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Abstract: Many different clustering algorithms have been applied 
to biological networks, with varying degrees of success. The 
output of a clustering algorithm may be hard to interpret in 
biological terms because such networks are often large and 
highly interconnected, with structural and functional modules 
overlapping to varying degrees. In this paper we describe an 
evolutionary network clustering algorithm specifically designed 
for the analysis of large, complex biological networks. It identifies 
variably sized, overlapping clusters of nodes. The identification of 
points of overlap between clusters facilitates the analysis of the 
biological nature of crosstalk between functional units in the 
network. We apply two variants of the algorithm (one using 
probabilistic weights on edges and one ignoring them) to a 
recently published network of functional gene interactions in the 
yeast Saccharomyces cerevisiae and assess the biological validity 
of the resulting clusters in terms of ontological similarity. 

I. INTRODUCTION 

Over the past decade developments in high-throughput 
biological assays, such as microarray, transcriptionally active 
polymerase chain reaction (TAP), proteomics and yeast two-
hybrid protein interaction screens, have led to the generation 
of large amounts of data about biological interactions. The 
existence of these data sets means that large-scale biological 
interaction networks can be reconstructed and individual genes 
and gene products examined in the context of their genetic 
background. Analyses of various types of networks have 
produced unique insights into the behaviour of biological 
systems. For example, protein-protein interaction networks 
have been used to infer the protein function (e.g. Date & 
Stoeckert, 2006; Gavin et al., 2006) and transcriptional 
regulation (Drawid, Jansen & Gerstein, 2000), while 
metabolic networks have been used to investigate evolutionary 
relationships between widely divergent organisms in a manner 
not possible using single gene sequences (Jeong, Tombor, 
Albert, Oltvai & Barabasi, 2000). 

Networks such as these are physical interaction networks, in 
which edges represent direct interactions such as protein-
protein or protein-DNA binding. Although physical interaction 
networks are interesting in themselves, as discussed above, 
functional interactions within the cell are of even greater 
importance (Barabasi & Oltvai, 2004). Hartwell, Hopfield, 

Leibler & Murray (1999) argued that functional modularity is 
a critical level of biological organization.  They define a 
functional module as "a discrete entity whose function is 
separable from those of other modules" (p.C48). Examples of 
functional modules include ribosomes, which are spatially 
isolated from other modules, or signal transduction systems, 
which are isolated by chemical specificity. Functional 
modules are frequently made up of heterogeneous agents 
interacting in a variety of ways, and hence will not be 
completely represented in a physical interaction network. 

Network clustering has been the subject of extensive 
research. A network clustering algorithm aims to assign 
individual nodes to modules, the members of which are more 
tightly connected to each other than to the network in general. 
Information about cluster membership can be used to identify 
largely discrete structural or functional modules within a 
network, and provides clues to the possible function or 
location of unknown proteins, whilst the way in which 
modules are linked may reflect the overall functional 
organization of the network. 

A wide range of biological interaction networks in 
numerous different organisms have been shown to be modular 
(Rives & Galitski, 2003; Thieffry & Romero, 1999; Hartwell, 
Hopfield, Leibler & Murray, 1999; Schuster, Pfeiffer, 
Moldenhauer, Koch & Dandekar, 2002; Han et al., 2004), and 
some are hierarchically modular, with small modules forming 
components of larger modules, which in turn are assembled 
into still larger modules (Holme, Huss & Jeong, 2003; 
Hallinan, 2004). 

Functional modules are not necessarily isolated (Hartwell et 
al., 1999); a given component may belong to different 
modules at different times, and the function of a module can 
be affected by signals from other modules. Such cross-talk 
between functional modules has been shown to be essential to 
the behaviour of a variety of different biological systems (e.g. 
Amin, 2004; Natarajan, Lin, Hsueh, Sternweis & 
Ranganathan, 2006). As with the identification of modules, the 
identification of the linkages constituting channels of cross-
talk in a network is not straightforward. If there are many 
edges between two clusters, they merge into a single cluster, 



but there is no obvious way of determining the cutoff above 
which this merger should happen. 

