
1 EFTS, Luxembourg, June 2006

Coordinated Atomic Actions:
10 years after

Alexander Romanovsky

School of Computing Science
University of Newcastle upon Tyne

 alexander.romanovsky@newcastle.ac.uk

2 EFTS, Luxembourg, June 2006

Error recovery is the crucial step of fault tolerance which follows error
detection and error diagnosis.

This talk is about the past, ongoing and future work on an error recovery
scheme.

The aims of the talk are

• to briefly introduce the concept of Coordinated Atomic (CA) actions
developed in the mid-90s

• to present the relevant work completed in the past few years and to report on
the ongoing work

• to try and understand where it is all going

• to help people working in the area to coordinate their efforts

1. Aims of the Talk

3 EFTS, Luxembourg, June 2006

Design for Validation - DeVa (EC, 1996-1999)

Dependable Systems of Systems - DSoS (EC,
2000-2003)

Rigorous Open Development Environment for
Complex Systems - RODIN (EC, 2004-2007)

Rigorous Stepwise Development of Complex
Fault Tolerant Distributed Systems: from
Architectural Description to Java
Implementation - CORRECT
(Luxembourg, 2004-2007)

1. Aims of the Talk

PDCS 2

4 EFTS, Luxembourg, June 2006

Error recoveryError recovery is typically more complex than the normal system activity.

In many systems more than 50-70% of the resources are dedicated to detecting and
dealing with abnormal situations. Dealing with abnormalities is becoming an every
day issue.

Dealing with faults is one of the major sources of system complexity, and, as
experience shows, one of the major sources of system faults and failures (e.g. an
ICSE 2006 paper - 2-3 bugs per 1 KLoC in *mis*using exception handling).

The time of ad hoc fault tolerance is long gone. We are all working on disciplined
and systematic fault tolerance. We need specialised fault tolerance mechanisms
suitable for specific

• application domains
• development paradigms
• fault assumptions
• execution environments
• application requirements

2. Fault Tolerance and Error Recovery

5 EFTS, Luxembourg, June 2006

Application level fault tolerance plays a defining role in making systems dependable.

Hardware faults are no longer the predominant threat for many applications due to
• an increase in hardware quality and a reduction in hardware cost for many

applications (e.g. hardware replication is cheap)
• a dramatic rise in software complexity and volume
• the involvement of new actors: non-professional users, multiple organisations,

critical infrastructures
• the growing complexity of the environment in which systems operate

These applications include a wide range of safety-, life-, business- and money-critical
systems - cf the reports by J.-C. Laprie (1999) and J. Knight (2005).

As a result, the application software needs to deal with a broad variety of faults:
integration mismatches, design bugs, mistakes by non-professional users,
potentially harmful changes in the system and environment, malicious faults, etc.

2. Fault Tolerance: Application Level

6 EFTS, Luxembourg, June 2006

Fault tolerance hugely benefits from good system structuring.

These two birds, can and should be killed with one stone:
• reducing system complexity
• achieving system fault tolerance

Fault tolerance needs error isolation to define exactly which part of the system to
recover, and to prevent errors from unlimited propagation.

Structuring units
• are units of error confinement and recovery
• encapsulate states and behaviour
• make it easier to reason about the system.

2. Fault Tolerance: System Structuring

7 EFTS, Luxembourg, June 2006

Fortresses, submarine and nuclear power station structures, buildings, spy
networks/underground cells as well as the human body isolate and confine
propagation of water, fire, disease, enemies, radiation and information to localise
damage and recovery.

Erroneous information does not cross the border of the structuring unit.

System S

error

fault

error error

2. Fault Tolerance: System Structuring

8 EFTS, Luxembourg, June 2006

Forward error recovery: the system is returned to an error-free state by
applying corrections to the damaged state. Such an approach demands some
understanding of the errors.

Backward error recovery: the system is recovered to a previous error-free state.
No knowledge of the errors in the system state is required.

