

Workshop on Methods, Models and Tools
for Fault Tolerance

Proceedings

July 3, 2007

Oxford

Michael Butler, Southampton University, UK

Cliff Jones, Newcastle University, UK
Alexander Romanovsky, Newcastle University, UK

Elena Troubitsyna, Aabo Akademi, Finland

FP6 IST RODIN (Rigorous Open Development Environment for Complex Systems)

http://rodin.cs.ncl.ac.uk/

The Workshop on Methods, Models and Tools for Fault Tolerance, is being held
at the Integrated Formal Methods 2007 Conference on 3 July 2007 in Oxford. The
aim of the workshop is to bring together researchers in design of fault tolerance
systems with researchers in formal methods in order to help foster greater
collaboration between these research fields. This follows on from a very the very
successful Workshop on Rigorous Engineering of Fault Tolerant systems held in
Newcastle in July 2005 at Formal Methods 2007. As a selection of extended
papers from that workshop we published a book: M. Butler, C. Jones, A.
Romanovsky and E. Troubitsyna (Eds.). Rigorous Development of Complex
Fault-Tolerant Systems. Lecture Notes in Computer Science, vol. 4157, Springer
Verlag, September 2006.

This workshop is organised by the partners of FP6 IST RODIN (Rigorous Open
Development Environment for Complex Systems), who are aiming to build a
network of researchers from a wider community to promote integration of the
dependability and formal methods fields.

Faults are unavoidable in all large systems and therefore designing for fault
tolerance is essential. We believe that the use of formal methods is essential for
mastering the complexity inherent in systems with faults and mechanism for
tolerating those faults. Formal modelling and analysis helps designers to identify
faults and to understand the effect of faults on systems behaviour. Modelling and
analysis also helps designers understand the contribution of fault-tolerance
mechanisms to overall system dependability. Faulty behaviour and fault tolerance
provide a challenging application area for formal methods. This workshop will
help researchers to further elaborate the challenges involved in applying formal
methods to fault tolerance systems as well as helping to exchange ideas on
addressing the challenges.

Michael Butler, Southampton University, UK
Cliff Jones, Newcastle University, UK
Alexander Romanovsky, Newcastle University, UK
Elena Troubitsyna, Aabo Akademi, Finland

July 2007

2

Table of Contents

Part 1. Fault tolerance: Modelling in B
Elisabeth Ball, Michael Butler. Event-B Patterns for Specifying Fault-Tolerance in Multi-Agent
Interaction ... 4

Alexei Iliasov, Victor Khomenko, Maciej Koutny, Apostolos Niaouris, Alexander Romanovsky.
Mobile B Systems ... 14

Linas Laibinis, Elena Troubitsyna, Sari Leppanen. Formal Reasoning about Fault Tolerance and
Parallelism in Communicating Systems ... 24

Divakar Yadav, Michael Butler. Formal development of Fault Tolerant Transactions for Replicated
Database using Ordered Broadcasts ... 33

Part 2. Fault tolerance: requirements, modeling and verification
Pablo F.Castro, Tom S.E. Maibaum. Reasoning about System-Degradation and Fault-Recovery with
Deontic Logic ... 43

Andrey Berlizev, Nicolas Guelfi. Engineering Fault-tolerance Requirements using Deviations and the
FIDJI Methodology .. 53

Qaisar A. Malik, Johan Lilius, Linas Laibinis. Model-based Testing Using Scenarios and Event-B
Refinements .. 59

Dubravka Ilic, Elena Troubitsyna, Linas Laibinis, Colin Snook. Formalizing UML-based
Development of Fault Tolerant Control Systems .. 70

Part 3. Fault tolerant applications, formal verification
Ansgar Fehnker, Matthias Fruth, Annabelle McIver. Graphical modelling for simulation and formal
analysis of wireless network protocols .. 80

Michael Fisher, Boris Konev, Alexei Lisitsa. Temporal Verification of Fault-Tolerant Protocols 88

Nathan Weston, Francois Taiani, Awais Rashid. Interaction Analysis for Fault Tolerance in Aspect-
Oriented Programming ... 95

Budi Arief, Alexei Iliasov, Alexander Romanovsky. Rigorous Development of Ambient Campus
Applications that can Recover from Errors ... 103

Part 4. Processes and architectures
Ayda Saidane. SERENITY: A Generic framework for Dependability Construction. A Patterns
Oriented Approach ... 111

Marta Plaska, Marina Waldén, Colin Snook. Documenting the Progress of the System Development ... 118

Zheng Chen, Luc Moreau. Recording Accurate Process Documentation in the Presence of Failures 128

Anatoliy Gorbenko, Vyacheslav Kharchenko, Alexander Romanovsky. Vertical and Horizontal
Composition in Service-Oriented Architecture ... 139

Vladimir Sklyar, Vyacheslav Kharchenko. A Method of Multiversion Technologies Choice on
Development of Fault Tolerant Software Systems .. 148

3

Event-B Patterns for Specifying Fault-Tolerance
in Multi-Agent Interaction

Elisabeth Ball and Michael Butler
∗

Dependable Systems and Software Engineering, Electronics and Computer Science,
University of Southampton, UK
{ejb04r, mjb}@ecs.soton.ac.uk

Abstract. Interaction in a multi-agent system is susceptible to failure.
A rigorous development of a multi-agent system must include the speci-
fication of fault-tolerance in agent interactions for the agents to be able
to continue to function independently. Patterns are presented for the
specification in Event-B of fault tolerance in multi-agent interactions.

1 Introduction

A multi-agent system is a group of autonomous agents that interact to achieve
individual or shared goals [1]. The agents interact through communicative acts
in the form of messages. When the communications between agents fail the
communicating agents must be able to tolerate that failure for the system to
continue to function. The required fault-tolerant behaviour of the agent depends
on the intended affect of the communication [2].

Formal methods are the application of mathematics to model and verify
software or hardware systems [3]. Event-B is a formal method for modelling and
reasoning about systems based on set theory and predicate logic. The Event-
B method has been devised for modelling reactive and distributed systems [4].
Formal methods have been criticised for their lack of accessibility especially for
novice users [5]. Design patterns are a way of communicating expertise by cap-
turing the solutions to similar design problems and re-using those solutions [6].

The Foundation for Intelligent Physical Agents (FIPA) specifications offer a
standardised set of communicative acts [7]. In this paper we contribute a set pat-
terns that capture how the behaviour of those communicative acts pertaining to
fault-tolerance can be specified in Event-B. The patterns capture the specifica-
tion of communication events that indicate the presence of faults and the events
that provide the fault-tolerant behaviour in response. The patterns can be re-
used to specify this behaviour as part of a specification of a multi-agent system
in Event-B. The patterns can be used for any type of multi-agent interaction
independent of FIPA interaction protocol specifications.

∗
Michael Butler’s contribution is part of the IST project IST 511599 RODIN (Rigor-
ous Open Development Environment for Complex Systems)

4

2 Patterns

The purpose of a design pattern is to capture structures and decisions within a
design that are common to similar modelling and analysis tasks. They can be
re-applied when undertaking similar tasks to in order reduce the duplication of
effort [6].

The patterns described in this paper have been used to model a case study
of the contract net interaction protocol [8]. The goal of the contract net is for
the initiating agent to find an agent, or group of agents, that offer the most
advantageous proposal to carry out a requested task. In the protocol an initiator
agent broadcasts a call for proposals to the other agents in the system. The
initiator selects one or more proposals from the participating agents who then
carry out the required task. The contract net protocol has been chosen because
it is a distributed transaction with several points of possible failure.

An extract from the abstract machine of the contract net case study is shown
in Figure 1. It models an abstraction of the contract net protocol. Each interac-
tion is modelled as a unique conversation that begins by the callForProposals
event adding a new conversation to the conv variable. The successful conversa-
tion continues with the makeProposal event and the conversation is related to
agents that make a proposal in the proposed variable. The select event moves
the conversation into the next state by taking at least one and adding it to the
selected variable. The conversation is in its final state when it is added to the
completed variable. This will happen when the complete event is triggered for
the successful completion of a conversation, or in the unsuccessful cases with
the failCommit, failedContract and cancel events. The unsuccessful events
model the initiator failing to select a proposal, the accepted agents failing to
carry out the task and the initiator cancelling the conversation.

The abstract machine in Figure 1 abstracts away from specifying the interac-
tion as a series of messages being passed between agents. The abstract machine
will be refined to model the way in which the individual agents communicate.
Before the model is refined to include the message passing the fault-tolerance
patterns will be applied during a refinement step. The fault-tolerant behaviour
will then be present when the model is refined to include agent communication.

Four of the patterns are described below along with examples of their specifi-
cation taken from the contract net case study. Following this the other patterns
are described. All of the patterns have been modelled as part of the case study.

2.1 Timeout
Name:Timeout
Problem: An agent may become deadlocked during a conversation whilst wait-
ing for replies. Specifying a timeout will allow the agent to continue the inter-
action as if it were expecting no more replies.
Solution: Add an event to the specification that will change the state of the
conversation from before the timeout to after the timeout. Include events for
the agent have guards for receiving replies before the timeout and after the
timeout.

5

MACHINE ContractNet

SETS CONVERSATION; AGENT

VARIABLES conv, proposed, selected, completed, initiator

INVARIANT conv ⊆ CONVERSATION ∧ proposed ∈ AGENT ↔ conv ∧
selected ⊆ proposed ∧ completed ⊆ conv ∧
initiator ∈ conv → AGENT

EVENTS INITIALISATION = conv, selected, completed,

proposed, initiator := ∅
callForProposals = makeProposal =

ANY aa, cc WHERE ANY aa, cc WHERE

cc ∈ CONVERSATION ∧ cc ∈ conv ∧
cc /∈ conv ∧ aa ∈ AGENT ∧ aa ∈ AGENT ∧
cc /∈ completed cc 7→ aa /∈ intiator ∧
THEN aa 7→ cc /∈ proposed

conv := conv ∪ {cc} || THEN

initiator(cc) := aa proposed :=

END; proposed ∪ {aa 7→ cc}
END;

select = complete =

ANY cc, as WHERE ANY cc WHERE

cc ∈ conv ∧ cc ∈ conv ∧
as ∩ selected = ∅ ∧ cc ∈ ran(selected) ∧
as ⊆ proposed B {cc} ∧ cc /∈ completed

cc /∈ completed THEN

THEN completed := completed ∪ {cc}
selected := selected ∪ as END;

END;

failCommit = cancel =

ANY cc WHERE ANY cc WHERE

cc ∈ conv ∧ cc /∈ selected ∧ cc ∈ conv ∧
cc /∈ completed cc /∈ completed

THEN THEN

completed := completed ∪ {cc} completed := completed ∪ {cc}
END; END

failedContract =

ANY cc WHERE

cc ∈ conv ∧
cc ∈ ran(selected) ∧
cc /∈ completed

THEN

completed := completed ∪ {cc}
END;

Fig. 1. Abstract Model of Part of the Contract Net Interaction Protocol

6

VARIABLES conv, cfpR, proposalG, proposalR, beforeTimeout, afterTimeout,

rejectG, completed

INVARIANT conv ⊆ CONVERSATION ∧ completed ⊆ conv ∧
beforeTimeout, afterTimeout ⊆ conv ∧ beforeTimeout ∩ afterTimeout = ∅
cfpR, proposalG, proposalR, rejectG ∈ AGENT ↔ CONVERSATION ∧
proposalG = proposed ∧ proposalR ⊆ proposalG

EVENTS INITIALISATION ...

deadline = failCommmit1 =

ANY cc WHERE REFINES failCommit

cc ∈ beforeTimeout ANY cc WHERE

THEN cc ∈ conv ∧
beforeTimeout := cc ∈ afterTimeout ∧

beforeTimeout \ {cc} || cc /∈ ran(selected) ∧
afterTimeout := cc /∈ completed

afterTimeout ∪ {cc} THEN

END; completed := completed ∪ {cc}
END;

receiveProposal1 = receiveProposal2 =

ANY aa, cc WHERE ANY aa, cc WHERE

cc ∈ beforeTimeout ∧ cc ∈ afterTimeout ∧
cc /∈ selected ∩ completedConv ∧ cc /∈ selected ∩ completedConv ∧
aa 7→ cc /∈ proposalR ∧ aa 7→ cc /∈ proposalR ∧
aa 7→ cc ∈ proposalG ∧ aa 7→ cc ∈ proposalG ∧
THEN THEN

proposalR := proposalR ∪ {aa 7→ cc} rejectG := rejectG ∪ {aa 7→ cc}
END; END

Fig. 2. Timeout Pattern in the Contract Net

The Timeout pattern prevents an agent from becoming deadlocked whilst
waiting for a reply. In the contract net case study a deadline is required for
when proposals may be submitted. Any proposals received after this time will
be automatically rejected. Figure 2 shows part of a refinement of the abstract
model that uses the Timeout pattern. The deadline event changes the state of
the conversation from beforeTimeout to afterTimeout. These states affect the
event that can be triggered when a proposal is received.

In this refinement the order of the interaction is controlled by variables that
represent each type of message either being generated or received. When a pro-
posal has been generated by an agent a relationship between the agent and
conversation is added to the proposalG variable. When it is received the rela-
tionship is added to the proposalR variable.

When a proposal has been generated and not received two events that model
the receiving of a proposal can be triggered. If the state of the conversation
is beforeTimeout then the receiveProposal1 event can be triggered and the
proposal is received. If the state of the conversation is afterTimeout then the
receiveProposal2 event can be triggered. The action of the second event results

7

in a reject being generated for the proposing agent and the proposal is not
received.

Including the Timeout pattern in the model can allow the deadline to pass
before any agents make a proposal. In this case the initiator will not be able
to select a proposal. The Refuse pattern, described below, can also lead to the
initiator being unable to select a proposal. These behaviours are a refinement of
the behaviour modelled in the abstract machine by the failCommit event. In this
refinement the failCommit event has been refined into two events that reflect
each behaviour. The failCommit1 event in Figure 2 models initiator failing to
select a proposal after the deadline has passed. Without the specification of the
fault-tolerant behaviour in the abstract model it cannot be refined to include
the more detailed behaviour prescribed by the patterns.

2.2 Refuse

Name: Refuse
Problem: An agent cannot support the action requested.
Solution: Add an event for an agent to send a refuse message in response to
a request and an event for an agent to receive a refuse message.

VARIABLES cfpR, refuseG, refuseR

INVARIANT cfpR, refuseG, refuseR ∈ AGENT ↔ CONVERSATION ∧
refuseR ⊆ refuseG

EVENTS INITIALISATION ...

makeRefusal = receiveRefusal =

ANY aa, cc WHERE ANY aa, cc WHERE

aa 7→ cc ∈ cfpR ∧ aa 7→ cc ∈ refuseG ∧
aa 7→ cc /∈ refuseG aa 7→ cc /∈ refuseR

THEN THEN

refuseG := refuseG ∪ {aa 7→ cc} refuseR := refuseR ∪ {aa 7→ cc}
END; END;

failCommit2 =

REFINES failCommit

ANY cc WHERE

cc ∈ conv ∧ cc ∈ beforeTimeout ∧
cc /∈ completed ∧ cc /∈ ran(selected) ∧
dom(refuseR B {cc}) = AGENT - initiator(cc)

THEN

completed := completed ∪ {cc}
END

Fig. 3. Refuse Pattern in the Contract Net

8

Not all agents that receive a request will be able to fulfill it. The Refuse
pattern allows an agent to respond to a request that it cannot support, that is
not correctly requested or that the requesting agent is not authorised to request.

In the contract net protocol an agent that receives a call for proposals can
respond with a refusal. Figure 3 shows the part of the refinement that implements
the Refuse pattern. After an agent receives a call for proposals the makeRefusal
event can be triggered. This results in a relationship between the participating
agent and the conversation being added to the refuseG variable. After a refusal
has been generated the receiveRefusal event can be triggered. The relationship
is added to the refuseR variable indicating that the refusal has been received.

Similarly to the Timeout pattern the Refuse pattern refines the original model
of the initiator failing to commit. If all of the agents refuse to make a proposal,
no selection can be made and the failCommit2 event can be triggered.

2.3 Cancel

Name: Cancel
Problem: The requesting agent no longer requires an action to be performed.
Solution: Add an event to the specification for an agent to send a cancel
message to an agent that has agreed to perform an action on its behalf. Add
events for that agent to receive a cancel message. The agent will either reply
with an inform if they have cancelled the action or a failure if they have not.

Once an agent has requested an action they can then request that it is can-
celled. Agents that behave rationally may require that an action is no longer
performed. This may be because their beliefs about the action change [9].

Figure 4 shows the part of the refinement that implements the Cancel pattern.
The Cancel pattern models the behaviour that leads to the refined cancel event.
The cancel mechanism can be introduced as a valid refinement because the
cancel event is modelled in the abstract machine.

The cancelConversation event can be triggered by the initiating agent at
any point in the conversation. The cancel message is broadcast to every other
agent in the system. In the model this is specified by a set of relationships be-
tween the agents and the conversation being added to the cancelG variable.
When there is a relationship between an agent and the conversation in the
cancelG variable the receiveCancel event can be triggered and the relationship
is added to the cancelR variable. When the relationship is in the cancelR vari-
able two events can be triggered. The first event results in the relationship being
added to the informCancelG variable. This case models the participant success-
fully cancelling the task and responding with a message to inform the initiator.
The second event results with the relationship being added to the failCancelG
variable. In this case the participant responds with a message to inform the ini-
tiator that they could not cancel the task. The different responses to the cancel
message are received with the receiveInformCancel and receiveFailCancel
events. The cancel event can be triggered when a response has been received
from all of the agents in the system and the conversation is completed.

9

VARIABLES conv, completed, initiator, cancelG, cancelR,

informCancelG, failCancelG, participantConv

INVARIANT cancelG, informCancelG, failureCancelG,

participantConv ∈ AGENT ↔ CONVERSATION ∧
cancelR ⊆ cancelG ∧ conv ⊆ CONVERSATION ∧
completed ⊆ conv ∧ initiator ∈ conv → AGENT

EVENTS INITIALISATION ...

cancelConversation = receiveCancel =

ANY aa, cc, as WHERE ANY aa, cc WHERE

cc ∈ conv ∧ aa 7→ cc ∈ cancelG ∧
cc /∈ completed ∧ aa 7→ cc /∈ cancelR ∧
initiator(cc) = aa ∧ aa 7→ cc ∈ participantConv

as ∈ AGENT ↔ CONVERSATION ∧ THEN

as = (AGENT \ {aa}) * {cc} cancelR := cancelR ∪ {aa 7→ cc}
THEN END;

completed := completed ∪ {cc} ||
cancelG := cancelG ∪ as

END;

sendInformCancel = sendFailCancel =

ANY aa, cc WHERE ANY aa, cc WHERE

aa 7→ cc ∈ cancelR ∧ aa 7→ cc ∈ cancelR ∧
aa 7→ cc ∈ participantConv aa 7→ cc ∈ participantConv

THEN THEN

informCancelG := failCancelG :=

informCancelG ∪ {aa 7→ cc} || failCancelG ∪ {aa 7→ cc} ||
participantConv := participantConv :=

participantConv \ {aa 7→ cc} participantConv \ {aa 7→ cc }
END; END;

receiveInformCancel = receiveFailCancel =

ANY aa ,cc WHERE ANY aa, cc WHERE

aa 7→ cc ∈ informCancelG ∧ aa 7→ cc ∈ failCancelG ∧
aa 7→ cc /∈ informCancelR aa 7→ cc /∈ failCancelR

THEN THEN

informCancelR := failCancelR :=

informCancelR ∪ {aa 7→ cc} failCancelR ∪ {aa 7→ cc}
END; END;

cancel =

ANY cc WHERE

cc ∈ conversation ∧
cc /∈ completed ∧
informCancelR B {cc} ∪

failCancelR B {cc} =

AGENT - {initiator(cc)}
THEN

completed := completed ∪ {cc}
END

Fig. 4. Cancel Pattern in the Contract Net

10

2.4 Failure

Name: Failure
Problem: An agent is prevented from carrying out an agreed action.
Solution: Add an event for an agent to send a failure message after they have
committed to performing an action on behalf of another agent. Add an event
for an agent to receive a failure message after a commitment has been made.

An agent that makes a commitment to perform an action may be prevented
from carrying it out. The agent that requested the action should be informed of
this failure.

VARIABLES conv, selected, completed, acceptG, informR, failureG,

failureR, informG, participantConv, proposalG

INVARIANT conv ⊆ CONVERSATION ∧ completed ⊆ conv ∧
acceptG, informG, informR, failureG, failureR, proposalG,

participantConv ∈ AGENT ↔ CONVERSATION ∧
selected ⊆ proposalG

EVENTS INITIALISATION ...

taskFailure = failedContract =

ANY aa, cc WHERE ANY cc WHERE

aa 7→ cc ∈ acceptR ∧ cc ∈ conv ∧
aa 7→ cc /∈ failureG ∧ cc ∈ ran(selected) ∧
aa 7→ cc /∈ informG cc /∈ completed ∧
THEN acceptG B {cc} =

failureG := failureR B {cc} ∪ informR B {cc} ∧
failureG ∪ {aa 7→ cc} || failureR B {cc} 6= ∅

participantConv := THEN

participantConv \ {aa 7→ cc} completed := completed ∪ {cc}
END; END

receiveFailure =

ANY aa, cc WHERE

cc ∈ conv ∧
aa 7→ cc ∈ acceptG ∧
aa 7→ cc ∈ failureG ∧
aa 7→ cc /∈ failureR

THEN

failureR :=

failureR ∪ {aa 7→ cc}
END;

Fig. 5. Failure Pattern in the Contract Net

In the case study there are two possible outcomes to a proposal being ac-
cepted. The action can be performed successfully and the participating agent
will send the initiator an inform message or the action may be unsuccessful and

11

the participant will send a failure message. The three events that model the
result of an agent being unsuccessful in completing a task are shown in Figure 5.

The taskFailure event can be triggered after an agent has had its pro-
posal accepted. A relationship between the failing agent and the conversation
is added to the failureG variable. The state of the participant is updated to
end its participation in the conversation. When the failure has been generated
the receiveFailure event can be triggered. The failedContract event can be
triggered when all the agents that have been accepted have informed the initia-
tor of either the success or failure of the task, and at least one agent has failed.
Introducing the failure mechanism is a valid refinement because the failure is
modelled in the abstract machine.

2.5 Further Fault-Tolerance Patterns

The remaining patterns are presented below. The Not-Understood pattern speci-
fies the behaviour of the agents when there is a fault in communication. The final
pattern prevents an agent from re-performing an action should the middleware
of the system deliver multiple copies of the same message.

Name:Not-Understood
Problem: An agent receives a message that it does not expect or does not
recognise.
Solution: Specify an event for receiving a message with an unknown or un-
expected performative. Specify the action as replying with a not-understood
message. Specify events for receiving a not-understood message for each fail-
ure recovery scenario.

Name: Sending and Receiving Agent States
Problem: An agent receives a message that has already been sent.
Solution: Specify the states of the protocol that the agents will enter when
sending and receiving messages. Each sending and receiving event must be
guarded on the condition that the agent is in the correct state.

Figure 2 gives an example of how the Sending and Receiving Agent States
pattern can be applied. It uses the proposalG and proposalR variables to specify
the state of the interaction. When an agent-conversation pair is in proposalG,
but not in proposalR, the events that receive proposals can be triggered.

3 Conclusion

Event-B is a method that is suited to the specification of multi-agent systems
as it has been developed for modelling reactive and distributed systems. The
patterns presented above allow the developer to relate fault-tolerance behaviour
to the communication events of an Event-B specification of a multi-agent system.

The fault-tolerance patterns presented in this paper can be combined with
patterns for specifying different aspects of multi-agent interaction. The devel-
opment of refinement patterns will improve the application of the fault-tolerant

12

patterns. Refinement patterns would describe the link between the abstract spec-
ification of the fault-tolerant behaviour and the effect of applying the patterns
during refinement. The different patterns could be formed into a pattern lan-
guage [10] for multi-agent interaction.

General strategies for fault-tolerance in multi-agent systems include adapting
fault-tolerance techniques, such as replication [11], redundancy [12] and check-
points [13], to multi-agent systems. Fault-tolerance of locations that support sys-
tems of mobile agent have been specified in Event-B [14]. Patterns for the spec-
ification of fault-tolerance strategies in multi-agent systems and fault-tolerance
of mobile agents are possible directions for future work.