Literally hundreds of clustering algorithms have been 
described (for an overview, see Hartigan, 1975), most of 
which can be modified to operate upon networks if a node 
distance metric can be specified. However, there are several 
drawbacks common to generic unsupervised clustering 
algorithms, particularly when applied to large, complex 
networks. Many algorithms, such as k-means and SOM, need 
to know the number of clusters in advance, and will partition 
data into the specified number of clusters whether or not that 
partitioning reflects real clustering in the network. 

Hierarchical clustering algorithms are widely used because 
they are fast, provide a useful overview of the cluster structure 
of the network, and reflect the generally hierarchically 
modular nature of biological networks, but for practical use a 
decision must be made as to where in the cluster tree to 
threshold. This is not a straightforward decision, and often 
requires the use of further information about the network, 
which may not be available for all nodes of a large biological 
network. 

Many clustering algorithms cannot use the information 
inherent in weightings on the edges in the graphs. While some 
biological networks, such as protein-protein interaction 
networks, are inherently unweighted, the edges in many 
networks represent interactions with which a metric can be 
associated. In metabolic networks, for example, kinetic 
parameters can be encoded as weights on edges between 
biochemical species. Clustering algorithms which do not 
incorporate weightings discard potentially valuable 
information about the network structure and function. 

Most algorithms, whether or not they use a predetermined 
number of clusters, cluster all of the data provided. In many 
problem domains this is not an issue, but biological interaction 
networks inherently consist of structural and functional 
modules of varying sizes linked by nodes or short chains of 
nodes which lie, conceptually and topologically, outside the 
system of modules. Even more importantly, biological 
modules are essentially fuzzy, in that a single node may 
belong to more than one module, and modules may overlap to 
a greater or lesser extent in different parts of the same 
network. Biological networks also have a temporal element, 
with different modules likely to be active at different times 
and in response to different external stimuli. 

In order to usefully cluster a large biological network, then, 
an algorithm should have the following characteristics: 

 
• Ability to identify overlapping clusters of varying sizes; 
• Requires no foreknowledge of number of clusters to be 

found; 
• Does not necessarily assign all nodes to clusters; 
• Requires no information about the network except 

topological structure; 
• Can utilize weights on edges if they are present. 

In this paper we describe the application of an evolutionary 
algorithm designed with these five criteria in mind, to what is 
probably the most complete functional interaction network 

published to date (Lee, Date, Adai & Marcotte, 2004). This 
network is of particular interest because it was constructed by 
integrating data from a number of sources, and concerns the 
model organism about which probably the most complete data 
sets exist, the yeast Saccharomyces cerevisiae. 

 
II. METHODS 

A. The Yeast Functional Interaction Network 
 

Lee et al. (2004) combined data on interactions between all 
yeast ORFs from 11 different sources, including protein-
protein binding, regulatory, genetic and metabolic interactions. 
They used a Bayesian statistics approach to estimate the 
confidence level of each interaction, taking into account that 
for most interactions only some of the data sources were 
available. The Bayesian approach makes it possible to 
incorporate estimations of the reliability of the different data 
sets in a consistent manner. The result is a large network in 
which edges represent functional, and not necessarily physical 
interactions, and are weighted with the probability of that 
interaction. We used the 30,000 highest-ranking interactions in 
the Lee data set to generate a network. 
 
B. Clustering Algorithm 

 
The chromosome used in the evolutionary clustering 

algorithm is simply a string of integers, each representing an 
(arbitrarily numbered) node in a potential cluster. Both 
crossover and mutation operators were used. Populations size 
was 100 for each run.  