Forward and backward error recovery techniques are complementary:

• Forward error recovery allows efficient handling of the expected exception
conditions

• Backward error recovery provides a general strategy which will cope with
faults the designer did not (or chose not to) anticipate.

Exception handling is the most general and effective means for tolerating faults of
the widest possible range at the application level.

2. Fault Tolerance: Forward and Backward Error Recovery

9 EFTS, Luxembourg, June 2006

• defines nested fault-tolerant units
• encapsulates internal recovery inside the units
• separates normal and abnormal behaviour
• introduces and separates normal and abnormal flows of control
• separates normal and abnormal outcomes of the unit
• defines the rules of how normal and exceptional activities are related
• allows recovery to be systematically developed and associated with the units to be
executed in the same context

2. Fault Tolerance: Application Level Exception Handling

Normal
execution

Exception
handling

Program unit (e.g.
object, process,

block, module,
method, class,

component, etc.)

EH:

Call Normal output Exceptional outputs

10 EFTS, Luxembourg, June 2006

Exception handling and the provision of fault tolerance are more difficult in
concurrent/distributed systems than in sequential programs.

Exception propagation in concurrent programs may not simply go through a chain
of nested callers, e.g. an exception may need to be propagated to the members of a
group of cooperating activities.

Distribution further complicates the cooperation and coordination of multiple
concurrent activities.

Damage confinement and assessment become more difficult in systems involving
complex interactions among concurrent activities.

3. CA Actions: Concurrent/Distributed Systems

11 EFTS, Luxembourg, June 2006

ACID (atomicity, consistency, isolation, durability) transactions, which can be
nested and multi-threaded, provide concurrency control and backward recovery
for competing activities that are sharing external resources. Recovery of
resources.

Conversations (M. Melliar-Smith and B. Randell) provide coordination and
backward recovery for cooperating activities (processes, objects, threads, etc.),
but do not support shared external resources. Recovery of processes.

3. CA Actions: ACID Transactions and Atomic Actions

Process P1

Process P2

Process P3

Process P4
Conversation 1

Conversation 2

12 EFTS, Luxembourg, June 2006

Atomic actions (R. Campbell and B. Randell) allow for exception handling in a
system consisting of cooperating activities - when an exception occurs, every
process in the action has to switch to an appropriate handler, so that
cooperative forward error recovery is performed.

A Coordinated Atomic (CA) action can be regarded as an atomic action that also
provides controlled access to shared external resources. Equally, it can be
regarded as a nested multi-threaded transaction with disciplined exception
handling.

3. CA Actions: ACID Transactions and Atomic Actions

cooperation and
competition

competitioncooperationcooperationconcurrency

FER and BERBERFERBERrecovery

CA actionsACID
Transactions

Atomic
Actions

Conversationsscheme

13 EFTS, Luxembourg, June 2006

Process P1

Process P2

Process P3

Process P4
AA 1

AA 1.2

Process P5

Process P6

Process P7

Process P8
AA 2

AA 2.1

3. CA Actions: ACID Transactions and Atomic Actions

14 EFTS, Luxembourg, June 2006

Component P1

Component P2

Component P3

Component P4
CA 1

CA 1.2

Component P5

Component P6

Component P7

Component P8
CA 2

CA 2.1

External
objects controlled access

3. CA Actions: ACID Transactions and Atomic Actions

15 EFTS, Luxembourg, June 2006

Activity T1

Activity T2

CA action

e

exception handler H1
abnormal control flow

exit after successful
handling

entry points exit points

accesses recovery

exception handler H2
abnormal control flow

External Objects

start
transaction

commit
transaction

exception handling context

3. CA Actions: Participants, Context and Internal Exceptions

16 EFTS, Luxembourg, June 2006

CA action

T1
T2

External objects act upon

Tn

raise ei signal εj

e = {e1, e2, e3, ...}
(Internal) Exceptions inside the CA action must be declared with
the action “body”/implementation and handled within the action