References

1. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117
(2000) 277–296

2. Dragoni, N., Gaspari, M., Guidi, D.: An ACL for specifying fault-tolerant protocols.
In Bandini, S., Manzoni, S., eds.: AI*IA: Advances in Artificial Intelligence. Volume
3673 of Lecture Notes in Computer Science., Milan, Italy, Springer (2005) 237–248

3. Storey, N.: Safety-Critical Computer Systems. Pearson Education Limited, Bath,
UK (1996)

4. Abrial, J.R., Mussat, L.: Introducing dynamic constraints in B. In Bert, D., ed.:
Second International B Conference B’98: Recent Advances in the Development and
Use of the B Method, Springer (1998) 83 – 128

5. Glass, R.: Formal methods are a surrogate for a more serious software concern.
IEEE Computer 29(4) (1996) 19

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley Longman Publishing Co., Inc.
Boston, MA, USA (1995)

7. FIPA: Communicative act library specification. Technical report, Available From:
http://www.fipa.org/specs/fipa00037/SC00037J.pdf (2003)

8. FIPA: Contract net interaction protocol specification. Technical report, Available
From: http://www.fipa.org/specs/fipa00029/SC00029H.pdf (2002)

9. Ferber, J.: Multi-Agent Systems: Introduction to Distributed Artificial Intelligence.
Addison Wesley (1999)

10. Noble, J.: Towards a pattern language for object oriented design. In: Technology
of Object Oriented Langauges 28, Melbourne, Australia, IEEE (1998) 2 – 13

11. Fedoruk, A., Deters, R.: Improving fault-tolerance by replicating agents. In: Pro-
ceedings of the First International Joint Conference on Autonomous Agents and
Multiagent Systems: Part 2, ACM Press New York, NY, USA (2002) 737–744

12. Kumar, S., Cohen, P.: Towards a fault-tolerant multi-agent system architecture.
In: Proceedings of the Fourth International Conference on Autonomous Agents,
ACM Press New York, NY, USA (2000) 459–466

13. Wang, L., Hon, F.L., Goswami, D., Wei, Z.: A fault-tolerant multi-agent devel-
opment framework. In Cao, J., Yang, L., Guo, M., Lau, F., eds.: Parallel and
Distributed Processing and Applications. Volume 3358 of Lecture Notes in Com-
puter Science., Hong Kong, China, Springer (2004) 126 – 135

14. Laibinis, L., Troubitsyna, E., Iliasov, A., Romanovsky, A.: Rigorous development
of fault-tolerant agent systems. In Butler, M., Jones, C., Romanovsky, A., Troubit-
syna, E., eds.: Rigorous Development of Complex Fault-Tolerant Systems. Volume
4157 of Lecture Notes in Computer Science. Springer, Berlin (2006) 241 – 260

13

Mobile B Systems

Alexei Iliasov, Victor Khomenko, Maciej Koutny, Apostolos Niaouris and
Alexander Romanovsky

School of Computing Science, Newcastle University
Newcastle upon Tyne, NE1 7RU, United Kingdom

Abstract. Mobile agent systems (MAS) are complex distributed sys-
tems that are dynamically composed from communicating autonomous
components. In this paper we introduce high level programming nota-
tion for the specification of MAS. This notation can faithfully capture
both the behavioral and the functional model of a mobile agent. Further-
more, we provide its structured operational semantics through a set of
rewriting rules together with a brief presentation of the supporting tool.
Keywords: agent systems, mobility, B Method, verification, model check-
ing, Petri Nets

1 Introduction

Mobile agent systems (MAS) are complex distributed systems made of asyn-
chronously communicating mobile autonomous components. Such systems have
a number of advantages over traditional distributed systems, including: ease of
deployment, low maintenance cost, scalability, autonomous reconfiguration and
effective use of infrastructure. MAS are distinct enough to require specialised
software engineering techniques. A number of methodologies, frameworks and
middleware systems were proposed to support rapid development of MAS appli-
cations. However, there is as yet no single widely recognised standard and the
problem of building large and dependable MAS remains open. In this paper, we
propose a formal modelling based approach to developing MAS.

Our approach should be capable of addressing two critical issues. Firstly,
being able to capture both the functional model (e.g., what kind of computations
an agent is capable of doing) and the behavioral model of an agent (e.g., how
an agent moves, how it interacts with other agents, etc.). The second issue is to
develop the proper tools for the automatic verification of the produced model.
While it possible to use just the Event-B notation (provided by the RODIN
platform) to describe the functional model of an agent and statically verify it,
it is quite challenging or even impossible to do the same with the behavioral
model [?,?]. In this novel approach, we introduced a hybrid (Event-B combined
with constructs inspired by two process algebras: KLAIM [?,?] π-calculus [?,?])
high level programming notation for the specification of mobile applications
that can faithfully capture both the behavioral and the functional model of
an agent. Moreover, we developed a plug-in for the RODIN platform based on
an automatic verification engine of proven efficiency that supports the model

14

ROLE Drinker

BODY

order = serve ◦ ();

drink = skip

ROLE Pub

VARIABLES int : beer = 0

INVARIANT beer ∈ 0 . . . 10

BODY

serve = IF

beer > 0

THEN

beer := beer− 1;
drink ◦ ()

END

SYSTEM

LOCATIONS pub1, pub2

INVARIANT beer@Pub ≥ drinker@pub

AGENTS

Student(drinker) := move(pub1).order;
Pub(pub) := move(pub1).〈beer@pubC < 3〉move(home);

END

Fig. 1. Model of a simple multi-agent application.

checking of a given specification. By using a combination of static verification
and model checking we are able to offer two different views on a model and carry
out complimentary analysis of functional and dynamic properties.

The paper is structured as follows. In sections 2,3 we are introducing the
new modelling language together with its structured operational semantics. In
section 4, we are identifying fault tolerance properties of MAS and in the final
section we are briefly presenting the developed plug-in that will be used for the
automatic verification of MAS.

2 Modelling Language

The modelling language specifications, called scenarios, are of the following form:

begin− scenario

ℓ1 . . . ℓk (locations)

rl1 . . . rlm (roles)

ag1= new(rl ′1) . . . agn= new(rl ′n) (agents)

E (process expression)

end− scenario

15

In the above, it is assumed that ℓi 6= ℓj , rl i 6= rl j and ag i 6= agj , for all i 6= j;

and that rl ′i ∈ {rl1, . . . , rlm}, for all i.
The process expression describes a distributed system composed of agents,

each agent being an instantiation of a role. Its general format is

ag1 : pa act11 pa act1m1
. nil‖ . . . ‖agk : pa actk1 pa actkmk

. nil

where the agi’s are agents and pa actij ’s are process algebra actions.
A role specification describes a set of events and actions which are proce-

dures that update role variables and initiate further computations. A role event
is invoked by the ◦ (trigger) statement with suitable arguments supplied by a
calling agent. For example, in Figure ??, the action order in the drinker role
triggers event serve in role pub which in its turn may trigger drinker’s event
drink. An action is invoked from within a process algebra expression, with con-
stants or role variables as parameters. An action invocation may result in a chain
of event invocations corresponding to communication between roles.

Executing move(ℓ) changes the current locality of an agent, and the function
number(rl , ℓ) returns the number of agents associated with role rl in locality ℓ.
The process expression is constructed from basic actions, which can be of one of
the following forms:

– move(ℓ) moves the current agent (i.e., that labelling the sequential sub-
expression in which the action appears) to location ℓ;

– migrate(ℓ) moves the current agent to location ℓ provided that in its current
locality there is no other agent which would want to trigger one of the events
in ag ;

– act(ag , d) calls action act in agent ag with the actual parameters d;
– 〈bool〉 is a guard, where bool is a well-formed Boolean expression.

In addition to that we use prefix and (at the topmost level) parallel composition.

3 Semantics

Events and actions. We assume that EN and AN are infinite sets of, respectively,
event and action names (or, simply, events and actions). With each name x ∈
EN ∪ AN we have associate finite sets of parameters and variables, respectively
denoted by param(x) and var(x). The former are the parameters which are used
in invocations of x, while var(x) are all role variables which are involved in
the execution of x (including those which are only read). Note that different
actions and events belonging to a role may involve different, even disjoint, sets
of variables. We assume that the sets of parameters, param(x), and variables,
var (x), are implicitly ordered and so they can be represented as lists, and so a
valuation for param(x) can be represented as a list of values of appropriate type.

An execution of an event or action proceeds in two (consecutive) phases,
each phase being treated as atomic. The first phase sets the parameters to correct
values, while the second updates the state of local variables and possibly triggers

16

an event. To capture the effect of these two phases, with each event or action
name x we associate two mappings:

storex : EVALparam(x) × EVALvar(x) → EVALvar(x)

triggerx : EVALparam(x) × EVALvar(x) → {⊥} ∪ IEN .

In the above, we use EVALparam(x) and EVALvar(x) to denote all legal evalua-

tions of the parameters and variables involved in the execution of x. Moreover,
IEN is the set of instantiated event names, each such name consisting of a valid
event name together with a legal evaluation of its parameters (see below). The
symbol ⊥ is used in case when the second phase of x’s execution does not trigger
any event.

An instantiated event or action is a pair (x, η), where x ∈ EN ∪ AN and η ∈

EVALparam(x). Each such (x, η) can be denoted as x(d)
df

= x(d1, . . . , dk), where
di = η(pi) for every pi — the i-th parameter of x. The sets of all instantiated
events and actions will be denoted by IEN and IAN, respectively.

Both functions can be applied for any valuation eval of a set of variables
V such that var(x) ⊂ V . In such a case, eval ′ = storex(d, eval) is a valuation
for V satisfying eval ′|var(x) = storex(d, eval |var(x)) and eval ′(v) = eval(v) for
v ∈ V \ var (x). Moreover, triggerx(d, eval) = triggerx(d, eval |var(x)).

Roles. A role is a triple rl
df

= (Var ,Ev ,Act , init), where Var , Ev and Act are
finite sets of, respectively, variables, events and actions, and init is an initial
valuation of the variables in Var . It is assumed that var (x) ⊆ Var , for every

x ∈ EArl
df

= Ev ∪ Act .

Mobile B systems. A mobile B system (or MB-system) is a tuple MBS
df

=
(Rol ,Ag,Loc, ρ), where Rol is a finite set of roles, Ag is a finite set of agent
names (or, simply, agents), Loc is a finite set of localities, and ρ : Ag → Rol is
a mapping assigning a role to every agent. It is assumed that no event or action
occurs in more than one role in Rol .

Global states of an evolving MB-system are captured by the notion of a

configuration which is a tuple Conf
df

= (λ, ǫ, π, σ,E), where:

– λ is a mapping returning, for every ag ∈ Ag, a locality in Loc;
– ǫ is a mapping returning, for every ag ∈ Ag, a valuation for the variables in

ρ(ag);
– π is a mapping returning, for every ag ∈ Ag and x ∈ EAρ(ag), a valuation

for the parameters in param(x);
– σ is a mapping returning, for every ag ∈ Ag, a mapping from the events and

actions in ρ(ag) to the set {on, off },
(Note: σ(ag , x) = on is used to indicate that x within ag is in-between the
two phases of its execution);

– E is a process expression which provides a partial description of what may
happen next (the other source for the continuation of behaviour comes from
the events and actions which are in-between the two phases of their execu-
tion).

17

Evolution starts from an initial configuration satisfying λ0(ag)
df

= limbo,

ǫ0(ag)
df

= initρ(ag), π0(ag)(x)(p)
df

= ⊥, and σ0(ag)(x)
df

= off , for all ag ∈ Ag,
x ∈ EAρ(ag) and p ∈ param(x). Note that limbo is a special location, not listed
explicitly in the scenario, which is used to store agents before they become active,
and after they become disconnected.

Rules of the operational semantics. These are given in Figure ??, where, for all
ag ∈ Ag, ℓ ∈ Loc and ev ∈ Ev , we have the following:

todo(ag) = {(x, triggerx(ǫ(ag), π(ag , x))) | σ(ag , x) = on ∧ λ(ag) 6= limbo}
waiting(ℓ) = {ev | ∃ag : λ(ag) = ℓ ∧ ∃x, d : (x, (ev , d)) ∈ todo(ag)}

users(ℓ, ev) = {ag | λ(ag) = ℓ ∧ ev ∈ Evρ(ag)} .

Note that todo(ag) identifies all the second phases of executions which the agent
ag tries to trigger at the current state, waiting(ℓ) lists all events which agents at
the location ℓ try to trigger, and users(ℓ, ev) is the set of agents at the location
ℓ which have ev as one of the events. Note that these notations depend also on
an implicit Conf .

The various rules of the operational semantics capture essential characteris-
tics of the mobile systems we intend to model and analyse, as follows:

– In the rules Sum and Par, we assume E 6= E ′ to check whether the prop-
agated execution came from the process expression rather than finishing an
event or action belonging to one of the agents;

– The rule Mov moves an agent to a specific location; its main role is to
simulate agent disconnection and re-connection.

– The rule Mig expresses another, conditional mobility of an agent, as it is
applicable only if the agent does not have any events that other agent(s)
residing at the same locality want to trigger;

– In the guarded rule Gua, the execution is possible only if the Boolean ex-
pression evaluates to true in the current configuration (cf. Conf |= bool);

– The rule Act governs the execution of an action belonging to an agent
which is triggered from within a process expression. The action can only be
triggered if it is currently dormant (in that agent);

– The rule Evt expresses the triggering of an event. It is assume that there is
at least one agent which contains the event in the current location, and that
no such agent is in the middle of executing this event.

4 Fault Tolerance Properties

The specific focus of our work is on identifying and checking fault tolerance
properties of the mobile systems. To do this we are extending our models with
a number of typical faults which can happen in the ambient campus and with
the corresponding recovery actions the system conducts to tolerate them. We
are defining properties of two types: properties stating the success of recovery

18

[Par]

(λ, ǫ, π, σ,E) −→ (λ′, ǫ′, π′, σ′,E ′) ∧ E 6= E ′

(λ, ǫ, π, σ,E‖E ′′) −→ (λ′, ǫ′, π′, σ′,E ′‖E ′′)
(λ, ǫ, π, σ,E ′′‖E ′) −→ (λ′, ǫ′, π′, σ′, E ′′‖E ′)

[Mov]
(λ, ǫ, π, σ, ag : move(ℓ) . E) −→ (λ[ag 7→ ℓ], ǫ, π, σ, ag : E)

[Mig]
waiting(λ(ag)) ∩ Evρ(ag) 6= ∅

(λ, ǫ, π, σ, ag : migrate(ℓ) . E) −→ (λ[ag 7→ ℓ], ǫ, π, σ, ag : E)

[Gua]
Conf |= bool ∧ (λ, ǫ, π, σ, z . E) −→ (λ′, ǫ′, π′, σ′,E)

(λ, ǫ, σ, ag : 〈bool〉z . E) −→ (λ′, ǫ′, σ′, ag : E)

[Act]
σ(ag)(act) = off

(λ, ǫ, π, σ, ag : act(d) . E) −→ (λ, ǫ, π[(ag , act) 7→ d], σ[(ag, act) 7→ on], ag : E)

[Evt1]

(x,⊥) ∈ todo(ag)

(λ, ǫ, π, σ,E) −→

0

B

B

B

B

@

λ,

ǫ[ag 7→ storex(π(ag , x), ǫ(ag))],
π,

σ[(ag , x) 7→ off],
E

1

C

C

C

C

A

[Evt]

(x, (ev , d)) ∈ todo(ag) ∧ users(λ(ag), ev) = {ag1, . . . , agn} 6= ∅

∧ σ(ag1)(ev) = . . . = σ(agn)(ev) = off

(λ, ǫ, π, σ, E) −→

0

B

B

B

B

@

λ,

ǫ[ag 7→ storex(π(ag , x), ǫ(ag))],
π[(ag i, ev) 7→ d]ni=1,

σ[(ag , x) 7→ off][(ag i, ev) 7→ on]ni=1,

E

1

C

C

C

C

A

Fig. 2. Operational semantics rules.

19

and continuous provisioning of the system service and properties stating the
correct application of the fault tolerance mechanisms (such as scopes, nested
scopes, exception handling, disconnection detection and retry provided by the
middleware).

Some of the examples of the properties of the first type are presence of all
scope members in the current location to provide full recovery, presence of the
agents responsible for local handling of all exceptions, successful handling of all
exceptions in the system, successful dealing with lost/crashed agents, etc. Ex-
amples of the properties of the second types are correctness of scoping structure,
absence of information smuggling between scopes, involving (if necessary) all
agents in a scope in cooperative handling.

5 Supporting tool

Mobile agent systems are highly concurrent causing the state space explosion
when applying model checking techniques. We therefore use an approach which
copes well with such a problem, based on partial order semantics of concur-
rency and the corresponding Petri net unfoldings. This approach is suitable for
verification of reachability-like (or state) properties, such as:

– The system never deadlocks, though it may terminate in a pre-defined set
of successful termination states.

– Security properties, i.e., all sub-scope participants are participants of the
containing scope.

– Proper using of the scoping mechanism, for example: a scope owner does not
attempt to leave without removing the scope; agents do not leave or delete
a scope when other agents expect some input from the scope; and the owner
of a scope does not delete it while there are still active agents in the scope.

– Proper use of cooperative recovery: all scope exceptions must be handled
when a scope completes; all scope participants eventually complete exception
handling; and no exceptions are raised in a scope after an agent leaves it.

– Application-specific invariants. (Note that the negation of an invariant is a
state property, i.e., the invariant holds if and only if there is no reachable
state of the system where it is violated.)

As mentioned in the previous sections, the agent modelling language is a
hybrid of Event-B and a process algebra with mobility characteristics tailored
to our requirements. In order to apply net unfoldings, we first need to translate
the hybrid programming notation (the full theoretical details of this translation
will be published soon) into Petri nets.

The supporting tool was build as a extension to the RODIN platform. Using
the plug-in architecture offered by the Eclipse IDE, it was possible to extend
the platform to support all the necessary features for our purposes. There are
several key components in this Petri net based tool:

– Rodin platform providing the Event-B specification of our model;

20

– Editors allowing the user to input/edit process algebra expressions corre-
sponding to the distribution and behavior model together with the scenario
part of the agent modelling language (Figure ??);

– Translator taking as input Event-B specification and process algebra expres-
sions and providing as output the ’Mobile B Systems’ programming notation;

– Translator from the ’Mobile B Systems’ notation to high-level Petri nets;

– Unfolder (PUNF [?,?]) for deriving a finite prefix of the unfolding of the
translated Petri net;

– Verifier (MPSAT [?]) which establishes, by working with the finite prefix,
whether the necessary properties of the original input hold;

– Animator where the output of tool (error traces), together with the complete
model of the specification can be visualised.

Fig. 3. Mobility plug-in editors

There were two key issues to consider when building such translators. The
first is a behaviour preserving translation of the combined specification into a
high-level Petri net. In our work, we were following a technique used previously
in translating two process algebras, KLAIM [?] and π-calculus [?] extended by
the modelling of state based transformations coming from Event-B. The second
issue that needed our attention is that the resulting high-level Petri net, must
be accepted as input from the model-checking engine based on net unfolding.
The combination of Event-B and process algebra, the translation from the newly
obtained modelling language to the high level net input required by the model
checker as well as the invocation of the unfolder are completely automated tasks
and hidden from the user. Moreover, the verifier checks for deadlock freeness and
invariant violations and it is capable to provide feedback in case of discovering
an error in the specification. These error traces can be visualised with the help of
the included animator, providing further assistance to the designer (Figure ??).

21

Fig. 4. Animator in action

6 Conclusions

In this paper we present a novel approach for modelling and verifying the cor-
rectness of complex mobile agent systems. None of the existing languages (e.g.,
Event-B) were capable of capturing the complete behaviour of mobile agents.
Our achievement was the development of a single hybrid (Event-B together with
a process algebra with mobility characteristics) high level programming nota-
tion that is capable of capturing both the behavioral and the functional model
of agents. This language has strong theoretical foundations and its structured
operational semantics are also presented here. Finally, an efficient model checker
has been developed as a plug-in for the RODIN platform. The plan for this tool is
to support a significant part of the Event-B notation and also behaviourally rich
process algebra expressions. Internal versions of the tool are currently available
and a public version is scheduled for a released within few months.

Acknowledgements This research was supported by the EC IST grant 511599
(Rodin) and the RAEng/Epsrc grant EP/C53400X/1 (Davac).

References

1. L.Bettini et al.: The KLAIM Project: Theory and Practice. Proc. of Global Com-

puting: Programming Environments, Languages, Security and Analysis of Systems,
Springer, LNCS 2874 (2003) 88–150.

2. L.Bettini and R.De Nicola: Mobile Distributed Programming in X-Klaim. Proc. of
Formal Methods for Mobile Computing, M. Bernardo and A. Bogliolo. Springer,
LNCS 3465 (2005) 29–68.

3. Busi, N., Gorrieri, R.: A Petri net Semantics for π-calculus. Proc. of CONCUR’95,
LNCS 962 (1995) 145–159.

22

4. M.Butler and M.Leuschel: Combining CSP and B for Specification and Property
Verification. Proc. of Formal Methods 2005, J.Fitzgerald et al.. Springer, LNCS
(3582) 2005. 221-236

5. Devillers, R., Klaudel, H., Koutny, M.: Petri Net Semantics of the Finite π-Calculus
Terms. Fundamenta Informaticae 70 (2006) 1–24.

6. R.Devillers, H.Klaudel and M.Koutny: A Petri Net Semantics of a Simple Process
Algebra for Mobility. Electronic Notes in Theoretical Computer Science 154 (2006)
71–94.

7. A.Iliasov, V.Khomenko, M.Koutny and A.Romanovsky:, On Specification and Ver-
ification of Location-Based Fault Tolerant Mobile Systems, RODIN Book, (2006),
168-188

8. V.Khomenko: Model Checking Based on Prefixes of Petri Net Unfoldings. PhD
Thesis, School of Computing Science, University of Newcastle upon Tyne (2003).

9. R.Milner, J.Parrow and D.Walker: A Calculus of Mobile Processes. Information

and Computation 100 (1992) 1–77.
10. H.Treharne and S.Schneider: How to Drive a B Machine. Proc. of ZB2000: Formal

Specification and Development in Z and B, Springer, LNCS 1878 (2000) 188–208.
11. http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/tools.html

23

Formal Reasoning About Fault Tolerance and
Parallelism in Communicating Systems

Linas Laibinis1, Elena Troubitsyna1, and Sari Leppänen2

1 Åbo Akademi University, Finland
2 Nokia Research Center, Finland

{Linas.Laibinis, Elena.Troubitsyna}@abo.fi
Sari.Leppanen@nokia.com

Abstract. Telecommunication systems should have a high degree of
availability, i.e., high probability of correct provision of requested ser-
vices. To achieve this, correctness of software for such systems and system
fault tolerance should be ensured. In this paper we show how to formalise
and extend Lyra – a top-down service-oriented method for development
of communicating systems. In particular, we focus on integration of fault
tolerance mechanisms into the entire Lyra development flow.

1 Introduction

Modern telecommunication systems are usually distributed software-intensive
systems providing a large variety of services to their users. Development of soft-
ware for such systems is inherently complex and error prone. However, software
failures might lead to unavailability or incorrect provision of system services,
which in turn could incur significant financial losses. Hence it is important to
guarantee correctness of software for telecommunication systems.

Nokia Research Center has developed the design method Lyra [6] – a UML2-
based service-oriented method specific to the domain of communicating systems
and communication protocols. The design flow of Lyra is based on the concepts
of decomposition and preservation of the externally observable behaviour. The
system behaviour is modularised and organised into hierarchical layers according
to the external communication and related interfaces. It allows the designers to
derive the distributed network architecture from the functional system require-
ments via a number of model transformations.

From the beginning Lyra has been developed in such a way that it would be
possible to bring formal methods (such as program refinement, model checking,
model-based testing etc.) into more extensive industrial use. A formalisation of
the Lyra development would allow us to ensure correctness of system design
via automatic and formally verified construction. The achievement of such a
formalisation would be considered as significant added value for industry.

In our previous work [5, 4] we proposed a set of formal specification and re-
finement patterns reflecting the essential models and transformations of Lyra.
Our approach is based on stepwise refinement of a formal system model in the

24

B Method [1] – a formal refinement-based framework with automatic tool sup-
port. Moreover, to achieve system fault tolerance, we extended Lyra to integrate
modelling of fault tolerance mechanisms into the entire development flow. We
demonstrated how to formally specify error recovery by rollbacks as well as rea-
son about error recovery termination.