The fitness of each individual reflects the relative number of 
edges between nodes in the cluster (ki), and between nodes in 
the cluster and nodes outside the cluster (ko). The fitness 
function was calculated using the cluster coherence measure, 
χ, described in Hallinan (2004): 
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where ki is the total number of edges between nodes in the 

module, n is the number of nodes in the network, kji is the 
number of edges between node j and other nodes within the 
module, and kjo is the number of edges between node j and 
other nodes outside the module. 

In order to allow the evolution of clusters of varying sizes, 
the chromosome length was allowed to vary. This was 
achieved by choosing independent breakage points for parents 
during crossover. Longer chromosomes potentially have 
higher fitness than shorter ones, simply because the number of 
potential edges within the cluster is larger. To counteract this 
tendency, the fitness of each chromosome was scaled by 
dividing it by the chromosome length. 

The mutation operator involves the generation of a random 
number for each position in the chromosome. If the random 
number is less than a specified mutation rate, mrate, the 



number in that position is replaced by an integer drawn with 
uniform probability from the range (1,n).  

Since the functional network described by Lee et al. (2004) 
has confidence values associated with the edges, it was 
possible to implement a version of the genetic algorithm 
which took account of these edge weights. This was achieved 
simply by multiplying the number of edges ki and ko by the 
weight associated with each edge. 
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As before, the fitness was scaled by chromosome length. 
 
C. Cluster Validation 
Although cluster analysis can be extremely useful in the 

analysis of large, complex data sets, validation of the resulting 
clusters is essential, in light of the known limitations of the 
approach (Handl, Knowles & Kell, 2005). In our algorithm 
cluster membership is assigned to nodes solely on the basis of 
network topology (and edge weighting, when appropriate). To 
validate the clusters we used the Gene Ontology (GO)1 
annotations for biological process, cellular component and 
molecular function. 

 
III. RESULTS 

A. Whole Network Statistics 

The statistics of the network, measured using the Pajek 
program (Batagelj & Mrvar, 1998) are shown in Table 1. 

 
TABLE 1. STATISTICS OF THE NETWORK 

Parameter Value 
Nodes 4,607 
Edges 31,999 
Average connectivity 6.95 
Components 67 
Maximum connectivity 183 
Largest partition 4438 (96.3%) 
Slope on line -1.39 
Diameter 16 
Cluster coefficient 0.314 

 
The structure of the complete network is shown in Figure 1. 

In this figure nodes represent individual genes, and edges are 
interactions between genes. 

 

                                                 
1 http://www.geneontology.org/ 

 
Figure 1. The probabilistic functional network generated 

from the data of Lee et al. (2004). 

 
Although there are 67 connected components in the 

network, the majority (96%) of nodes are a single, giant 
connected component. 

The connectivity distribution of the network is shown in a 
log-log plot in Figure 2. It is clear from Figure 2 that although 
there is an approximately linear portion to the log-log plot, the 
distribution is not convincingly scale-free, as many biological 
interaction networks have been demonstrated to be. 
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Figure 2. Log-log plot of the degree distribution. R2 is 

0.617 

B. Algorithm Using Unweighted Edges 
 
The version of the evolutionary clustering algorithm which 

did not incorporate edge weights was run 200 times, and the 
fittest individual from each run was recorded as a potential 
module. Fitness values ranged from 0.9268 to 0.5014. Out of 
the 4,407 nodes in the network, 490 were identified as 
participating in modules. There was considerable overlap 
between the modules detected with two nodes being present in 
10 of the 200 modules. 

The clusters found by the algorithm are shown in Figure 3. 
 



 
Figure 3. The subnetwork defined by modules detected 

by the unweighted algorithm.  
 

Since the primary motivation for the generation of this 
clustering was comparison with the results of the algorithm 
which took account of the weights of the edges in the original 
network, the network shown in Figure 3. was not subjected to 
intensive analysis. The two large clusters of clusters 
correspond very closely with the largest two superclusters 
produced by the weighted algorithm and described in detail in 
Section C, below. 