ε = {ε1, ε2, ε3,...} (External) Exceptions to be signalled from the action to its
environment (i.e. the enclosing action) must be specified in the
CA action interface

Recursive relation: εnested is a subset of eenclosing

3. CA Actions: Action Nesting and External Exceptions

17 EFTS, Luxembourg, June 2006

Process P1

Process P2

Process P3

Process P4
C 1

C 1.2

3. CA Actions: Concurrent Exceptions

18 EFTS, Luxembourg, June 2006

Universal Exception e4

Immanent Danger of Explosion e3

Fire Alarm e1 Gaze Leakage e2

In a distributed system different activities may raise different exceptions and the
exceptions may be raised simultaneously. Concurrent exceptions must be handled
in a coordinated manner.

An exception resolution graph approach is developed in order to find the
exception that “covers” all the exceptions raised concurrently. The graph imposes
partial order on all internal action exceptions.

e1 e2 e3

universal exception

e1 ∧ e2 ∧ e3

e1 ∧ e2 e1 ∧ e3 e2 ∧ e3

level 0

level 3

level 2

level 1

3. CA Actions: Concurrent Exceptions

19 EFTS, Luxembourg, June 2006

Production cell case study

Fault tolerant production cell case study

Real time production cell case study

Internet auction system

Distributed over the Internet gamma computation

Railway control system

3. CA Actions: Case Studies

20 EFTS, Luxembourg, June 2006

Fault tolerant Production Cell case study.

The design uses 12 main CA actions; each action controls one step of blank
processing and typically involves passing a blank between two devices.

3. CA Actions: Case Studies

concurrent

threads
CA action LoadPress1

RobotSensor

Robot(Arm1)

Press1Sensor

Press1

External
object

Blank

move press 1

to the middle

position

extend arm 1
retract

arm 1

access

rotate robot

synchronizing drop blank

21 EFTS, Luxembourg, June 2006

CA actions allow us to design long-lived activities as they support

• exception handling: rather than always aborting and going back, it is
possible to handle the problem and continue

• action nesting (recursive system structuring, choice of the right level of
granularity) – lost computation can be minimised

• explicit application-specific programming of cooperation/competition with
respect to shared resources – minimise periods when shared resources are
locked

3. CA Actions: Summary

22 EFTS, Luxembourg, June 2006

A CA action is a generalised form of the basic atomic action structure.

Multi-Threaded Enclosure and Coordination - CA actions provide a mechanism
for enclosing and coordinating interactions among activities, and ensuring
consistent access to resources in the presence of complex concurrency and
faults.

Fault Tolerance - If an exception is raised inside a CA action, appropriate forward
and/or backward recovery measures are invoked cooperatively in order to
reach some mutually consistent conclusion and, if possible, to recover.

Multiple Outcomes - CA actions combine exception handling with the nested
action structure to allow multiple outcomes, e.g. a normal outcome or some
possible exceptional outcomes.

CA actions (as well as ACID transactions, conversations, etc.) are nested
structuring units of system design and execution.

3. CA Actions: Summary

23 EFTS, Luxembourg, June 2006

CA actions were intentionally developed as a general concept capturing several
fundamental ideas:

• recursive system structuring for fault tolerance
• dealing with heterogeneous distributed systems consisting of cooperative
and competitive concurrency
• coordinated recovery inside the action and concurrent exception resolution
• normal and exceptional outcomes defined at the action interface level

The idea was not to develop a specific scheme for a specific environment, OS,
platform or language.