In this paper we show how to extend our Lyra formalisation to model par-
allel execution of services. In particular, we demonstrate how such an extension
affects the fault tolerance mechanisms incorporated into our formal models. The
extension makes our formal models more complicated. However, it also gives us
more flexibility in choosing possible recovery actions.

2 Previous Work

In this section we give a brief overview of on our previous results [5, 4] on for-
malising and verifying the Lyra development process. This work form the basis
for new results presented in the next section.

2.1 Formalising Lyra

Lyra [6] is a model-driven and component-based design method for the devel-
opment of communicating systems and communication protocols, developed in
the Nokia Research Center. The method covers all industrial specification and
design phases from pre-standardisation to final implementation.

Lyra has four main phases: Service Specification, Service Decomposition, Ser-
vice Distribution and Service Implementation. The Service Specification phase
focuses on defining services provided by the system and their users. In the Ser-
vice Decomposition phase the abstract model produced at the previous stage
is decomposed in a stepwise and top-down fashion into a set of service compo-
nents and logical interfaces between them. In the Service Distribution phase, the
logical architecture of services is distributed over a given platform architecture.
Finally, in the Service Implementation phase, the structural elements are inte-
grated into the target environment. Examples of Lyra UML models from the
Service Specification phase of a positioning system are shown on Fig.1.

To formalise the Lyra development process, we choose the B Method as our
formal framework. The B Method [1] is an approach for the industrial develop-
ment of highly dependable software. Recently the B method has been extended
by the Event B framework [2, 7], which enables modelling of event-based sys-
tems. Event B is particularly suitable for developing distributed, parallel and
reactive systems. The tool support available for B provides us with the assis-
tance for the entire development process. For instance, Atelier B [3], one of the
tools supporting the B Method, has facilities for automatic verification and code
generation as well as documentation, project management and prototyping.

The B Method adopts the top-down approach to system development. The
basic idea underlying stepwise development in B is to design the system im-
plementation gradually, by a number of correctness preserving steps called re-
finements. The refinement process starts from creating an abstract specification

25

(a) (b) (c)

Idle serving

pc_req

pc_cnf

pc_fail_cnf

<<ServiceSpecification>>

 Positioning

I_ToPositioning I_FromPositioning

I_user

aUser : User

<<usecase>>
PositionCalculation

aPositioning : Positioning

Fig. 1. (a) Domain Model. (b) Class Diagram of Positioning. (c) State Diagram.

and finishes with generating executable code. The intermediate stages yield the
specifications containing a mixture of abstract mathematical constructs and ex-
ecutable programming artefacts.

While formalising Lyra, we single out a generic concept of a communicat-
ing service component and propose B patterns for specifying and refining it. In
the refinement process a service component is decomposed into a set of service
components of smaller granularity specified according to the proposed pattern.
Moreover, we demonstrate that the process of distributing service components
between network elements can also be captured by the notion of refinement.
Below we present an excerpt from an abstract B specification pattern of a com-
municating service component.

The proposed approach to formalising Lyra in B allows us to verify correct-
ness of the Lyra decomposition and distribution phases. In development of real
systems we merely have to establish by proof that the corresponding components
in a specific functional or network architecture are valid instantiations of these
patterns. All together this constitutes a basis for automating industrial design
flow of communicating systems.

MACHINE ACC

...

VARIABLES in data, out data

INVARIANT in data ∈ DATA ∧ out data ∈ DATA

INITIALISATION in data, out data := NIL, NIL

OPERATIONS

input(param, time) =

PRE param ∈ DATA ∧ time ∈ NAT1 ∧ ¬(param = NIL) ∧ in data = NIL

THEN in data := param END;

calculate =

SELECT ¬(in data = NIL) ∧ out data = NIL

THEN out data :∈ DATA− {NIL} END;

26

res ← output =

PRE ¬(out data = NIL)

THEN

res := out data ‖
in data, out data := NIL, NIL

END

2.2 Introducing Fault Tolerance in the Lyra Development Flow

Currently the Lyra methodology addresses fault tolerance implicitly, i.e., by
representing not only successful but also failed service provision in the Lyra
UML models. However, it leaves aside modelling of mechanisms for detecting
and recovering from errors – the fault tolerance mechanisms. We argue that,
by integrating explicit representation of the means for fault tolerance into the
entire development process, we establish a basis for constructing systems that
are better resistant to errors, i.e., achieve better system dependability. Next we
will discuss how to extend Lyra to integrate modelling of fault tolerance.

In the first development stage of Lyra we set a scene for reasoning about
fault tolerance by modelling not only successful service provision but also service
failure. In the next development stage – Service Decomposition – we elaborate on
representation of the causes of service failures and the means for fault tolerance.

In the Service Decomposition phase we decompose the service provided by a
service component into a number of stages (subservices). The service component
can execute certain subservices itself as well as request other service components
to do it. According to Lyra, the flow of the service execution is managed by a
special service component called Service Director. Service Director co-ordinates
the execution flow by enquiring the required subservices from the external service
components.

In general, execution of any stage of a service can fail. In its turn, this might
lead to failure of the entire service provision. Therefore, while specifying Ser-
vice Director, we should ensure that it does not only orchestrates the fault-free
execution flow but also handles erroneous situations. Indeed, as a result of re-
questing a particular subservice, Service Director can obtain a normal response
containing the requested data or a notification about an error. As a reaction to
the occurred error, Service Director might

– retry the execution of the failed subservice,
– repeat the execution of several previous subservices (i.e., roll back in the

service execution flow) and then retry the failed subservice,
– abort the execution of the entire service.

27

SS1 SS2 SS3 SSN-1 SSN

S

(a) Fault free execution flow

SS1 SS2 SS3 SSN-1 SSN

S

Retry

(b) Error recovery by retrying execution
of a failed subservice

SS1 SS2 SS3 SSN-1 SSN

S

Rollback

(c) Error recovery by rollbacks

SS1 SS2 SS3 SSN-1 SSN

S

Unrecoverable error

Success

Service
 failure

(d) Aborting service execution

SS1 SS2 SS3 SSN-1 SSN

S

Success

Service
 failure

Execution_time > Max_SRT

(e) Aborting the service due to timeout

Fig. 2. Service decomposition: faults in the execution flow

The reaction of Service Director depends on the criticality of an occurred error:
the more critical is the error, the larger part of the execution flow has to be
involved in the error recovery. Moreover, the most critical (i.e., unrecoverable)
errors lead to aborting the entire service. In Fig.2(a) we illustrate a fault free
execution of the service S composed of subservices S1, . . . , SN . Different error
recovery mechanisms used in the presence of errors are shown in Fig.2(b) - 2(d).

Let us observe that each service should be provided within a certain finite
period of time – the maximal service response time Max SRT. In our model
this time is passed as a parameter of the service request. Since each attempt of
subservice execution takes some time, the service execution might be aborted
even if only recoverable errors have occurred but the overall service execution
time has already exceeded Max SRT. Therefore, by introducing Max SRT in
our model, we also guarantee termination of error recovery, i.e., disallow infinite
retries and rollbacks, as shown in Fig.2(e).

3 Fault Tolerance in the Presence of Parallelism

Our formal model briefly described in the previous section assumes sequential
execution of subservices. However, in practice, some of subservices can be exe-
cuted in parallel. Such simultaneous service execution directly affects the fault
tolerance mechanisms incorporated into our B models. As a result, they be-

28

come more complicated. However, at the same time it provides additional, more
flexible options for error recovery that can be attempted by Service Director.

3.1 Modelling Execution Flow

The information about all subservices and their required execution order be-
comes available at the Service Decomposition phase. This knowledge can be
formalised as a data structure

Task : seq(P(SERV ICE))

Here SERV ICE is a set of all possible subservices. Hence, Task is defined as a
sequence of subsets of subservices. It basically describes the control flow for the
top service in terms of required subservices. At the same time, it also indicates
which subservices can be executed in parallel.

For example,

Task = < {S1, S2}, {S3, S4, S5}, {S6} >

defines the top service as a task that should start by executing the services S1
and S2 (possibly in parallel), then continuing by executing the services S3, S4,
and S5 (simultaneously, if possible), and, finally, finishing the task by executing
the service S6.

Essentially, the sequence Task defines the data dependencies between sub-
services. Also, Task can be considered as the most liberal (from point of view of
parallel execution) model of service execution. In the Service Distribution phase
the knowledge about the given network architecture becomes available. This can
reduce the parallelism of service control flow by making certain services that
can be executed in parallel to be executed in a particular order enforced by the
provided architecture.

Therefore, Task is basically the desired model of service execution that will
serve as the reference point for our formal development. The actual service ex-
ecution flow is modelled in by the sequence Next which is of the same type as
Task:

Next : seq(P(SERV ICE))

Since at the Service Decomposition phase we do not know anything about fu-
ture service distribution, Next is modelled as an abstract function (sequence),
i.e., without giving its exact definition. However, it should be compatible with
Task. More precisely, if Task requires that certain services Si and Sj should be
executed in a particular order, this order should be preserved in the sequence
Next. However, Next can split parallel execution of given services (allowed by
Task) by sequentially executing them in any order.

So the sequence Next abstractly models the actual control flow of the top
service. It is fully defined (instantiated) only in the refinement step corresponding
to the Service Distribution phase. For example, the following instantiation of
Next would be correct with respect to Task defined above:

Next = < {S2}, {S1}, {S4}, {S3, S5}, {S6} >

29

Also, we have to take into account that Service Director itself can become dis-
tributed, i.e., different parts of service execution could be orchestrated by distinct
service directors residing on different network elements. In that case, for every
service director, there is a separate Next sequence modelling the corresponding
part of the service execution flow. All these control flows should complement
each other and also be compatible with Task.

3.2 Modelling Recovery Actions

As we described before, a Service Director is the service component responsi-
ble for orchestrating service execution. It monitors execution of the activated
subservices and attempts different possible recovery actions when these services
fail. Obviously, introducing parallel execution of subservices (described in the
previous subsection) directly affects the behaviour of Service Director.

Now, at each execution step in the service execution flow, several subservices
can be activated and run simultaneously. Service Director should monitor their
execution and react asynchronously whenever any of these services sends its re-
sponse. This response can indicate either success or a failure of the corresponding
subservice.

The formal model for fault tolerance presented in Section 2.2 is still valid.
However, taking into account parallel execution of services presents Service Di-
rector with new options for its recovery actions. For example, getting response
from one of active subservices may mean that some or all of the remaining active
subservices should be stopped (i.e., interrupted). Also, some of the old recovery
action (like retrying of service execution) are now parameterised with a set of
subservices. The parameter indicates which subservices should be affected by
the corresponding recovery actions.

Below we present the current full list of actions that Service Director may
take after it receives and analyses the response from any of active subservices.
Consequently, Service Director might

– Continue to the next service execution step. In case of successful termina-
tion of all involved subservices (complete success).

– Wait for response from the remaining active subservices. In case of successful
termination of one of few active subservices (partial success).

– Abort the entire service and send the corresponding message to the user
or requesting component. In case of an unrecoverable error or the service
timeout.

– Stop (a set of subservices) by sending the corresponding requests to inter-
rupt their execution (partial abort). In case of a failure which requires to
retry or rollback in the service execution flow.

– Retry (a set of subservices) by sending the corresponding requests to re-
execute the corresponding subservices. In case of a recoverable failure.

– Rollback to a certain point of the service execution flow. In case of a recov-
erable failure.

30

Service Director makes its decision using special abstract functions needed for
evaluating responses from service components. These functions should be sup-
plied (instantiated) by the system developers at a certain point of system devel-
opment.

Here is a small excerpt from the B specification of Service Director specifying
the part where it evaluates a response and decides on the next step:

handle =

...

resp := Eval(curr task, curr state);

CASE resp OF EITHER

CONTINUE THEN

IF curr task = size(Next) THEN finished := TRUE

ELSE active serv, curr task := Next(curr task + 1), curr task + 1 END

WAIT THEN skip

RETRY THEN active serv := active serv ∪ Retry(curr task, curr state)

STOP THEN active serv := active serv ∪ Cancel(curr task, curr state)

ROLLBACK THEN curr task := Rollback(...); active serv := Next(curr task)

ABORT THEN finished := TRUE

END

...

where the abstract functions Next, Retry, Cancel, and Rollback are defined (typed)
as follows:

Next : seq(P(SERVICE))

Eval : 1..size(Next) ∗ STATE → {SUCCESS, RETRY, CANCEL, ROLLBACK, ABORT}
Retry : 1..size(Next) ∗ STATE 7→ P(SERVICE)

Cancel : 1..size(Next) ∗ STATE 7→ P(SERVICE)

Rollback : 2..size(Next) ∗ STATE 7→ 1..size(Next)− 1

4 Conclusions

In this paper we proposed a formal approach to development of communicating
distributed systems. Our approach formalises and extends Lyra [6] – the UML2-
based design methodology adopted in Nokia. The formalisation is done within
the B Method [1] and its extension EventB [2] – a formal framework supporting
system development by stepwise refinement. The proposed approach establishes
a basis for automatic translation of UML2-based development of communicating
systems into the refinement process in B. Such automation would enable smooth
integration of formal methods into existing development practice.

In particular, in this paper we focused on integrating fault tolerance mech-
anisms into the formalised Lyra development process. A big challenge is formal

31

modelling of parallel service execution and its effect on system fault tolerance.
The ideas presented in this paper are implemented by extending our previously
developed B models. The formalised Lyra development is verified by completely
proving the corresponding B refinement steps using the Atelier B tool. At the
moment, we are in the process of moving this development to new Event B
language developed within the EU RODIN project [8].

Acknowledgements

This work is supported by IST FP6 RODIN Project.

References

1. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
2. J.-R. Abrial. Extending B without Changing it (for Developing Distributed Sys-

tems). Proceedings of 1st Conference on the B Method, pp.169-191, Springer-Verlag,
November 1996, Nantes, France.

3. Clearsy. AtelierB: User and Reference Manuals. Available at
http://www.atelierb.societe.com/index uk.html.

4. L. Laibinis, E. Troubitsyna, S. Leppänen, J.Lilius, and Q. Malik. Formal Service-
Oriented Development of Fault Tolerant Communicating Systems. Rigorous De-
velopment of Complex Fault-Tolerant Systems, Lecture Notes in Computer Science,
Vol.4157, chapter 14, pp.261-287, Springer-Verlag, 2006.

5. L. Laibinis, E. Troubitsyna, S. Leppänen, J. Lilius, and Qaisar Malik. Formal Model-
Driven Development of Communicating Systems. Proceedings of 7th International
Conference on Formal Engineering Methods (ICFEM’05), LNCS 3785, Springer,
November 2005.

6. S. Leppänen, M. Turunen, and I. Oliver. Application Driven Methodology for Devel-
opment of Communicating Systems. Forum on Specification and Design Languages,
Lille, France, 2004.

7. Rigorous Open Development Environment for Complex Systems (RODIN). Deliv-
erable D7, Event B Language, online at http://rodin.cs.ncl.ac.uk/.

8. Rigorous Open Development Environment for Complex Systems (RODIN). IST
FP6 STREP project, online at http://rodin.cs.ncl.ac.uk/.

32

���������
	�������	�������������������
��	�� ����	!��"�
�#�
�$�"�
��%&�(')�+*!����%,�-��� ��. ���	/*!'0�1�+�23�4�1�&�
5��(%&6��%+*���7

8 �"2���"�2:9;�"���(2�'0�(%<�&%

=�>@?BADCBADEGFHAJIKAL?NM
ADOPIRQ�>TS�UPADV/WYX)Z\[]W@V�E^M�M

-`badcBc/efc�g<h<eji�`]kmlncpodqj`�rts/odu#v&c/w(xdyJkni]lt-`�qji�oJ`�i
z oJqj{Li^lnrmq|k~}�c/gY_-cpy-knaNs�w(xJkncpo
_-c/yJknads/w(xJknc/o#_J���!�(���+�#� z�� �
�!�-���L�p�L�����d���J���p�D�L���m�/�/�D���<�~�B��� �p¡

¢�£¥¤�¦�§!¨N©p¦pª1« s�kbs�lni�xdejqj`�s!knq¬c/os/`^lnc/rmrtrmi^{Li^lbs/efrmq|kni�r�q¬w(x-lnc!{Li�r+g�s�yde|k�kncpeji^lbs�od`�i�s/r
s�{ps�q¬e¬s�®dejiGrmq|kni�r+`�s�o�kbs�¯Li)c!{Li]l&knadiHejcLs/u�c/gPg�s�qje¬i�u�rmq|kni�r � « s�kbs�qjr+ydrmyds/eje|}�s/`�`^i�rmrmi�u
° q|knadqjo
stkmlbs/oJrns/`^knqjc/oNs/eJg@lbs/w(i ° c/ln¯ �p± c ° i�{pi^l��pyJxKuds!knq¬oJ²)lni�xJe¬qj`�s!kni�u(uds!kbs ° q|knadqjo
s�kmlbs/oJrns/`^knqjcpods/e<g@lbs/w(i ° c/ln¯³qjr�s#`^cpw(xdeji^´³s!µPs/q|l¶u-ydi1knc#gTs/qjejyJlni�r�s/oduR`�c/oJ·Nqj`^km¸
qjod²kmlbs/odrns�`^knqjcpoJr �º¹ lncpydx»`�c/w(w1yJodqj`�s�knqjc/o�xJlnqjw(q|knq¬{pi�r�ads�{Li�®\i^i�o�xJlnc/x\cprmi�u�knc
rmydxJx\c/lmk¶kmlbs�odrns/`]knq¬c/odr
qjo¼s³s/r½}-od`baJlnc/odc/ydr(u-q¬r½kmlnqj®JyJkni�u»r½}-r½kni�w �Y¾ o�knadqjr(xds/x\i^l
° i�cpy-kne¬qjoJi�aJc ° s¶lni^¿NoJi�w(i�oBk�®Ns�rmi�us/xdx-lncLs�`]a ° q|knaÀh<{pi�oBkG�Á`�s/oÂ®\i�ydrmi�u�gTc/l
knadiHuJi^{Li�ejcpxJw(i�oBkºc�gfs0lni^e¬q¬s�®dejitlni�xJejq¬`�s�kni�u
uds!kbs/®ds/rmiHr½}Jr½kni^w�knads�kºi�odrmy-lni)s!kncpw(qj`
`�cpw(w(q|knw(i�oBkºc/g�yJxKuds!kni)kmlbs/oJrns/`^knqjcpoJr�ydrmqjod²�²/lncpyJx�`�c/w(w1yJodqj`�s�knqjc/o�x-lnq¬w(q|knqj{Li�r �

Ã ÄJÅtÆ\ÇKÈ0É�Ê�Ë�ÆKÌbÈHÅ

Í E^V�ÎPWÏ>TS�AD[]V/I�IPAB[^A-ÐPA-Ñ]V�Ñ]Ò\Ñn[^V�ÓÔS�ADO�Ð�V#I\V!ÕPOPV/I»AJÑ�AI\>TÑb[]E^>ÏÐKZK[]V/IÖÑbÒ\Ñb[]V�ÓÔ×0UKV/E]V�S!Ø-ÎP>ÏVpÑ
ØDÙH[]UKVÂIKAD[^ADÐfA-Ñ]V�ADE^V�CJV�Î\[(A-S�E]ØdÑ]Ñ�ÑbV/?-V/E^A-WºÑ]>¬[^V/Ñ/ÚY=�AD[^ARA-S�S�V/Ñ^Ñ�>@O¼A³E^V�ÎKW@>@S/AB[^V/I»IKAD[^A-ÐPA-Ñ]V
S�A-O»Ð�V#IKØ-OKV�×0>¬[^UK>ÏOÛAÂ[^E^A-OPÑ^A-S�[^>ÏØJOPADW<ÙÜE^A-Ó#V�×)Ø-E^C�ÚfÝ½[1>TÑ¶A-I\?BA-OJ[�ADÞJV�Ø-ZfÑ0[]ØRE^V�ÎKW@>@S/AB[^V
[]UPV
IKAD[^A³>¬Ùt[]UKV�[]E�ADOPÑ^A-S![]>@Ø-O»×)Ø-E^CNWÏØdA-I�>TÑ1ÎKE^V/I\ØJÓ�>@OPA-OJ[^WÏÒ�E^V/AJI»Ø-OPWÏÒJÚ¥ß�ØB×tV/?-V/E/à�I\ZKE^>ÏOKÞRZKÎ\á
IKAD[]V/Ñ/à-CJV�V/ÎK>ÏOPÞ([]UKV1E^V�ÎKW@>@S/A-Ñ">@OÀA�S!Ø-OfÑb>TÑn[^V�Od[tÑb[^AD[]V�A-E]>TÑbVpÑHI\ZPV�[]Ø�E^AJS!V�S�Ø-OPI\>Ï[]>@Ø-OfÑHADÓ#ØJOKÞ
S!ØJO\âP>TS�[^>ÏOKÞ¼ZKÎ¥IKAB[^VÀ[^E^A-OPÑ^A-S�[^>ÏØJOPÑ/Ú Í I\>TÑn[^E]>@ÐKZ\[^V/Iã[^E^A-OPÑ^A-S�[^>ÏØJOÁÓÂALÒãÑbÎPA-O$Ñ]V�?JV�E�ADWtÑ]>Ï[]V/Ñ
E^V/A-IK>ÏOKÞ³Ø-E1ZKÎ¥IKAB[^>ÏOKÞ�IKAD[^A³Ø-Ð\änVpS�[�Ñ�Ú Í [nÒdÎP>@S/ADW"I\>TÑn[^E]>@ÐKZ\[^V/IÖ[]E�ADOPÑ^A-S![]>@Ø-OÖS�Ø-Od[^A->ÏOPÑ1ARÑbV�á
å ZKV�OfS!V�Ø-ÙHIKAB[�ADÐPAJÑbV�Ø-Î�V�E�AB[]>@Ø-OfÑ�×0UK>TS�U»Ó�ZfÑn[¶ÐfV�ÎKE^ØNS�V/Ñ^ÑbVpI�AB[¶ADW@WºØ-Ù"[]UKV�ÎPADE][]>TS!>@ÎPAD[]>@OKÞ
Ñ]>¬[^V/Ñ)Ø-E)OKØ-OPV�Ø-Ù<[]UPV1Ñ]>¬[^V/Ñt[]Ø#ÓÂAD>@Od[^A->ÏOÂ[^UKV¶>ÏOd[^V�Þ-E^>Ï[nÒ�Ø-Ù<[^UKV1IPAB[^A-ÐPA-Ñ]V-ÚNæGUKV(Ñb[]E^Ø-OKÞ�S!Ø-OKá
Ñ]>@Ñb[]V/OPS!Ò#S!E^>¬[^V�E^>ÏØJO#>ÏO#[^UKV�E^V�ÎKW@>@S/AB[^V/IÂIKAD[^ADÐfA-Ñ]V)E^V å ZK>@E^V/Ñ+[^UPAB[�[^UKV�IKAD[^A-ÐPA-Ñ]V0E]V/ÓÂAD>@OPÑ">@OA
S!ØJOPÑ]>@Ñb[]V/OJ[�Ñb[^AD[]V
I\VpÑbÎK>Ï[]V¶[^E^A-OPÑ^A-S�[^>ÏØJOÙ A->ÏW@ZKE^V/Ñ/ÚKæGUKV(ÎfØdÑ]Ñ]>@ÐKWÏV(S/ADZPÑ]V/ÑGØ-Ù<[]UPV¶[]E�ADOPÑ^A-S![]>@Ø-O
Ù AD>@W@ZKE]VpÑ
>@OPS!W@ZPI\VRÐPAJIãIKAB[�A»>@OKÎKZ\[pàº[^>ÏÓ#V³Ø-Z\[�Ñ�àº[]V/Ó�Î�Ø-E�ADE^ÒÖZPOPAL?BAD>@W@A-ÐK>ÏW@>Ï[nÒçØ-Ù�IKAB[�AÖAB[�A
Ñ]>¬[^V
ADOPIRI\V/AJI\W@ØNS�C\Ñ/Ú
è�Ø�S!ØJÓ#Ó�ØJO»Þ-W@Ø-ÐfADW+S!W@ØNS�C�ØJE1Ñ]UPA-E]VpI�Ó#V�Ó#Ø-E^Ò�V!é\>@Ñb[¶>ÏOÛAÀI\>TÑb[]E^>ÏÐKZK[]V/I¼Ñ]ÒNÑb[]V/Ó�Ú¥æGUPV