Two large “superclusters” are apparent, together with a 
number of other more-or-less overlapping superclusters, plus 
several distinct clusters. All of the two- and three-node 
clusters in Figure 3 are single clusters, except for the one 
ringed. 

In order to identify nodes linking the superclusters we used 
Freeman's measure of betweenness centrality (Freeman, 
1977). This metric reflects the extent to which nodes lie on the 
geodesics of the network (the shortest paths between a pair of 
nodes). Nodes of high betweenness are good candidates as 
mediators of cross-talk between modules, since by definition 
they act as bridges between large numbers of paths through 
the network. 

The betweenness distribution of the nodes in the network is 
shown in Figure 4. 

 

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

B
et

w
ee

nn
es

s

 

Figure 4. Betweenness distribution of the unweighted 
clusters. The dashed line indicates the cutoff (0.02) above 

which nodes are considered to have high betweenness. 

Inspection of the distribution reveals a sharp drop at a value 
of 0.02 (dashed line). Nodes with betweenness above this 
value were designated "high betweenness" (Figure 5). 

 

Figure 5. Nodes of high betweenness are shaded black 

C. Algorithm Using Weighted Edges 

Visual inspection of the results of the algorithm incorporating 
weights on the edges between nodes in graph indicated that 
many of the runs had failed to find connected clusters (Figure 
6). There appears to be a clear demarcation between runs 
which achieved a fitness of 0.4 and over, and those which did 
not. “Clusters” with fitness less than 0.4 tended to consist of 
scattered individual nodes, not linked to any other node. Since 
these clusters are clearly spurious, only clusters with fitness 
greater than or equal to 0.4 were used in the final analysis. 
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Figure 6. Fitness in the results of the weighted algorithm. 
The dashed line indicates the cutoff (0.4) above which runs 

were considered to have been successful. 

 

 

Figure 7. Clusters detected by the algorithm using 
weighted edges. 

Application of the algorithm to the weighted network, 
identifies two major aggregations of clusters, in addition to a 
number of smaller aggregations and single clusters comprising 
pairs or triples of nodes (Fig. 7). The two major aggregations, 
termed supercluster 1 (Sc1) and supercluster 2 (Sc2), comprise 
59 genes arranged in 19 clusters, and 98 genes in 30 clusters, 
respectively. Sc1 and Sc2 are connected by 10 edges. A third 
aggregation, termed supercluster3 (Sc3) comprises 18 genes in 
7 clusters. Six other single clusters, designated c1 to c6, of two 
or more proteins are also defined. Sc3 and the small clusters 
are isolated from Sc1 and Sc2. Sc1 and Sc2 show tight 
functional coherence and contain genes encoding proteins 
responsible for the synthesis of ribosomes (ribosomal 
biogenesis) and genes encoding the structural proteins 
themselves, respectively.  

Ribosomes are cellular structures composed of two 
subunits, each a complex of protein and RNA. They play a 
central role in the process of translation. A typical cell, under 

optimal growth conditions, contains enormous numbers of 
ribosomes. Whilst ribosomal biogenesis and assembly have 
been extensively studied, they are extremely complex and 
coordinated processes. Our knowledge of these processes is 
still incomplete and the role of many of the proteins involved 
remains to be determined.  

The synthesis of ribosomes in eukaryotes involves the 
processing of a large pre-ribosomal RNA molecule to form the 
structural RNA molecules onto which a large number of 
ribosomal proteins are subsequently assembled. Recent studies 
in S. cerevisae have revealed that over 200 proteins are 
involved in synthesis alone (distinct from structural proteins), 
giving rise to a number of intermediate complexes (Dlakić, 
2005). For an extensive review of ribosomal biogenesis in S. 
cerevisae, see Granneman and Baserga (2004). 

 
Composition of Sc1 

Sc1 mainly comprises genes involved in the biogenesis and 
synthesis of ribosomes. As expected, the proteins encoded by 
these genes are mostly located in the nucleus, within a defined 
structure called the nucleolus (Table 2).  