4. Trends in CA Action Research

24 EFTS, Luxembourg, June 2006

The main trends in the recent years:
• Software engineering. The main focus is on the CA action engineering.
Application level fault tolerance needs to be supported at the earlier phases
and through the whole development process as well as being reused.
• New environments, domains and paradigms
• New case studies:

• Internet travel agency (DSoS)
• Fault tolerant insulin pump control system (CORRECT)
• Ambient campus (RODIN)

• New implementations
• Generalisation:

• applicability of exception handling for dealing with external objects,
resources and the environment (they do not have to be ACID)
• concept of action participants - structuring activities involving
computers (e.g. with humans or external devices)

4. Trends in CA Action Research

25 EFTS, Luxembourg, June 2006

Why do we need formalisation?
• understanding and definition of the concepts
• verification of system properties
• formal stepwise development process (cf correct fault tolerance by
construction)

5. CA Action Engineering - Formal Methods

26 EFTS, Luxembourg, June 2006

• COALA - the first model describing all main CA action abstractions and
functionality in terms of CO-OPN/2: an object-oriented language based on Petri nets
and partial order-sorted algebraic specifications (DeVa)
• Formalisation of CA actions using the ERT model (ERT stands for extraction,
refusals and traces): CSP and a specific technique used to relate systems specified at
different levels of abstraction (DeVa)
• Timed CSP based framework for representing the use of CA actions in real-time
safety-critical systems; focus on modelling dynamic system structuring
• Properties: Temporal Logic of Actions - TLA. Explicit modelling of a set of action
outcomes with associated post-conditions (DeVa)
• Properties: Alloy, B, ProB - proving basic, desired and application-specific
properties (RODIN)
• B modelling of the CA action environment and abstractions: action participant,
transactional external objects, exception resolution, action (DSoS)
• B refinement: decomposition patterns for developing mobile agent applications
with actions: scopes and exception handling (RODIN)

5. CA Action Engineering - Formal Methods

27 EFTS, Luxembourg, June 2006

The Web Service Composition Actions (WSCA) architecture for dependable
composition of WSs is specified at an abstract level supporting recursive system
structuring and cooperative exception handling (DSoS)

Engineering dependable systems using two fault tolerance architectural styles
(the idealized fault tolerant component model style and the role-based
collaboration style) and a set of OO design patterns

CORRECT ongoing work.

5. CA Action Engineering - Software Architecture

28 EFTS, Luxembourg, June 2006

UML modelling:
• UML2.0 platform-independent profile for CA actions (CORRECT)
• More work on UML profiling in CORRECT - ongoing
• Initial work at Monash

Model-driven development:
• DRIP Catalyst: An MDE/MDA Method for Fault-tolerant Distributed
Software Families (CORRECT)
• Ongoing work in CORRECT
• Initial work at Monash

5. CA Action Engineering - UML Modelling and MDD

29 EFTS, Luxembourg, June 2006

6. New Domains - WSs and SOA

No backward error recovery. Compensation is only a partial answer. Components
are not controlled by the integrator.

The Web Service Composition Actions (WSCA) scheme is an extension of CA
actions and their adaptation for this application area:

• Dependable composition of WSs is specified at an abstract level supporting
recursive system structuring and cooperative exception handling
• The WSCA language (WSCAL) built on the W3C standards: Web Service
Description Language and Web Services Conversation Language

CA Action design of Web applications (Internet Travel Agency):
• Design. Each client session is a CA action consisting of a number of nested
actions performing availability checking, trip booking, trip cancellation,
payment, etc.
• An experimental implementation using Java RMI, JavaServer Page (JSP)
and a distributed CA action support (DRIP)

Ongoing work in CORRECT on defining UML methods and models for
developing complex systems composed of WSs.

30 EFTS, Luxembourg, June 2006

Real-time systems and CA actions (DeVa).

Typical timing constraints on the execution of a CA action:

6. New Domains - RT

Time

start action end action

execution of a CA action

t0 t1 t3 t4

T

31 EFTS, Luxembourg, June 2006

Using extended action mechanisms not only for traditional fault tolerance
but for tolerating malicious faults (FP5 MAFTIA)

Designing and structuring several specific security protocols using CA
actions with sets of participants playing different roles (Durham
University).

