is the subject
that exercises its right r on the object o. The usage process can be in one of the following
states: initial, requesting, denied, accessing, revoked or end. The current state is described
by Zhang et al. as a function state mapping from the triplet (s,o,r) to one of these states. A
single usage process is defined by the state diagram in Figure 3.

requesting accessing end

denied

initial

revoked

preupdate onupdate postupdate

tryaccess permitaccess endaccess

denyaccess revokeaccess

preupdate postupdate

Fig. 3 State diagram adopted from [68]

In the initial state the subject s performs the action tryaccess(s,o,r) initiating the usage
process. The enforcement mechanism, for example a reference monitor (RM), either denies
the access (denyaccess(s,o,r)) or proceeds by executing actions to update those attributes,
which must be updated before the usage process commences. After the RM has updated the
relevant attributes (preupdate(s,o,r)), it permits the access (permitaccess(s,o,r)) and con-
tinues to perform all required update actions that must be performed during the ongoing
usage process (onupdate(s,o,r)). Alternatively the RM may revoke the access if any of the
constraints of the UCON model are violated. The subject may end the usage process using
the endaccess(s,o,r) action. In both cases, the post update actions (postupdate(s,o,r)) are
performed to change any mutable attributes that require modification.

UCON policies define the enforcement of protection requirements at a relatively low
level of abstraction. Our approach has the benefit of addressing the specification of policies
at a higher level of abstraction and also providing mechanisms to derive concrete enforce-
ment mechanisms from these specifications.

Verification and Enforcement of Access Control Policies 13

3 Formal policy language and computational model

We now discuss the policy language that will be used for the specification of history-based
access control policy rules. First we will investigate several temporal logics for their suit-
ability to express history-based access control policies. A formal semantic model for the
always-followed-by operator (used to represent policy rules) will be used for this investiga-
tion. We will express the computational model using the chosen logic.

3.1 Choice of Temporal Logic

We first introduce the underlying semantic model to be used in the formalization of history-
based access control policies in order to support our choice of left Fusion Logic to express
history-based access control policies. We will discuss the suitability of Propositional Interval
Temporal Logic (PITL)[49], right Fusion Logic (FLr)[50], left Fusion Logic (FLl), Propo-
sitional Linear Temporal Logic (PLTL) [45], and Propositional Dynamic Logic (PDL) [24].

3.1.1 Formal semantics of policy rules

The semantic model needs to model sequences of ‘snapshots’ of a system. These sequences
represent the behaviour of the system. We model these snapshots via a state mapping. A
state is a mapping from the set of propositional variables Var to the set of values {tt, ff}.
An interval (behavior) σ is a finite sequence of one or more states σ0σ1σ2 . . .σ|σ |, where
|σ | denotes the length of an interval σ and is equal to the number of states minus 1.
Let Σ denote the set of all possible intervals. Let σ = σ0σ1 . . . ,σ|σ | be an interval. Then
σ0 . . .σk (where 0≤ k≤ |σ |) denotes a prefix interval of σ , σk . . .σ|σ | (where 0≤ k≤ |σ |)
denotes a suffix interval of σ and σk . . .σl (where 0≤ k ≤ l ≤ |σ |) denotes a subinterval of
σ .

Let JK be the “meaning” function from ‘policy rule language’×Σ to {tt, ff}. The formal
semantics of the always-followed-by operator Pre 7→W , where Pre is a formula denoting
the history and W is an access control variable. The semantics J Pre 7→W Kσ of the always-
followed-by operator is as follows:

for all k,(0≤ k ≤ |σ | and JPreKσ0...σk = tt) implies JW Kσk = tt.

Notice that the implication in the semantics of an individual rule means that W can be true
in a state even if Pre does not hold in the prefix of that interval. However, for verification
purposes, we need to know the value of W in any state of the interval. This is exactly what
the strong always-followed-by operator does, it explicitly specifies the conditions under
which the access decision is false [33, 62]. This operator will be used in the verification of
properties on policy rules (see Section 5) and is defined as

Pre↔W =̂ Pre 7→W ∧ ¬Pre 7→ ¬W .

If Pre holds in the prefix interval, then W must hold in the last state of that prefix interval,
otherwise W must not hold in that state.

14 Antonio Cau et al.

3.1.2 Propositional Interval Temporal Logic

Propositional Interval Temporal Logic (PITL) [49] is a temporal logic with a basic con-
struct for the sequential composition of two formulae as well as an analogue of Kleene star.
Within PITL, one can express both finite-state automata and regular expressions. The syntax
of PITL is as follows:

PITL formulae f ::= p | ¬ f | f1 ∨ f2 | skip | f1 ; f2 | f ∗

where skip denotes an interval (sequence) of 2 states, f1 ; f2 (called ‘ f1 chop f2’) denotes the
sequential composition of two intervals, and f ∗ (called ‘ f chopstar’) denotes finite iteration
of an interval. PITL assumes the locality principle, i.e., the propositional variables are re-
stricted to be state-based. One evaluates propositional variables over sequences of states by
evaluating them in the first state of those sequences. In [48, 50] it was shown that PITL with
locality is decidable, though with nonelementary complexity [39] and that PITL without lo-
cality is undecidable. In [50] a sound and complete axiom system for PITL with finite time
was presented. Let J K be the semantic function from PITL Formulae×Σ to {tt, ff}. Then,
the semantics of PITL is as follows:

– JpKσ = tt iff σ0(p) = tt
– J¬ f Kσ = tt iff not J f Kσ = tt
– J f1 ∨ f2Kσ = tt iff J f1Kσ = tt or J f2Kσ = tt
– JskipKσ = tt iff |σ |= 1.
– J f1 ; f2Kσ = tt iff (exists a k, s.t. (J f1Kσ0...σk = tt and J f2Kσk ...σ|σ | = tt)
– J f ∗Kσ = tt iff

(exist l0, . . . , ln s.t. l0 = 0 and ln = |σ | and
for all 0≤ i < n, li < li+1 and J f Kσli ...σli+1

= tt)

In order to express a policy rule in PITL we define the following derived operators:

more =̂ skip ; true interval with ≥ 2 states.

empty =̂ ¬more one state interval.

3i f =̂ f ; true diamond-i f , i.e., there exists a prefix interval for which f holds.

2i f =̂ ¬(3i ¬ f) box-i f , i.e., for all prefix intervals f holds.

It is easy to check via the semantics that a policy rule Pre 7→W can be defined as follows

Pre 7→W =̂2i (¬(Pre ; ((¬W) ∧ empty)))

The strong always followed by operator is defined as follows

Pre↔W =̂2i (¬(Pre ; ((¬W) ∧ empty))) ∧2i (¬(¬Pre ; (W ∧ empty)))

PITL’s non-elementary complexity makes the development of efficient PITL-based verifica-
tion tools difficult. The first verification tool for a subset of PITL is Lite [38], a tableau-based
implementation of a decision procedure. Another verification tool is PITL2MONA [22],
which is a tool that translates PITL formulae into WS1S and uses MONA as a decision
procedure. MONA [20, 36] is an efficient implementation of an automata-based decision
procedure for the logic WS1S. In [19] a decision procedure was presented for propositional
projection temporal logic with infinite models. DCVALID [54] is a decision procedure for
Quantified Discrete-time Duration Calculus (QDDC) [10]. QDDC is closely related to PITL

Verification and Enforcement of Access Control Policies 15

as it supports ‘chop’ and ’chopstar’. Like PITL2MONA, DCVALID uses MONA as its un-
derlying decision procedure.

None of these verification tools scale particularly well, e.g., the MONA based tools
introduce too many extra variables in the encoding of the temporal operators, see Example 5.

Example 5
We examine the encoding of the following policy rule

true ; (A ∧ empty) ; skip ; (B ∧ empty)↔C

in both PITL2MONA and DCVALID. This policy rule models an access control (C) that
depends on the current (B) and the previous state (A).

Here is the policy rule encoded in PITL2MONA:

[i] (! (true; A? ; len(1) ; B? ; (!C)?)),

[i] (! ((! (true; A? ; len(1) ; B?)) ; C?))

The PITL2MONA tool generates a WS1S formula with 11 variables.
Below is the policy rule encoded in QDDC:

discrete;

var A, B, C ;

define policy as

(! (true^<A>^(slen=1)^^(<!C>))) &&

(! ((! (true^<A>^(slen=1)^))^ <C>));

infer policy.

The DCVALID tool generates a WS1S formula with 13 variables.

Both tools encode temporal operators by formulating the semantics of these operators within
WS1S. This semantic encoding introduces extra variables for each temporal operator.

3.1.3 Right Fusion Logic

We next investigate whether right Fusion Logic, a subset of PITL, is a suitable candidate to
express policy rules. Right Fusion Logic (FLr) was first introduced in [50] to prove com-
pleteness for Propositional Interval Temporal Logic (PITL). Like PITL, FL augments con-
ventional Propositional Linear Temporal Logic (PLTL) [45] with the chop (fusion) operator.
In FLr the syntax is restricted on the left hand side of the chop operator.

Example 6

– Let ; denote the PITL chop operator. Let F0 and F1 be PITL formulae. Then we can write
in PITL ¬F0 ;¬F1, i.e., the use of negation on both sides of the chop is unrestricted.

– Let
〈

test(¬P)
〉

R denote the ‘chop’ between a right fusion logic formula R and a fu-
sion expression test(¬P) (restricted syntax), where test(¬P) denotes that ¬P holds
in an interval with exactly one state. Then

〈
test(¬P)

〉
¬R is a right FL formula but〈

¬test(¬P)
〉
¬R is illegal syntax, as one is only allowed to use negations in fusion

expressions (left hand side of the chop) if they appear within a state formula test() or a
transition formula step().

16 Antonio Cau et al.

Like PITL, FLr assumes the locality principle. Despite the restricted syntax, the expressive-
ness of FLr is the same as PITL [50], however the complexity is elementary. In [50] a sound
and complete axiom system was presented for FLr.

We introduce the four syntactic categories of FLr in the following table, where

– p is a propositional variable,
– ©W means that W holds in the next state,
– test(W) means that W holds in an interval with exactly one state,
– step(T) a two-state interval satisfying T ,
– E1 ; E2 is a fusion of an interval satisfying fusion expression E1 that becomes a prefix

interval of the resulting interval and an interval satisfying fusion expression E2 that
becomes the suffix interval of the resulting interval such that the last state of the prefix
interval is the same as the first state of the suffix interval,

– E∗ is the iterative fusion of intervals satisfying fusion expression E, and
–
〈

E
〉

R is the fusion of a prefix interval satisfying fusion expression E and a suffix inter-
val satisfying right Fusion Logic formula R.

state formulae W ::= true | p |W1 ∨W2 | ¬W
transition formulae T ::= W | ©W | T1 ∨ T2 | ¬T
fusion expressions E ::= test(W) | step(T) | E1 ∨ E2 | E1 ; E2 | E∗
right fusion logic formulae R ::= true | p | ¬R | R1 ∨ R2 |

〈
E
〉

R

Let JK be the semantic function from formulae×Σ to {tt, ff} and let x ∈ {W,T,E,R}, y ∈
{W,T,R}. The semantics of right Fusion Logic is as follows:

– JtrueKσ = tt
– JpKσ = tt iff σ0(p) = tt
– Jx1 ∨ x2Kσ = tt iff Jx1Kσ = tt or Jx2Kσ = tt
– J¬yKσ = tt iff not JyKσ = tt
– J©W Kσ = tt iff |σ |> 0 and JW Kσ1

– Jtest(W)Kσ = tt iff |σ |= 0 and JW Kσ0

– Jstep(T)Kσ = tt iff |σ |= 1 and JT Kσ0σ1

– JE0 ; E1Kσ = tt iff there exists k s.t. 0≤ k ≤ |σ |,JE0Kσ0...σk = tt, and JE1Kσk ...σ|σ | = tt
– JE∗Kσ = tt iff exist l0, . . . , ln s.t. l0 = 0 and ln = |σ | and

for all 0≤ i < n, li < li+1 and JEKσli ...σli+1
= tt

– J
〈

E
〉

RKσ = tt iff there exists k s.t. 0≤ k ≤ |σ |,JEKσ0...σk = tt, and JRKσk ...σ|σ | = tt
Note for n = 0, E is not required to hold at the only state σ0.

The semantics of ©W and step(true) ; test(W) are the same, however, we wish to keep ©W
as a basic construct because in the decision procedure, a Fusion Logic formula is rewritten
into a normal form, containing only © as a temporal operator. All propositional variables in
the scope of a ©operator can then be easily replaced by fresh propositional variables so that
the resulting formula can be encoded using BDDs [6, 7].