Ñ]>¬[^V/Ñ¶S!ØJÓ�Ó�ZKOK>TS�AD[]V�ÐNÒ�[^UKV�V�éKS�UPADOKÞJV�Ø-ÙHÓ#V/Ñ^Ñ]A-Þ-V/Ñ�×0UK>TS�UçADE^V�IKV�W@>Ï?JV�E^V/I�[^ØÀ[^UKV�Ó�ADÙ�[]V�E
ADE^ÐK>Ï[]E�ADE^Ò�[]>@Ó#VI\V�WTALÒ\Ñ�Ú�ÝmOãÑ]ZPS�U¼Ñ]Ò\Ñn[^V�ÓÂÑ¶ZKÎ\á~[]Ø-á½IPAB[]VÂCNOKØB×0W@V/IKÞ-V�ØDÙ)[]UKVÑ]Ò\Ñn[^V�Ó�>TÑ(OKØ-[
CNOKØB×0O�[]Ø
A-OdÒ�ÎKE^ØNS�V/Ñ^Ñ+Ø-E�Ñ]>¬[^V-ÚdæGUK>@Ñ�ÎKE]ØJÐKW@V�ÓêS/ADOÂI\VpADWÏ[HÐNÒ�E^V�W@Òd>@OKÞ¶Ø-O#ÞJE]ØJZKÎÂS!Ø-Ó#Ó�ZKOK>Ïá
S�AD[]>@Ø-O�ÎKE^>ÏÓ#>Ï[]>@?-V/Ñ"[]UPAD[�ÎKE]ØB?N>TI\VGUK>@Þ-UKV/E"Þ-ZPA-E^A-OJ[^V�VpÑºØJO�[]UKV�I\V/WÏ>@?-V/E]Ò�ØDÙ¥Ó�VpÑ]Ñ^ADÞJV/Ñ/Ú-ë1E]ØJZKÎ
S!ØJÓ#Ó�ZKOK>TS�AD[]>@Ø-O$UPA-Ñ�ADWTÑbØ¼Ð�V�V�O$>ÏON?JV/Ñb[]>@ÞJAB[^V/I�>ÏO$ÝnÑb>TÑ�ì íBî~à"æºØD[]V/ÓïìÏð�ñDî0ADOfI�æºE^A-OPÑ�ì¬ðLòLî½Ú
æGUKV1ÎKE^ØD[]Ø\S�Ø-WTÑH>@O[^UKV/Ñ]V1Ñ]Ò\Ñn[^V�ÓÂÑtZPÑbV1?BADE^ÒN>ÏOKÞ�ÐKE^ØJA-IPS�A-Ñb[HÎKE^>@Ó�>Ï[]>@?-VpÑGADOPIAJIKI\E^V/Ñ^ÑHÞJE]ØJZKÎ
ÓÂAD>@Od[]V�OfADOPS�V-àºÙ ADZKWÏ[�[^Ø-W@V�E�ADOPS�V³A-OPIÁS!ØJOPÑ]>@Ñb[]V/OPS!ÒãÑ]V�E^?d>TS!VpÑ�Ú+æGUKVÀ[]E�ADOPÑ^A-S![]>@Ø-O�Ñ]V�ÓÂADOd[^>@S/Ñ
>@Oã[]UKV³ÓÂADOPA-Þ-V�Ó#V/OJ[
Ø-Ù�E]V/ÎKW@>@S/AB[]VpIãIKAB[�A�>TÑ�ADWTÑ]ØÖS!ØJOPÑb>TI\V/E]VpIç>@Oóì ôKà!ðpõBî½Ú<ÝmO�AJIKI\>Ï[]>@Ø-OÛ[^Ø
ÎKE^ØB?N>@I\>@OKÞ�Ù ADZKWÏ[t[^Ø-W@V�E�ADOPS�V-àNØ-OPV�ØDÙº[]UKV1>@Ó�Î�Ø-E][^A-Od[)>TÑ]Ñ]ZKVpÑH[^Ø�Ð�V¶A-IKI\E^V/Ñ^Ñ]V/IÂ>@OÀ[^UKV(I\V/Ñ]>@Þ-O
ØDÙ0E^V�ÎKW@>TS�A�S!ØJOd[]E^Ø-W�ÎKE^ØD[^Ø\S!Ø-WTÑ¶>TÑ�S!ØJOPÑ]>@Ñb[]V/OPS!ÒJÚºæGUKVÁöG÷¥ø»ù�ú^û¥ü�ý0þ�ÿ��������Ïø�÷���øÛì ñDîtS�E]>Ï[]V/E]>TA
	 « q¬{/s/¯/s�l�
&spuds�{�q¬r)s�v&cpw(w(cpo ° i�s/e|kna³_-`badc/eÏs!lGrmyJxdx\c/lmkni�u#®D}�knadi1v&cpw(w(c/o ° i�s/e|knaÀ_D`]aJcpe¬s�lm¸
rmaJqjxv&cpw(w(qjrmrmqjcpo�q¬o�knadi z odq|kni�u � qjoJ²LuJc/w �

	�	� qj`baNs�i�e��&y-kne¬i]l�� rH`�c/oDkmlnqj®JyJknqjcpo#qjrHxNs!lmk)c�g�knadi ¾ _��ãxJlnc��½i�`^k ¾ _����B�p���������H� « ¾���� �Hqj²pc/lnc/ydr
�)x\i^o « i�{pi�ejcpxdw(i^oDk"h<oD{Dq|lncpodw(i^oDk&gTc/l)v&c/w(xdeji^´�_D}-r½kni�w(r� �

33

E^V å ZK>@E]VpÑ<[^UPAB[HA1E^V�ÎKW@>TS�AB[^V/I�IKAB[�ADÐPAJÑbV)>TÑ">ÏOÂA1Ó�ZK[]ZPA-WÏW@Ò�S!ØJOPÑ]>@Ñb[]V/OJ[�Ñb[^AD[]VGØ-OKW@Ò�>ÏÙ�ADW@WKS!Ø-ÎP>ÏVpÑ
ØDÙ"IKAD[^A�Ø-Ð\änVpS�[�Ñ �Ïú � � � �����jü³UPAL?-V1[^UKV
Ñ]A-Ó#V1>TI\V/OJ[^>@S/ADW�?BADW@ZKVJÚ
=�>@Ñb[]E^>ÏÐPZ\[]VpI ADW@Þ-Ø-E^>Ï[]UKÓÂÑS/ADO Ð�VÖI\V/S�V�Î\[^>Ï?JV-àtÓ#ALÒ$UPAL?-V»S�Ø-Ó#ÎKW@V!é V!é\V/S�Z\[]>@Ø-O ÎPAD[]UPÑ

ADOfI»ÓÂALÒ»ADW@WÏØB× ZPOPADOd[]>TS!>@ÎPAD[]V/IÖÐfV/UPAL?N>ÏØJE/Ú��0>@Þ-ØJE]ØJZPÑ�E^V/AJÑbØJOK>ÏOPÞÀADÐ�Ø-Z\[
Ñ]ZPS�UÖA-WÏÞJØ-E^>¬[^UKÓÂÑ
>TÑYE^V å ZK>@E]VpI�[^Ø�V/OPÑbZPE]V+[^UPAB[+ADO
ADW@Þ-ØJE]>Ï[]UPÓ A-S�UP>ÏV/?-V/ÑY×0UPAB[<>Ï[º>TÑ<Ñ]ZKÎKÎ�ØJÑ]V/I1[^Ø�I\Ø�ìÏð-ð�î~ÚLë1E]ØJZKÎ
S!ØJÓ#Ó�ZKOK>TS�AD[]>@Ø-O�ÑbV/E]?N>TS!VpÑtUfAL?-V1ÐfV/V�O�Ñn[^ZPI\>@V/IRA-Ñ0A�ÐPAJÑb>TS1ÐKZK>@W@I\>@OKÞ#ÐKW@Ø\S�CÂÙÜØ-E0ÓÂADONÒÂÙ A-ZKWÏ[
[]ØJWÏV/E^A-Od[�I\>@Ñb[]E^>@ÐKZ\[]VpI»Ñ]V�E^?d>TS!VpÑ�àPUKØB×tV/?-V/EG[]UKV�ADÎKÎKW@>TS�AB[^>ÏØJO�ØDÙ+ÙÜØ-E^ÓÂADW<Ó#V�[]UKØ\IKÑ�ÎKE]ØB?N>TI\>@OKÞ
S!W@V/A-E³Ñ]ÎfVpS!>ÏÕfS�AD[]>@Ø-OPÑ³ADOPI�ÎKE]ØNØ-Ù ÑØDÙ�S�Ø-E^E]VpS�[^OKV/Ñ^ÑÂ>TÑÀE�ADE^VÁì õDî~Ú��NØJÓ�VÖØDÙ([]UPVÖ>@Ó�Î�Ø-E][^A-Od[
×)Ø-E^C�Ø-O [^UKVçA-ÎKÎKW@>@S/AB[^>ÏØJO ØDÙ(ÙÜØ-E^ÓÂADW�Ó#V�[]UKØ\IKÑÀ[]ØÁÞJE]ØJZKÎ�S!ØJÓ#Ó�ZKOK>TS�AD[]>@Ø-O�Ñ]V�E^?N>@S�V/ÑÂ>@O
Ø-E�I\V/E�[^ØR?JV�E^>¬ÙÜÒ�[^UKV#ÎKE^Ø-Î�V�E][]>@V/Ñ�ØDÙ)A-WÏÞJØ-E^>¬[^UKÓ ADE^V�ÞJ>Ï?JV�Oç>ÏO ì �\à!ð��Lî~Ú�æGUKV#×)Ø-E^C�E]V/ÎfØJEb[^V/I
>@O ì��pî(ZPÑ]V/Ñ³Ý	��
 A-Z\[]ØJÓÂAB[^AÁÙÜØ-ER[]UPVÛÑ]Î�V/S!>ÏÕfS/AB[]>@Ø-OfÑ³A-OPI�ÎKE^ØB?-VpÑÀÎPE]ØJÎfV/Eb[^>ÏVpÑ³A-ÐfØJZ\[�A-WÏW
[]E�A-S�V#ÐfV/UPAL?N>ÏØJE1Ø-ÙH[^UKVADZ\[^Ø-ÓÂAB[^>ÏØJOYÚ�ÝmO ì¬ð��pî"ÙÜØJE]ÓÂADW+E^V/Ñ]ZKWÏ[^Ñ(ADE^V#ÎKE^ØB?d>TI\VpI�[]UfAB[�I\V�ÕPOKV/Ñ
×0UKV�[]UKV/E�ØJE�OKØ-[¶A#[^ØD[�ADW@WÏÒ�Ø-E�I\V/E]VpI�ÎKE]Ø-[]Ø\S!ØJW<ÎKE^ØB?N>@IKV/Ñ�AÀS�ADZfÑ]A-WºØJE^I\V/E/ÚfæGUKV�Ò�ÎKE^ØB?N>@I\V�A
ÎKE^ØNØDÙKØDÙPS�Ø-E^E]VpS�[^OKV/Ñ^ÑYÐNÒ(I\Ø->@OKÞ�ÎKE]ØNØ-Ù Ñ<ÐNÒ¶UPADOfI�ÚLÝmOPÑn[^V/AJI�à/ØJZKE+ADÎKÎKE^ØJAJS�U(ØDÙPÑ]ÎfVpS!>ÏÙÜÒN>ÏOKÞ�[]UPV
Ñ]ÒNÑb[]V/Ó A-OPI(?JV�E^>¬ÕfS/AB[^>ÏØJO1>TÑYÐfA-Ñ]V/I(ØJO¶[]UKVH[]V/S�UPOK> å ZKVHØDÙPADÐfÑn[^E^AJS�[]>@Ø-O(A-OPI(E^V!ÕPOKV/Ó#V�Od[/ÚpæGUK>@Ñ
[]VpS�UKOK> å ZKV�>TÑHÑ]ZKÎKÎ�Ø-E][]V/I#ÐNÒ�[]UKV��?-V/Od[HX ìÏð/ôDî~à-A-OÂV�?JV�Od[tI\E^>Ï?JV�OÂADÎPÎKE]ØdA-S�U�ZPÑ]V/I�[]ØJÞ-V�[]UKV/E
×0>Ï[]UóX Q�V![^UKØ\I ìÏð!î½ÚtæGUK>TÑÂÙÜØJE]ÓÂADW1ADÎKÎPE]ØdA-S�U S�ADE^E^>ÏVpÑAÁÑb[]V�ÎKá~×0>TÑbVçI\V�?JV�W@Ø-ÎKÓ#V�Od[ÂÙÜE^Ø-Ó
>@OK>¬[^>@A-WdA-ÐPÑb[]E�A-S�[&ÑbÎ�V/S�>¬ÕfS/AB[^>ÏØJOPÑY[^Ø�A�IKV![^A->ÏW@V/I�I\V/Ñ]>ÏÞJO(ØDÙPA�ÑbÒ\Ñb[]V�Ó >@O([]UPVHE^V!ÕPOKV/Ó#V�Od[&Ñb[]V/ÎPÑ�Ú
æGUKE^Ø-ZKÞJU�[]UKV�E]V�ÕPOKV�Ó#V/OJ[tÎKE]ØNØ-Ù Ñ"×tV�?-V�E^>ÏÙÜÒ
[]UfAB[)IKV/Ñ]>ÏÞJOÂØDÙYI\V![�AD>@WÏVpIÂÑbÒ\Ñb[]V/Ó S�Ø-O\ÙÜØJE]ÓÂÑ+[^Ø
[]UPV1A-ÐPÑn[^E^AJS�[tÑ]Î�V/S!>ÏÕfS/AB[]>@Ø-OfÑ�ÚNæGUKV1E]V�ÕPOKV�Ó#V/OJ[GADÎKÎPE]ØdA-S�UÂØDÙ��?-V/Od[tX UPA-Ñ)ADWTÑ]Ø
ÐfV/V�O³ZPÑbVpI
ÙÜØ-E¶[^UKV#ÙÜØ-E^ÓÂADW"I\V/?-V�W@Ø-ÎPÓ�V/Od[¶Ø-ÙHÙ A-ZKW¬[([^Ø-W@V�E�ADOd[
S!ØJÓ�Ó�ZKOK>TS�AD[]>@Ø-OçÑ]Ò\Ñn[^V�ÓÂÑÂì �Bî½Ú��çVÂUPAL?JV
ZPÑ]V/I�[^UKV��tWÏ>TS�C�� O�� �HE]ØB?JV1ì òLî¥Xã[]ØNØJW\ÙÜØ-E�ÎPE]ØNØDÙ¥Ø-ÐPWÏ>@ÞJAD[]>@Ø-O#Þ-V/OKV�E�AB[^>ÏØJO�A-OPI�ÙÜØ-EHI\>TÑ^S�UPADE^Þ->@OKÞ
ÎKE^ØNØDÙºØJÐKW@>ÏÞdAB[]>@Ø-OfÑ�Ú
æGUKV0E^V�ÓÂAD>@OPI\V/E"ØDÙ�[]UK>TÑ"ÎPA-ÎfV/E">@Ñ�Ø-E^ÞJADOP>��/V/I�A-Ñ&ÙÜØ-W@W@ØB×�Ñ����NVpS�[^>ÏØJOÂò1ØJZ\[]W@>@OKVG[]UKV�Ñ]Ò\Ñn[^V�Ó

Ó#Ø\I\V�W~à��NV/S![]>@Ø-OçôRI\VpÑ]S�E]>@ÐfVpÑ�ÞJE]ØJZKÎÖS�Ø-Ó#Ó�ZKOP>@S/AB[]>@Ø-OÖÎKE]>@Ó#>¬[^>Ï?JV/Ñ¶ADOfI»>Ï[^Ñ¶ADÎKÎPWÏ>TS�AD[]>@Ø-O�[^Ø
E^V�ÎKW@>@S/AB[^V/I�IKAD[^ADÐfA-Ñ]V-à��NVpS�[^>ÏØJO�ñØ-Z\[^WÏ>@OKV�[]UKV(ÙÜØJE]ÓÂA-WºI\V/?-V�W@Ø-ÎPÓ�V/Od[�ØDÙ�AÑ]Ò\Ñn[^V�Ó ØDÙ+[]Ø-[^ADW
Ø-E�I\V/E)ÐPE]ØdA-IKS/A-Ñb[GA-OPI��NV/S![]>@Ø-O�í�S�Ø-OPS�WÏZfI\V/Ñ)[^UKV(ÎPADÎ�V�EpÚ

� �! #"JÆ%$'& (È0É#$�)

�ZKE
Ñ]Ò\Ñn[^V�Ó Ó#Ø\I\V/WHS!ØJOPÑb>TÑb[
ØDÙ0A�ÑbV�[^Ñ(Ø-ÙGÑ]>¬[^V/Ñ
A-OPI¼IKAB[�A�Ø-Ð\änVpS�[^Ñ/Ú�*�ÑbV/E^Ñ¶>@Od[]V�E�A-S![
×0>¬[^U
[]UPV�IKAD[^ADÐfA-Ñ]V
ÐNÒ,+.- ��/.- ��÷ � -0/ �B÷1+�� �2- � úB÷1+�Ú��¼V�S�Ø-OPÑ]>@IKV�E�[^UKV�S/A-Ñ]V(ØDÙ"ÙÜZKW@W&E]V/ÎKWÏ>TS�AD[]>@Ø-O»A-OPI
A-Ñ^Ñ]ZKÓ#V
ADW@WYIKAB[�A#Ø-Ð\änVpS�[^Ñ�ADE^V1ZPÎ�IKAD[]VpADÐKW@V-ÚPæGUPV43�ø ��576�÷Pü�8'9Pø2/]ø;:</��=-½ø¶ý �Bø2/�ü�8'9Pø2/^ø³ì ñPà
ðpíBî�E]V/ÎKW@>@S/A¼S�Ø-Od[]E^Ø-WGÓ#V/S�UfADOK>TÑbÓ >@ÑÂS�Ø-OPÑ]>TI\V�E^V/I�ÙÜØ-EÂZKÎ¥IKAD[]>@OKÞÁE^V�ÎKW@>@S/A-Ñ/Ú Í []E�ADOPÑ^A-S![]>@Ø-O
>TÑÀS!ØJOPÑ]>@I\V/E]VpI$AJÑÀAãÑ]V å ZKV/OPS!V�Ø-Ù¶E^V/AJI��L×0E^>Ï[]V�Ø-Î�V�E�AB[^>ÏØJOPÑÂV!é\VpS!Z\[^V/I AB[^Ø-Ó#>TS�ADW@W@Ò-à">~Ú VJÚÏà)A
[]E�ADOfÑ]AJS�[]>@Ø-O¼×0>@WÏW�V/>¬[^UKV�E �^ú?>4> �=-¶Ø-E �A@^ú?/.-¶[]UKVÂV�B�VpS�[�Ø-ÙGA-WÏW�IPAB[^A-ÐPA-Ñ]V#Ø-Î�V�E�AB[^>ÏØJOPÑ�ÚYæGUPV
ÙÜØ-W@W@ØB×0>ÏOKÞ
[nÒdÎ�V/ÑHØDÙ�[^E^A-OPÑ]AJS�[^>ÏØJOPÑ�ADE^V�S�Ø-OPÑ]>@IKV�E^V/I�ÙÜØ-Et[]UK>TÑtÓ�Ø\I\V/WPØ-ÙYE]V/ÎKWÏ>TS�AD[]VpIÂIKAB[�ADÐPAJÑbVJÚ

C 3�ø �A5�D�öG÷ �¬üFEG/ �B÷H+ � �2- � úB÷1+I�&æGUKVpÑbV[]E�ADOPÑ^A-S![]>@Ø-OÛADE^VÀÑbZPÐKÓ#>¬[][]V/IÁWÏØ\S�A-WÏW@Ò»[^Ø�[]UPV³Ñ]>¬[^V
A-OPI �^ú?>4> �=-GABÙ�[]V/E�E^V/A-IK>ÏOKÞ�[]UPV(E]V å ZPV/Ñb[]V/IRIKAD[^A�Ø-Ð\änVpS�[0W@ØNS/ADW@WÏÒJÚ

CKJ ûH5 ��-møLEG/ �D÷H+ ����- � úB÷H+I�+æGUKVpÑbVÂ[^E^A-OPÑ^A-S�[^>ÏØJOPÑ(ZKÎ¥IKAD[]VÂ[^UKVÀE^V å ZKVpÑn[^V/IãIKAD[^A�Ø-ÐKänV/S�[�Ñ�ÚæGUKV¶V�B�VpS�[�ØDÙ+ZKÎ¥IKAB[^V1[]E�ADOPÑ^A-S![]>@Ø-OPÑGADE^V1Þ-W@Ø-ÐPA-W àd[]UNZPÑ�×0UKV�O�S!ØJÓ�Ó#>Ï[b[^V/I�àPA-WÏW�E^V�ÎPWÏ>TS�AJÑ
Ø-Ù+IKAD[^A�Ø-ÐKänV/S�[�ÑGÓÂAD>@OJ[�AD>@OKV/IRAB[�A-WÏW<Ñ]>Ï[]V/ÑGÓ�ZPÑb[GÐ�V(ZKÎ¥IKAB[^V/I�ÚfÝmORS/A-Ñ]V¶ØDÙ&A-ÐfØJEb[pà\OKØ-OPV
Ø-Ùº[^UKV
Ñb>Ï[]VpÑGZKÎ¥IKAB[^V¶[]UKV
IKAD[^A�Ø-ÐKänV/S�[pÚ

MYV�[�[^UKVÂÑbV å ZKV�OPS�V�Ø-ÙHE]VpA-I��B×0E]>Ï[]V�Ø-Î�V�E�AB[^>ÏØJOPÑ�>TÑ]Ñ]ZKVpI»ÐNÒ�[]UKV�[]E�ADOfÑ]AJS�[]>@Ø-O,N�OtÐ�V#IKV!ÕPOKVpI
ÐNÒãAÖÑ]V![�Ø-Ù�Ø-ÐKänV/S�[�Ñ³úA@QP�ø ��-R+�ø�-�ì N�O î)×0UPV�E^V¼ú�@RP�ø �2-S+�ø2-/ì N�O î4TUWV ÚXMYV�[�[^UKV³Ñ]V![Y8Z/��=-½ø2+�ø2-/ì N�O�î
E^V�ÎKE^V/Ñ]V�Od[^Ñt[^UKV
ÑbV�[�ØDÙ&Ø-Ð\änVpS�[0[]Ø#Ð�VÂÿpûH5 ��-mø[5³Ñ]ZPS�U³[]UPAD[\8Z/��=-½ø2+�ø2-/ì N�O�î!] ú�@RP�ø �2-S+�ø2-/ì N�O î~Ú
Í [^E^A-OPÑ]AJS�[^>ÏØJO^N O >@Ñ)A(E^V/A-I\á~ØJOKWÏÒ�[]E�ADOPÑ^A-S![]>@Ø-O#>ÏÙ_8Z/��=-½ø2+�ø2-�ì N O î U`V Úa�N>@Ó#>ÏWTADE^W@Ò�A¶[^E^A-OPÑbá

A-S![]>@Ø-OIN O >@Ñ1AZPÎ�IKAD[]V�[]E�ADOPÑ^A-S![]>@Ø-O�>ÏÙH>Ï[^Ñ78Z/��=-½ø2+�ø2-/ì N O îbTUcV Ú¥æG×tØ³ZKÎ¥IKAB[^V�[^E^A-OPÑ]AJS�[^>ÏØJOPÑ
N O A-OPI�N�d�ADE^V
>@O���úB÷fe � ��-�>ÏÙ�[]UKV�ÑbV å ZKV�OPS�V
ØDÙ�ØJÎfV/E^AD[]>@Ø-OPÑ�>@Ñ^Ñ]ZKV/I�ÐNÒYN O A-OPI�N�d�ADE^V�I\V!á
ÕPOKVpIØJOÀÑbV�[)Ø-ÙYØ-Ð\änVpS�[
ú�@RP�ø �2-S+�ø2-�ì N O îYADOfIçú�@RP�ø �2-S+�ø2-/ì N�d�î�E]VpÑbÎ�V/S![]>@?-V�W@ÒÂADOPIçú�@RP�ø ��-S+!ø�-�ì N O î�g
ú�@RP�ø �2-S+�ø2-/ì N�d!î#TUhV Ú

