eternal

Louise Moser
Eternal Systems, Inc.

'“':Ill‘l

Introduction

eternal

« Many computer systems must provide

continuous service, without interruption or
suspension of service, over a long lifetime

Such systems include large complex systems
and small embedded systems

— Financial

— Supply chain

— Telecommunications
— Industrial control

— Transportation
— Defense

([L

T 1
L
I||||||||||||||||||||||||||||III!!!l!l!II!IIIIIIII||I!!I!!!mlmiui:;mm
(A

Introduction

eternal

 Application deployers must be able to-a

:)grade
their systems by replacing individual software
and hardware components

 However, many systems cannot be taken out of
service to perform an upgrade

 Often, itis difficult to take part of a system

out of service for upgrading, while other parts
of the system continue to operate

e Therefore,

are needed

Online Upgrade Scenarios

eternal

Pushed Upgrade

Upgrade
Repository

Server upgrade-is
communicated to
Upgrade Manager

Upgrade
Manager

ii:'“‘l' [L}

Upgrade Manager
upgrades-the

-

erver

Online Upgrade Scenarios

eternal

Pulled Upgrade

Upgrade
Repository

Server-upgrade-is
communicated to
Upgrade Manager

Upgrade
Manager

|| .J.:I“‘ull!

(10
l||||||||||||||||||||||||||||III!!!l!I!II!IIIIIII||||m!mmmi.i:tm"’
i

Upgrade Manager

upgrades the
Server queries

for availability 9
of upgrade

erver

Online Upgrade Scenarios

eternal

Smart Clients

Client queries

ngrade status Upgrade
of Server

Repository

Client requests
upgrading of

Server- upgradeis
Server

communicated to
Upgrade Manager

Upgrade
Manager

|| .J.:I“‘ull!

(10
l||||||||||||||||||||||||||||III!!!l!I!II!IIIIIII||||m!mmmi.i:tm"’
i

Upgrade Manager
upgrades the

-

erver

- The Need for Standards

eternal

* |n the past, online upgrade technology Was
— Proprietary

— Difficult to use
—Prone to-filascos
— Not portable

— Not interoperable

« Today, industrial standards for online upgrades =
are being adopted and implemented

Industrial Standards

eternal

— Online Upgrades mars-2002-06-11
— CORBA distributed object applications

— JSR 117 Continuous Avalilability

— EJB/J2EE application servers
— Enterprise applications

{111

— Embedded applications, data/telecom

nn
I“I|I"|I"“"||||||I“"|||||!!!l!l!II!IIIIIIIIIII!!I!!!Il““'i'i’m"“
| I

" Intent of CORBA Standard

eternal

 |nitial step

— Provides basic functionality for interoperable
and portable online upgrades

e Building block

— Basic online upgrade service

— More sophisticated online upgrade services
can be built on top of this basic service

|
1111
{111 (1]

- Objectives

eternal

 Upgrade individual objects by changingtheir
, but not their interfaces=—

e Pause an object, so that it can be upgraded

— Allow it to reach a and state '

— Transfer state from the old instance to the
new instance

e Continue service using the new instance
without risk that messages are Iost,

Incorrectly ordered, or processed twice

LU

- Objectives

eternal

« Undo an upgrade

an upgrade, before the new instance
becomes operational, if part of the upgrade fails=

from a new instance to an old instance

If the new instance does not operate correctly
« Upgrade

of objects by allowing

the application to commit and roliback
the upgrades explicitly

(UL

Stages of an Upgrade

eternal

create object()

pause_member()
get_state()

transform _and—set state()

& > ED

create_member()
add _member()

resume_member)

.J.:I“‘ull!

;
v

are_you_ready()

remove_member()

;
.

— Architectural Overview

eternal

Portable Group Module Portable State Module
Property Object Group Generic <<Interface>>
Manager Manager Factory Checkpointable

A

Online Upgrade Module
Upgrade

Manager

Group

<<Interface>>
Manager Upgradeable

LU L

THH L

|1li’|"l' 1

A

[1LLE

Old Object

New Object

llIII[IIIEF!!!llllliltilim:.

=,
=

=
I ——
_—
|

="

Configuration
Manager

upgrade=object()
commit_upgrade()
rollback upgrade()
revert_upgrade()

Upgrade
Manager

create_member()
add_member()
pause_member()
resume_member()
remove—member()

Group
Manager

are—you-ready()

get_state()

transform_and
_set_state()

- Architectural Overview

eternal

i—am_ready()

-

message | —

queue

Upgrade
Mechanisms

Q. e

get_state()

transform_and
_set_state()

message | =
queue

Upgrade
Mechanisms

- Upgrade Manager

eternal

 Provides methods to

« Prepare an object for upgrading

 Perform the upgrades of one or more objects
» Rollback upgrades of objects

« Revert an object from its new implementation=ie

its old implementation
e Invokes methods of t

e |nvokes methods of t
that the application o

ne Group Manager

ne Upgradeable Interface
ojects Inherit

([LLLHEH

- Upgrade Manager Methods

eternal

* upgrade_object(): Upgrades the object deflned
In its parameter list

— object_group: Reference of the object-to-be= upgraded
— type_id: Type of the object-to-be-upgraded

— the location: Location at which the upgraded
implementation is to be instantiated

— the factory: Factory thatis to be used to create the
instance of the upgraded implementation

— app_ctrl_commit: Boolean that allows the applicatio

to commit the upgrade explicitly or to delegate that
responsibility to the Upgrade Manager