 
TABLE 2. GO BIOLOGICAL PROCESS SUMMARY FOR SC1 

Process Count 
rRNA processing 8 
Biological process unknown 8 
35s primary transcript processing 7 
Ribosomal large subunit biogenesis 6 
Ribosomal large subunit assembly and 
maintenance 

5 

Processing of 20S pre-rRNA 5 
tRNA methylation 3 
Telomere maintenance 2 
tRNA modification 2 
Vesicle fusion 1 
Ubiquitin-dependent protein catabolism 1 
Transcription from RNA polymerase II promoter 1 
transcription from RNA polymerase I promoter 1 
Ribosome assembly 1 
Response to osmotic stress 1 
regulation of transcription, mating-type specific 1 
protein import into mitochondrial matrix* 1 
peroxisome organization and biogenesis* 1 
mRNA export from nucleus 1 
meiosis 1 
chromatin silencing at telomere* 1 
actin cytoskeleton organization and biogenesis* 1 
Total 59 

 
In S. cerevisiae, pre-RNA molecules are transcribed in the 

nucleus by distinct RNA polymerases to generate the large 
polycistronic 35S pre-rRNA and the shorter 5S rRNA 
molecules that are ultimately processed by a number of 
complex cleavage steps into the shorter mature ribosomal 



RNA (rRNA) molecules (5.8S, 25S/28S and 5S rRNA for the 
60S subunit and 18S for the 40S subunit) (Fromont-Racine et 
al., 2003). The process of synthesis involves the action of a 
number of enzymes including endo and exonucleases which 
cleave RNA, and enzymes which extensively modify the RNA 
molecules themselves. The modification of rRNA is mediated 
by small nucleolar RNA fragments (snoRNA’s), which are 
thought to direct the action of RNA modifying enzymes. 
snoRNA’s exist in form complexed with a number of proteins, 
some of which possess the necessary enzymatic activity for 
RNA modification. Examination of the clusters that make up 
Sc1 reveals that they are mostly clusters of genes encoding a 
range of RNA processing and modifying enzymes together 
with genes encoding the proteins that complex with snoRNA’s 
(data not shown).  

 
Composition of Sc2 

The clusters comprising Sc2 show remarkable uniformity in 
terms of their predicted function (Table 3). 

 
TABLE 3. GO BIOLOGICAL PROCESS SUMMARY FOR SC2 
Process  Count 
protein biosynthesis* 86 
tRNA export from nucleus* 1 
telomere maintenance* 1 
phosphate transport 1 
mRNA export from nucleus 1 
methionyl-tRNA aminoacylation 1 
meiosis 1 
low-affinity zinc ion transport 1 
chromatin silencing at telomere* 1 
chromatin modification 1 
biological process unknown 1 
aldehyde metabolism 1 
35S primary transcript 
processing* 1 
Total 98 

 
In eukaryotes, such as yeast, the 40S subunit contains a 

single 18S rRNA and 32 different ribosomal proteins, while 
the 60S subunit contains the 5S, 5.8S, and 25S rRNAs and 48 
different ribosomal proteins. Most of the genes in the clusters 
Sc2 encode these ribosomal structural proteins.  

 
Composition of Sc3 

Sc3 contains clusters of genes, about two thirds of which 
are of unknown function (Table 4). 

TABLE 4. GO BIOLOGICAL PROCESS SUMMARY FOR SC3 
Process  Count 
biological process unknown 8 
vacuolar protein catabolism 1 
triacylglycerol biosynthesis* 1 
telomere maintenance* 1 
sulfur metabolism 1 
response to oxidative stress 1 
response to metal ion 1 
protein targeting to vacuole 1 
methionine metabolism* 1 
fatty acid oxidation 1 
ER to Golgi vesicle-mediated 
transport 1 
Total 18 

 
The member genes that have been characterised are 

functionally diverse, ranging from a putative transcription 
factor, through enzymes involved in lipid metabolism.  
Preliminary analysis of Sc3 or its subclusters does not reveal 
any clues about the potential role of this supercluster.  