34

Local Abort Tx

Global Abort Tx
Global Commit Tx Local Commit Tx

BeginSubTran

Issue Update Trans

Coordinator

Commit/Abort Decision Message

Vote Commit/Abort Message

Update Request Message
StartTran

ExeAbortDecision
ExeCommitDecision

Cohorts

���������	���?JV�Od[^ÑGØ-Ù�*�Î�IKAD[]V
æºE^A-OPÑ^A-S�[^>ÏØJO

ÝmO Ø-E�I\V/E[]Ø�Ó�V/V![³[]UKV¼Ñn[^E]ØJOKÞ�S!ØJOPÑ]>@Ñb[]V/OPS!Ò E]V å ZK>ÏE^V�Ó#V/OJ[×0UPV�E^VÖV/AJS�U []E�ADOPÑ^A-S![]>@Ø-O
E^V/A-IPÑH[^UKV
S!ØJE]E^V/S![)?BA-WÏZKV¶Ø-Ù&A�E]V/ÎKW@>@S/AKà ��úB÷ e � ��- ��÷ � []E�ADOPÑ^A-S![]>@Ø-OPÑ)OKV/V/IÀ[]ØÂÐ�V1V�é\V/S!ZK[]V/IR>@O
>TÑbØJW@AD[]>@Ø-OYÚ�ÝmOÖØJZKE�Ó#Ø\I\V/W à�×)V�V/OPÑbZPE]V�[]UK>TÑ1ÎKE^Ø-Î�V�E][nÒRÐNÒ�OKØ-[� +[+�ÿ���÷ � A[^E^A-OPÑ]AJS�[^>ÏØJOÖAB[¶A
Ñ]>¬[^V1>ÏÙ&[]UKV/E]V¶>TÑ0A�S�Ø-O\âf>@S![]>@OKÞ�[^E^A-OPÑ^A-S�[^>ÏØJO[^UPAB[�>TÑ�����-����Bø
AD[G[]UPAD[0Ñ]>Ï[]V-ÚPÝmO³ØJZKEGÓ�Ø\I\V/W�[]UPV
[]E�ADOfÑ]AJS�[]>@Ø-OfÑ)A-E]V¶V�éNVpS!Z\[^V/IRA-Ñ)ÙÜØJWÏW@ØB×�Ñ�Ú

C Í E^V/AJINá½Ø-OKW@Ò»[^E^A-OPÑ]AJS�[^>ÏØJO;N�O0>TÑ
V�éNVpS!Z\[^V/IÛW@Ø\S�ADW@W@ÒçAB[�[]UKV>@OK>Ï[]>TAB[^>ÏOKÞçÑb>Ï[]VØ-Ù�N�O�
 A-W@Ñ]ØS/ADW@WÏVpIÀ[^UKV�S�ØdØJE^IK>ÏOPAD[]ØJE�Ñb>Ï[]V(Ø-ÙXN O� ÐdÒ�A-S å ZK>ÏE^>@OKÞ#WÏØ\S�C\ÑGØ-O�[^UKV
IKAB[�A#Ø-Ð\änVpS�[�IKV!ÕPOKVpI
ÐNÒçúA@QP�ø ��-R+�ø�-�ì E O î½Ú

C Í OãZKÎ�IPAB[]V[]E�ADOPÑ^A-S![]>@Ø-O N O >@Ñ
V!é\V/S�Z\[]VpIÛÐdÒçÐKE^ØJA-IPS�A-Ñb[]>@OKÞ�>Ï[^Ñ³úA@QP�ø ��-R+�ø�-�ì E O îH[^Ø�[]UPVÎPA-Eb[^>@S�>ÏÎfAB[]>@OKÞ¶Ñb>Ï[]VpÑ�ÚA
�O�I\V�W@>@?-V�E^Ò-àBA1ÎPA-Eb[^>@S�>ÏÎPAD[]>@OKÞ¶Ñb>Ï[]V���d)>@OK>Ï[]>TAB[^V/Ñ"A1ÑbZKÐK[]E�ADOPÑ^A-S![]>@Ø-O
N O dÀÐdÒÛA-S å ZK>ÏE^>@OKÞ�WÏØ\S�C\Ñ
ØJOóú�@RP�ø �2-S+�ø2-�ì E O î½Ú&Ý½Ù0[]UKV³Ø-Ð\änVpS�[^Ñ�ADE^VS!ZKE^E^V�Od[]W@ÒçW@Ø\S�C-VpIçÐNÒ
A-OKØD[^UKV�EG[^E^A-OPÑ]AJS�[^>ÏØJOYàd[]UKV N�O d >TÑGÐKW@ØNS�CJV/I�Ú

C æGUKVÂS�ØdØJE^IK>ÏOPAD[]ØJE1Ñ]>¬[^V#ØDÙ!N�OG×GAD>Ï[^Ñ�ÙÜØ-E¶[^UKV#?-Ø-[]V#S!Ø-Ó#Ó#>Ï[.�BA-ÐfØJEb[¶Ó#V/Ñ^Ñ]A-Þ-VpÑ�ÙÜE^Ø-Ó�A-WÏWÎPA-Eb[^>@S�>ÏÎfAB[]>@OKÞ�Ñ]>¬[^V-Ú Í Þ-W@Ø-ÐPA-WDS!ØJÓ�Ó#>Ï[.�DADÐ�Ø-E][YÓ�VpÑ]Ñ^ADÞJV+>@Ñ<ÐKE]ØdA-IKS/A-Ñb[]VpI�ÐNÒ�S�ØNØ-E�I\>ÏOfAB[]ØJE
Ñ]>¬[^V�Ø-Ù�N�OYØ-OPWÏÒ#>ÏÙ<>¬[GE^V/S!V/>Ï?JV/ÑtADW@WfW@Ø\S�ADW�S!ØJÓ�Ó#>Ï[)Ó#VpÑ]Ñ^ADÞJV0ÙÜE]ØJÓ ADW@WfÎPA-Eb[^>@S�>ÏÎfAB[]>@OKÞ�Ñ]>Ï[]V/Ñ
ØJE�AB[bá½W@V/A-Ñb[GØ-OKV(?JØD[]V�á½A-ÐfØJEb[GÓ#V/Ñ^Ñ]A-Þ-V�ÙÜE]ØJÓ;ÎPA-Eb[^>@S�>ÏÎPAD[]>@OKÞÂÑb>Ï[]VpÑ�Ú

æGUKV)S!Ø-Ó#Ó#>Ï[<Ø-E&ADÐ�Ø-E][ºI\V/S�>@Ñ]>@Ø-O(ØDÙKÞJWÏØJÐPADWD[]E�ADOPÑ^A-S![]>@Ø-O N�O\>TÑY[�ADC-V/O
AB[Y[^UKVtS�ØNØ-E�I\>ÏOfAB[]ØJE<Ñ]>¬[^V
×0>Ï[]UK>@OÂ[]UPV�ÙÜE�ADÓ#V�×)Ø-E^C�Ø-Ù�A([n×tØ
ÎPUPA-Ñ]V�S!ØJÓ#Ó�>Ï[tÎPE]Ø-[]Ø\S!ØJWPA-ÑtÑbUKØB×0OÂ>@O��&>@ÞPÚPð�A-Ñ"ÙÜØJWÏW@ØB×�Ñ/Ú
Í Þ-W@Ø-ÐPA-W�[]E�ADOPÑ^A-S![]>@Ø-O N�O ��ú�>7> �=-R+¶>¬Ù ������N�O d �^ú?>4> �=-0AB[�� d ÚKæGUKV¶ÞJWÏØJÐPADW�[]E�ADOfÑ]AJS�[]>@Ø-O N�O
��@�ú?/.-R+(>ÏÙ!+�ú�>Âø N O d �A@�ú�/.-S+(AD[���d-Ú
ÝmOóì ò��Dît×)VUPAL?-VÀÎKE]VpÑbV/Od[]V/IãA»ÙÜØ-E^ÓÂADWHE^V!ÕfOKV�Ó#V�Od[�ÐfA-Ñ]V/IÁA-ÎKÎKE^ØJA-S�UÛZPÑ]>@OKÞ,�?JV�Od[�X

[]Ø¼Ó#Ø\I\V�W�A-OPI$A-OPADW@Ò%��VRI\>@Ñb[]E^>@ÐKZ\[]VpIÁ[^E^A-OPÑ^A-S�[^>ÏØJOYÚ&ÝmO$ØJZKEÂADÐPÑb[]E�A-S![�Ó#Ø\I\V�W~à"ADO ZKÎ¥IKAB[^V
[]E�ADOfÑ]AJS�[]>@Ø-OÂÓ#Ø\I\>ÏÕPV/Ñt[^UKV(ADÐPÑb[]E�A-S![HØ-OKV¶S!ØJÎNÒ#IPAB[^A-ÐPA-Ñ]V0[^UKE]ØJZKÞ-U³A�Ñ]>ÏOPÞ-W@V�AB[^Ø-Ó#>TS�V/?-V�Od[pÚ
ÝmO []UKVãE^V!ÕfOKV�Ó#V�Od[pà�ADO ZKÎ¥IKAB[^VÛ[]E�ADOPÑ^A-S![]>@Ø-O S!Ø-OfÑb>TÑn[�Ñ�ØDÙÂA S!ØJWÏW@V/S![]>@Ø-O ØDÙ#>ÏOd[]V/E]W@V/AL?JV/I
V�?JV�Od[^Ñ¶ZPÎ�IKAD[]>@OKÞ�V/AJS�UÖE^V�ÎKW@>TS�A�ÑbV/ÎPADE�AB[^V�W@Ò-Ú�æGUKV#[^E^A-OPÑ]AJS�[^>ÏØJOÖÓ#V/S�UPA-OK>TÑbÓ�ØJO¼[]UKVÂE^V�ÎKW@>Ïá
S�AD[]VpIçIKAD[^A-ÐPA-Ñ]V�>TÑ(I\V/Ñ]>@Þ-OKVpI�[]ØRÎKE^ØB?N>@I\V�[]UPV�>@W@WÏZPÑ]>@Ø-O¼ØDÙtAD[]Ø-Ó#>TS�ZKÎ�IPAB[]V#Ø-ÙtARØ-OKV#S!ØJÎdÒ
IKAD[^ADÐfA-Ñ]V-ÚDæGUKE^Ø-ZKÞJU
[^UKV0E]V�ÕPOKV/Ó�V/Od[�ÎKE]ØNØ-Ù Ñ�àB×)VG?-V�E^>ÏÙÜÒ([]UPAD["[]UKV�IKV/Ñ]>ÏÞJO�Ø-ÙP[^UKV�E^V�ÎKW@>@S/AB[^V/I
IKAD[^ADÐfA-Ñ]V�S!ØJO\ÕPE^Ó#Ñ�[]Ø([^UKV1Ø-OKV�S�Ø-ÎNÒ#IKAB[�ADÐPAJÑbV�A-ÐPÑb[]E�A-S�[^>ÏØJOÂI\V/Ñ]ÎK>Ï[]V�[^E^A-OPÑ^A-S�[^>ÏØJO#Ù AD>@WÏZPE]VpÑ
AB[�AÂÑ]>Ï[]V-ÚPÝmO³[^UK>TÑ�Ó#Ø\I\V�WY×)V
A-Ñ^Ñ]ZKÓ#V�[^UPAB[�[]UKV
Ñ]>¬[^V/Ñ�S�Ø-Ó#Ó�ZPOK>@S/AB[^V(ÐdÒ³A#E]V/WÏ>TADÐKW@V(ÐKE^ØJAJINá
S�AJÑn[t×0UK>@S�UÀV�?-V/Od[]ZPA-WÏW@Ò�I\V/WÏ>@?-V/EHÓ#V/Ñ^Ñ^ADÞ-VpÑ"×0>Ï[]UKØJZ\[)A-OdÒ�Ø-E�I\V/E]>@OKÞ(Þ-ZfADE�ADOd[]V/V/Ñ/ÚDæGUKV�E^V!ÙÜØJE]VJà
[]UPVçS!ØJO\âP>TS�[^>ÏOKÞ$Ø-Î�V�E�AB[^>ÏØJOPÑÂØDÙ
ZPÎ�IKAD[]VÖ[]E�ADOPÑ^A-S![]>@Ø-OPÑÂØJE]>@Þ->@OPAD[]>@OKÞÛÙÜE]ØJÓ6IK> B¥V�E^V�Od[RÑ]>Ï[]V/Ñ
ÓÂALÒRA-E]E^>@?-V(AB[�IK> B¥V�E^V�Od[1Ñ]>Ï[]V/Ñ�>ÏO�[^UKV�IK> B¥V�E^V�Od[�ØJE^I\V/E/Ú�æGUK>TÑ�ÓÂALÒÀW@V/AJIR[]Ø[^UKV�I\VpA-I\W@Ø\S�C\Ñ
ADÓ#ØJOKÞ»[^UKV�S!Ø-OKâP>@S![]>@OKÞç[]E�ADOPÑ^A-S![]>@Ø-OPÑ�×0UK>TS�U�E^V/Ñ]ZKW¬[�Ñ�>ÏO ZKOKOKVpS!VpÑ]Ñ^ADE^Ò¼A-ÐfØJEb[#ØDÙ�?LA-E]>@Ø-ZfÑ
[]E�ADOfÑ]AJS�[]>@Ø-OfÑ�ÚDæGUKV�A-ÐfØJEb[�Ø-Ùf[^UKV/Ñ]V�S!ØJO\âP>TS�[^>ÏOKÞ(ZPÎ�IKAD[]V0[^E^A-OPÑ^A-S�[^>ÏØJOPÑ+ÓÂALÒ
Ð�V�AL?-ØJ>@I\VpI�>ÏÙ�A
E^V�W@>@A-ÐKWÏV1ÐKE^ØJAJIKS�AJÑn[0ADWTÑbØ�ÎKE^ØB?N>@I\V1UK>@Þ-UKV/EGØ-E�I\V�E^>ÏOPÞ�ÞJZPADE�ADOd[]V/V/ÑtØ-O³[]UKV¶Ó#V/Ñ^Ñ^ADÞ-V¶I\V/WÏ>@?-V/E]ÒJÚ
�¼V
ADE^V1S�ZKE]E^V�Od[^WÏÒÂ>@ON?-V/Ñb[]>@ÞJAD[]>@OKÞ#ADOPIÀÙÜØ-E^ÓÂADW@>��/>ÏOKÞ�[^UKV¶Þ-E^Ø-ZKÎ�S!ØJÓ�Ó�ZKOK>TS�AD[]>@Ø-OÀÎPE]>@Ó#>¬[^>Ï?JV
×0>Ï[]U�E]V�ÙÜV�E^V�OPS�V1[]Ø�[]UKV¶[^UKV(ZKÎ¥IKAB[^V¶[]E�ADOPÑ^A-S![]>@Ø-OPÑ/Ú

35

� �ãÇfÉ#$YÇPÌ]Å����ÖÇKÈ�� $YÇ\ÆKÌ $�"

ÝmOÀØJZKE)Ó�Ø\I\V/W¥ØDÙ<E^V�ÎKW@>TS�AB[^V/I³IKAB[�ADÐPAJÑbVpÑ�ì ò��Bî¥×)V1AJÑ]Ñ]ZKÓ#V�[^UPAB[)[]UKV¶Ñ]>¬[^V/ÑGS!ØJÓ�Ó�ZKOK>TS�AD[]V�ÐNÒ
V!éKS�UPA-OKÞ-V�ØDÙYÓ#V/Ñ^Ñ]A-Þ-VpÑ�ZPÑ]>ÏOPÞ�A
E^V�W@>TADÐKW@V�ÐKE^ØJAJIKS�AJÑn[pÚ Í E]V/WÏ>TADÐKW@V�ÐKE^ØJAJIKS�AJÑn[1ì �Dî�V/?-V�Od[^ZPADW@WÏÒ
I\V/WÏ>@?-V/EG[]UKV(Ó#V/Ñ^Ñ^ADÞ-VpÑt[]ØÂADW@W�ÎPADE][]>TS!>@ÎPAD[]>@OKÞÂÑb>Ï[]VpÑ�ADOPIRÑ^AB[]>TÑbÕPV/Ñ)ÙÜØJWÏW@ØB×0>ÏOPÞ�ÎKE^Ø-Î�V�E][]>@V/Ñ/Ú

C
	 � � �R5��=-~ü1�dÝ½Ù�A1S�Ø-E^E]VpS�[+ÎKE^ØNS�V/Ñ^Ñ+ÐKE^ØJA-IPS�A-Ñb[^Ñ+A1Ó#V/Ñ^Ñ]A-Þ-V >�àD[]UKV/O�>Ï[�V�?JV�Od[]ZfADW@WÏÒ�IKV�W@>Ï?JV�E�Ñ
>�Ú

C 6 � /^ø^ø�>Âø!÷�-2� Í WÏW¥S!ØJE]E^V/S![HÎKE^ØNS�V/Ñ^ÑbVpÑ�I\V/WÏ>@?-V/E^ÑtA
Ñ]A-Ó#V�ÑbV�[tØ-ÙYÓ�VpÑ]Ñ^ADÞJV-àD>~Ú V-Úd>¬ÙºA
ÎKE]Ø\S�V/Ñ^Ñ
I\V/WÏ>@?-V/E^Ñ0A�Ó#V/Ñ^Ñ^ADÞ-V7>;[^UKV�O�A-WÏWYS�Ø-E^E]VpS�[0ÎKE^ØNS�V/Ñ^ÑbVpÑ)V�?-V/Od[]ZPA-WÏW@ÒI\V�W@>@?-V�E�Ñb>�Ú

C�� ÷1-mø � /��=-~ü ��è�ØãÑbÎPZKE]>@Ø-ZfÑ�Ó#VpÑ]Ñ^ADÞJV/Ñ#ADE^V³V/?-V/E#IKV�W@>Ï?JV�E^V/I�à">~Ú VJÚÏà+ÙÜØJEADONÒãÓ#V/Ñ^Ñ]A-Þ-V >�àV/?-V�E^ÒÁS!ØJE]E^V/S![�ÎPE]Ø\S!VpÑ]Ñ#I\V/WÏ>@?-V/E^Ñ<>6AB[ÂÓ#ØJÑb[#ØJOPS!V�A-OPI�ØJOKW@ÒÁ>¬Ù7> ×GA-Ñ�ÎKE^V�?N>@Ø-ZPÑ]WÏÒ
ÐKE^ØJAJIKS�AJÑn[GÐNÒ�+�ø!÷�5-ø�/
 > � Ú

Í E^V�W@>@A-ÐKW@V(ÐKE]ØdA-IKS/A-Ñb[�>ÏÓ#Î�ØJÑ]V/Ñ0OPØE]VpÑn[^E]>TS�[^>ÏØJO�Ø-O�[]UPV�Ø-E�I\V/E0>ÏO»×0UP>@S�U�Ó#V/Ñ^Ñ^ADÞ-VpÑ0ADE^V
I\V/WÏ>@?-V/E]VpI�[]Ø
[^UKV�ÎPE]Ø\S!VpÑ]Ñ]V/Ñ/ÚJæGUP>@ÑtÓÂALÒ�W@V/AJI#[]Ø�[]UKV�ÐKWÏØ\S�CN>@OKÞ
ØDÙ<S�Ø-O\âf>@S![]>@OKÞ
[^E^A-OPÑ]AJS�[^>ÏØJOPÑ
ADOfI#[]UKV¶Ñ]>¬[^V/ÑtÓ#ALÒÂA-ÐfØJEb[)Ø-OKV�Ø-E)Ó�ØJE]V�ØDÙY[^UKV1S�Ø-O\âf>@S![]>@OKÞ
[^E^A-OPÑ]AJS�[^>ÏØJOÂÐdÒ�[^>ÏÓ#V�ØJZ\[^Ñ/Ú �KØJE
V!éKA-Ó�ÎPWÏVJà&S�Ø-OPÑ]>@IKV�E�[n×tØ¼S!Ø-OKâP>@S![]>@OKÞÖZPÎ�IKAD[]V³[]E�ADOPÑ^A-S![]>@Ø-OPÑ4N�O�A-OPILN d >@OK>¬[^>@AD[]VpI�AB[ÂÑ]>¬[^V
� O ADOPI ��dE^V/Ñ]ÎfVpS�[^>Ï?JV�W@Ò-Ú<X)ØD[^UãØDÙG[]UPVÂ[]E�ADOPÑ^A-S![]>@Ø-OPÑ¶ÓÂALÒ¼ÐfVÀÐKWÏØ\S�CJV/I¼>ÏOÁ[]UKVÂÙÜØJWÏW@ØB×0>@OKÞ
Ñ^S!V�OfADE^>ÏØ<�

C � O Ñb[^A-Eb[�Ñ
[^E^A-OPÑ]AJS�[^>ÏØJOLN O A-OPI�AJS å ZK>@E]V³WÏØ\S�C\Ñ�ØJO úA@QP�ø ��-R+�ø�-�ì E O î�AB[ÂÑb>Ï[]V � O ÚZ�\>¬[^V � O
ÐKE^ØJAJIKS�AJÑn[&ZKÎ¥IKAB[^V)Ó#VpÑ]Ñ^ADÞJV/ÑºØDÙ�N O []Ø1ÎPA-Eb[^>@S�>ÏÎPAD[]>@OKÞ¶Ñb>Ï[]VpÑ�Ú?�N>@Ó#>ÏWTADE^WÏÒJàDADOKØ-[]UKV/E&Ñ]>Ï[]V ��d
Ñb[^A-Eb[�ÑHA¶[^E^A-OPÑ]AJS�[^>ÏØJO7N�d(àdAJS å ZK>@E]VpÑ"W@ØNS�C\Ñ"ØJOÖú�@RP�ø �2-S+�ø2-�ì EHd!î�AB[tÑ]>¬[^V ��d�A-OPI#ÐKE^ØJA-IPS�A-Ñb[
ZKÎ¥IKAD[]V(Ó#V/Ñ^Ñ]A-Þ-VpÑtØ-Ù�N d []Ø#ÎPADE][]>TS!>@ÎPAD[]>@OKÞÂÑb>Ï[]VpÑ�Ú

C æGUKV(Ñ]>¬[^V ��O+I\V�W@>@?-V�E�Ñ)ZKÎ¥IKAB[^V(Ó�VpÑ]Ñ^ADÞJV�Ø-Ù'N d ÙÜE^Ø-Ó � d A-OPI � d I\V/WÏ>@?-V/E^Ñ)ZKÎ¥IKAB[^V¶Ó�VpÑná
Ñ^ADÞJV�ØDÙ�N�OºÙÜE^Ø-Ó ��O]ÚNæGUPV N d >TÑtÐPWÏØ\S�C-VpIAB[���O+A-Ñ ��Oº×)A->¬[�Ñ�ÙÜØJE)?JØD[^V!ámS!Ø-Ó#Ó#>Ï[HÙÜE^Ø-Ó � d
ÙÜØJE�N�ObÚ��N>@Ó#>ÏWTADE^WÏÒJàGN�O+>@Ñ0ÐPWÏØ\S�C-VpIÀAD[� d ×GAD>Ï[]>@OKÞ�ÙÜØ-E0?JØD[]V�á½S�Ø-Ó#Ó#>¬[GÙÜE^Ø-Ó ��O+ÙÜØ-E�N d
ÝmOãØ-E�I\V/E¶[]Ø»E^V/S�ØB?-V�E¶ÙÜE^Ø-Ó�[]UPVÀADÐ�ØB?-VÑ^S!V/OPADE^>ÏØ�×0UKV/E]V#[n×)ØÖS�Ø-O\âP>TS�[^>ÏOPÞ�[]E�ADOPÑ^A-S![]>@Ø-O