6. New Domains - Security

32 EFTS, Luxembourg, June 2006

Mobile agents (asynchronous and anonymous communication, autonomous
components).
Mobile coordination- (tuplespace) based systems - Newcastle University:

• Open and flexible exception handling and structuring mechanisms. Nested scopes
with flexible exception handling. Several directions of exception propagation
• A set of abstractions (such as roles, scopes, agents, locations, platforms,
exceptions and exception propagation)
• Stepwise formal development based on Event B refinement
• Fault tolerance formal development templates
• Agent interoperability by constructions & independent agent development
• Identifying and model checking/proving fault tolerance properties
• Formal development of middleware - the location-based CAMA middleware
• Ambient Campus case study

Ambient conversations - OO framework, dealing with disconnections - Vrije
Universiteit, Brussels
Scoping for publish/subscribe systems - Lancaster University

6. New Domains - Mobile Agents

33 EFTS, Luxembourg, June 2006

DRIP class framework in Java RMI (DeVa, 1998)

Ada 95 - OO implementations supported by patterns (DeVa, 1999)

Web Services, DRIP extension, HTTP requests from clients, JSP (DSoS,
2003)

CAA DRIP class framework in Java RMI (CORRECT, 2005)

.NET (Monash, 2006)

7. Implementations

34 EFTS, Luxembourg, June 2006

Issues for future research:
• Identification of basic distributed middleware functionalities
• Formal refinement and CA actions
• (Eclipse?) tool environment for model engineers who use CA actions
• Move from closed to open systems:

• ambient, pervasive and ubiquitous systems
• more flexible and dynamic schemes
• context-aware CA actions

• SOA, WSs and business processes (BPEL)
• Structuring critical infrastructures
• Systems involving people
• Engineering CA actions by aspects

8. Conclusions

35 EFTS, Luxembourg, June 2006

CA actions are alive and kicking.

Active area of research thanks to many people’s efforts.

This research informs many developments in the area.

It is important to maintain its conceptual level and at the same time to work on
concrete instances.

8. Conclusions

36 EFTS, Luxembourg, June 2006

9. Projects and Groups

Design for Validation - DeVa (EC, 1996-1999)

Dependable Systems of Systems - DSoS (EC,
2000-2003)

Rigorous Open Development Environment for
Complex Systems - RODIN (EC, 2004-2007)

Rigorous Stepwise Development of Complex
Fault Tolerant Distributed Systems: from
Architectural Description to Java
Implementation - CORRECT (Luxembourg
National Project, 2004-2007)

37 EFTS, Luxembourg, June 2006

9. Projects and Groups

Active groups
•Newcastle University (UK) - FM, SA, e-Science, WSs, virtual organisations, agents, new domains, BPEL
•University of Luxemburg (Luxemburg) Nicolas Guelfi - FM, SA, new domains, WSs, UML, model-
based development
•UniCamp (Brazil) Cecilia Rubira - SA, FM properties, aspects
•University of L’Aquila (Italy) Patrizio Pelliccione and Henry Muccini - SA, model-based development
•University of Geneva (Switzerland) Didier Buchs - testing, FM, WSs
•Aabo Akademi (Finland) Elena Troubitsyna - agents, formal stepwise development
•INRIA (France) Valerie Issarny - WSs, WSCA
•University of Wellington (New Zealand) Ian Welch - BPEL and WSs
•Monash University and EDS (Australia) Susan Entwisle - UML, .NET, model-based development
•PURCS (Brazil) Avelino Zorzo - new applications, FM
•Lancaster University (UK) Alessandro Garcia - agents, aspects
•Kent University (UK) Rogerio De Limos - SA
•South Bank University (UK) - Nimal Nissanke - FM
•BAE SYSTEMS (USA) Bob Shaifer - systems of systems

38 EFTS, Luxembourg, June 2006

Thank you!