 
Betweenness and connections between the sc1 and 
sc2. 

Inspection of the betweenness distribution of the weighted 
network led to the selection of 0.02 as the cutoff above which 
nodes were designated "high betweenness" (data not shown). 
Nine nodes were selected (Figure 8). 

 

Figure 8. Nodes of high betweenness in the weighted 
network (shaded in black). 

The selected nodes and the proteins for which they code are 
shown in Table 5. 



TABLE 5. NODES OF HIGH BETWEENNESS IN THE WEIGHTED NETWORK 

Gene Protein 
YOL121C 40S small subunit ribosomal protein S19.e 
YGR214W 40S ribosomal protein p40 homolog A 
YIL133C 60S large subunit ribosomal protein 
YJL189W 60S large subunit ribosomal protein L39.e 
YGR128C hypothetical protein 
YLR196W similarity to human IEF SSP 9502 protein 

YNL002C 
strong similarity to mammalian ribosomal 
L7 proteins 

YGL078C 
putative RNA helicase required for pre-
rRNA processing 

YKL009W mRNA turnover 4 
 

IV. DISCUSSION 

The full network is, as expected, more highly connected 
than most physical interaction networks, with an average 
connectivity of nearly 7, whereas most physical interaction 
networks have been shown to have average connectivity of 
around 2 – 3. This increase reflects the multiple nature of the 
data from which the network is constructed. The network is 
also less of a good fit to a scale free distribution than many 
physical interaction networks described in the literature, 
probably for the same reason. These characteristics suggest 
that modules in the network are likely to be less clearly 
distinguished from their background than those in, for 
example, a protein-protein interaction network. 

As expected, there are marked differences between the 
subnetworks produced by the weighted and unweighted 
algorithms. The unweighted algorithm, which treats all edges 
as equally important no matter what the evidence for their 
existence, produces a network in which there are two major 
clusters of genes and many small "clusters" consisting of two 
or three nodes: a total of 43 connected components. The 
weighted algorithm, in contrast, produces a subnetwork with 
only 20 connected components, including the two large 
clusters identified by the unweighted algorithm. 

The general structure of the networks produced by the two 
versions of the algorithm were similar. Both identified two 
large "superclusters" of overlapping clusters, one of which 
contained ribosomal structural genes, and one of which 
comprised rRNA processing genes. These clusters were the 
same as the largest two clusters identified by the hierarchical 
clustering algorithm used by Lee et al. (2004). Since our 
clustering is incomplete in that it covers only a small 
proportion of the nodes in the complete network, it is not 
surprising that the two largest clusters are over-represented. 
The weighted algorithm identified a smaller and more 
functionally coherent set of clusters and superclusters, 
indicating that the use of edge weights by a clustering 
algorithm, where available, is likely to be valuable in 
producing biologically relevant results. 

Lee et al. (2004) describe the network as " a highly modular 
gene network with well-defined subnetworks." (p. 1556). They 

used a hierarchical clustering algorithm to identify clusters in 
the network, and then delineated individual clusters on the 
basis of a coherence measure based upon their functional 
annotation. In contrast, our aim was to use only topological 
structure for the clustering, reserving GO annotations for 
cluster validation. They identified clusters of genes involved 
in energy metabolism, DNA damage response and repair, 
mitochondrial ribosome, ribosome, ribosome biogenesis, 
cellular transport, mRNA splicing and chromatin modelling, 
of which the two largest are ribosome and ribosome 
biogenesis genes. These were also the two largest clusters 
identified by our algorithm. 

The domination of the clustering by two sets of genes which 
are well known to be closely functionally interrelated, 
although understandable, suggests that the approach to 
network construction used here may have some drawbacks. 