Eﬁms:u!" i1

- Upgrade Manager Methods SAN e

« commit upgrade(). Allows the appllcatlon to
commit the upgrade explicitly

* rollback_upgrade(): Allows the application

to rollback the upgrade before it is
committed

« revert upgrade(). Allows the applicationto
revert the upgraded implementation to the
old implementation after it is commitied

- Upgradeable Objects

eternal

« An upgradeable object mustinheritthe
Upgradeable interface

« Upgradeable interface extends the
PortableState module

 PortableState module defines the
Checkpolntable interface

« Checkpointable interface defines
get state() and set state() methods

- Upgradeable Methods

eternal

In-addition to the Checkpointable methods

the Upgradeable interface defines the
following method:

« are you ready()

— Invoked by the Upgrade Manager on an upgradealie
Ob{:,eCt to query the object whether it is ready
to be upgraded

— The object must be in a safe and quiescent state
to be upgraded

=
=
=1
=
=1

— Ifitis in a safe and quiescent state, the object invokeé‘=
| am ready() with the ready parameter equalioltrae—

are you ready()

—————
——————

_—

— no callbacks eternal

Upgrade
Manager

- Upgrade Manager
Upgrade mechanisms invokes are_you_ready()
gqueue messages —

from clients @
°

Upgrade
Manager

4 Instance of old

% -—implementation
reaches a safe
and-quiescent state

Upgrade
Manager

Instance of old
implementation
invokes i_am_ready()

&
A

~ are_you_ready()
— with callbacks

Upgrade
Manager

Messages
from Clients

Object
continues Hpgrade
to process anager
requests

from-clients

and replies

from servers

09

Upgrade
Manager

Upgrade mechanisms
gueue messages
from clients

Upgrade-Manager

invokes are_you_ready()
22

4

Instance of old
implementation
reaches a safe

and-quiescentstate

Instance of old
implementation

invokes i_am_ready()
(A

eternal

;Jgﬂnlﬂf;'

1 (LLLEE
] | “;"]:Ililm
"|!]||||||||||||||Iull||iuhhlli:!:!mm

SYETENE

Upgradeable Methods

eternal

o transform and set state()

— |nvoked by the Upgrade mechanisms-on
an instance of the new implementation

— Transforms the state of the instance of the

old implementation into the state of the instance
of the new implementation, providing values for
new attributes of the new implementation

— Assigns the state to the new implementation

=
=
=
=1
=
=1
=
==
=
=—
=
==
=—1
=1
=
=
==z
=)
=1
=1
=1
—==
=
=1
=—]
=
=
=
=—=
=—
=
—
===
=—]
=
=]
==
=
——

_

State Transfer

eternal

SYETENE

Upgrade

UpgradeManager Manager
invokes get state()
on-instance of old
implementation @

Reply contains ‘ =
@ old state @ Old state is

UpgradeManager
invokes transform—and—-set=statef
. on instance of new implementation

. * transformed
into new state

Upgrade

UpgradeManager invokes Manager UpgradeManager
transform_and_set_state() invokes get_state()

on instance of old * on instance of new implementation
implementation ‘

Reply contains
New state is , nevF\)/ gtate @
transformed ‘
into old state

Use Case
upgrade object()

upgrade_object()

Upgrade
Manager

create_member()

Group
Manager

' New :

Upgrade
Mechanisms

Upgrade
Manager

Group
Manager

‘ New

Member:

are_you ready()
i_am_ready()

Upgrade
Mechanisms

commit_upgrade()

Upgrade

Upgrade
Manager

Manager

resume_member()

Group

Group
Manager

Manager

Old New

Old
Member=—Member: Member: @

=o' -

get_state() transform_and_set_state()

Upgrade

Upgrade
Mechanisms

Mechanisms

eternal

SYETENE

Upgrade
Manager

remove_member{}:

=1
—

Group
Manager

Upgrade
Mechanisms

i
(L1
II““"“ !I!! I!hi

Use Case
revert_upgradel()

¥
—_—
|—

—
_—m
|
e—e—uru
—_—
|—u

eternal

SYETENE

revert_upgrade()

Upgrade Upgrade Upgrade Upgrade Upgrade
Manager Manager Manager Manager
create_member()

Manager
Group

Group Group Group Group
Manager Manager Manager Manager Manager
Old Old Old
Member @ Member: @

Member: @ .m

resume_member() remove_member‘b

New
glo Member:

transform__
and_set
Upgrade

state()
Upgrade Upgrade Upgrade Upgrade
Mechanisms Mechanisms Mechanisms Mechanisms Mechanisms

are_you_ready()
I_am_ready()

get_state()

- Extensions

eternal

The CORBA standard can be easily extended
with capabillities to

« Upgrade the interfaces of an object

« Allow an object to initiate its own upgrading

e Operate instances of the old implementatien
and the new implementation concurrently

 Revert to an instance of a prior implementation =
other than the immediately prior implementatien

- Extensions

eternal

The CORBA standard can be further extended
with capabillities to

« [esta new implementation

« Define version numbers for implementatiors=

« Determine when an upgrade is available and
when it should be applied

 Determine the security or validity of an upgrad

- Conclusion

eternal

With the adoption of industrial standards for

online upgrades, commercial |mplementat|ons
are becoming available

But, the work is not yet finished and Includes

e Extensions to provide more functionality
« Features that have not yet been considered
e Uses that have not yet been addressed

- Contact Information

eterqﬂ!
L ouise Moser

Eternal-Systems, Inc.

5290 Overpass Road, Building D
Santa Barbara, CA 93111

805-696-9051 X223

moser@eternal-systems.com

wWwWwW.eternal=systems.com

{1111

(]
l“I|I“|I"I“II"IIII“"IIIII!!!l!I!“!l||II||||||l!l“!“““li'i’mlm
| i