ADE^V1ÐKWÏØ\S�CJV/I�àdV�>Ï[]UKV/E0Ø-EGÐ�ØD[]U³[]E�ADOfÑ]AJS�[]>@Ø-OfÑHÓÂALÒ#ÐfV(A-ÐfØJEb[^V/IÐNÒÂ[^UKV(Ñb>Ï[]VpÑ�Ú\æGUK>TÑGÎKE^Ø-ÐKW@V�Ó
S�A-O»Þ-E^V/AD[]W@Ò�ÐfV#Ñb>@Ó#ÎKW@>¬ÕPVpI»ÐNÒ»A-Ñ^Ñ]ZKÓ#>ÏOKÞ³A³Ñb[]E^Ø-OKÞJV�E�OKØD[^>ÏØJO»ØDÙHE^V�W@>TADÐKW@V�ÐKE^ØJAJIKS�AJÑn[�[]UPAD[
ÎKE^ØB?N>@I\VGUK>@Þ-UPV�E�ØJE^I\V/E�Þ-ZfADE�ADOd[]V/V/Ñ&Ø-OÂÓ#V/Ñ^Ñ^ADÞ-V0I\V/WÏ>@?-V/E]ÒJÚ��ADE^>@Ø-ZPÑ"I\V�ÕPOK>Ï[]>@Ø-OPÑHØDÙ�Ø-E�I\V/E]>@OKÞ
ÎKE^Ø-Î�V�E][]>@V/Ñ¶UPAL?JV#ÐfV/V�OãI\>TÑ]S�ZPÑ]Ñ]V/I¼>@O ì �Dî~Ú Í E^V�W@>TADÐKW@V#ÐKE]ØdA-IKS/A-Ñb[¶S/ADOÛÐ�VÂZPÑbVpIç[]Ø»I\V/WÏ>@?-V/E
Ó#V/Ñ^Ñ]A-Þ-VpÑH[^Ø�[]UKV¶ÎKE^Ø\S!V/Ñ^Ñ]V/ÑtÙÜØ-W@WÏØB×0>@OKÞ#A�� � �Gö ö /	5-ø�/�à��<ú�� ����ö /	5Jø2/�àHù �Dÿ%+ ����ö /	5Jø2/
ØJE0AEfú�- ���Yö /	5Jø2/�Ú Í O�>@O\ÙÜØJE]ÓÂADW\Ñ]ÎfVpS!>ÏÕfS�AD[]>@Ø-OPÑ+Ø-ÙP[^UKV/Ñ]VGØ-E�I\V�E^>ÏOPÞ�ÎKE^Ø-Î�V�E][]>@V/Ñ+ADE^V)Þ->@?-V�O�ÐfV/WÏØB×(Ú

C � � �0ö ö /	5Jø2/ �NÝ½Ù+A
ÎPA-Eb[^>@S�ZKW@A-EtÎPE]Ø\S!VpÑ]ÑtÐKE^ØJAJIKS�AJÑn[�ÑHA�Ó�VpÑ]Ñ^ADÞJV����RÐ�V!ÙÜØ-E^V1>¬[0ÐKE^ØJAJINáS/A-Ñb[^Ñ0A�Ó#V/Ñ^Ñ]A-Þ-V����JàK[^UKV�O�V/AJS�U³E^V/S�>ÏÎP>ÏV/OJ[0ÎKE^Ø\S!VpÑ]Ñ0I\V/WÏ>@?-V/E^Ñ�����Ð�V!ÙÜØJE]V����-Ú
C �ºú�� � �<ö /	5-ø�/%�-Ý½Ù�A¶ÎKE^ØNS�V/Ñ^Ñ"I\V�W@>@?-V�E�Ñ����Ð�V!ÙÜØJE]V0ÐPE]ØdA-IKS/A-Ñb[]>@OKÞ�[^UKV�Ó#V/Ñ^Ñ^ADÞ-V����-àJ[]UKV/OVpA-S�URE]VpS!>@ÎK>ÏV/Od[GÎPE]Ø\S!VpÑ]Ñ0IKV�W@>Ï?JV�E�Ñ����»ÐfV�ÙÜØ-E^V����JÚ
C ù �Bÿ%+ � �Yö /	5-ø�/b�pÝ½ÙP[]UKV)ÐKE^ØJA-IPS�A-Ñb[<Ø-ÙfA�Ó#V/Ñ^Ñ^ADÞ-V���� � �Dÿ%+ �����jütû /^ø ��ø[5-ø2+)[]UKV)ÐKE^ØJA-IPS�A-Ñb[Ø-ÙHAÓ#V/Ñ^Ñ]A-Þ-V����Jàf[^UKV�OçOKØ³S�Ø-E^E]VpS�[�ÎPE]Ø\S!VpÑ]Ñ�I\V�W@>@?-V�E�Ñ ���ãZKOPWÏVpÑ]Ñ�>¬[¶UPAJÑ�ÎKE^V�?N>@Ø-ZPÑ]WÏÒ
I\V/WÏ>@?-V/E]VpI!���DÚ

C Efú�- ����ö /	5Jø2/^�\Ý½Ùº[n×tØ�ÎKE^Ø\S!V/Ñ^Ñ�"#��ADOfI�"��ÖÐfØ-[]U�I\V�W@>Ï?JV�E)[]UPV1Ó#VpÑ]Ñ^ADÞJV/Ñ��!�»ADOPI!���
[^UKV�O�"#�ÖI\V�W@>Ï?JV�E�Ñ��!�»ÐfV�ÙÜØ-E^V$���»>¬Ù"ADOfI³ØJOKW@Ò>¬Ù�"��¼ADWTÑbØ#I\V�W@>@?-V�E�Ñ%����Ð�V!ÙÜØJE]V����-Ú
Í ù �Bÿ%+ ���tö / 5-ø�/�&#/]ú���5 � ��+.-0>@Ñ0A�E^V�W@>@A-ÐKWÏV¶ÐKE^ØJAJIKS�AJÑn[)[]UfAB[�Ñ^AB[]>TÑbÕPV/Ñt[]UPV � �Dÿ%+ ���ºú?/	5-ø�/

E^V å ZK>@E]V/Ó�V/Od[/Ú�æGUKV�OKØ-[]>@Ø-O ØDÙ(S�ADZfÑ]A-WÏ>Ï[nÒã>@Ñ#ÐfA-Ñ]V/I$Ø-O � �Dÿ%+ ���+û�/]ø �^ø[5Jø!÷ �^øI/]ø � ��- � úB÷
(' �
I\V�ÕPOKV/I#ÐNÒ�[]UKV#MºADÓ#ÎfØJEb[�ìÏð �Dî~ÚBÝ½[t>@Ñ�A-W@Ñ]Ø(ÑbUPØB×0O�>@O�[]UKV�ì �DîK[]UPAD[tA � �Bÿ%+ ����ú�/	5Jø2/¶S!ØJÓ�ÐK>@OKVpÑ
[]UPV(ÎKE]ØJÎfV/Eb[^>ÏVpÑGØDÙ&ÐfØ-[]U �&Ý ��
 A-OPIYMYØ\S�A-W¥Ø-E�I\V�EpÚKæGUKV �&Ý ��

�E^I\V/E0ADOPI<MYØ\S�A-W'
�E^IKV�EG>@Ñ
Ñ]UKØB×0OÖ>@O»[^UKV �º>@ÞPÚYòKÚ¥æGUPV�I\Ø-[b[^V/IçWÏ>@OKV/Ñ1E^V�ÎKE^V/Ñ]V�Od[�Ñ�[^UKVÂI\V�W@>Ï?JV�E^Ò�ØDÙHÓ#V/Ñ^Ñ^ADÞ-V�?N>ÏØJW@AD[]>@OKÞ
[]UPV0E]VpÑbÎ�V/S![]>@?-V)Ø-E�I\V�EpÚ��N>@Ó�>@WTADE^WÏÒJàDA�Efú�- ���<ö / 5-ø�/)&�/]ú���5 � ��+.-+*)>TÑ"A1E]V/WÏ>TADÐKW@VGÐKE^ØJA-IPS�A-Ñb[&[]UPAD[
, �+aJi.-0/2143658789(:<;=9�>?9(/@3A:ABC32DC1Gqjr)s/ejrmc�¯Dodc ° os�r#E+kncpw(qj`��ºlncLs/uJ`�s�r½k � �ºc/knac/g<knadi�kni^lnw(rts�lni
yJrmi�u�qjoBkni^ln`]ads/oJ²pi�s�®de|} ��± c ° i�{Li^l ° i�xJlni^g@i^l1knaJi(gTc/lnw(i]l¶s�r�knadi(kni^lnwF3214/2G�HIB
rmyd²p²/i�r½knr�knaJi
3KJ29C;C;=G�;=LM1�xJlncpx\i]lmk~}
lbs�knaJi^l�knaNs/oN14/214365O/29P:<;=9 �

36

M2M1

P3

P2

P1

M2

M1

P3

P2

P1

��� � � � �+ì ABî½Ú �&Ý ��
 Ø-E�I\V�E(ì Ð\î½Ú1MYØ\S�A-W'
�E^IKV�E

Ñ^AB[]>TÑbÕPV/Ñ�[]UKV4-½ú?- � ��ú?/	5-ø�/(E^V å ZK>@E]V/Ó�V/Od[/ÚJæGUPVb6 � /]ø�ø�>#ø�÷1-�A-OPI Efú�- ���+ö /	5-ø�/¶E]V å ZP>ÏE^V�Ó#V�Od[�Ñ
ØDÙ(æºØD[^A-W�
�E^IKV�EÂX)E]ØdA-IKS/A-Ñb[�>@Ó#ÎKWÏÒ�[]UPAD[ÀADW@W�S!ØJE]E^V/S![�ÎKE^Ø\S!VpÑ]Ñ]V/Ñ�V�?JV�Od[]ZfADW@WÏÒ�IKV�W@>Ï?JV�E#[]UPV
Ñ^ADÓ#V\+�ø�þ!ÿPø�÷���ø�ØDÙYÓ#VpÑ]Ñ^ADÞJV/Ñ�ì �Bî½Ú Í ÑGÑbUPØB×0OÂ>ÏOÀ[]UKV �º>@ÞPÚ\ôfì ADîP[]UPV�Ó#V/Ñ^Ñ^ADÞ-VpÑHA-E]V�IKV�W@>Ï?JV�E^V/I
S!ØJO\ÙÜØ-E^Ó#>ÏOPÞ�[]ØÖÐ�ØD[^U�S�A-ZPÑ^ADWHA-OPIÁA�[^ØD[^A-WHØJE^I\V/E/Ú&ß�ØB×)V�?JV�EpàYA-Ñ�Ñ]UKØB×0Oã>@O �&>ÏÞfÚºôfì Ð\î)[]UPV
I\V/WÏ>@?-V/E]ÒÛØ-E�I\V/E�E^V/Ñ]ÎfVpS�[^Ñ#A»[]ØD[�ADW)Ø-E�I\V�E�ÐKZ\[#?N>ÏØJW@AD[]VpÑ�S/ADZPÑ^ADW)Ø-E�I\V�EpÚ<Ý½[ÂS�A-O�Ð�V³OPØD[]>TS!VpI
[]UfAB[H[^UKV�S/ADZPÑ^ADW@>¬[nÒ�ADÓ#Ø-OPÞ([]UKV�ÐKE]ØdA-IKS/A-Ñb[�ØDÙ�Ó#V/Ñ^Ñ]A-Þ-V ����ADOPI ���³>@ÑtOKØ-[HÎKE^V/Ñ]V�E^?-V/I�ÙÜØJE
I\V/WÏ>@?-V/E]ÒJÚ

M2 M3

M1
P1

P3

P2
M2 M3

P2

P1
M1

P3

��������� �"ì ABî�æ<Ø-[^A-W'
�E^I\V/E0ADOPI�A �)ADZPÑ^ADW�
�E�I\V�E
ì Ð\î�æ<Ø-[^A-W'
�E^I\V/EGÐKZ\[�OKØ-[�A^�)A-ZPÑ^ADW'
�E�I\V�E

���	��
����� ��� �����	��������
�� ����������� �!�	"#�$�	��"&%'�	����"#
(���)�+*ÀÝmOÁA�E^V�ÎPWÏ>TS�AD[]V/IÛIKAD[^A-ÐPA-Ñ]V
[]UfAB[�ZPÑ]V/Ñ�A�E]V/WÏ>TADÐKW@VÂÐKE^ØJAJIKS�AJÑn[¶×0>¬[^UKØ-ZK[�Ø-E�I\V�E^>@OKÞ�Þ-ZPA-E^A-OJ[^V�VpÑ�à�[]UPVÀS!ØJO\âP>TS�[]>@OKÞ�ØJÎfV/E^ADá
[]>@Ø-OfÑGØDÙY[^UKV¶[]E�ADOPÑ^A-S![]>@Ø-OPÑtÓÂALÒ\Ñ)A-E]E^>@?-V�AD[GIK> B¥V�E^V�Od[�Ñb>Ï[]VpÑG>ÏO�I\>�B�V/E]V/Od[GØJE^IKV�E�Ñ�ÚNæGUK>TÑGÓ#ALÒ
W@V/A-I³[^ØÂZKOKOKVpS!V/Ñ^Ñ^ADE^ÒÀADÐ�Ø-E][^ÑGØ-Ùº[^UKV([]E�ADOfÑ]AJS�[]>@Ø-O�I\ZKV¶[^ØÂÐKW@ØNS�CN>@OKÞPÚfæGUKV
ADÐ�Ø-E][]>@Ø-ORØDÙ+[]UPV
S!ØJO\âP>TS�[^>ÏOKÞ�[]E�ADOfÑ]AJS�[]>@Ø-O³S�ADOÀÐfV(AL?-ØJ>@IKV/I#ÐNÒÂZPÑ]>ÏOKÞ#A -½ú?- � ��ú?/	5-ø�/\@2/^ú��A5�� ��+.-)×0UK>@S�URI\V�W@>@?Já
V�E�Ñ�A-OPI�V�éNVpS!Z\[^V
[^UKV�S�Ø-O\âP>TS�[^>ÏOPÞÀØ-Î�V�E�AB[^>ÏØJOPÑ�AD[�ADW@W+Ñb>Ï[]VpÑ�>@O�[]UPV�Ñ^ADÓ#V�ØJE^I\V/E/Ú �N>ÏÓ#>@W@A-E]W@Ò-à
A � �Bÿ%+ ���)ú�/	5Jø2/ @�/]ú���5 � ��+.-
S�ADÎK[]ZKE^V/Ñ(S�Ø-O\âP>TS�[�AJÑ
S�A-ZPÑ^ADW@>¬[nÒÖA-OPIç[]E�ADOPÑ^A-S![]>@Ø-OPÑ1V�éNVpS!Z\[^>ÏOPÞ
S!ØJO\âP>TS�[^>ÏOKÞRØ-Î�V�E�AB[^>ÏØJOPÑ1ADE^V�V�éNVpS!Z\[^V/IçAB[
ADW@W"Ñb>Ï[]VpÑ�>@Oç[]UKVÂÑ^ADÓ#V�ØJE^I\V/E/Ú¥ÝmO ì¬ð �Bî½à�×)V�ZPÑbVpI
A�E^V!ÕPOKV/Ó#V�Od[
ADÎKÎKE^ØJAJS�UÖ×0>Ï[]ULH?-V�Od[
X ÙÜØJE¶ÙÜØ-E^ÓÂADWHI\V/?-V/WÏØJÎKÓ#V�Od[(ØDÙGÐKE]ØdA-IKS/A-Ñb[¶Ñ]Ò\Ñn[^V�Ó
×0UK>TS�UÂI\V�W@>Ï?JV�E�Ó#VpÑ]Ñ^ADÞJV/Ñ+Ñ]AD[]>TÑnÙÜÒN>@OKÞ(?BADE^>ÏØJZPÑ+Ø-E�I\V/E]>@OKÞ¶ÎKE^Ø-Î�V�E][]>@V/Ñ/ÚBÝmO#[]UKV�A-ÐPÑb[]E�A-S�["Ó#Ø\I\V�W
×)V�ØJZ\[]W@>ÏOPV/IçUKØB× A³S/ADZPÑ^ADW+ØJE^I\V/E�ØJO»[^UKV#Ó�VpÑ]Ñ^ADÞJV�S/ADOÖÐ�V#S!Ø-OfÑn[^E]ZPS![]VpIÖADOfI»>@OÖ[^UKV#E]V�á
ÕPOKV/Ó#V�Od[Â×tV�ÑbUPØB× UKØB×;>Ï[ÂS/ADO�S�Ø-E^E]VpS�[^WÏÒÛÐ�VR>@Ó#ÎKW@V�Ó#V�Od[]VpI�ÐNÒã?JV/S�[^Ø-E#S!W@Ø\S�CNÑ/Ú&ÝmO ìÏð2�Dî
×)V�ÎPE]VpÑbV/OJ[
A�Ó#Ø\I\V�WHØDÙ)S/ADZPÑ^ADW"ØJE^IKV�E¶ÐKE^ØJA-IPS�A-Ñb[¶×0UK>@S�UãI\ØNVpÑ(OKØD[
I\V/WÏ>@?-V/E(Ó#V/Ñ^Ñ]A-Þ-V/Ñ�[^Ø
[]UPV³Ñ]V�OPI\V/E/Ú<ÝmO�A»Ñ]V�ÎPA-E^AD[]VI\V/?-V�W@Ø-ÎPÓ�V/Od[
>ÏOóìÏðf�DîH×)VÀADWTÑbØÖØ-Z\[^WÏ>@OKVÂ[^UKV³S�Ø-OPÑb[]E^ZPS�[^>ÏØJOÛØDÙ
ADÐfÑn[^E^AJS�[�[^ØD[^A-W<ØJE^I\V/E�ØJO�Ó�VpÑ]Ñ^ADÞJV/Ñ�ADOPI�>Ï[^Ñ�>ÏÓ#ÎKW@V�Ó#V/OJ[�AB[^>ÏØJO»ZPÑ]>ÏOKÞRÑbV å ZKV�OPS�V�E�OdZPÓ�Ð�V�E�Ñ
>@OÁ[]UPV³E^V!ÕPOPV�Ó#V�Od[^Ñ/ÚXM<A-Ñb[]W@Ò-à&×)V³ADWTÑ]Ø»ÙÜØ-E^ÓÂADW@WÏÒãI\V/?-V/WÏØJÎÁAçÑ]Ò\Ñn[^V�Ó ×0UKV�E^VÀÓ#VpÑ]Ñ^ADÞJVÀADE^V
I\V/WÏ>@?-V/E]VpIÙÜØJWÏW@ØB×0>ÏOPÞ�Ð�ØD[^U�A�[^ØD[�ADWYADOfI³A#S�A-ZPÑ^ADW�Ø-E�I\V/E-,BÚ

. /�È�Æ�0Z)��ÁÇPÉ#$YÇ21ÛÇKÈ�0+É�Ë30Z"-Æ

ÝmO¼[]UK>TÑ(Ñ]V/S�[^>ÏØJOç×)V#Ø-Z\[^WÏ>@OKV#[^UKV#>ÏOPS�E]V/Ó#V�Od[^A-W�I\V�?JV�W@Ø-ÎKÓ#V�Od[(ØDÙGA�ÑbÒ\Ñb[]V�Ó ØDÙH[^ØD[�ADW"Ø-E�I\V/E
ÐKE^ØJAJIKS�AJÑn[pÚ�æGUKV#ØJÎfV/E^AD[]>@Ø-OPÑ�ØDÙGADO¼ZKÎ�IPAB[]V�[^E^A-OPÑ]AJS�[^>ÏØJOÖADE^V�S�Ø-Ó#Ó�ZPOK>@S/AB[^V/I»ÐNÒ�[^UKVÂS!Ø-á
4 E lni�ejqÏs�®dejiR®-lncLs/uJ`�s�r½k�knads�k�rns�knqjr½¿Ni�r�®\c/knaÛ`�s/ydrns�e0s/odu¼knc/kbs�e)c/lbu-i^l�q¬r�s/ejrmc»`�s/ejeji�u65 3�7�D=365
8 14/ G%HIB >?9P/@3A:6B 3 D 1 �

37

Ø-E�I\>@OPAB[^Ø-E�Ñ]>Ï[]V³[]Ø»[^UKVÀÎfADE][]>TS!>@ÎPAB[^>ÏOKÞçÑb>Ï[]VpÑ�ÐNÒÛÐKE^ØJA-IPS�A-Ñb[�Ø-Ù�ADOÁZKÎ¥IKAD[]VÀÓ#VpÑ]Ñ^ADÞJV-ÚºæGUPV
ADÐ�Ø-E][]>@Ø-O�Ø-Ù"[]UKV�S!ØJO\âP>TS�[]>@OKÞÂ[^E^A-OPÑ^A-S�[^>ÏØJO»S�A-O�ÐfV#AL?-ØJ>@I\VpIRÐdÒ�ZPÑ]>@OKÞÀADOÖZKOPI\V/E]W@ÒN>ÏOKÞ³ÑbÒ\Ñbá
[]V/Ó�ØDÙ -½ú?- � �Hú�/	5Jø2/ @�/]ú���5 � ��+.-�×0UK>TS�UÛI\V�W@>Ï?JV�E�Ñ¶ADOPIçV!é\V/S�Z\[]V�[^UKVÂS!Ø-OKâP>@S![]>@OKÞRØ-Î�V�E�AB[]>@Ø-OfÑ
AB[�A-WÏW<Ñ]>Ï[]V/ÑG>@OR[]UKV
Ñ^ADÓ#V¶Ø-E�I\V/E/Ú

�ZKE�Ñ]Ò\Ñn[^V�Ó Ó�Ø\I\V/WºS�Ø-OPÑ]>@Ñb[^Ñ�ØDÙ"AÂÑbV�[�ØDÙ�Ñ]>¬[^V/Ñ�S�Ø-Ó#Ó�ZKOP>@S/AB[]>@OKÞÂÐNÒ³AE]V/WÏ>TADÐKW@V(ÐKE^ØJAJINá
S�AJÑn[pÚ&æGUPVÀC-V/Òç>TÑ^ÑbZKVpÑ
×0>Ï[]U$E]VpÑbÎ�V/S![
[]Ø¼AÖÑ]ÒNÑb[]V/Ó�Ø-Ù0[]Ø-[^ADW)Ø-E�I\V/E
ÐKE^ØJA-IPS�A-Ñb[�A-E]V � UKØB×
[]ØRÐKZK>@WTIçA-OÖØ-E�I\V/E�ØJOÖÓ#V/Ñ^Ñ]A-Þ-VpÑ���ADOfI»×0UPAD[¶>@O\ÙÜØJE]ÓÂAB[^>ÏØJO»>TÑ¶OKV/S�V/Ñ^Ñ]A-E]Ò³ÙÜØ-E(I\V�ÕPOK>@OKÞRA-O
ADÐfÑn[^E^AJS�[)[]ØD[�ADW¥Ø-E�I\V/E��\
�ZKE0A-ÎKÎKE^ØJA-S�UÂØ-ÙºÐKZP>ÏWTI\>@OKÞÂA
[^ØD[^A-W�Ø-E�I\V�E)>TÑGÐPA-Ñ]V/IÀØ-O[^UKV¶OKØD[^>ÏØJO
ØDÙ'+�ø^þ�ÿPø�÷���ø2/�à-×0UKV�E^V0A1IKV/Ñ]>ÏÞJOPAB[^V/I�Ñb>Ï[]V0S�A-WÏW@V/I +�ø�þ!ÿPø�÷���ø�/�Ñb>Ï[]V0>TÑ+E^V/Ñ]ÎfØJOPÑb>@ÐKW@V)ÙÜØ-E"ÐKZK>@WTI\>ÏOPÞ
AÂ[^ØD[�ADW&Ø-E�I\V�EpÚ Í +�ø�þ!ÿPø�÷���ø�/#Ñ]>Ï[]V�ÓÂALÒ�ADWTÑ]Ø[^A-C-V�[]UKV�E]ØJWÏV�ØDÙtAI+!ø�÷ 5Jø2/A-OPI 5Jø.+.- ��÷���- � úB÷
>@OçA-IPI\>¬[^>ÏØJO�[]ØÀ[]UKV�E^Ø-W@V�ØDÙ�+�ø�þ�ÿPø!÷ �^ø�/�Ú¥æGUKV�ÎPE]Ø-[]Ø\S!ØJWºS!ØJOPÑ]>@Ñb[^Ñ�ØDÙ�ÕPE�Ñb[�ÐKE^ØJAJIKS�AJÑn[^>ÏOKÞA-O
ÿpû15���-mø >#ø2+[+�� � ø;> []Ø»ADW@WHI\VpÑn[^>ÏOfAB[]>@Ø-OfÑ(>ÏOfS!W@ZPI\>@OKÞ�[]UKV³ÑbV å ZPV�OPS�V�EpÚ�*�Î�Ø-OãE^V/S!V/>Ï?N>@OKÞ >�à
Ñ]V å ZKV�OfS!V�E(AJÑ]Ñ]>ÏÞJOPÑ1>¬[
A�Ñ]V å ZKV�OfS!V#ONZKÓ�Ð�V�E
A-OPIÖÐPE]ØdA-IKS/A-Ñb[�>Ï[^Ñ
Ñ]V å ZKV/OPS!V�ONZKÓ�Ð�V�E¶[^Ø�A-WÏW
I\VpÑn[^>ÏOPAD[]>@Ø-OPÑt[^UKE]ØJZKÞ-U �^úD÷1-0/]ú���>Âø2+ + � � ø2+�ÚHHA-S�U³I\V/Ñb[]>@OPAB[^>ÏØJOÀÑ]>¬[^V¶IKV�W@>Ï?JV�E > >ÏO³[]UKV1Ø-E�I\V/E
ØDÙ"Ñ]V å ZKV�OfS!V¶ONZKÓ�Ð�V�E�Ñ�Ú