We introduce the following derived right fusion logic formulae in order to express the
always-followed-by operator.

3rR =̂
〈

truee
〉

R sometimes R, i.e., there exists a suffix interval for which R holds.

2rR =̂ ¬3r(¬R) always R, i.e., for all suffix intervals R holds.

2rT =̂2r
〈

step(T)
〉

true always T , T a transition formula.[
E
]

R =̂ ¬(
〈

E
〉
¬R) box-suffix, the dual of the right chop operator.

Verification and Enforcement of Access Control Policies 17

The always-followed-by operator can be defined as Pre 7→W =̂
[

Pre
]
W . Pre needs to

be a Fusion Expression, i.e., can only contain negation within a transition or state formula.
The strong always-followed-by operator is then Pre↔W =

[
Pre
]
W ∧

[
¬Pre

]
¬W . As

¬Pre needs to be a Fusion Expression, this is illegal syntax for a right Fusion Logic for-
mula. One can move the outer negation to appear inside a state or transition formula of
Pre, but this would increase the length of the fusion expression Pre as extra terms are intro-
duced. For example,¬(test(p) ;step(true)) can be rewritten to (test(¬ p) ;truee) ∨ emptye ∨
(step(true) ; step(true) ; truee). This and the overhead of moving a negation inside step()
and test() is the reason for not choosing right Fusion Logic to express policy rules.

3.1.4 Propositional Dynamic Logic (PDL)

We now investigate whether PDL [24] is suitable to express history-based access control
rules. The syntax of PDL formulae is as follows: Let a denote primitive program variables,
and let p denote propositional variables. Let f denote PDL formulae and let α denote PDL
programs.

α ::= a | α1 ; α2 | α1∪α2 | α∗ | f ?
f ::= p | ¬ f | f1 ∨ f2 | true |

〈
α
〉

f

The semantics of PDL maps formulae in a particular state to truth values and all programs
to binary state relations. The construct

〈
α
〉

f is true for a state iff the program α , when
started in that state, can possibly terminate in some state in which the formula f is true. Let
s denote a state. The semantics of the relevant PDL constructs is as follows:

– J
〈

α
〉

f Ks = tt iff there exists a state s′ s.t. JαK(s,s′) = tt, and J f Ks′ = tt
– Jα0 ; α1K(s,s′) = tt iff there exists a state s′′ s.t. Jα0K(s,s′′) = tt, and Jα1K(s′′,s′) = tt
– Jα∗K(s,s′) = tt iff exist states s0, . . . ,sn s.t. s0 = s and sn = s′ and

for all 0≤ i < n,JαK(si,si+1) = tt
– J f ?K(s,s′) = tt iff s′ = s and J f Ks

PDL is similar to right Fusion Logic because it uses
〈

α
〉

f where α corresponds to a fu-
sion expression, in particular, a corresponds to a step(T) fusion expression. However, f ?
and test(W) are different in the sense that former allows f to be PDL formula whereas in
the latter W can only be a state formula. f ? is called a rich test, there is also a poor test
where f is restricted to be a state formula, i.e., a poor test is the same as our test(W). We
have already seen that right Fusion Logic is not suitable for expressing history-based access
control policies because of the overhead of moving a negation inside test() and step().

Sequential Extended Regular Expressions Linear Temporal Logic (SERELTL) [13], the
core of the IEEE standard Property Specification Language (PSL) [28], and Regular Linear
Temporal Logic (RLTL) [43] are also right Fusion Logics because they have a restricted
chop operator that can only have a regular expression on the left hand side. So they are also
not suitable for expressing history-based access control policies.

3.1.5 Propositional Linear Temporal Logic (PLTL)

We now investigate whether PLTL [45] is suitable to express history-based access control
rules. The syntax of PLTL formulae f is as follows

f ::= true | p | f1 ∨ f2 | ¬ f | © f |2 f | f1U f2

The semantics of the until operator is as follows:

18 Antonio Cau et al.

– J f1U f2Kσ = tt iff there exists a k : 0 ≤ k ≤ |σ |,J f2Kσk ...σ|σ | = tt and for all j : 0 ≤ j <
k, J f1Kσ j ...σ|σ | = tt

The semantics of ¬(f1U ¬ f2) is therefore

– J¬(f1U ¬ f2)Kσ = tt iff for all k : 0 ≤ k ≤ |σ |,J f2Kσk ...σ|σ | = tt or not for all j : 0 ≤ j <
k, J f1Kσ j ...σ|σ | = tt

This is almost the always-followed-by operator, i.e., if we restrict f1 and f2 to be state
formula (no temporal operators) then ¬(f1U ¬ f2) corresponds to (2 f1) 7→ f2. One imme-
diately sees that the premise can only be an always type of property. There is no natural
way of expressing the sequential composition of, for example, two phases. So it will have
difficulty in expressing the ‘sequential access’ and ‘cardinality on history’ policy rules of
Example 3.

3.1.6 Left Fusion Logic

We will now introduce Left Fusion Logic (FLl). FLl is similar as FLr, but now the restriction
is on the right hand side of the chop. As far as we know, nobody has previously considered
this.

The syntax of FLl is as follows:

left fusion logic formulae L ::= true | fin(p) | ¬L | L1 ∨ L2 | L
〈

E
〉

where fin(p) means that p holds in the last state, and L
〈

E
〉

is the fusion of a prefix interval
satisfying left fusion logic formula L and a suffix interval satisfying fusion expression E.
The semantics of left Fusion Logic is similar as right Fusion Logic so we only give the
semantics for those constructs that are different from FLr.

– Jfin(p)Kσ = tt iff σ|σ |(p) = tt
– JL

〈
E
〉
Kσ = tt iff exists k s.t. 0≤ k ≤ |σ |,JLKσ0...σk = tt, and JEKσk ...σ|σ | = tt

FLl is as expressive as PITL. The proof of this is similar as the proof that FLr is as expressive
as PITL [50]. Like FLr, FLl has elementary complexity. Similarly, one can adapt the sound
and complete axiom system of FLr [50] to obtain a sound and complete axiom system of
FLl .

In order to express history-based access control policy rules we introduce the following
derived constructs.

3i l L =̂ L
〈

truee
〉

diamond-i L, i.e., there exists a prefix interval for which L holds.
2i l L =̂ ¬3i l(¬L) box-i L, i.e., for all prefix intervals L holds.
L
[

E
]
=̂ ¬(¬L

〈
E
〉
) box-prefix, the dual of the left chop operator.

Observe that the always-followed-by is a prefix type of operator and because of the universal
quantification of k we will need a box-prefix operator. It is easy to check via the semantics
that a policy rule Pre 7→W can be defined as follows

Pre 7→W =̂2i l(¬Pre
[

test(¬W)
]
)

As can be seen, we now need to introduce negation already for the always-followed-by
operator. However, the negation for the access control variable on the right hand side does

Verification and Enforcement of Access Control Policies 19

not cause any trouble as it moves inside the test(). As Pre is a left fusion formula, such a
negation is allowed by the syntax.

The strong always-followed-by operator is defined as follows

Pre↔W =̂2i l(¬Pre
[

test(¬W)
]
) ∧2i l(Pre

[
test(W)

]
).

3.1.7 Example history-based access control policy rules

The following derived constructs will be used to express the sample history-based access
control policy rules of Example 3. First we define some derived fusion expressions:

lene(0) =̂ test(true) interval of length 0 (one state interval).

lene(n+1) =̂ step(true) ; lene(n) interval of length n+1, for n≥ 0.

truee =̂ step(true)∗ finite interval, i.e., any interval of finite length.

moree =̂ step(true) ; truee non-empty interval, i.e., any interval of length at least one.

3eW =̂ truee ; test(W) ; truee sometimes W , i.e., there exists a state for which W holds.

2eW =̂ step(W)∗ ; test(W) always W , i.e, for all states W holds.

n :e W =̂ truee ; test(W) ; lene(n) W holds n states from the end.

truee is a derived fusion expression that is semantically equivalent to the left/right fusion
logic formula true. However, truee cannot be used to define falsee because we have no
negation at fusion expression level. One has to define falsee as test(false). At the fusion
logic level one can use true to define false as ¬true as we have negation.

The fusion expressions derived above, are semantically equivalent to the derived left
fusion logic formulae lenl(n), true, morel , 3lW , 2lW and n :l W , respectively. However,
the derived fusion expressions can be used on the right hand side of the left fusion operator
as they use only fusion expression operators whereas the corresponding derived left fusion
logic formulae cannot be used as they contain the left fusion operator.

Likewise, we need to introduce some derived left fusion logic formulae. Conjunction
and implication are defined as usual.

morel =̂ true
〈

step(true)
〉

non-empty interval, i.e., any interval of length at least one.

emptyl =̂ ¬morel empty interval, i.e., any interval of length zero (just one state).

lenl(n) =̂
{

emptyl n = 0
lenl(n−1)

〈
step(true)

〉
n > 0 interval of length n (n≥ 0).

3lE =̂ true
〈

E
〉

sometimes E, i.e., there exists a suffix interval for which E holds.

3lW =̂ true
〈

test(W) ; truee
〉

sometimes W , i.e., there exists a suffix interval such that W
holds in the first state of that suffix interval.

2lW =̂ ¬3l(¬W) always W , i.e., W holds in the first state of every suffix interval.

n :l W =̂ true
〈

test(W) ; lene(n)
〉

W holds n states from the end.

In Example 7 we will express the sample history based access control policy rules of Exam-
ple 3 in left Fusion Logic.

Example 7 We will only give the formulae.

– Conditional on the current state:
0 :l owner(s,o) ∧ account(o) 7→ Aut+(s,o,withdraw)

20 Antonio Cau et al.

– Conditional on the history:
3ldone(s,o,a) 7→ Aut−(s,o,a)

– Conditional on the history:
3ldone(s2,o,a) ∧ s1 6= s2 7→ Aut−(s1,o,a)

– Conditional on the history:
3l(test(signinhj) ;2e(¬signouthj)) 7→ Aut+(hj,door,open)

– Invariant:
2l ¬bankrupt(s) 7→ Aut+(s, loan, take)

– Choice:
s1 6= s2 ∧ parent(s1,s) ∧ parent(s2,s) ∧
((age less 10(s) ∧
3ldone(s1,o,consent(a)) ∧3ldone(s2,o,consent(a))) ∨

(¬age less 10(s) ∧
(3ldone(s1,o,consent(a)) ∨3ldone(s2,o,consent(a)))))

 7→ Aut+(s,o,a)

– Collaboration:
5 :l 3lreq(s1,door,open) ∧3lreq(s2,door,open) ∧ s1 6= s2 7→ Aut+(s,door,open)

– Sequential access:¬(3l(test(done(s, invoice,receive));
3edone(sa, invoice,authorize))) ∧

0 :l role(sa,accountant)

 7→ Aut−(s,bank,pay(invoice))

– Counting states in the history:
(
∨3

i=0 i :l deleg(s,s′,o,a)) ∧ 0 :l Aut+(s,o,a) 7→ Aut+(s′,o,a)
– Cardinality on history

3l((test(req(s,o,a)) ;3ereq(s,o,a))∗) 7→ Aut+(s,o,a)

3.2 Expressing the Computational model in left Fusion Logic

The formalization of the user, reference monitor and system processes that are part of the
computational model (see Figure 2) for policy based management is as follows:

– User process: Let S be the set of subjects. Then the user process consists of all the subject
processes in parallel, i.e.,

∧
s∈S User(s).

Let UI(s,o,a) denote

step(u idles ∧ ¬req(s,o,a))∗;
test(u idles ∧ req(s,o,a)) ; step(true)

This represents that the subject process s is waiting in the idle state, and that on the
generation of the request event it moves to the next state. We use propositional variables
to describe that a process is in a particular state, i.e., u idles has the value true when
subject process s is in the idle state. Furthermore, we will use propositional variables
to describe events, i.e., req(s,o,a) is true when subject process s sends a request to the
reference monitor to perform action a on object o.
Let UW0(s,o,a) denote

step(u waits ∧ ¬exec(s,o,a) ∧ ¬deny(s,o,a))∗;
test(u waits ∧ exec(s,o,a) ∧ ¬deny(s,o,a)) ; step(true)

representing that the subject process is in the wait state and waiting for the exec event,
after which it moves to the next state.