Edges were selected for inclusion in this network on the 
basis of their computed probability. Following Lee et al. the 
top 30,000 most highly weighted interactions were used. This 
approach risks "swamping" the clustering algorithm with 
tightly linked, but not particularly interesting, clusters. To 
detect and examine less easily predicted clusters it may require 
the discard of some of the most heavily weighted edges, on the 
grounds that they are unlikely to contribute novel information. 
Our laboratory is currently exploring the development of a 
metric for this purpose, along the lines of those used in 
linguistic analysis, where common words are generally 
discarded from the corpus prior to analysis. 

The topological rationale for the identified nodes of high 
betweenness is clear; all high betweenness nodes occur in one 
of the two largest superclusters, and have large numbers of 
edges with other nodes in the same supercluster and only one 
or two edges with links in the other major supercluster. 
However, investigation of their biological function, as 
evidenced by GO annotation, reveals no clear biological 
reason why those proteins should be involved in crosstalk 
between the two superclusters. There are two possible 
explanations for this observation. The first possibility is that 
the GO annotation is simply incomplete, and the proteins in 
question have biological functionality which has not yet been 
identified experimentally. This suggestion is supported by the 
fact that five of the nine nodes of high betweenness are 
annotated as "putative" or "homolog". 

The other potential explanation concerns the evidence upon 
which the existence and weight of the link is inferred. For 
several of the edges associated with nodes of high 
betweenness the only evidence is co-expression, as detected 
by DNA microarrays. Although co-expression may indeed 
reflect a direct functional relationship, such as co-regulation, 
this is not always the case; Allocco, Kohane & Butte (2004) 
found that genes which were co-expressed had a greater than 
50% chance of sharing a common transcription factor only 
when the correlation between expression profiles was greater 
than 0.84. Edges which exist in the network by virtue of co-
expression evidence might represent relationships which are 
simply not apparent from the GO annotation of their 
associated nodes. 



Both of these explanations probably apply to our results. If 
correct, this conclusion necessitates re-assessment of the 
underlying assumptions of the topological analysis of this 
particular network. The primary assumption is that analysis of 
a network of functional, as opposed to strictly physical, 
interactions will provide higher-level information about the 
way in which the cellular components are organized. Like us, 
Lee et al. (2004) used a clustering algorithm primarily based 
on topology to cluster their network into linked clusters of 
genes involved in related functions. They did not attempt to 
investigate the biological meaning of the links in the same 
way in which they explored the biological significance of the 
gene annotations. 

The Bayesian algorithm used by Lee and colleagues to 
assign probabilistic weights to edges was designed to take into 
account the inherent reliability (incorporating factors such as 
noise and error rate) of the experimental data used. We 
contend that this approach, while a valuable advance on most 
previous work, which has made no attempt to integrate diverse 
data sources in a principled manner, is still insufficient to 
enable analysis of the nature of crosstalk between functional 
models. The existence of nodes and edges linking functional 
modules is easily confirmed, but a useful biological 
interpretation of this topological data will require still more 
sophisticated metrics for data integration. 

The results discussed here provide a proof of principle for 
the value of the evolutionary clustering approach used, rather 
than a comprehensive analysis of the yeast functional 
interaction network. Only 200 runs of each version of the 
algorithm were performed, each of which returned a single 
cluster of, on average, eight genes. Each analysis as performed 
could therefore have examined no more than about 800 of the 
4,760 genes in the network, and because of the desired overlap 
between clusters actually clustered far fewer. This partial 
analysis has, however, demonstrated that the evolutionary 
clustering algorithm is valuable because a) it reliably identifies 
overlapping clusters of nodes of varying sizes; and b) is 
produces more biologically valid clusters when it incorporates 
the probability values on the edges when computing the 
coherence of the clusters. Work is ongoing in our laboratory to 
fully characterize the yeast network generated by Lee et al. 
(2004), and to extend this approach to the functional networks 
of other organisms. 
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