��� ���)�	��
���� � "#�
	���� � �����	 � �	"#�$� %'��� ��"�
����� *�æGUPV¶A-ÐPÑb[]E�A-S�[0X Ó#Ø\I\V�W�Ø-Ù&A�[]Ø-[^ADW
Ø-E�I\V/EHÐKE^ØJAJIKS�AJÑn[�>TÑHÞJ>Ï?JV�O>@O��&>@ÞPÚdñ�ADOfIÀí\ÚdÝmOÂ[]UPV�ADÐfÑn[^E^AJS�[tÓ#Ø\I\V/W�A
[]ØD[�ADW�Ø-E�I\V�EH>@ÑtÐKZK>@W¬[
Ø-O�[]UKVRÓ#V/Ñ^Ñ]A-Þ-V³×0UKV�O$>¬[Â>TÑ�IKV�W@>Ï?JV�E^V/IÛ[^Ø¼A-OdÒÁÑ]>Ï[]VR>ÏO�[]UKV�Ñ]ÒNÑb[]V/Ó ÙÜØ-E�[]UKVRÕPE�Ñb[�[^>ÏÓ#V-Ú
æGUKV(Ñ]ÎfVpS!>ÏÕfS�AD[]>@Ø-O�S!Ø-OfÑb>TÑn[�Ñ)ØDÙYÙÜØJZKE0?BADE^>@A-ÐKWÏVpÑ�+!ø�÷ 5Jø2/�à<ú?/	5-ø�/�à'5Jø�� ���Bø�/�A-OPI;5Jø��Ïú?/	5-ø�/�ÚfæGUPV
+�ø!÷�5-ø�/³>TÑ�A�ÎfADE][]>TADW"ÙÜZKOfS�[]>@Ø-OÛÙÜE^Ø-Ó �³ý����H6��Hý []Ø�� � E¥ý)ÚºæGUKVÀÓ#A-ÎKÎK>@OKÞ
 >��' + ���
+�ø!÷�5-ø�/�>@OPI\>TS�AB[^V/Ñº[]UfAB[+Ó�VpÑ]Ñ^ADÞJV > ×GA-Ñ&ÑbV/Od[&ÐNÒ¶[]UPVGÑ]>Ï[]V�+�ÚBæGUKVG?BADE^>TADÐKW@V1ú?/	5-ø�/�>TÑ&IKV!ÕPOKVpI
A-Ñ�A�E]V/W@AD[]>@Ø-OãADÓ#ØJOKÞR[]UKV³Ó�VpÑ]Ñ^ADÞJV/Ñ/Ú Í ÓÂADÎKÎP>ÏOKÞÖØDÙG[]UKVÙÜØ-E^Ó
 >����' >�� ��� ú?/	5-ø�/
>@OPI\>TS�AB[^V/Ñ¶[^UPAB[�Ó�VpÑ]Ñ^ADÞJVY>$�Á>@Ñ^-mú�- �����¬üçú�/	5Jø2/^ø 5 @�ø��!ú?/]ø;>��JÚ<ÝmOÛØ-E�I\V/E¶[]Ø»E^V�ÎKE^V/Ñ]V�Od[¶[]UPV

MACHINE TotalOrder
SETS SITE; MESSAGE
VARIABLES sender, order, delorder, deliver
INVARIANT sender � MESSAGE � SITE

� order � MESSAGE � MESSAGE
� delorder � SITE � (MESSAGE � MESSAGE)
� deliver � SITE � MESSAGE

INITIALISATION
 sender := � || order := � ||
 delorder := SITE { � } || deliver := �
 �������"! � Í ÐPÑb[]E�A-S![�Q�Ø\I\V�W�Ø-Ù+æºØD[�ADW'
�E�I\V�Eb�KÝmOP>¬[^>@A-W��"ADE][

5-ø � ���Bø2/�ü»ú?/	5-ø�/ØDÙtÓ�VpÑ]Ñ^ADÞJV/Ñ�AB[1A³Ñb>Ï[]VJà¥?LA-E]>TADÐPWÏVY5-ø �Ïú�/	5Jø2/À>@Ñ�ZPÑ]V/I�Ú Í Ó#A-ÎKÎK>@OKÞ
 >$�#�'
>�� �$� 5Jø��@ú�/	5Jø2/&%0+('�>@OPI\>TS�AD[]V([^UPAB[�AÂÑ]>Ï[]V^+(UPAJÑ�I\V/WÏ>@?-V/E]VpI,>��»Ð�V!ÙÜØJE]V^>��-Ú�æGUKV
?BADE^>TADÐKW@V
5-ø � ���Bø2/1E^V�ÎKE^V/Ñ]V�Od[+[]UKV0Ó#VpÑ]Ñ^ADÞJV/Ñ+I\V�W@>@?-V�E^V/I
[]Ø
A¶Ñ]>¬[^VGÙÜØ-W@WÏØB×0>@OKÞ¶A1[]ØD[�ADW\ØJE^I\V/E/Ú Í ÓÂADÎPÎK>ÏOPÞ
ØDÙ&ÙÜØ-E^Ó
 +)�' > �*� 5-ø � ���Bø2/#E^V�ÎKE^V/Ñ]V�Od[^Ñt[^UPAB[�A#Ñ]>¬[^V +1UPAJÑ0I\V�W@>@?-V�E^V/I;>�Ú
æGUKV�V�?JV�Od[.&�/^ú��A5�� ��+.-#Þ->@?-V/O�>@O$[^UKV �&>ÏÞfÚHíÖÓ#Ø\I\V/W@Ñ�[^UKV�ÐKE^ØJA-IPS�A-Ñb[�Ø-Ù¶AçÓ#V/Ñ^Ñ]A-Þ-VJÚ

�N>@Ó#>ÏWTADE^WÏÒÁ[]UKV�V�?JV�Od[ãö /	5-ø�/»Ó#Ø\I\V�WTÑ�[]UKV�S�Ø-OPÑb[]E^ZPS�[^>ÏØJO$Ø-Ù1AÖ[]Ø-[^ADW0ØJE^IKV�E#Ø-O�+_/[+.-�ø �Lø�/
I\V/WÏ>@?-V/E]Ò�ØDÙYA
Ó#VpÑ]Ñ^ADÞJVG[]Ø�A-ONÒ�Ñ]>¬[^V�>@OÂ[]UPV�Ñ]ÒNÑb[]V/Ó�ÚdæGUKVYE�ö-,�ø�� ���Lø�/(Ó#ØNIKV�WTÑ�[^UKV�I\V/WÏ>@?-V/E]Ò
ØDÙ&[]UPV(Ó�VpÑ]Ñ^ADÞJV/Ñt×0UKV�O�A�[]Ø-[^A-WYØ-E�I\V�EGØJOÀ[^UKV(Ó#V/Ñ^Ñ]A-Þ-V1UPA-Ñ0Ð�V�V/O�S!Ø-OfÑn[^E]ZPS![]VpI�Ú

. �������)�&/#
� ��� � � � �����	 �!�	"#�$�!*0æGUKVGV�?JV�Od[1ö /	5Jø2/�Ó�Ø\I\V/W@Ñ&[^UKV�I\V/WÏ>@?-V/E]Ò(Ø-Ù�A�Ó�VpÑ]Ñ^ADÞJV

 >7> � AD[�AÑ]>¬[^V�
 +[+ � ×0UPV�O�>Ï[�>TÑ�I\V/WÏ>@?-V/E]VpIÀÙÜØJE�[^UKV0+_/[+.-G[^>ÏÓ#V-Ú�æGUKV(ÙÜØJWÏW@ØB×0>ÏOPÞÂÞ-ZPA-E^IKÑ�ØDÙ

38

Broadcast (ss � SITE , mm � MESSAGE)
�

 WHEN mm � dom(sender)
 THEN sender := sender � {mm � ss}

 END;

Order (ss � SITE , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � mm � ran(deliver)
 � ran(deliver) � deliver[{ss}]
 THEN deliver := deliver � {ss � mm}
 || order := order � (ran(deliver) � {mm})
 || delorder(ss) := delorder(ss) � (deliver[{ss}] � {mm})

END;

 TODeliver (ss � SITE , mm � MESSAGE)

�

 WHEN mm � dom(sender)
 � mm � ran (deliver)
 � ss � mm � deliver
 � � m.(m � MESSAGE � (m � mm) � order 	 (ss � m) � deliver)
 THEN deliver := deliver � {pp � mm}
 || delorder(ss) := delorder(ss) � (deliver[{ss}] � {mm})

END
 ��������
 � Í ÐPÑn[^E^AJS�[�Q�Ø\I\V/WYØDÙ"æ<Ø-[^A-W'
�E^I\V/Eb�1�?JV�Od[^Ñ

[]UP>@ÑHV�?-V/Od[�V�OPÑ]ZKE^V/Ñ+[^UPAB[�[^UKV�Ó#V/Ñ^Ñ^ADÞ-V
 >7> � UPA-Ñ"OPØD[HÐ�V�V/OI\V�W@>Ï?JV�E^V/I�V�WTÑ]V�×0UKV/E]V0ADOfI�[]UPAD[
V/AJS�U³Ó#VpÑ]Ñ^ADÞJV1I\V/WÏ>@?-V/E]VpI³AD[�ADONÒØD[^UKV�E�Ñ]>Ï[]V(UPAJÑ0ADWTÑbØ�ÐfV/V�O�I\V/WÏ>@?-V/E]VpI[^Ø#[]UKV
Ñ]>¬[^V�
 + + � �

�����������
������������ ���
�����
�������� �!� ���]"����������� � ì$#�%�%'&�î

M<AD[]V/E&>@O�[]UKV0E^V!ÕfOKV�Ó#V�Od["×)VGÑ]UKØB×ã[^UPAB["[^UK>TÑ">@Ñ"A�ÙÜZKOfS�[]>@Ø-O#Ø-Ù�A¶I\V/Ñ]>@Þ-OPAD[]V/I�Ñ]>¬[^VGS/ADW@WÏVpI
+�ø�þ!ÿPø�÷���ø�/�Ú Í Ñ)A�S!ØJOPÑbV å ZKV�OPS�V�ØDÙ�[^UKV1ØNS/S!ZKE^E^V�OPS�V�ØDÙ�[^UKV³ö /	5Jø2/(V/?-V/OJ[pà-[^UKV�Ó#VpÑ]Ñ^ADÞJV\>4>
>TÑºI\V/WÏ>@?-V/E]VpI¶[]Ø¶Ñ]>¬[^V#+[+)A-OPI¶[]UPVt?BADE^>TADÐKW@V1ú?/	5-ø�/0>@Ñ&ZKÎ¥IKAD[]V/I�ÐNÒ1ÓÂA-ÎKÎK>@OKÞJÑº>ÏO
 / �D÷
 5-ø � ���Bø2/ �
(#A>7>)& � Ú¥æGUK>TÑ�>@OPI\>TS�AD[]V/Ñ�[]UfAB[1A-WÏWºÓ#V/Ñ^Ñ]A-Þ-V/Ñ�I\V�W@>Ï?JV�E^V/I�AD[�ADONÒ�Ñb>Ï[]V�>ÏO�[^UKV�Ñ]Ò\Ñn[^V�ÓÔADE^V
ú�/ 5-ø�/]ø[5ÀÐ�V!ÙÜØJE]V7>7>�Ú1�N>@Ó#>ÏWTADE^W@Ò-àN[]UPV¶IKV�W@>Ï?JV�E^ÒÂØ-E�I\V�E0AB[G[^UKV(Ñb>Ï[]V7+[+1>TÑ0ADWTÑ]Ø�ZKÎ¥IKAD[]V/IRÑ]ZPS�U
[]UfAB[HADW@W\Ó#V/Ñ^Ñ]A-Þ-VpÑ&IKV�W@>Ï?JV�E^V/I�AD[�+[+)ÎKE^V/S�V/I\VpÑ >4>�ÚDÝ½[�S�A-O�Ð�VGOKØD[^>@S�V/I�[]UfAB[+[]UKVG[^ØD[�ADW\Ø-E�I\V/E
ÙÜØ-E�A�Ó#V/Ñ^Ñ^ADÞ-V1>TÑ0ÐKZK>@W¬[�×0UPV�O�>¬[�>TÑ�I\V/WÏ>@?-V/E]VpIÂ[^ØA�Ñ]>Ï[]V¶ÙÜØ-EG[^UKV +_/[+.-H[]>@Ó�VJÚ
æGUKV(V/?-V�Od[<EHö#5-ø � ���Bø2/
 +[+�à >4> � Ó�Ø\I\V/W@Ñ0[]UKV�IKV�W@>Ï?JV�E^ÒÀØDÙ"A#Ó#V/Ñ^Ñ]A-Þ-V >7> [^ØAÑb>Ï[]V +[+

E^V/Ñ]ÎfVpS�[]>@OKÞ�[^UKV�-½ú?- � �tú�/ 5-ø�/�Ú Í Ñ([]UKVÞJZPADE�I >4> � / �D÷
 5-ø � ���Bø2/ � >ÏÓ#ÎKW@>ÏVpÑ¶[]UfAB[
[^UKV�>4>
UPAJÑ¶ÐfV/V�OÁI\V/WÏ>@?-V/E]VpI»[^Ø�AD[
WÏVpA-Ñb[
Ø-OKVÂÑ]>¬[^VADOPI¼>Ï[�ADWTÑbØ�>@Ó#ÎKWÏ>@V/Ñ([]UPAD[([]UKV#[^ØD[^A-W�Ø-E�I\V/E1ØJO
[]UPV�Ó#V/Ñ^Ñ^ADÞ-V >4>ÔUPAJÑ�A-W@Ñ]ØÐ�V�V�O¼S!ØJOPÑn[^E]ZfS�[]VpI�Ú�M<AB[^V�E�>ÏOÖ[]UKV�E]V�ÕPOKV�Ó#V/OJ[1×tV�ÑbUPØB× []UPAD[
Ñ]>¬[^V +[+�E]V/ÎKE]VpÑbV/Od[^Ñ¶A³Ñ]>Ï[]V#ØD[^UKV�E1[]UfADOç[]UKV<+�ø�þ!ÿPø�÷���ø�/�Ú¥æGUPV�ÞJZPADE�IKÑ1ØDÙH[]UKV#V�?JV�Od[(V�OPÑ]ZKE^V
[]UfAB[HÓ#V/Ñ^Ñ^ADÞ-V >7> UPA-Ñ�A-WÏE^V/AJI\Ò
Ð�V�V/OÀI\V�W@>@?-V�E^V/I�V/W@Ñ]V�×0UKV/E]V�A-OPI�[]UPAD[tADW@WPÓ#VpÑ]Ñ^ADÞJV/Ñ+×0UK>TS�U
ÎKE^V/S�V/I\VpÑb>4>,>ÏO³[]UKV
A-ÐPÑb[]E�A-S�[G[^ØD[^A-W�Ø-E�I\V�E0UfA-Ñ0ADWTÑ]Ø�Ð�V�V/O�IKV�W@>Ï?JV�E^V/IÀ[]Ø<+[+�Ú
Í Ù�[^V�E�S�Ø-OPÑb[]E^ZPS![]>@OKÞÂADO�ADÐPÑb[]E�A-S![GÓ#Ø\I\V/WYØDÙ"A�[]Ø-[^ADW�ØJE^IKV�E0×)V1?JV�E^>¬ÙÜÒÀ[]UPAD[0[]UK>TÑ0Ó#Ø\I\V�W

ÎKE^V/Ñ]V�E^?-VpÑ�[^UKVÂ[^ØD[^A-W�Ø-E�I\V/E(ÎKE]ØJÎfV/Eb[^>ÏVpÑ�ÚºæGUKVADÞJE]V/V�Ó#V�Od[
ADOPIç[^ØD[^A-W�Ø-E�I\V/E(E]V å ZP>ÏE^V�Ó#V�Od[�Ñ
>@Ó�ÎPWÏÒÀ[]UPAD[0A-WÏWºS!Ø-E^E^V/S�[GÎKE^Ø\S!V/Ñ^Ñ)V�?JV�Od[]ZPA-WÏW@ÒI\V/WÏ>@?-V/E�ADW@W�Ó�VpÑ]Ñ^ADÞJV/Ñ)>@O³[^UKV(Ñ]A-Ó#V1ØJE^IKV�E(ì �Dî~Ú
æGUKV/E]V�ÙÜØ-E^V�×)V
A-IKIÀÙÜØ-W@W@ØB×0>ÏOKÞ#>@ON?LA-E]>TADOd[)[]Ø#Ø-ZPE0Ó�Ø\I\V/W<A-Ñ0A�ÎKE^>@Ó#A-E]ÒÀ>ÏON?BADE^>@A-Od[/Ú

*
 � ð'+ � ò,+�- �/.
�
 � ð �' � ò ��� ������0 � ��� �
$- �21
 � ð �' � ò ��� 0 � ��� ���

39

æGUK>TÑ&>ÏON?BADE^>@A-Od[&Ñb[^AB[^V/Ñ<[]UPAD[">¬ÙK[n×)Ø�Ó#VpÑ]Ñ^ADÞJV/Ñ/à/>@E]E^V/Ñ]Î�V/S�[^>Ï?JV�ØDÙP[]UKV0Ñ]V�OPI\V/E/àLADE^VtIKV�W@>Ï?JV�E^V/I
AD[
ADONÒ(Ñ]>¬[^VH[^UKV�O�[]UKV/>ÏE"I\V/WÏ>@?-V/E]Ò¶Ø-E�I\V/EºAB[&[]UfAB["Ñb>Ï[]VGS!ØJE]E^V/Ñ]ÎfØJOPIKÑY[]Ø�[]UKVGADÐPÑb[]E�A-S![<[^ØD[^A-WJØJE^IKV�EpÚ
ÝmOãØ-E�I\V/E([]ØÖIK>@Ñ^S�UPADE^Þ-V#[^UKVÎKE^ØNØDÙ0Ø-ÐPWÏ>@ÞJAD[]>@Ø-OPÑ(AJÑ]Ñ]Ø\S!>TAB[]VpI¼×0>¬[^Uã[]UK>TÑ
>@ON?BADE^>@A-OJ[
×)VÀA-W@Ñ]Ø
I\>TÑ]S�ØB?-V/E0OKV�× >@Od?BA-E]>TADOd[^Ñ/ÚKæGUKV
ÎPE]Ø\S!VpÑ]ÑGØ-Ù�I\>@Ñ^S!ØB?JV�E^ÒØDÙ+>@Od?BA-E]>TADOd[^Ñ�>@Ñ0V�é\ÎKW@A->ÏOPV/I�>@OÁì¬ð �Bî½Ú
�N>@Ó#>ÏWTADE^WÏÒJàN>ÏO³Ø-E�I\V�Et[]Ø�?-V/E]>ÏÙÜÒ#[]UPAD[0Ø-ZKE)Ó#ØNIKV�W�ADWTÑbØ�ÎKE^V/Ñ]V�E^?-VpÑ"[]UPV�[^E^A-OPÑb>Ï[]>@?N>¬[nÒÂÎPE]ØJÎfV/Eb[nÒJà
×)VÖA-IKIKV/I ÙÜØ-W@W@ØB×0>ÏOKÞã>@ON?BADE^>@A-OJ[�Ñ#[]Ø�Ø-ZKE³Ó�Ø\I\V/W�A-OPI�I\>TÑ]S�UfADE^Þ-VR[]UKVçÎKE^ØdØ-Ù1ØJÐKW@>ÏÞdAB[]>@Ø-OfÑ
A-Ñ^Ñ]ØNS�>@AD[]VpI×0>Ï[]UR[]UKV(>@ON?BADE^>@A-OJ[pÚ

*
 � ð'+ � ò,+ � ô � .

 � ð �' � ò ��� 0 � ��� � �
 � ò �' � ô � � 0 � ��� � 1
 � ð �' � ô � � 0 � ��� ���

��� �$��� ����� � � ���#��� ��	 �#��
 ���3� . ��� � � *�ÝmOPÑn[^V/AJIØDÙ&ÎKE^V/Ñ]V�Od[]>@OKÞ�[]UKV1ÙÜZKW@W�E]V�ÕPOKV/Ó�V/Od[
S�UPA->ÏO³>ÏO³[]UKV(I\V�[^A->ÏW�×)V�×0>@W@WNänZPÑn[�ÐPE]>@V!âPÒÂÎPE]VpÑbV/OJ[)[]UPV1ØB?JV�E^?N>ÏV/× ØDÙY[^UKV(E]V�ÕPOKV/Ó�V/Od[GÑb[]V/ÎPÑ�Ú

�ZKE#E^V!ÕPOKV/Ó#V�Od[S�UPAD>@O$S�Ø-OPÑ]>@Ñb[^Ñ�Ø-Ù�Ñb>Ïé�W@V�?JV�WTÑ�Ú Í ÐKE^>ÏV�Ù�Ø-ZK[]W@>ÏOKVRØDÙ1V/AJS�U�W@V�?-V/WG>@Ñ#ÞJ>Ï?JV�O
Ð�V�W@ØB×(Ú
MHð¼æGUK>TÑ1S!Ø-OfÑb>TÑn[�ØDÙ�ADÐPÑb[]E�A-S![�Ó#Ø\I\V�WºØDÙ"[]Ø-[^A-W<Ø-E�I\V/E�ÐKE^ØJA-IPS�A-Ñb[/ÚPÝmO�[]UK>TÑ�Ó�Ø\I\V/W àf[]UPV�ADÐKá
Ñb[]E�A-S![1[^ØD[�ADW"Ø-E�I\V/E(>@Ñ(S�Ø-OPÑb[]E^ZPS�[^V/Iç×0UKV�OãA�Ó#V/Ñ^Ñ^ADÞ-V�>TÑ(I\V�W@>Ï?JV�E^V/IÖ[]Ø»A�Ñ]>¬[^V#ÙÜØ-E¶[]UPV
ÕPE�Ñb[)[^>ÏÓ#VJÚ Í [�ADW@W�ØD[^UKV�E�Ñ]>Ï[]V/Ñ0A�Ó#V/Ñ^Ñ^ADÞ-V¶>TÑ0I\V�W@>@?-V�E^V/I³>@O³[^UKV¶[]Ø-[^A-W�Ø-E�I\V�EpÚ

M&ò�æGUK>TÑ¶>TÑ1A³E^V!ÕPOKV/Ó#V�Od[(ØDÙtA-ÐPÑn[^E^AJS�[¶Ó#ØNIKV�W+×0UK>TS�Uç>@Od[]E^ØNIKZPS!VpÑ +�ø�þ�ÿPø!÷ �^ø�/�Ú¥ÝmOÖ[^UK>TÑ¶E]V�á
ÕPOPV�Ó#V�Od[¶×tV�IKV�Ó#Ø-OPÑb[]E�AB[^V([]UfAB[1[]UKV�[]ØD[�ADW&Ø-E�I\V�E�>@Ñ�ÐKZK>@W¬[¶ÐNÒÀ[^UKV +!ø�þ�ÿPø!÷ ��ø2/�Ú�ÝmO�[]UPV
E^V!ÕPOPV/I�Ñ]Î�V/S!>ÏÕfS/AB[]>@Ø-OfÑ�Ø-Ù0[]UKV ö /	5-ø�/�V�?JV�Od[�×)VÀØJZ\[]W@>ÏOPVÀ[^UPAB[�[]UKV�+_/[+.-
ø �Lø�/»I\V�W@>@?Já
V/E]Ò¼ØDÙ�A�Ó#VpÑ]Ñ^ADÞJVÂ>@Ñ�I\Ø-OPVÀAB[�[]UKVRÑbV å ZPV�OPS�V�EpÚ<ÝmOÁØJE^I\V/E([]ØçI\Ø»[^UPAB[�[]UKV³Þ-ZPA-E^IKÑ
ØDÙ
ö /	5Jø2/RV�?JV�Od[
>ÏOÛ[^UKVADÐfÑn[^E^AJS�[�Ñ]ÎfVpS!>ÏÕfS�AD[]>@Ø-O ì_>7> �� / �D÷
 5-ø � ���Bø2/ � � / �B÷
	5-ø � ���Bø2/ �
] 5-ø � ���Lø�/\ì ûJûfî0ADE^V�E^V�ÎPW@AJS!V/IÖÐNÒÁì +[+ U +�ø�þ!ÿPø�÷���ø�/ �
 +�ø^þ�ÿPø�÷���ø2/ �' >7> � �� 5Jø�� ���Bø�//î½Ú
�N>@Ó#>ÏWTADE^W@Ò¼A�ÞJZPADE�I + + TU +�ø�þ!ÿPø�÷���ø�/À>TÑ�AJIKI\V/IÛ>@OÛ[]UPV³Ñ]ÎfVpS!>ÏÕfS�AD[]>@Ø-OPÑ(Ø-Ù E�ö-,�ø�� ���Lø�/
V/?-V�Od[pÚJæGUNZPÑtØ-O#[]UPV�Ø\S�S�ZKE^E]V/OPS!V0Ø-Ù E�ö-,�ø�� ���Lø�/(V�?JV�Od[tA(Ó#V/Ñ^Ñ^ADÞ-V0>TÑ)I\V�W@>Ï?JV�E^V/I�[^Ø
[]UPV
Ñ]>¬[^V/Ñ0Ø-[]UKV/EG[]UPA-OÀ[^UKV
Ñ]V å ZKV�OfS!V�EpÚ