Verification and Enforcement of Access Control Policies 21

Let UW1(s,o,a) denote

step(u waits ∧ ¬exec(s,o,a) ∧ ¬deny(s,o,a))∗;
test(u waits ∧ ¬exec(s,o,a) ∧ deny(s,o,a)) ; step(true)

representing that the subject process is in the wait state and waiting for the deny event,
after which it moves to the next state.
Let UA(s,o,a) denote

step(accesss ∧ ¬done(s,o,a))∗;
test(accesss ∧ done(s,o,a)) ; step(true)

representing that the subject process is in the access state and waiting for the done event,
after which it moves to the next state.
Then each subject process User(s) is defined as follows:

emptyl

〈
(
∨

o∈O,a∈A

(UI(s,o,a) ; (UW0(s,o,a) ; UA(s,o,a) ∨ UW1(s,o,a))))∗ ; truee

〉
.

Each subject process corresponds to the user Statechart in Figure 2. The ;truee after the
∗ is needed to “pad” a subject process with states so that it has the same length as other
subject processes when put in parallel with those processes.

– Reference monitor process: Associated with each subject process is a subject reference
monitor process for that subject. Accordingly the reference monitor process consists of
those subject reference monitor processes in parallel, i.e.,

∧
s∈S RM(s).

Let RI(s,o,a) denote

step(rm idles ∧ ¬req(s,o,a))∗;
test(rm idles ∧ req(s,o,a)) ; step(true)

representing that the subject reference monitor process is in the idle state and waiting
for the request event, after which it moves to the next state.
Let RP0(s,o,a) denote

test(processs ∧ Aut(s,o,a) ∧ permit(s,o,a) ∧ ¬deny(s,o,a)) ; step(true)

representing that the subject reference monitor process is in the process state and if the
policy grants access (Aut(s,o,a) is true), it generates the permit event and moves to the
next state. Aut(s,o,a) is again a propositional variable.
Let RP1(s,o,a) denote

test(processs ∧ ¬Aut(s,o,a) ∧ ¬permit(s,o,a) ∧ deny(s,o,a)) ; step(true)

representing that the subject reference monitor process is in the process state and if the
policy denies access (Aut(s,o,a) is false), it generates the deny event and moves to the
next state.
Let RW(s,o,a) denote

step(r waits ∧ ¬done(s,o,a))∗;
test(r waits ∧ done(s,o,a)) ; step(true)

representing that the subject reference monitor process is in the wait state and waiting
for the done event, after which it moves to the next state.
Then each subject reference monitor process RM(s) is defined as follows:

emptyl

〈
(
∨

o∈O,a∈A

(RI(s,o,a) ; (RP0(s,o,a) ; RW(s,o,a) ∨ RP1(s,o,a))))∗ ; truee

〉
.

22 Antonio Cau et al.

– System process: Similarly with each subject process there is a corresponding subject
system process. The system process consists of those subject system processes in paral-
lel, i.e.,

∧
s∈S Sys(s).

Let SI(s,o,a) denote

step(s idles ∧ ¬permit(s,o,a) ∧ ¬exec(s,o,a))∗;
test(s idles ∧ permit(s,o,a) ∧ exec(s,o,a)) ; step(true)

representing that the subject system process is in the idle state and waiting for the permit
event, after which it generates the exec event and moves to the next state.
Let SE(s,o,a) denote

step(executes ∧ ¬done(s,o,a))∗;
test(executes ∧ done(s,o,a)) ; step(true)

representing that the subject system process is waiting in the exec state, on the generation
of the done event it moves to the next state.
Then each subject system process Sys(s) is defined as follows:

emptyl

〈
(
∨

o∈O,a∈A

(SI(s,o,a) ; SE(s,o,a)))∗ ; truee

〉
.

The computational model is as follows:

P ∧
∧
s∈S

(User(s) ∧ RM(s) ∧ Sys(s)),

where P denotes the history-based access control policy. In the next section we show how
to express a policy P in Fusion Logic.

4 Verification and Enforcement of policy rules

In this section, we show how the verification of properties on policy rules can be translated
into a BDD-based decision procedure for Fusion Logic. For the specification of the policy
rules and properties one uses FLl . Internally, the decision procedure translates FLl formula
into FLr formula using time reversal. Furthermore, we show how this decision procedure
can be adapted to act as an enforcer.

Model-checking techniques for the analysis of policies has been explored for policy
models e.g., [60, 70], or for formalizations of XACML [53] in [37]. We did not use standard
off the shelf model-checkers like [12, 25] as we wanted to adapt the decision procedure so
that it can also be used for the enforcement of policy rules.

The problem of finding an enforcer is an instance of Church’s Problem [11, 65] where
one asks for an automaton that realizes the transformation of an input sequence into an
output sequence such that a requirement on those sequences is satisfied. The solution of
Church’s Problem is an automaton that produces output depending on the user input in such
a way that the requirements are satisfied. Our enforcer is, likewise, an automaton generated
from the requirements on the input and output sequence.

The BDDs that are constructed during the enforcement of a policy encode an automa-
ton, similar to the security automaton of [61]. BDDs have been also used for computing the
similarity of XAMCL policies as part of the EXAM project, based on the notion of Rule
Set Similarity, first explored in [58]. More recent work by Hu [26] also uses BDDs to detect

Verification and Enforcement of Access Control Policies 23

conflicts and policy anomalies in XACML policy specifications. A similar approach as also
been used to reason about Spectrum Access Policies in e.g. [3] an the computation of op-
portunity constraints. However, in these approaches only static policies are considered. The
dependence on the system-history, as considered in this paper, is making policies dynamic
and adaptable to the system context. The verification of properties of these policies and the
generation of a corresponding enforcement mechanism, is a more complex problem as the
system trace must be taken into account.

4.1 Verification

A policy rule is a left Fusion Logic formula and since we base our verification technique
on BDDs[6, 7], we must find a way to translate a left Fusion Logic formula into a Boolean
function. We base our decision procedure for left Fusion Logic on the decision procedure
for right Fusion Logic presented in [51]. The difference between the one presented in [51]
and the one presented in this paper is that we have now as input a FLl formula which is first
translated into a FLr formula. Furthermore we use a more efficient reduction step where the
right Fusion Logic formula is transformed into an automaton. This reduction step is similar
to the reduction technique presented by Fisher et al. in [21]. In Section 4.1.3 we will compare
the three reduction techniques.

First we recall some basic definitions. A Fusion Logic formula F is satisfiable if and
only if there exists an interval σ such that JFKσ = tt. A decision procedure for Fusion Logic
has as input a Fusion Logic formula F , and as output a decision whether F is satisfiable or
not. The decision procedure will also generate a satisfying interval in the case the formula
is satisfiable. A Fusion Logic formula F is valid if and only if for all intervals σ , JFKσ = tt.
A decision procedure for Fusion Logic can also be used to check validity of a formula as
we can express validity of a formula in terms of satisfiability: F is not valid if and only if
¬F is satisfiable, i.e., the satisfying interval for ¬F will represent a counter example for F’s
validity. Therefore, F is valid if and only if ¬F is not satisfiable.

The decision procedure for left Fusion Logic consists of three steps:

1. Time reversal step. Transform a FLl formula into a FLr formula using time reversal.
Continue with the next step.

2. Reduction Step. Transform a right Fusion Logic formula into a formula of the form
init ∧ 2rI, where init is a state formula and I is a transition formula. Continue with the
next step.

3. BDD Step. Transform init ∧2rI into a BDD-based satisfiability problem.

In the following, we will discuss each of these steps in more detail.

4.1.1 Time Reversal

In [52], time reversal was used by Moszkowski to verify certain properties expressed in
PITL. Here it is used to rewrite left fusion formulae into right fusion logic formulae as part
of the decision procedure.

Time reversal is related to mirror images (see Prior [57]) used for temporal logics to
obtain a rule for past-time operators from an analogous one for future-time operators by
means of time symmetry.

24 Antonio Cau et al.

Let formula Fr denote the time reversed version of F . Let the time reversed interval of a
finite interval σ be denoted by reverse(σ) and be defined as reverse(σ0 . . .σ|σ |) =̂σ|σ | . . .σ0.
The semantics of time reversal is defined as

JFrKσ = tt iff JFKreverse(σ) = tt

As the semantics of left/right Fusion Logic is defined over finite intervals we can use this
definition for time reversal.

In Table 1, we list the rewrite rules for transforming left fusion logic formulae into right
fusion logic formulae.

left fusion formulae fusion expressions transitions
((L
〈

E
〉
)r =

〈
Er 〉Lr

(fin(p))r = p
truer = true
(¬L)r = ¬(Lr)
(L1 ∨ L2)

r = Lr
1 ∨ Lr

2

(test(W))r = test(W)
(step(T))r = step(T r)
(E1 ∨ E2)

r = Er
1 ∨ Er

2
(E1 ; E2)

r = Er
2 ; Er

1
(E∗)r = (Er)∗

(©W)r = W
W r = ©W
(T1 ∨ T2)

r = T r
1 ∨ T r

2
(¬T)r = ¬(T r)

Table 1 Time reversal rules

Lemma 1 Let L be a left Fusion Logic formula. Then, Lr is a right Fusion Logic formula.

Proof Use structural induction on L and the rewrite rules in Table 1. Details omitted.

Lemma 2 allows for a decision procedure for right fusion logic formulae to be used for
left fusion logic formulae, i.e., time reverse the left fusion logic formula L into a right fu-
sion logic formula Lr and then determine the satisfiability of Lr using the decision proce-
dure. If satisfiable, then there exists a σ such that JLrKσ = tt, and thus, using time reversal,
JLKreverse(σ) = tt.

Lemma 2 (Left satisfiability as right satisfiability) Let L be a left fusion logic formula.
Then, JLKσ = tt iff JLrKreverse(σ) = tt.

Proof JLKσ = tt iff, using the fact that reversing an interval twice is the interval itself,
JLKreverse(reverse(σ)) = tt. Using the definition of the reversal operator, where one substitutes
for σ , reverse(σ), we get JLrKreverse(σ) = tt. QED

4.1.2 Reduction Step

In this step, we will introduce a mechanism to rewrite a right fusion logic formula into an
automaton specified by an initial state and a transition relation. Automata are only indirectly
introduced via a corresponding normal form. Reduction rules will be introduced that rewrite
a right fusion logic formula into this form.

The reduction step will transform a right fusion logic formula R, possibly introducing de-
pendent variables, into the following equivalent reduced form init ∧2rI, where init =̂R ′0(R)
and I =̂ R0(R). For k ∈ {0,1}, Rk(R) is a transition formula, R ′0(R) is a state formula, and
R ′1(R) is a transition formula. Let X , X1, and X2 denote non-state right fusion logic formu-
lae and W a state formula. Then the definitions of transition formulae R0(R), R1(R) and
R ′1(R), and state formula R ′0(R) are given in Table 2. Some of the R0(R) transformations
call R ′0(R), R1(R), and R ′1(R) transformations, and some of the R1(R) transformations call

Verification and Enforcement of Access Control Policies 25

R0(R) transformations, and some R ′1(R) transformations call R ′0(R) transformations. It is
worth pointing out that only the step(T) and E∗ cases will introduce a dependent variable
(denoted by respectively r〈 step(T) 〉X and r〈 E∗ 〉X).

R R0(R) R1(R)
W true true〈

test(W)
〉

X R0(X) R1(X)〈
step(T)

〉
X (r〈 step(T) 〉X ≡ (T ∧ ©R ′0(X))) ∧R0(X) R0(X)〈

E1 ∨ E2
〉

X R0(
〈

E1
〉

X ∨
〈

E2
〉

X) R1(
〈

E1
〉

X ∨
〈

E2
〉

X)〈
E1 ; E2

〉
X R0(

〈
E1
〉〈

E2
〉

X) R1(
〈

E1
〉〈

E2
〉

X)〈
E∗
〉

X (r〈 E∗ 〉X ≡R ′1(X1)) ∧R1(X1) (r〈 E∗ 〉X ≡R ′1(X1)) ∧R1(X1)

where X1 is X ∨
〈

c(E)
〉

r〈 E∗ 〉X where X1 is X ∨
〈

c(E)
〉

r〈 E∗ 〉X
¬X R0(X) R1(X)
X1 ∨ X2 R0(X1) ∧R0(X2) R1(X1) ∧R1(X2)

R R ′0(R) R ′1(R)
W W W〈

test(W)
〉

X W ∧R ′0(X) W ∧R ′1(X)〈
step(T)

〉
X r〈 step(T) 〉X T ∧ ©R ′0(X)〈

E1 ∨ E2
〉

X R ′0(
〈

E1
〉

X ∨
〈

E2
〉

X) R ′1(
〈

E1
〉

X ∨
〈

E2
〉

X)〈
E1 ; E2

〉
X R ′0(

〈
E1
〉〈

E2
〉

X) R ′1(
〈

E1
〉〈

E2
〉

X)〈
E∗
〉

X r〈 E∗ 〉X r〈 E∗ 〉X
¬X ¬R ′0(X) ¬R ′1(X)
X1 ∨ X2 R ′0(X1) ∨R ′0(X2) R ′1(X1) ∨R ′1(X2)

E c(E)
test(W) test(¬true)
step(T) step(T)
E1 ∨ E2 c(E1) ∨ c(E2)
E1 ; E2 c(E1) ; E2 ∨ E1 ; c(E2)

E∗ c(E) ; E∗

Table 2 Definition of transition formulae R0(R), R1(R), and R ′1(R), state formula R ′0(R), and function c(E)

The disjunction of two fusion logic formulae is turned into a conjunction for the tran-
sition relation R0(R) because the ‘choice’ is made in the initial state R ′0(R) and in the
transition relation R ′1(R). Example 8 illustrates this.

The construction of the invariant for
〈

E∗
〉

W is a bit more involved because the fusion
expression E could be valid on some empty intervals. Therefore a function c is introduced
that strengthens an arbitrary fusion expression E to c(E) that holds over a non empty in-
terval, i.e., c(E) ≡ E ∧ moree. Because

〈
E∗
〉

W ≡
〈

c(E)∗
〉

W holds, this strengthening is
justified. The function c(E) is defined in Table 2.

The reduction rules in Table 2 are similar to the (partial) derivative of regular expres-
sions used in finite automata construction [2, 8]. In our decision procedure we construct an
automaton where the transitions have no labels, i.e., variables reside in the state and make
up the alphabet of the automata. In the automata constructed using (partial) derivatives,
transitions are labeled by a letter from the alphabet.

The reduction rules in Table 2 enable us to reduce a right fusion logic formula into a
formula of the form init ∧2r

∧k
i=1(rXi ≡ ti), where init is a state formula, rXi is a dependent

variable and ti is a transition formula. Example 8 gives an example of reduction of a right
fusion logic formula.

26 Antonio Cau et al.

Example 8
Consider the following right fusion logic formula X :〈

step(A)∗
〉
(B ∨C) ∨

〈
step(A) ; test(B)

〉
D

X represents an interval where A holds in each state except possibly in the last state where
either B or C holds or it is an interval with two states where in the first state A holds and in
the second state B and D holds.

We want to transform X into an init ∧2rI formula using the reduction rules in Table 2.

– We know that init =̂ R ′0(X). Using the reduction rule for disjunction we get, R ′0(X) =
R ′0(X1) ∨R ′0(X2), where X1 =̂

〈
step(A)∗

〉
(B ∨C) and X2 =̂

〈
step(A) ; test(B)

〉
D. Us-

ing the reduction rule for ‘chopstar’ we get, R ′0(X1) = rX1 . Using the reduction rule
for ‘chop’ we get, R ′0(X2) = R ′0(X3), where X3 =̂

〈
step(A)

〉〈
test(B)

〉
D. Using the

reduction rule for ‘step’ we get, R ′0(X3) = rX3 . So

init = rX1 ∨ rX3 .

– We now proceed with invariant I. We know that I =̂R0(X). Using the reduction rule for
‘disjunction’ we get, R0(X) =R0(X1) ∧R0(X2), where X1 and X2 are defined as above.
Using the reduction rule for ‘chopstar’ we get, R0(X1) = (rX1 ≡ R ′1(X4)) ∧ R1(X4),
where X4 =̂ (B ∨C) ∨

〈
c(step(A))

〉
rX1). Using the definition of c() for ‘step’ we get,

X4 = (B ∨C) ∨
〈

step(A)
〉

rX1). Using the definition of ‘disjunction’ we get, R ′1(X4) =
R ′1(B ∨C) ∨R ′1(

〈
step(A)

〉
rX1). Using the reduction step for ‘state formula’ and ‘step’

we get, R ′1(X4) = (B ∨ C) ∨ (A ∧ ©R ′0(rX1)). Using the reduction step for ‘state for-
mula’ we get, R ′1(X4) = (B ∨ C) ∨ (A ∧ ©rX1). Reduction of R ′1(X4) is now complete,
and so we now proceed with R1(X4). Using the reduction step for ‘disjunction‘ we get,
R1(X4) = R1(B ∨C) ∧R1(

〈
step(A)

〉
rX1). Using the reduction step for ‘state formula’

and ‘step’ we get, R1(X4) = true ∧ R0(rX1). Using the reduction step for ‘state for-
mula’ we get, R1(X4) = true ∧ true. Reduction R1(X4) is now complete and therefore
R0(X1) = (rX1 ≡ (B ∨C) ∨ (A ∧ ©rX1)). We proceed with R0(X2). Using the reduction
step for ‘chop’ we get, R0(X2) =R0(X3), where X3 is as above. Using the reduction rule
for ‘step’ we get, R0(X3) = (rX3 ≡ A ∧ ©R ′0(X5)) ∧R0(X5), where X5 =̂

〈
test(B)

〉
D.

Using the reduction rule for ‘test’ we get, R ′0(X5) = B ∧ R ′0(D). Using the reduction
rule for ‘state formula’ we get, R ′0(X5) = B ∧ D. R ′0(X5) is now complete, and we pro-
ceed with R0(X5). Using the reduction rule for ‘test’ we get, R0(X5) = R0(D). Using
the reduction rule for ‘state formula’ we get, R0(X5) = true. Reduction R0(X5) is now
complete and therefore R0(X2) = (rX3 ≡ A ∧ ©(B ∧ D)). The invariant I is therefore

I = (rX1 ≡ (B ∨C) ∨ (A ∧ ©rX1)) ∧ (rX3 ≡ A ∧ ©(B ∧ D))

The following example shows how dependent variables are used to count states.

Example 9
Let us consider the following right fusion logic formula R =̂

〈
step(A)∗

〉
B ∧
〈

lene(4)
〉

emptyr,
where emptyr denotes the formula ¬

〈
step(true)

〉
true. R represents a 5 state interval,

where in the first 4 states A holds and in the last state B holds. Given the following right
fusion logic formulae:

X1 =̂
〈

step(A)∗
〉

B
X2 =̂

〈
lene(4)

〉
emptyr

X3 =̂
〈

lene(3)
〉

emptyr

X4 =̂
〈

lene(2)
〉

emptyr
X5 =̂

〈
lene(1)

〉
emptyr

X6 =̂
〈

step(true)
〉

true

Then R is reduced to init ∧2rI, where init = rX1 ∧ rX2 and

Verification and Enforcement of Access Control Policies 27

I = (rX1 ≡ (B ∨ (A ∧ ©rX1))) ∧ (rX2 ≡©rX3) ∧ (rX3 ≡©rx4) ∧
(rX4 ≡©rx5) ∧ (rX5 ≡ ¬©rX6) ∧ (rX6 ≡ true)

The states of the interval representing the formula are then as follows:

rX1 ,rX2 rX1 ,rX3 rX1 ,rX4 rX1 ,rX5 rX1 ,¬rX6

• • • • •
A A A A B

Theorem 1 is the logical underpinning which explains why the reduction rules in Table 2
give us the desired result.

Theorem 1 Let R be a right fusion logic formula and dep(R) be the dependent variables
introduced by R ′k(R) and Rk(R) (k = 0,1). Then,

R≡ ∃dep(R) q (R ′k(R) ∧2rRk(R))

is valid.

The proof of Theorem 1 uses the following two lemmas.

Lemma 3 Let R be a right fusion logic formula and dep(R) be the dependent variables
introduced by R ′k(R) and Rk(R) (k = 0,1). Then the formula below is valid:

∃dep(R) q 2rRk(R)

Lemma 4 Let R be a right fusion logic formula. Then the next implication is valid:

2rRk(R) ⊃ (R ′k(R)≡ R)

The proofs of Lemma 3 and 4 are given in Appendix A and use structural induction on the
syntax of a right Fusion Logic formula. The proof of Theorem 1 is as follows:

Proof R is equal to, using Lemma 3, R ∧ ∃dep(R) q 2rRk(R). Moving R inside the existen-
tial quantification gives us ∃dep(R) q (R ∧ 2rRk(R)). Using Lemma 4 gives us ∃dep(R) q
(R ∧2rRk(R) ∧R ′k(R)≡ R). Using R ′k(R)≡ R gives us ∃dep(R) q (R ′k(R) ∧2rRk(R)), the
desired result. QED

4.1.3 Comparison with other reduction techniques

We will compare our reduction step with the one presented in [51] and the one presented by
Fisher et al. in [21].

Reduction technique of Moszkowski [51]: Again a right Fusion Logic formula R is trans-
formed into an equivalent reduced form r|R(R)| ∧2rR(R), where |R(R)| denotes the number
of distinct dependent variables in R(R). Let I ↑ k denote the formula I with the subscripts of
all dependent variables increased by k, i.e., ri becomes ri+k. Let I[q← rk] denote the formula
with all occurrences of q replaced by rk. The reduction rules are presented in Table 3, where
X ,X1, and X2 denote non-state formulae and W a state formula. As can be seen, R(R) is of
the form

∧k
i=1(ri ≡ ti), where ri is a dependent variable and ti is a transition formula.

Notice that the reduction technique introduces a dependent variable for each right Fusion
Logic operator. In Example 10 we reduce the same formula as Example 8.

28 Antonio Cau et al.

R R(R)
W r1 ≡W〈

test(W ′)
〉

W r1 ≡ (W ∧W ′)〈
step(T)

〉
W r1 ≡ (T ∧ ©W)〈

E1 ∨ E2
〉

W R(
〈

E1
〉

W ∨
〈

E2
〉

W)〈
E1 ; E2

〉
W R(

〈
E1
〉
(
〈

E2
〉

W))〈
E∗
〉

W R(W ∨
〈

c(E)
〉

q)[q← rk]
where q is a fresh variable and k = |R(W ∨

〈
c(E)

〉
q)|〈

E
〉

X R(X) ∧ (R(
〈

E
〉

q) ↑ k)[q← rk]
where q is a fresh variable and k = |R(X)|

¬X R(X) ∧ (rk+1 ≡ ¬rk)
where k = |R(X)|

X1 ∨ X2 R(X1) ∧R(X2) ↑ j ∧ r j+k+1 ≡ (r j ∨ rk+ j)
where j = |R(X1)| and k = |R(X2)|

Table 3 FLr reduction rules of [51]

Example 10 Consider the right fusion logic formula of Example 8:〈
step(A)∗

〉
(B ∨C) ∨

〈
step(A) ; test(B)

〉
D

This formula is reduced to r6 ∧2rI, where

I = (r1 ≡ B ∨ A) ∧ (r2 ≡ A ∧ ©r3) ∧ (r3 ≡ r1 ∨ r2) ∧
(r4 ≡ D ∧ B) ∧ (r5 ≡ A ∧ ©r4) ∧ (r6 ≡ r3 ∨ r5).

The number of dependent variables is 6, whereas with the new reduction technique we only
get 2 dependent variables.

The new reduction technique is better, as both the size and number of dependent variables in
the reduced formula is less than the one produced by the reduction technique of [51] because
it only introduces a dependent variable for the ‘step’ and the ‘chopstar’ operator.

Reduction technique of Fisher et al. [21]: The reduction technique of Fisher et al. [21]
reduces a Propositional Linear Time Temporal (PLTL) formula into Separated Normal Form
(SNF) formula. Formulae in SNF are implications with present time formula on the left
hand side and (present or) future-time formulae on the right-hand side. The general form of
formula in SNF is 2

∧
i Ai where each Ai is known as a PLTL clause and must be one of the

following forms with each particular ka,kb, lc, ld , and l representing a literal (a propositional
variable or its negation).

start ⊃
∨
c

lc (initial PLTL clause)∧
a

ka ⊃ ©
∨
d

ld (step PLTL clause)∧
b

kb ⊃ 3l (sometime PLTL clause)

Let A be a PLTL formula and let v,y and z be new propositional variables (indicated in bold
face type). These variables serve the same role as our dependent variables. The following
reduction rule introduces the start clause

τ0(A) =2(start ⊃ y) ∧ τ1(2(y ⊃ A))

Verification and Enforcement of Access Control Policies 29

A τ1(A)
2(x ⊃ (A ∧ B)) τ1(2(x ⊃ A)) ∧ τ1(2(x ⊃ B))

2(x ⊃ (A ⊃ B)) τ1(2(x ⊃ (¬A ∨ B))
2(x ⊃ (¬(A ∧ B)) τ1(2(x ⊃ (¬A ∨ ¬B)))
2(x ⊃ ¬(A ⊃ B)) τ1(2(x ⊃ A)) ∧ τ1(2(x ⊃ ¬B))
2(x ⊃ ¬(A ∨ B)) τ1(2(x ⊃ ¬A)) ∧ τ1(2(x ⊃ ¬B))

2(x ⊃ ©A) 2(x ⊃ ©y) ∧ τ1(2(y ⊃ A))
A neither literal nor disjunction of literals

2(x ⊃ ¬©A) 2(x ⊃ ©y) ∧ τ1(2(y ⊃ ¬A))
2(x ⊃ 2A) τ1(2(x ⊃ 2y)) ∧ τ1(2(y ⊃ A))

A not a literal
2(x ⊃ ¬2A) 2(x ⊃ 3y) ∧ τ1(2(y ⊃ ¬A))
2(x ⊃ 3A) 2(x ⊃ 3y) ∧ τ1(2(y ⊃ A))

A not a literal
2(x ⊃ ¬3A) τ1(2(x ⊃ 2y)) ∧ τ1(2(y ⊃ ¬A))

2(x ⊃ 2l) τ1(2(x ⊃ l)) ∧ τ1(2(x ⊃ y)) ∧2(y ⊃ ©l) ∧2(y ⊃ ©y)
l a literal

2(x ⊃ D ∨ A) τ1(2(x ⊃ D ∨ y)) ∧ τ1(2(y ⊃ A))
D a disjunction of formula and
A is neither a literal nor a disjunction of literals

2(x ⊃ D) 2(start ⊃ ¬x ∨ D) ∧2(true ⊃ ©(¬x ∨ D))
D a literal or disjunction of literals

2(x ⊃ true) 2(start ⊃ true) ∧2(true ⊃ ©true)
2(x ⊃ false) 2(start ⊃ ¬x) ∧2(true ⊃ ©¬x)
2(x ⊃ 3l) 2(x ⊃ 3l)

l a literal
2(x ⊃ ©(l1 ∨ . . . ∨ ln)) 2(x ⊃ ©(l1 ∨ . . . ∨ ln))

li a literal

Table 4 PLTL Reduction rules of [21]

The τ1 reduction rules are listed in Table 4. We have omitted the rules for the PLTL temporal
operators U (until) and W (weak until) in order to compare PLTL and FL. See [21] for these
rules.

In the following example we reduce a formula using all three reduction techniques.

Example 11 In [21] the following PLTL formula (3p ∧ 2(p ⊃ ©p)) ⊃ 32p is reduced,
yielding the formula in SNF 2

∧
i Ai, where the Ai’s are listed below:

start ⊃ f start ⊃ (¬q ∨ ¬ p ∨ s) start ⊃ ¬ f ∨ r
f ⊃ 3p true ⊃ ©(¬q ∨ ¬ p ∨ s) true ⊃ ©(¬ f ∨ t)
r ⊃ ©q t ⊃ 3¬ p true ⊃ ©(¬ f ∨ r)
r ⊃ ©r u ⊃ ©t start ⊃ ¬ f ∨ u

start ⊃ ¬ f ∨ q u ⊃ ©u s ⊃ ©p
true ⊃ ©(¬ f ∨ q) start ⊃ ¬ f ∨ t true ⊃ ©(¬ f ∨ u)

The PLTL formula is equivalent to the right FL formula

(3r p ∧2r(p ⊃
〈

step(true)
〉

p)) ⊃ 3r2r p.

30 Antonio Cau et al.

Using the reduction rules of [51] on this right FL formula yields the formula r24 ∧2r(
∧24

i=1 ri≡
ti), where the list of ri ≡ ti formulae is as follows:

r1 ≡ p r2 ≡ ©r3 r3 ≡ r1 ∨ r2
r4 ≡ ¬r3 r5 ≡ ¬ p r6 ≡ ©p
r7 ≡ r5 ∨ r6 r8 ≡ ¬r7 r9 ≡ r8

r10 ≡ ©r11 r11 ≡ r9 ∨ r10 r12 ≡ ¬r11
r13 ≡ ¬r12 r14 ≡ r4 ∨ r13 r15 ≡ ¬r14
r16 ≡ ¬r15 r17 ≡ ¬ p r18 ≡ ©r19
r19 ≡ r17 ∨ r18 r20 ≡ ¬r19 r21 ≡ r20
r22 ≡ ©r23 r23 ≡ r21 ∨ r22 r24 ≡ r16 ∨ r23

Using the reduction rules introduced in this paper yields the formula
(¬¬(¬r1 ∨ ¬¬r2) ∨ r3) ∧

∧4
i=1 ri ≡ ti, where the list of ri ≡ ti formulae is as follows:

r1 ≡ p ∨ ©r1
r2 ≡ ¬(¬ p ∨ ©p) ∨ ©r2
r3 ≡ ¬r4 ∨ ©r3
r4 ≡ ¬ p ∨ ©r4

The example shows that, for this example formula, the reduction technique introduced in this
paper yields less dependent variables and clauses than the other two reduction techniques.

4.1.4 BDD Step

The BDD step adapts methods for symbolic state space traversal described by Coudert,
Berthet and Madre [15–17] (see also [14, 40]) for use with BDD-based representations [6, 7]
of formulas in propositional logic. It simultaneously greatly benefits from closely related
methods first employed by McMillan in symbolic model checking [9, 14, 47] which also in-
clude the automatic generation of counterexamples for unsatisfiable formulas and, similarly,
witnesses for satisfiable ones.

In this step, we transform the result of the reduction step, init ∧2r
∧k

i=1(rXi ≡ ti), into an
automaton that is encoded using BDDs. We will now introduce BDDs Γi’s used in the BDD
encoding of init ∧2rI.

– Γ1 represents the state formula init.
– Γ2 captures all pairs of states corresponding to state intervals of length 1 (two states)

satisfying invariant I. This can be done by replacing all variables in the scope of any ©
by a primed version and deleting the ©.

– Γ3 captures the behavior of invariant I in an interval with only 1 state (the last state).
This can be done by replacing each © construct by false, i.e., ¬true.

The following example gives the Γi’s for the formula of Example 8.

Example 12
In Example 8, we reduced

〈
step(A)∗

〉
(B ∨C) ∨

〈
step(A) ; test(B)

〉
D to 2rI ∧ init, where

init is equal to rX1 ∨ rX3 and I is equal to (rX1 ≡ (B ∨C) ∨ (A ∧ ©rX1)) ∧ (rX3 ≡ A ∧ ©(B ∧D)).

– So Γ1 is equal to rX1 ∨ rX3 . The BDD encoding of rX1 ∨ rX3 is illustrated in Figure 4, where
solid the oval nodes denote variables, and the box containing 1 represents the evaluation
to true of the Boolean function. The solid lines denotes the assignment to true of a
variable whereas the dashed line an assignment to false. The dotted line denotes the
complement. The box with label ‘initial state’ is the name of the graph.

Verification and Enforcement of Access Control Policies 31

 r_X1

 r_X3

 init ial state

0x50f

0 x 4 e 7

1

Fig. 4 BDD of initial state

– Γ2 is obtained by replacing ©var by var′, i.e., Γ2 is equal to (rX1 ≡ (B ∨C) ∨ (A ∧ r′X1
)) ∧

(rX3 ≡ A ∧ (B′ ∧ D′)).
The BDD encoding of this formula is illustrated in Figure 5.

 r_X1

 r’_X1

 r_X3

 A

 B

 B’

 C

 D’

 Transition function

0 x 7 6

0 x 6 a 0 x 7 5

0 x 6 9 0 x 6 0 0 x 7 4 0 x 6 b

0 x 6 80 x 6 4 0 x 7 3 0x6f0 x 5 d 0x5f 0 x 5 9

1

0x5c

0 x 6 7 0 x 5 70 x 6 3 0 x 7 2 0 x 6 e

0 x 6 2 0 x 6 6 0 x 6 d0 x 7 1

0 x 4 0 0x6c0 x 6 5

0 x 4 b

0 x 7 00 x 6 1

Fig. 5 BDD of transition relation

– Γ3 is obtained by replacing ©var by false, i.e., Γ3 is equal to (rX1 ≡ (B ∨ C) ∨ (A ∧
false)) ∧ (rX3 ≡ A ∧ false).

We now proceed to encode the satisfiability of a Fusion Logic formula into the satisfiability
of a collection of BDDs.

– We use Γ2 and Γ1 to iteratively calculate a sequence of BDDs ∆0, . . . ,∆n so that for any
n, ∆n described all states which can be reached from Γ1 in exactly n steps using Γ2.

– We determine at each iteration whether BDD Γ3 ∧ ∆n is true or not. If false, we must
continue to iterate; if true, then there exists some state satisfying Γ3 which can be reached
in n steps from Γ1 and thus we can stop the iteration, i.e., the formula is satisfiable.

32 Antonio Cau et al.

– During the iteration process, we maintain a BDD
∨

0≤i≤n ∆i representing the set of all
states so far reachable from Γ1. If (

∨
0≤i≤n ∆i) ≡ (

∨
0≤i≤n+1 ∆i), i.e., no new states are

found, then we stop the iteration. If we can not find a state that satisfies Γ3, then the
formula is not satisfiable.

To construct a satisfying interval for a satisfiable formula, we proceed as follows. Let ∆m be
that set of states for which Γ3 ∧ ∆m is true.

– If there are no independent variables (only ri variables), then any interval of length m
will satisfy the formula.

– If there are independent variables, then
Find a value assignment σm for the independent variables for BDD ∆m, i.e., choose one
state σm of ∆m.
Compute Prm−1 denoting those states of ∆m−1 that lead via Γ2 to state σm (weakest
precondition of Γ2 and σm). Again choose one state σm−1 of Prm−1.
Continue until we reach Pr0 and then choose state σ0.
The states σ0 . . .σm−1σm will then represent a (minimal) satisfying interval σ for the
formula.

Implementation of the decision procedure: We have implemented the decision procedure
for left Fusion Logic in the tool FLCheck2 using the CUDD [64] BDD library. FLCheck
is written in the scripting language Tcl/Tk which is a very convenient language for ma-
nipulating strings (in our case fusion logic formulae). The tool will check the validity or
satisfiability of a FLl formula. If a formula is not valid, the tool will produce a counter
example, and if a formula is satisfiable, it will produce an example model.

4.2 Enforcement

When enforcing history-dependent policy rules, the main consideration is how to efficiently
encode the policy in such a way that it can be evaluated against the input trace. By input
trace, we refer to the sequence of variable assignments upon which the policy depends.
The input trace will be used to fire policy rules, i.e., to determine whether the precondition
of rules holds or not. The objective of the enforcer is, given an input trace, generate the
corresponding access control decisions.

The enforcement of a policy P with respect to an input trace Trace corresponds to check-
ing the satisfiability of P ∧ Trace. Let Tracei (0≤ i≤ |Trace|) denote the i-th element in the
input trace. As elements are added to Trace, P ∧ Trace needs to be checked for satisfiability
every time an element is added, i.e., we need to check satisfiability of the following formulae

P ∧ emptyl
〈

test(Trace0)
〉

P ∧ emptyl
〈

test(Trace0) ; skip ; test(Trace1)
〉

. . .
P ∧ emptyl

〈
test(Trace0) ; skip . . . ; test(Trace|Trace|)

〉
We adapt our decision procedure to allow for enforcement with respect to input traces
whereby we reuse previous results and thereby reduce the overhead of calculating the BDDs
corresponding to P and the input trace. The enforcement procedure is as follows.

– As policy P is a left Fusion logic formula, we first rewrite it into a right Fusion logic
formula Pr using the time reversal rules in Table 1.

2 http://www.tech.dmu.ac.uk/~cau/software/flcheck-1.0.tar.gz

Verification and Enforcement of Access Control Policies 33

– We reduce Pr into the form init ∧2rI using the reduction rules of Table 2.
– Generate the BDDs Γ1 (initial state), Γ2 (transition relation), and Γ3 (final state) from init

and invariant I as described in Section 4.1.4.
– As P is a 2i l type of formula with semantics ‘for all prefix intervals’, the corresponding

Pr is a 2r formula, i.e., for all suffix intervals. The first state of P corresponds to the
last state of Pr. So we know that the last state of Pr should satisfy both Γ1 and Γ3.
Furthermore the last state should satisfy the first element of the input trace Trace. So the
last state σ0 of Pr (and the first state of P) is characterized by the BDD

Γ1 ∧ Γ3 ∧ Trace0

– We then proceed as follows: we derive all the states that reach σ0 via transition Γ2 in one
step, i.e., the weakest precondition denoted of Γ2 and σ0. Of those states, we take the
one that satisfy Γ1 and the second element in Trace, i.e., the BDD

Trace1 ∧ Γ1 ∧ weakest precondition(Γ2,σ0)

This BDD represents σ1, the penultimate state of Pr (and the second state of P).
– We iteratively generate all the states corresponding to the elements in the input Trace,

i.e.,
σi+1 = (Γ1 ∧ Tracei+1 ∧ weakest precondition(Γ2,σi))

– The sequence σ0, . . . ,σ|Trace| corresponds to the sequence of states that should be gener-
ated while enforcing P with respect to input trace Trace, i.e., it represents the sequence
of access control decisions.

Again, we have implemented above enforcement mechanism in our tool FLCheck. In the
next section, we demonstrate the verification and enforcement of policies using various case
studies.

5 Examples of Verification and Enforcement of Policies

In this section, we give examples of the verification of properties on access control policies
using Fusion Logic in FLCheck. Furthermore, we show the enforcement of access control
policies using FLCheck. All examples discussed in this section are included in the tool
distribution.

5.1 Verification

Consider a system governed by role-based access control policies. The following sets are
defined:

U set of users {ac,hj}
R set of roles {user,admin}
S set of subjects U ∪R
O set of objects {r,s}
Ar set of actions {acta,actu,deacta,deactu} on role manager object r
As set of actions {create,access} on server object s
A set of actions Ar ∪As

34 Antonio Cau et al.

– The user ac is assigned the role admin: Autd(ac,r,acta),Autd(ac,r,deacta). Role as-
signment means that the subject (ac) can activate the role and deactivate the role at its
discretion. We model removing the role assignment by denying the role activation (not
taking into account that the role may already be activated).

– The user hj is assigned the role user: Autd(hj,r,actu),Autd(hj,r,deactu).
– The role admin is allowed to create on server s: Aut+(admin,s,create).
– The role user is allowed to access the server s: Aut+(user,s,access).

Role Assignment: The user ac is unconditionally assigned the role admin and the user hj is
unconditionally assigned the role user:

true 7→ Aut+(ac,r,acta)
true 7→ Aut+(ac,r,deacta)
true 7→ Aut+(hj,r,actu)
true 7→ Aut+(hj,r,deactu)

Consider in addition the conditional role-assignments stating that any user that has called in
sick cannot (de-)activate any role with immediate effect. And that the user hj is temporarily
promoted to act as administrator if ac is ill with immediate effect:

0 :l ill(u) 7→ Aut−(u,r,Ar)
0 :l ill(ac) 7→ Aut+(hj,r,acta)
0 :l ill(ac) 7→ Aut+(hj,r,deacta)

We assume here that the predicate ill(u),u ∈ U can be directly observed. This is a slight
simplification of the model, as otherwise we would have to capture the action of calling
in sick on a managed object in the premise of the rule. Whilst this can be easily done, it
would complicate the example unnecessarily. The prefix 0 : denotes that the predicate is to
be evaluated in the same state (0 states in the past with respect to the state) in which the
policy decision is made.
Permission Assignment: We assign unconditionally the permission 〈s,create〉 to the role
admin and the permission 〈s,access〉 to the role user:

true 7→ Aut+(admin,s,create)
true 7→ Aut+(user,s,access)

Conflict Resolution, Decision Rule: As we define our RBAC example as a hybrid policy,
e.g., both positive and negative authorizations are present in the same policy, we can create
conflicts. It is not generally necessary to remove conflicts between positive and negative
rules; however, there must be an unambiguous definition of which decision is being taken in
case a conflict arises. We capture this in a standard decision rule (denial takes precedence):

0 :l (Aut+(U,r,Ar) ∧ ¬Aut−(U,r,Ar)) 7→ Autd(U,r,Ar)
0 :l (Aut+(R,s,As) ∧ ¬Aut−(R,s,As)) 7→ Autd(R,s,As)

For the analysis of the policy, we expand the policy into its normal form by expanding
the sets and then complete the policy specification with a set of default rules of the form
false 7→ c(s,o,a), where c∈ {Autd ,Aut−,Aut+},s∈ S,o∈O,a∈ Ao and a(s,o,a) does not
occur as any consequence. It has been shown in [33] that the resulting policy is a refinement
of the original specification. We refer to this specification as the model M of our policy.
Determining Conflicts: To check whether our policy model contains conflicting rules, we
check the validity of P =̂ 2l ¬(Aut+(s,o,a) ∧ Aut−(s,o,a)), where s ∈ S,o ∈ O,a ∈ Ao.

Verification and Enforcement of Access Control Policies 35

The result of our decision procedure is that M ⊃ P is not valid. A counter example is
generated, for which the predicate ill(ac) is true, leading to both the positive authorization
Aut+(ac,r,acta) and the negative authorization Aut−(ac,r,acta). It remains to be checked
whether for this conflict our decision rule yields the desired outcome. In this case, we are
satisfied that the denial indeed takes precedence, and that ac is not allowed to act in the role
admin.
Checking Dynamic Separation of Duty: We check whether the user hj and the user ac can
possibly act in the role admin at the same time, i.e.,
P =̂ 2l ¬(Autd(ac,r,acta) ∧ Autd(hj,r,acta)). Querying our decision procedure yields the
validity of M ⊃ P, so indeed hj and ac cannot possibly assume the role admin at the same
time.
Checking Healthiness condition: The intent of conditionally promoting user hj was to en-
sure that there is always a user that can act in the role admin. This is a healthiness condition
on the policy which can be checked by the property
P =̂ 2l(Autd(ac,r,acta) ∨ Autd(hj,r,acta)). Checking the validity of M ⊃ P yields the
somewhat unexpected result that it is not valid. The counter example generated provides
that if both users are ill, i.e., ill(ac) ∧ ill(hj) holds, no user can activate the role admin.
Checks with additional Assumptions: Given the above result, one may decide to ignore
the case that all users are ill, based on the observation that there would be nobody to use the
system. To ascertain whether this is the only aspect of the policy that resulted in the failure of
the previous validity check, we provide the additional assumption A =̂2l ¬(ill(ac) ∧ ill(hj)).
Rechecking the validity of the healthiness condition under the assumption A, i.e., checking
(M ∧ A) ⊃ P for validity results in true. This means that A is a sufficient condition to ensure
the healthiness condition.

The static checking of policies for consistency and other properties, such as dynamic
separation of duty constraints or domain dependent healthiness conditions, is important be-
fore the policy is deployed to the policy decision points (PDP). However, in the PDPs the
emphasis is on the efficient evaluation of policies.

5.2 Enforcement

We now check for the enforcement of a policy against a defined input trace using our
FLCheck tool.

Input Trace: w0 w1 w2 w3
ill(ac) 0 1 1 0
ill(hj) 0 0 1 1
Autd(ac,r,acta) 1 0 0 1
Autd(ac,r,actu) 0 0 0 0
Autd(hj,r,acta) 0 1 0 0
Autd(hj,r,actu) 1 1 0 0
Aut−(ac,r,acta) 0 1 1 0
Aut−(ac,r,actu) 0 1 1 0
Aut−(hj,r,acta) 0 0 1 1
Aut−(hj,r,actu) 0 0 1 1
Aut+(ac,r,acta) 1 1 1 1
Aut+(ac,r,actu) 0 0 0 0
Aut+(hj,r,acta) 0 1 1 0
Aut+(hj,r,actu) 1 1 1 1

36 Antonio Cau et al.

We see that initially both users ac and hj are not ill. Consequently, only ac was allowed to
activate the role admin. Then, ac fell ill and hj is able to act as administrator. In the third
step, w2 states that both users are ill, and therefore no role activation is permitted. In the last
state, ac returns to work and can act as administrator.

Our approach allows for the incremental enforcement with respect to an input trace,
i.e., it uses pre-computed BDDs (Γ1, Γ2, and Γ3). The number of nodes used in the BDDs is
independent of the length of the input trace. If we had used the decision procedure without
modification, the number of nodes would directly depend on the length of the input trace.

5.3 Enforcement with History

Let us now consider an example where the history of execution is decisive to the access
control decision.

In a multi-modal authentication/authorization scheme, a user has to present two tokens
(KA and KB) to the access control mechanism in order to gain access to a resource. The
tokens must be presented in a certain order:

– if KB is currently present, then KA should have been present 2∗n states (n≥ 1) before
the current state. So we need:

• • •
KA KB

or

• • • • •
KA KB

or

. . .

– if KA is currently present, then KB should have been present 1+ 2 ∗ n states (n ≥ 0)
before the current state. So we need:

• •
KB KA

or

• • • •
KB KA

or

. . .

For simplicity, we do not consider positive and negative authorizations here and model the
policy as a closed policy, e.g., access is denied unless explicitly stated otherwise. The access
control policy rule is expressible in left fusion logic as follows:

true
〈

test(KA) ; step(true) ; step(true) ; (step(true) ; step(true))∗ ; test(KB)
〉
∨

true
〈

test(KB) ; step(true) ; (step(true) ; step(true))∗ ; test(KA)
〉 7→ A

where A =̂ Autd(user,resource,access).
Because a complete specification is needed for enforcement, we proceed as before and

strengthen the specification by explicitly specifying the conditions under which the access
decision is false, i.e., Pre↔W = Pre 7→W ∧ ¬Pre 7→ ¬W . Therefore we also have

¬(true
〈

test(KA) ; step(true) ; step(true) ; (step(true) ; step(true))∗ ; test(KB)
〉
∨

true
〈

test(KB) ; step(true) ; (step(true) ; step(true))∗ ; test(KA)
〉
)
7→ ¬A

The table below shows the values for KA and KB that where used in one example enforce-
ment run, together with the corresponding access control decision A:

Verification and Enforcement of Access Control Policies 37

Fig. 6 Enforcement Run

Input Trace: w0 w1 w2 w3 w4 w5 w6
A 0 0 1 1 1 0 1
KA 1 0 1 1 0 0 1
KB 1 1 0 0 1 0 1

In state w0, access is not granted because KB is currently present, but KA was not present an
even (not zero) number of states before and KA is currently present, but KB was not present
an odd number of states before. In state w1, access is not granted because KB is currently
present, but KA was not present an even (not zero) number of states before. In state w2, ac-
cess is allowed because KA is currently present and KB was present 1 state before. In state
w3, access is allowed because KA is currently present and KB was present 3 states before. In
state w4, the access is allowed because KB is currently present and KA was present 2 (and
4) states before. In state w5, access is not allowed because both KA and KB are not currently
present. In state w6, access is allowed because KA is currently present and KB was present
2 (and 6) states before and KB is currently present and KA was present 3 states before.

Figure 6 shows a screen shot of FLCheck during this run.

38 Antonio Cau et al.

6 Conclusion and Future Work

In this paper we have shown how a formal policy model can be expressed in left Fusion
Logic. We have then shown how the formulae, representing our access control policies, are
reduced to a normal form that can be encoded using Binary Decision Diagrams (BDD). Us-
ing our tool FLCheck, we analyzed a variety of properties of a simple RBAC policy, where
we focused on the role assignment. These properties included consistency of the policy, tra-
ditional safety checks and domain dependent healthiness conditions. We have shown how
domain-dependent assumptions can be integrated in the check without modifying the model
(i.e., policy) itself. We then used the inductive nature of our decision procedure to check
against an externally provided input trace, reusing the previously generated BDDs.

In our future work, we plan to encode first-order logic constructs to provide a more
flexible history-based policy language as used in [33].

Acknowledgments

The authors would like to thank the anonymous reviewers for their comments that were very
helpful for shaping the manuscript.

References

1. Abadi M, Fournet C (2003) Access control based on execution history. In: 10th An-
nual Network and Distributed System Symposium (NDSS’03)., The Internet Society,
Reston, Virginia, USA, pp 1–15

2. Antimirov VM (1996) Partial derivatives of regular expressions and finite automa-
ton constructions. Theoretical Compututer Science 155(2):291–319, DOI 10.1016/
0304-3975(95)00182-4

3. Bahrak B, Deshpande A, Whitaker M, Park JM (2010) Bresap: A policy reasoner for
processing spectrum access policies represented by binary decision diagrams. In: New
Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on, pp 1 –12, DOI 10.1109/
DYSPAN.2010.5457867

4. Bandara AK, Lupu EC, Sloman M (2007) Policy-Based Management. In: Burgess M,
Bergstra J (eds) Handbook of Network and System Administration, Elsevier, chap Pol-
icy Based Management

5. Bertino E, Bonatti PA, Ferrari E (2001) TRBAC: A temporal role-based access control
model. ACM Trans Inf Syst Secur 4(3):191–233, DOI 10.1145/501978.501979

6. Bryant RE (1986) Graph-based algorithms for boolean function manipulation. IEEE
Trans Comput 35(8):677–691, DOI 10.1109/TC.1986.1676819

7. Bryant RE (1992) Symbolic boolean manipulation with ordered binary-decision dia-
grams. ACM Comput Surv 24(3):293–318, DOI 10.1145/136035.136043

8. Brzozowski JA (1964) Derivatives of regular expressions. J ACM 11:481–494, DOI
10.1145/321239.321249

9. Burch JR, Clarke EM, McMillan KL, Dill DL, Hwang LJ (1992) Symbolic
model checking: 1020 states and beyond. Inf Comput 98(2):142–170, DOI 10.1016/
0890-5401(92)90017-A

10. Chaochen Z, Hoare CAR, Ravn AP (1991) A calculus of durations. Inf Process Lett
40(5):269–276, DOI 10.1016/0020-0190(91)90122-X

Verification and Enforcement of Access Control Policies 39

11. Church A (1957) Applications of recursive arithmetic to the problem of circuit syn-
thesis. In: Summaries of the Summer Institute of Symbolic Logic – Volume 1, Cornell
Univ., pp 3–50

12. Cimatti A, Clarke EM, Giunchiglia E, Giunchiglia F, Pistore M, Roveri M, Sebastiani
R, Tacchella A (2002) NuSMV 2: An opensource tool for symbolic model checking. In:
Brinksma E, Larsen KG (eds) CAV, Springer, Lecture Notes in Computer Science, vol
2404, pp 359–364

13. Cimatti A, Roveri M, Tonetta S (2008) Symbolic compilation of PSL. IEEE Trans on
CAD of Integrated Circuits and Systems 27(10):1737–1750, DOI 10.1109/TCAD.2008.
2003303

14. Clarke EM Jr, Grumberg O, Peled DA (1999) Model checking. MIT Press, Cambridge,
MA, USA

15. Coudert O, Berthet C, Madre JC (1989) Verification of sequential machines using
boolean functional vectors. In: Claesen L (ed) Proc. IFIP International Workshop on
Applied Formal Methods for Correct VLSI Design, Leuven, Belgium, pp 111–128

16. Coudert O, Berthet C, Madre JC (1989) Verification of synchronous sequential ma-
chines based on symbolic execution. In: Sifakis J (ed) Automatic Verification Methods
for Finite State Systems, International Workshop, Springer, Grenoble, France, no. 407
in LNCS, pp 365–373

17. Coudert O, Berthet C, Madre JC (1990) A unified framework for the formal verification
of sequential circuits. In: Proc. IEEE International Conf. on Computer Aided Design,
pp 126–129

18. Damianou N, Dulay N, Lupu E, Sloman M (2001) The Ponder specification language.
In: Workshop on Policies for Distributed Systems and Networks (Policy2001)

19. Duan Z, Tian C, Zhang L (2008) A decision procedure for propositional projection tem-
poral logic with infinite models. Acta Inf 45:43–78, DOI 10.1007/s00236-007-0062-z

20. Elgaard J, Klarlund N, Møller A (1998) MONA 1.x: New techniques for WS1S
and WS2S. In: Proc. 10th International Conference on Computer-Aided Verification,
CAV ’98, Springer-Verlag, LNCS, vol 1427, pp 516–520

21. Fisher M, Dixon C, Peim M (2001) Clausal temporal resolution. ACM Transactions on
Computational Logic 2(1):12–56, DOI 10.1145/371282.371311

22. Gomez R, Bowman H (2004) PITL2MONA: Implementing a decision procedure for
propositional interval temporal logic. Journal of Applied Non-Classical Logics 14(1-
2):105–148, issue on Interval Temporal Logics and Duration Calculi. V. Goranko and
A. Montanari guest eds.

23. Harel D (1987) Statecharts: A visual formalism for complex systems. Sci Comput Pro-
gram 8(3):231–274, DOI 10.1016/0167-6423(87)90035-9

24. Harel D, Kozen D, Tiuryn J (2000) Dynamic Logic. MIT Press, Cambridge, MA
25. Holzmann GJ (1997) The model checker SPIN. IEEE Trans Software Eng 23(5):279–

295
26. Hu H, Ahn GJ, Kulkarni K (2011) Anomaly discovery and resolution in web access

control policies. In: Proceedings of the 16th ACM symposium on Access control models
and technologies, ACM, New York, NY, USA, SACMAT ’11, pp 165–174, DOI 10.
1145/1998441.1998472

27. IBM Cooperation (2003) Enterprise Privacy Authorisation Language (EPAL) Ver-
sion 1.2. submitted to the W3C, URL http://www.w3.org/Submission/2003/

SUBM-EPAL-20031110/

28. IEEE (2005) IEEE Standard for Property Specification Language (PSL), std 1850-2005.
Tech. rep., IEEE, DOI 10.1109/IEEESTD.2005.97780

40 Antonio Cau et al.

29. ISO/IEC (2006) ISO/IEC 10181-3:1996 Information technology – Open Systems In-
terconnection – Security frameworks for open systems: Access control framework.
URL http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?

CSNUMBER=18199

30. Jajodia S, Samarati P, Sapino ML, Subrahmanian VS (2001) Flexible support for
multiple access control policies. ACM Trans Database Syst 26(2):214–260, DOI
10.1145/383891.383894

31. Janicke H, Cau A, Siewe F, Zedan H, Jones K (2006) A compositional event & time-
based policy model. In: Proceedings of POLICY2006, London, Ontario, Canada, IEEE
Computer Society, London, Ontario Canada, pp 173–182

32. Janicke H, Cau A, Siewe F, Zedan H (2007) Deriving enforcement mechanisms from
policies. In: Proceedings of the 8th IEEE international Workshop on Policies for Dis-
tributed Systems (POLICY2007), pp 161–170

33. Janicke H, Cau A, Siewe F, Zedan H (2012) Dynamic access control policies: Specifi-
cation and verification. The Computer Journal DOI 10.1093/comjnl/bxs102

34. Joshi J, Bertino E, Ghafoor A (2005) An analysis of expressiveness and design issues
for the generalized temporal role-based access control model. IEEE Trans Dependable
Sec Comput 2(2):157–175, DOI 10.1109/TDSC.2005.18

35. Joshi J, Bertino E, Latif U, Ghafoor A (2005) A generalized temporal role-based access
control model. IEEE Trans Knowl Data Eng 17(1):4–23, DOI 10.1109/TKDE.2005.1

36. Klarlund N, Møller A (2001) MONA Version 1.4 User Manual. BRICS, Depart-
ment of Computer Science, Aarhus University, notes Series NS-01-1. Available from
http://www.brics.dk/mona/. Revision of BRICS NS-98-3

37. Kolovski V (2008) Logic-based framework for web access control policies. PhD thesis,
Computer Science Department of University of Maryland, College Park

38. Kono S (1995) A combination of clausal and non-clausal temporal logic programs. In:
Fisher M, Owens R (eds) Executable Modal and Temporal Logics, Springer Verlag,
Cambery, France, Lecture Notes in Artificial Intelligence, vol 897, pp 40–57

39. Kozen D (1992) private commuication
40. Kropf T (1999) Introduction to Formal Hardware Verification: Methods and Tools for

Designing Correct Circuits and Systems, 1st edn. Springer-Verlag New York, Inc., Se-
caucus, NJ, USA

41. Lamport L (1994) The temporal logic of actions. ACM Trans Program Lang Syst
16(3):872–923, DOI 10.1145/177492.177726

42. Lampson BW (1974) Protection. SIGOPS Oper Syst Rev 8(1):18–24, DOI 10.1145/
775265.775268

43. Leucker M, Sánchez C (2010) Regular linear-time temporal logic. In: Markey N, Wijsen
J (eds) TIME, IEEE Computer Society, pp 3–5, DOI 10.1109/TIME.2010.29

44. Lupu EC, Sloman M (1999) Conflicts in policy-based distributed systems management.
IEEE Trans Softw Eng 25(6):852–869, DOI 10.1109/32.824414

45. Manna Z, Pnueli A (1992) The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer, New York

46. Masood A, Ghafoor A, Mathur AP (2010) Conformance testing of temporal role-based
access control systems. IEEE Trans Dependable Sec Comput 7(2):144–158, DOI 10.
1109/TDSC.2008.41

47. McMillan KL (1993) Symbolic Model Checking. Kluwer Academic Publishers, Nor-
well, MA, USA

48. Moszkowski B (1983) Reasoning about digital circuits. PhD thesis, Department of
Computer Science, Stanford University, technical report STAN–CS–83–970

Verification and Enforcement of Access Control Policies 41

49. Moszkowski B (1985) A temporal logic for multilevel reasoning about hardware. IEEE
Computer 18(2):10–19

50. Moszkowski B (2004) A hierarchical completeness proof for Propositional Interval
Temporal Logic with finite time. Journal of Applied Non-Classical Logics 14(1–2):55–
104, special issue on Interval Temporal Logics and Duration Calculi

51. Moszkowski B (2005) A hierarchical analysis of propositional temporal logic based on
intervals. In: Artemov S, Barringer H, d’Avila Garcez AS, Lamb LC, Woods J (eds)
We Will Show Them: Essays in Honour of Dov Gabbay, vol 2, College Publications
(formerly KCL Publications), King’s College, London, pp 371–440

52. Moszkowski B (2011) Compositional reasoning using intervals and time reversal.
Temporal Representation and Reasoning, International Syposium on 0:107–114, DOI
10.1109/TIME.2011.25

53. OASIS (2005) eXtensible Access Control Markup Language (XACML) Ver-
sion 2.0. URL http://www.oasis-open.org/committees/tc_home.php?wg_

abbrev=xacml#XACML20

54. Pandya PK (2001) Specifying and deciding quantified discrete-time duration calculus
formulae using DCVALID. In: Pattersson P, Yovine S (eds) Proceedings of Workshop on
Real-time Tools (RT-TOOL’2001), Affiliated with CONCUR 2001, Uppsala University,
Sweden, vol Technical Report 2001-14, full version available as Technical Report TCS-
00-PKP-1, Tata Institute of Fundamental Research, 2000

55. Park J, Sandhu RS (2004) The UCONABC usage control model. ACM Trans Inf Syst
Secur 7(1):128–174, DOI 10.1145/984334.984339

56. Park J, Zhang X, Sandhu RS (2004) Attribute mutability in usage control. In: Farkas C,
Samarati P (eds) Proceedings of IFIP TC11/WG 11.3 Eighteenth Annual Conference
on Data and Applications Security, Kluwer, Sitges, Catalonia, Spain, pp 15–29

57. Prior AN (1967) Past, Present and Future. Oxford University Press
58. Rao P, Lin D, Bertino E, Li N, Lobo J (2009) An algebra for fine-grained integration

of xacml policies. In: Proceedings of the 14th ACM symposium on Access control
models and technologies, ACM, New York, NY, USA, SACMAT ’09, pp 63–72, DOI
10.1145/1542207.1542218

59. Sandhu R, Park J (2003) The UCONABC usage control model. In: Proceeding of the
Second International Workshop on Mathematical Method, Models and Architectures
for Computer Networks Security

60. Schaad A, Lotz V, Sohr K (2006) A model-checking approach to analysing organisa-
tional controls in a loan origination process. In: Ferraiolo DF, Ray I (eds) SACMAT,
ACM, pp 139–149, DOI 10.1145/1133058.1133079

61. Schneider FB (2000) Enforceable security policies. ACM Transactions on Information
and System Security 3(1):30–50, DOI 10.1145/353323.353382

62. Siewe F, Cau A, Zedan H (2003) A compositional framework for access control policies
enforcement. In: proceedings of the ACM workshop on Formal Methods in Security
Engineering: From Specifications to Code

63. Sloman M (1994) Policy driven management for distributed systems. Journal of Net-
work and Systems Management 2:333–360

64. Somenzi F (1998) CUDD: Colorado University Decision Diagram package. University
of Colorado at Boulder, URL http://vlsi.colorado.edu/~fabio/CUDD/

65. Thomas W (2008) Church’s problem and a tour through automata theory. In: Avron A,
Dershowitz N, Rabinovich A (eds) Pillars of computer science, Springer-Verlag, Berlin,
Heidelberg, pp 635–655

42 Antonio Cau et al.

66. Woo TYC, Lam SS (1993) Authorization in distributed systems: A new approach. Jour-
nal of Computer Security 2(2,3):107–136

67. Zhang X, Park J, Parisi-Presicce F, Sandhu R (2004) A logical specification for usage
control. In: SACMAT ’04: Proceedings of the ninth ACM symposium on Access control
models and technologies, ACM Press, New York, NY, USA, pp 1–10, DOI 10.1145/
990036.990038

68. Zhang X, Parisi-Presicce F, Sandhu RS, Park J (2005) Formal model and policy spec-
ification of usage control. ACM Trans Inf Syst Secur 8(4):351–387, DOI 10.1145/
1108906.1108908

69. Zhang X, Sandhu RS, Parisi-Presicce F (2006) Safety analysis of usage control autho-
rization models. In: Lin FC, Lee DT, Lin BS, Shieh S, Jajodia S (eds) ASIACCS, ACM,
pp 243–254, DOI 10.1145/1128817.1128853

70. Zhang X, Seifert JP, Sandhu RS (2008) Security enforcement model for distributed
usage control. In: Singhal M, Serugendo GDM, Tsai JJP, Lee WC, Römer K, Tseng
YC, Hsiao HCW (eds) SUTC, IEEE Computer Society, pp 10–18, DOI 10.1109/SUTC.
2008.79

A Proofs

Lemma 3

Let R be a right fusion logic formula and dep(R) be the dependent variables introduced by R ′k(R)
and Rk(R) (k = 0,1). Then the formula below is valid:

∃dep(R) q2rRk(R)

Proof The proof is done via structural induction on R and by employing the reduction rules in Table 2. We
also make use of some existing Fusion Logic theorems.

– Case R =W : ∃dep(R) q2rRk(R) is equal to, using the reduction rule Rk(W) and dep(W) = /0, 2rtrue
which is equal to true.

– Case R=¬X : ∃dep(R) q2rRk(R) is equal to, using the reduction rule Rk(¬X), ∃dep(¬X) q2rRk(X).
Because dep(¬X) = dep(X), this is equal to ∃dep(X) q2rRk(X). Using the induction hypothesis, this
holds.

– Case R=X1 ∨X2: ∃dep(R) q2rRk(R) is equal to, using the reduction rule Rk(X1 ∨X2), ∃dep(X1 ∨ X2) q
2r(Rk(X1) ∧Rk(X2)) is equal to, as dep(X1 ∨ X2) = dep(X1)∪ dep(X2) and dep(X1)∩ dep(X2) = /0,
∃dep(X1) q2rRk(X1) ∧ ∃dep(X2) q2rRk(X2). Using the induction hypothesis twice, this holds.

– Case R =
〈

test(W)
〉

X : ∃dep(R) q 2rRk(R) is equal to, using the reduction rule Rk(
〈

test(W)
〉

X),
∃dep(

〈
test(W)

〉
X) q2rRk(X). This is equal to, as dep(

〈
test(W)

〉
X)= dep(X), ∃dep(X) q2rRk(X).

Using the induction hypothesis, this holds.
– Case R =

〈
step(T)

〉
X : We first consider k = 0. ∃dep(R) q (2rR0(R)) is equal to, using the reduc-

tion rule R0(
〈

step(T)
〉

X), ∃dep(
〈

step(T)
〉

X) q 2r(r〈 step(T) 〉X ≡ (T ∧ ©R ′0(X)) ∧ R0(X)). This

is equal to, as dep(
〈

test(W)
〉

X) = {r〈 step(T) 〉X}∪dep(X), ∃r〈 step(T) 〉X q (2r(r〈 step(T) 〉X ≡ (T ∧
©R ′0(X)))) ∧ ∃dep(X) q 2rR0(X). This is equal to, using the induction hypothesis, ∃r〈 step(T) 〉X q
(2r(r〈 step(T) 〉X ≡ (T ∧ ©R ′0(X)))). Substitute for r〈 step(T) 〉X the value (T ∧ ©R ′0(X)) will give

2r((T ∧ ©R ′0(X))≡ (T ∧ ©R ′0(X))) which holds.
We now consider the case k= 1. ∃dep(R) q2R1(R) is equal to, using the reduction rule R1(

〈
step(T)

〉
X),

∃dep(
〈

step(T)
〉

X) q2rR0(X). This is equal to, as dep(
〈

test(W)
〉

X)= dep(X), ∃dep(X) q2rR0(X).
Using the induction hypothesis, this holds.

– Case R =
〈

E1 ∨ E2
〉

X : ∃dep(R) q2rRk(R) is equal to, using the reduction rule Rk(
〈

E1 ∨ E2
〉

X) and
dep(

〈
E1 ∨ E2

〉
X) = dep(

〈
E1
〉

X)∪dep(
〈

E2
〉

X) and using the reduction rule Rk(
〈

E1
〉

X ∨
〈

E2
〉

X),
∃dep(

〈
E1
〉

X)∪dep(
〈

E2
〉

X) q2r(Rk(
〈

E1
〉

X) ∧ Rk(
〈

E2
〉

X)). Using the induction hypothesis in a
similar way as the case R = X1 ∨ X2, we get the desired result.

Verification and Enforcement of Access Control Policies 43

– Case R =
〈

E1 ; E2
〉

X : ∃dep(R) q 2rRk(R) is equal to, using the reduction rule Rk(
〈

E1 ; E2
〉

X), let
X1 =

〈
E2
〉

X and dep(
〈

E1 ; E2
〉

X) = dep(
〈

E1
〉

X1), ∃dep(
〈

E1
〉

X1) q 2rRk(
〈

E1
〉

X1). Using the
induction hypothesis, this holds.

– Case R =
〈

E∗
〉

X : ∃dep(R) q 2rRk(R) is equal to, using the reduction rule Rk(
〈

E∗
〉

X) and let X1

denote X ∨
〈

c(E)
〉

r〈 E∗ 〉X , ∃dep(
〈

E∗
〉

X) q (2r(r〈 E∗ 〉X ≡ R ′1(X1)) ∧ 2rR1(X1)). Using induction

hypothesis and dep(
〈

E∗
〉

X) = {r〈 E∗ 〉X}∪dep(X), we get ∃r〈 E∗ 〉X q2r(r〈 E∗ 〉X ≡R ′1(X1)). Substi-

tute for r〈 E∗ 〉X the value R ′1(X1), will give the desired result.

QED

Lemma 4
Let R be a right fusion logic formula. Then the next implication is valid:

2rRk(R) ⊃ (R ′k(R)≡ R)

Proof The proof is done via structural induction on R and by employing the reduction rules in Table 2. We
also make use of some existing Fusion Logic theorems.

– Case R = W : 2rRk(R) ⊃ (R ′k(R) ≡ R) is equal to, using the reduction rules R ′k(W) and Rk(W),
2rtrue ⊃ W ≡W and this holds.

– Case R = ¬X : 2rRk(R) ⊃ (R ′k(R) ≡ R) is equal to, using the reduction rule R ′k(¬X) and Rk(¬X),
2rRk(X) ⊃ ((¬R ′k(X)) ≡ ¬X) which is equivalent to 2rRk(X) ⊃ (R ′k(X) ≡ X). Use the induction
hypothesis to get the desired result.

– Case R = X1 ∨ X2: 2rRk(R) ⊃ (R ′k(R) ≡ R) is equal to, using the reduction rules R ′k(X1 ∨ X2) and
Rk(X1 ∨ X2), 2r(Rk(X1) ∧Rk(X2)) ⊃ ((R ′k(X1) ∨R ′k(X2))≡ (X1 ∨ X2)). Using the induction hypoth-
esis 2rRk(X1) ⊃ (R ′k(X1) ≡ X1) and 2rRk(X2) ⊃ (R ′k(X2) ≡ X2), and the theorem 2r(Rk(X1) ∧
Rk(X2))≡2r(Rk(X1)) ∧2r(Rk(X2)), will give the desired result.

– Case R=
〈

test(W)
〉

X : 2rRk(R) ⊃ (R ′k(R)≡R) is equal to, using the reduction rules R ′k(
〈

test(W)
〉

X)

and Rk(
〈

test(W)
〉

X), 2rRk(X) ⊃ ((W ∧R ′k(X)) ≡
〈

test(W)
〉

X). Using the induction hypothesis
2rRk(X) ⊃ (R ′k(X)≡ X) and the theorem

〈
test(W)

〉
X ≡ (W ∧ X), gives the desired result.

– Case R =
〈

step(T)
〉

X : We first consider k = 0. 2rR0(R) ⊃ (R ′0(R) ≡ R) is equal to, using the re-
duction rules R ′0(

〈
step(T)

〉
X) and R0(

〈
step(T)

〉
X), 2(r〈 step(T) 〉X ≡ (T ∧ ©R ′0(X)) ∧R0(X)) ⊃

(r〈 step(T) 〉X ≡
〈

step(T)
〉

X). We know that 2r(r〈 step(T) 〉X ≡ (T ∧ ©R ′0(X)) ∧ R0(X)) is equiv-

alent to 2r(r〈 step(T) 〉X ≡ (T ∧ ©R ′0(X))) ∧ 2rR0(X). Using the induction hypothesis 2rR0(X) ⊃
(R ′0(X)≡ X) we get (2(r〈 step(T) 〉X ≡ (T ∧ ©R ′0(X))) ∧ 2rR0(X)) ⊃ (R ′0(X)≡ X). Using the the-

orem (T ∧ ©R ′0(X))≡
〈

step(T)
〉
R ′0(X), gives us the desired result.

We now consider the case k = 1. 2rR1(R) ⊃ (R ′1(R) ≡ R) is equal to, using the reduction rules
R ′1(

〈
step(T)

〉
X) and R1(

〈
step(T)

〉
X), 2rR0(X) ⊃ ((T ∧ ©R ′0(X)) ≡

〈
step(T)

〉
X). Using the

induction hypothesis 2rR0(X) ⊃ (R ′0(X)≡ X) and the theorem (T ∧ ©R ′0(X))≡
〈

step(T)
〉
R ′0(X),

gives us the desired result.
– Case R=

〈
E1 ∨ E2

〉
X : 2rRk(R) ⊃ (R ′k(R)≡R) is equal to, using the reduction rules R ′k(

〈
E1 ∨ E2

〉
X),

R ′k(
〈

E1
〉

X ∨
〈

E2
〉

X), Rk(
〈

E1 ∨ E2
〉

X) and Rk(
〈

E1
〉

X ∨
〈

E2
〉

X), 2(Rk(
〈

E1
〉

X) ∧Rk(
〈

E2
〉

X)) ⊃
((R ′k(

〈
E1
〉

X) ∨ R ′k(
〈

E2
〉

X)) ≡
〈

E1 ∨ E2
〉

X). Using the induction hypothesis 2rRk(
〈

E1
〉

X) ⊃
(R ′k(

〈
E1
〉

X)≡
〈

E1
〉

X) and 2rRk(
〈

E2
〉

X) ⊃ (R ′k(
〈

E2
〉

X)≡
〈

E2
〉

X) plus the theorem
2r(Rk(

〈
E1
〉

X) ∧Rk(
〈

E2
〉

X))≡ (2rRk(
〈

E1
〉

X)) ∧ (2rRk(
〈

E2
〉

X)) and
〈

E1 ∨ E2
〉

X ≡
〈

E1
〉

X ∨〈
E2
〉

X , gives us the desired result.
– Case R =

〈
E1 ; E2

〉
X : 2rRk(R) ⊃ (R ′k(R)≡ R) is equal to, using the reduction rules R ′k(

〈
E1 ; E2

〉
X)

and Rk(
〈

E1 ; E2
〉

X), 2rRk(
〈

E1
〉〈

E2
〉

X) ⊃ (R ′k(
〈

E1
〉〈

E2
〉

X) ≡
〈

E1 ; E2
〉

X). Using the induc-
tion hypothesis 2rRk(

〈
E1
〉

X1) ⊃ (R ′k(
〈

E1
〉

X1)≡
〈

E1
〉

X1) and 2rRk(
〈

E2
〉

X) ⊃ (R ′k(
〈

E2
〉

X)≡〈
E2
〉

X) and the theorem
〈

E1 ; E2
〉

X ≡
〈

E1
〉〈

E2
〉

X , gives us the desired result.
– Case R =

〈
E∗
〉

X : 2rRk(R) ⊃ (R ′k(R) ≡ R) is equal to, using the reduction rules R ′k(
〈

E∗
〉

X) and
Rk(

〈
E∗
〉

X) and let X1 denote X ∨
〈

c(E)
〉

r〈 E∗ 〉X , 2r((r〈 E∗ 〉X ≡R ′1(X1)) ∧R1(X1)) ⊃ (r〈 E∗ 〉X ≡〈
E∗
〉

X). Using the induction hypothesis 2rR1(X1) ⊃ (R ′1(X1)≡ X1) and the theorem 2r((r〈 E∗ 〉X ≡
R ′1(X1)) ∧ R1(X1)) ≡ (2r(r〈 E∗ 〉X ≡ R ′1(X1))) ∧ (2rR1(X1)) and

〈
E∗
〉

X ≡ X ∨
〈

c(E)
〉〈

E∗
〉

X ,
gives us the desired result.

QED