Mºô$æGUK>TÑº>@ÑºA0?-V/E]Ò1Ñb>@Ó#ÎKWÏVtE]V�ÕPOKV/Ó�V/Od[<Þ->@?N>ÏOKÞ�A0Ó#Ø-E^VHS!ØJOPS!E^V![^V�ÑbÎ�V/S�>¬ÕfS/AB[^>ÏØJO
ØDÙN[]UPV�ö /	5-ø�/
V/?-V�Od[pÚLæGUPE]ØJZKÞ-U([^UK>TÑºE^V!ÕfOKV�Ó#V�Od[+×tVt>ÏW@W@ZPÑn[^E^AD[]Vt[]UPAD[+A�[]Ø-[^A-WJØJE^I\V/E&S/ADO
Ð�VGÐKZK>@W¬[+ZPÑ]>ÏOPÞ
[^UKVGÓ�VpÑ]Ñ^ADÞJV/Ñ&I\V�W@>@?-V�E^V/I([]Ø�[]UKV0Ñ]V å ZKV�OfS!V�EpÚ��0V/S/ADW@WJ[^UPAB[�A�[]Ø-[^ADWNØJE^I\V/Eº>@O
[^UKV0ADÐPÑb[]E�A-S![
Ñ]ÎfVpS!>ÏÕfS�AD[]>@Ø-OPÑ�ADE^V
S!ØJOPÑn[^E]ZfS�[]VpI�A-Ñ�ÐfV/WÏØB× ×0UK>TS�U»Ñn[�AB[^V([]UPAD[1A-WÏWºÓ�VpÑ]Ñ^ADÞJV/Ñ�IKV�W@>Ï?JV�E^V/I
AD[�ADONÒÂÎKE^ØNS�V/Ñ^Ñ0ADE^V�ØJE^IKV�E^V/I³ÐfV�ÙÜØ-E^V�[^UKV(OKV/× Ó#V/Ñ^Ñ^ADÞ-V7>7>�Ú

0 � ��� � � U 0 � ��� ��
 �����
������������ ��� (# �)� & �
ÝmO$[]UKV�E^V!ÕPOPV/I ÑbÎ�V/S�>¬ÕfS/AB[^>ÏØJOPÑ�ØDÙÀö /	5Jø2/»V/?-V/OJ[�[]UPV -mú�- ����ú?/	5-ø�/Ö>TÑÂS!ØJOPÑn[^E]ZfS�[]VpI�AJÑ
Ð�V�W@ØB× Ñb[^AD[]>@OKÞ�[^UPAB[�A-WÏWHÓ�VpÑ]Ñ^ADÞJV/Ñ(I\V/WÏ>@?-V/E]VpIç[]Ø�[^UKVÀÑ]V å ZKV�OfS!V�E
A-E]VÂØJE^IKV�E^V/IçÐfV�ÙÜØ-E^V
[^UKV(OKV�× Ó#V/Ñ^Ñ]A-Þ-V7>4>�Ú

0 � ��� � � U 0 � ��� ��
����������!� � ì$#�% ����� � ��� � � &�î (# �)� & �
M<ñ$ÝmOR[]UP>@Ñ0E^V!ÕfOKV�Ó#V�Od[0×)V1>@Od[]E^Ø\I\ZPS!V1[^UKV(OKØD[^>ÏØJO³Ø-Ù ��ú?>�û¥ÿG- �?-�� úD÷»Ó#V/Ñ^Ñ]A-Þ-V/Ñ/Ú\æGUKV
S!ØJÓ�á
ÎKZK[^AB[^>ÏØJO#Ó�VpÑ]Ñ^ADÞJV)A-E]V)[^UKØJÑ]VGÓ�VpÑ]Ñ^ADÞJVt×0UP>@S�U#OKV/V/I�[]Ø¶Ð�V�I\V�W@>@?-V�E^V/I
ÙÜØ-W@WÏØB×0>@OKÞ(A�[]Ø-[^ADW
ØJE^I\V/E/Ú¥ë1WÏØJÐPADW+Ñ]V å ZKV�OfS!V
ONZKÓ�ÐfV/E^Ñ�ØDÙ"[^UKV�S�Ø-Ó#ÎKZ\[�AB[^>ÏØJO�Ó�VpÑ]Ñ^ADÞJV�ADE^V
ÞJV�OKV/E^AD[]V/I�ÐNÒ
[^UKV�Ñ]V å ZKV�OfS!V�EpÚDæGUKV�I\V/WÏ>@?-V/E]Ò�ØDÙ�[]UKV�Ó#VpÑ]Ñ^ADÞJV/Ñ&>@ÑtI\Ø-OPV)ÐfA-Ñ]V/I�Ø-O�[]UPV�ÑbV å ZKV�OPS�VGOdZPÓ�á
Ð�V�E�Ñ�ÚJÝmO#[]UK>TÑ�>@Od[]V/E]Ó#V/IK>@AD[]V0E^V!ÕPOKV/Ó#V�Od[tÑb[]V�Î<àD[]UPV�ÑbV å ZKV�OPS�V0ONZKÓ�Ð�V�EtØDÙ�S!Ø-Ó#ÎKZK[^AB[^>ÏØJO
Ó#V/Ñ^Ñ^ADÞ-VpÑYADE^V�A-Ñ^Ñ]>ÏÞJOKV/I1ÐNÒ�[^UKVHÑ]V å ZKV/OPS!V/E/ÚpæGUK>@Ñ<E]V�ÕPOKV/Ó�V/Od[<>ÏOd[^E]Ø\I\ZPS�V/ÑY[]UKV"ÙÜØJWÏW@ØB×0>@OKÞ
OKV/× ?BA-E]>TADÐKW@V/Ñ/Ú

� 0 � -���� � � � 0 �]���� � �������
% ��� � 0 ��� 0 � -�� � � � � 0 � �'"! � �#� ��� �
� 0�� � � � �)� ! � �#� ��� �

æGUKV¼?BADE^>@A-ÐKW@VL+�ø�þ!÷¥ú�>TÑRZPÑ]V/I [^Ø AJÑ]Ñ]>@Þ-OóÑ]V å ZKV/OPS!VçOdZPÓ�Ð�V�E�ÑÀ[^Ø�[^UKVÛS!Ø-Ó#ÎKZK[^AB[^>ÏØJO
Ó#V/Ñ^Ñ^ADÞ-VpÑ�Ú�æGUKV �^úDÿ\÷1-mø2/�>TÑ�ZPÎ�IKAD[]VpI»ÐNÒ�Ø-OKV�V/A-S�U»[]>@Ó�V#A ��ú?>�û¥ÿG- �?-�� úD÷¼Ó#VpÑ]Ñ^ADÞJV
>@Ñ
AJÑ]Ñ]>ÏÞJOKV/IRA#ÑbV å ZKV�OPS�V¶OdZPÓ�Ð�V�EpÚ

40

� � � 	�� �	���HE]ØNØDÙX�d[^AD[]>TÑn[^>@S/Ñ
Q�Ø\I\V/W æ<Ø-[^ADW��
1Ñ �
1Ñ)ÐNÒÝmOd[]V�E�A-S![]>@Ø-O �+V�E�S!V�Od[pÚNA-Z\[]ØJÓÂAB[]>TS

æºØD[�ADW'
�E�I\V�E0X)E^ØJA-IPS�A-Ñb[ð �-õ òA� �Lñ
�)ADZfÑ]A-W'
�E^I\V/E0XtE^ØJAJIKS�AJÑn[� � òDõ õa�

æºØD[�ADW��)ADZfÑ]A-W�
�E�I\V/E�XtE^ØJAJIKS�AJÑn[ð/õ-ô õa� í��

M&íÁÝmO¶[^UK>@Ñ<E]V�ÕPOKV/Ó�V/Od[Y×tV">@Od[]E^ØNIKZPS!V+[^UKV�OKØ-[]>@Ø-O¶ØDÙ ��úB÷1-0/]ú �JÓ#V/Ñ^Ñ^ADÞ-VpÑ�Ú.�¼VHA-W@Ñ]ØG>ÏOd[]E^Ø\I\ZPS�V
[^UKV#E]V/W@AD[]>@Ø-OPÑ]UK>@Î»ØDÙHVpA-S�U���ú?>�û¥ÿG- �?-�� úD÷ãÓ�VpÑ]Ñ^ADÞJV�×0>Ï[]UÖ[]UKV ��úB÷�-S/]ú ��Ó#V/Ñ^Ñ]A-Þ-VpÑ�Ú�æGUK>@Ñ
E^V!ÕPOPV�Ó#V�Od[�S!ØJOPÑ]>@Ñb[^Ñ)ØDÙ&ÙÜØ-W@W@ØB×0>ÏOKÞ�OKV/× Ñb[^AD[]V(?BADE^>@A-ÐKW@V/Ñt[nÒNÎfVpIRAJÑ)ÙÜØ-W@WÏØB×�Ñ/à

� 0 � � � 0��X] ��� � ��� ���
� ��%�% � 0 � � � 0�� ��� 0 � � � 0�� �� � 0 � -���� � � � 0 �

æGUKV#?BADE^>TADÐKW@V/Ñ ��úB÷�-S/]ú �HADOfI ��ú�>�û�ÿG- ��- � úB÷$ADE^V�ZPÑ]V/I»[]Ø�S�AJÑn[
A³Ó#V/Ñ^Ñ]A-Þ-V#A-Ñ1V�>Ï[]UKV/E(A
S�Ø-Ó#ÎKZ\[�AB[]>@Ø-O�Ø-E+A�S�Ø-Od[]E^Ø-WdÓ#V/Ñ^Ñ]A-Þ-VJÚ/æGUKVGÑbV�[�^úD÷1-0/]ú��KS�Ø-Od[^A->ÏOfÑ<[^UKVGS!Ø-Od[^E]ØJWJÓ#V/Ñ^Ñ^ADÞ-VpÑ
Ñ]V�Od[¶ÐdÒ»[]UKV#ÑbV å ZKV�OPS�V�EpÚ�æGUKV�?BA-E]>TADÐKW@V<>#ø2+[+���úD÷1-0/]ú���>TÑ¶AÀÎfADE][]>TADW+>ÏODänV/S�[^>Ï?JV�ÙÜZKOPS�[^>ÏØJO
×0UK>TS�UçIKV!ÕPOKVpÑ1E]V/W@AD[]>@Ø-OPÑ]UK>@ÎÖADÓ#Ø-OPÞ³AÀS�Ø-Od[]E^Ø-W&Ó#V/Ñ^Ñ]A-Þ-V�A-OPI»>Ï[^Ñ¶S�Ø-Ó#ÎKZ\[�AB[]>@Ø-OÖÓ�VpÑná
Ñ^ADÞJV-Ú-Ý½[G>@Ó�ÎPWÏ>@V/Ñt[]UfAB[H[^UKV�E^V¶S�ADOÂØJOKW@Ò�Ð�V¶A
Ø-OPV�S!ØJOd[]E^Ø-WPÓ#VpÑ]Ñ^ADÞJV0ÙÜØ-E)V/AJS�UÀS!ØJÓ�ÎPZ\[^ADá
[^>ÏØJO�Ó#V/Ñ^Ñ]A-Þ-V)ADOPI(?N>TS!V�á~?JV�E�Ñ]APÚ/æGUKVGÑbV�[/ �B÷ % >Âø.+[+ ��úB÷�-S/]ú � '0S!Ø-Od[�AD>@OPÑY[^UKVGS!Ø-Ó#ÎKZK[^AB[^>ÏØJO
Ó#V/Ñ^Ñ^ADÞ-VpÑtÙÜØ-E0×0UK>TS�U�S!Ø-Od[^E]ØJW�Ó#VpÑ]Ñ^ADÞJV/Ñ)UPA-ÑGÐ�V�V/O�ÑbV/OJ[0ÐNÒ[^UKV
Ñ]V å ZKV�OfS!V�EpÚ

Mºõ Í OKV�× V�?-V/Od[b3�ø ��ø ���LøRù�úB÷�-S/^ú���>TÑ�>@Od[]E^Ø\I\ZPS!VpI�Ú �çV�>ÏW@W@ZPÑn[^E^AD[]V�[]UPAD[¶AÀÎKE]Ø\S�V/Ñ^Ñ�Ø-[]UKV/E
[^UPADOÑ]V å ZKV/OPS!V/E�S�ADOÂI\V/WÏ>@?-V/EHA ��ú�>�û�ÿG- ��- � úB÷³Ó�VpÑ]Ñ^ADÞJVGØ-OKW@Ò�>ÏÙ�>¬[HUfA-Ñ"E^V/S�V�>@?-V/I ��úB÷�-S/]ú �
Ó#V/Ñ^Ñ^ADÞ-V�ÙÜØ-E&>¬[pÚpÝ½["S�A-O
Ð�VtOKØ-[]>TS!VpI([]UfAB[&[]UKV)Ó#V/Ñ^Ñ]A-Þ-VHI\V/WÏ>@?-V/E]Ò�[]Ø�[]UPV)Ñ]>¬[^V/ÑºØD[^UKV�Eº[]UPA-O
[^UKV
ÑbV å ZKV�OPS�V�E0>TÑ0I\Ø-OPV(ZPÑb>@OKÞ�[]UPV
ÑbV å ZPV�OPS�V1ONZKÓ�ÐfV/E0Þ-V/OKV�E�AB[^V/I³ÐdÒ[]UKV
Ñ]V å ZKV/OPS!V/E/Ú

� �çÈHÅ�Ë�)]Ê "NÌnÈtÅ "

ÝmO�[^UK>@Ñ1ÎPA-ÎfV/E�×)V�UfAL?-V
ØJZ\[]W@>ÏOPV/I�ØJZKE�E^V!ÕfOKV�Ó#V�Od[1ÐPA-Ñ]V/I»A-ÎKÎKE^ØJAJS�U³ÙÜØJE�ÙÜØJE]ÓÂA-WºI\V/?-V�W@Ø-ÎKá
Ó#V�Od[¶ØDÙtAÙ ADZKWÏ[�[^Ø-W@V�E�ADOd[�Ó#Ø\I\V/W@Ñ1ØDÙtE]V/ÎKWÏ>TS�AD[]VpI»IKAB[�ADÐPAJÑbV�ÑbÒ\Ñb[]V�Ó�Ú��¼V�UPAL?JV�ÎKE^V/Ñ]V�Od[^V/I
[]UPVÀADÐPÑb[]E�A-S![�X Ó#Ø\I\V/W@Ñ(Ø-ÙG[]ØD[�ADWtØ-E�I\V�E(ÐKE^ØJAJIKS�AJÑn[
A-OPIÛØ-Z\[^WÏ>@OKVpIÛUKØB× A-OÁADÐPÑb[]E�A-S![([]Ø-á
[^A-WYØ-E�I\V/EGS/ADO�Ð�V(E]V�ÕPOKV/IRÐNÒÂ[^UKV
S!ØJOPS!E^V![^V¶Ñ]V å ZKV/OPS!V(ONZKÓ�ÐfV/E^ÑG>@OR[]UKV(E^V!ÕfOKV�Ó#V�Od[�Ñb[]V/ÎPÑ�Ú
æGUKVÛADÐ�Ø-E][]>@Ø-O Ø-Ù
[]UKVÛS!ØJO\âP>TS�[^>ÏOKÞ$ZKÎ¥IKAB[^Vç[^E^A-OPÑ^A-S�[^>ÏØJOPÑØJE]>@Þ->@OPAD[]V/I AD[RI\>�B¥V�E^V�Od[�Ñ]>Ï[]V/Ñ
ÓÂALÒãÐfV�AL?JØ->TI\V/Iã>ÏÙ�[^UKV�ZKÎ¥IKAB[^V/Ñ#ADE^VRIKV�W@>Ï?JV�E^V/IÛ[^Øç[^UKV�ÎPADE][]>TS!>@ÎPAD[]>@OKÞçÑ]>¬[^V/Ñ#>@O$AÖ[]Ø-[^ADW
Ø-E�I\V/E/Ú<ß�ØB×tV/?-V/E/à�[^UKV[^ØD[�ADWHØJE^IKV�E
ÐKE^ØJAJIKS�AJÑn[�IKØdVpÑ�OPØD[�ÎKE^V/Ñ]V�E^?-V#[^UKV³S/ADZPÑ^ADW@>Ï[nÒçADÓ#ØJOKÞ
[]UPV#[]E�ADOPÑ^A-S![]>@Ø-OPÑ/Ú¥ÝmO ìÏðf�Dî~à�×)V#ZPÑbVpIçARE^V!ÕPOPV�Ó#V�Od[
ADÎKÎPE]ØdA-S�UÖ×0>Ï[]U �?JV�Od[
X ÙÜØ-E¶ÙÜØJE]ÓÂA-W
I\V/?-V�W@Ø-ÎPÓ�V/Od[+Ø-Ù�ÐPE]ØdA-IKS/A-Ñb[+Ñ]Ò\Ñn[^V�Ó ×0UP>@S�UÂI\V/WÏ>@?-V/E"Ó�VpÑ]Ñ^ADÞJV/Ñ+Ñ^AB[]>TÑbÙÜÒd>@OKÞ¶?BADE^>ÏØJZPÑ+Ø-E�I\V/E]>@OKÞ
ÎKE^Ø-Î�V�E][]>@V/Ñ/ÚA�¼V1UPAL?-V1I\V�?JV�W@Ø-Î�V/IÂ[^UKV¶ÑbV/ÎPADE�AB[^V�Ó#Ø\I\V�WTÑ)ØDÙ�[]Ø-[^A-W�ØJE^IKV�E)ÐKE]ØdA-IKS/A-Ñb[/àdS�ADZfÑ]A-W
Ø-E�I\V/EtÐKE^ØJAJIKS�AJÑn[GADOPI[]Ø-[^ADWYS/ADZPÑ^ADW�Ø-E�I\V/EtÐKE^ØJAJIKS�AJÑn[pÚdæGUPV1×)Ø-E^C#×)AJÑGS�ADE^E^>ÏVpIÂØ-Z\[GØ-O³[]UPV
�tW@>@S�C�� O�� �HE]ØB?JV�X []ØNØ-W~Ú<æGUKV#[^ØdØJW"Þ-V/OKV�E�AB[^V/Ñ�[]UKVÀÎKE]ØNØ-ÙtØ-ÐPWÏ>@ÞJAD[]>@Ø-OPÑ�ÙÜØ-E�E]V�ÕPOKV�Ó#V/OJ[
A-OPI
S!ØJOPÑ]>@Ñb[]V/OPS!Ò�S�UKVpS�Cd>@OKÞfÚfæGUKVpÑbV�ÎKE^ØdØ-Ù Ñ�UKV/WÏÎ�V/IçZPÑ�[]ØRZKOPI\V/E^Ñb[^A-OPI�[^UKV�S�Ø-Ó#ÎKW@V!é\>Ï[nÒRØ-Ù�[]UPV
ÎKE^Ø-ÐKW@V�ÓÔADOfIR[]UKV�S!Ø-E^E^V/S�[^OKV/Ñ^Ñ0Ø-Ù"[]UKV�ÑbØJWÏZ\[^>ÏØJOPÑ/ÚPæGUKV�Ò�A-W@Ñ]ØÂUKV�W@Î�V/I�ZPÑ�[]Ø³I\>@Ñ^S!ØB?JV�E�OPV�×
Ñ]ÒNÑb[]V/Ó >ÏON?BADE^>TADOd[^Ñ�×0UK>TS�U�ÎKE^ØB?N>@I\VRAçS�WÏVpADE�>ÏOfÑb>@Þ-Ud[�[]Øç[]UKV�Ñ]ÒNÑb[]V/Ó�Ú+æGUPVRØB?JV�E�ADW@WHÎKE^ØNØDÙ
Ñb[^AB[^>@Ñb[]>TS�Ñ)ÙÜØJEG?LA-E]>@Ø-ZfÑtI\V/?-V/WÏØJÎKÓ#V�Od[^Ñ)>@OPS!W@ZPI\>@OKÞÂA�[]ØD[�ADW¥Ø-E�I\V/E)ÐPE]ØdA-IKS/A-Ñb[t>TÑGÞ->@?-V�O³>ÏO³[]UPV
æ&ADÐKW@VÁð-Ú�
�ZKEV�éNÎ�V�E^>@V�OPS�V»×0>¬[^U []UPV/Ñ]VÖS�AJÑbV»Ñb[]ZPIK>ÏVpÑÀÑb[]E^V�OKÞ-[]UKV/OPÑØJZKEÐ�V�W@>ÏV�Ù([]UPAD[RADÐKá
Ñb[]E�A-S�[^>ÏØJO�ADOPI�E^V!ÕfOKV�Ó#V�Od[�A-E]V(?BA-WÏZPA-ÐKW@V([]VpS�UKOK> å ZPV
ÙÜØ-E�Ó�Ø\I\V/WÏW@>@OKÞ³S�Ø-Ó#ÎKW@V!é�I\>@Ñb[]E^>@ÐKZ\[]VpI
Ñ]ÒNÑb[]V/Ó�Ú

� $��[$YÇH$<Å�Ë�$�"

� � � � ¸ � � Et®-lnqÏs�e � -�� ; >	� >)/@/�
� 8 DCDCH J2L H L�J�� 9P/CJ29P3 G%D 14/NG�;P32LMH L�J2D � v+s�w1®Jlnq¬u-²pi z oJq¬{pi^lnrmq|k~}
� lni�rmr���� ����� �

41

� � �pi�s�oJ¸ �ts�}-w(c/oNu Et®Jlnq¬s�e�s�oNu « cpw(qjodq��Bydi�v+s/odrmi^e¬e � v&ejq¬`b¯�� o � � lnc!{Li�� ¾ oBkni^lbs�`^knqj{Li�xJlncBc�gTr
° q|knadqjo#rmi^k"knaJi�c/lm} �Y¾ o -���� 7
	 Dn�dxds/²/i�r���� �� � ������� �

� � « qj{B}Ds/¯/s/oBk�Et²�lbs ° s/e�� ¹ yJr½kbs�{Lc�EHejcpodrmc-� EHw¶l0hYe Et®d®dspu-qÜ�Ps�oNu ¾ cps/oNs�_Dkbs�odcpq � hY´-xJe¬c/q|knq¬oJ²
s�knc/w(qj`)®Jlncpspu-`�s/r½k�qjo
lni�xdejqj`�s�kni�u�uJs�kbs/®ds/rmi�r � i^´Dkni�oduJi�u(s�®dr½kmlbs�`^k ��¾ o�v&a-lnq¬r½knq¬s�o��fi^od²Ls�ydi^l��
 s�lmknqjo ¹ lnqji�®JeÜ�Ns/oduÂ_-i^ln²/i�q ¹ c�lneÏs!kn`]aP�Ni�u-q|knc/lnr���� 7�9P/�����3 9]�K{Lc/ejydw(i1� ����� c�g�	 ;PB+1 7 9P;���/21 ;=D
H L 5 /2G ��7�1 ;=9�� B+H4;=L0B ;]�NxNs�²pi�r � ��� � ��� � _-x-lnq¬oJ²pi^l��P�����L� �

 � � adqjejq¬x$E � �&i^lnodr½kni^q¬oP���ºs/rmrmc/r ± spu���qjeÏs�`�cpr��\s/oNu � s�knads/o ¹ cBcDuJw
s/o � 5 /2L B-7�9 9C;=L B � 5 /2LM1 9P/65
32L0:"!?;PB /�#2;=9$��H L&%�32143('C32D+;)�*� DC1 ;=G%D � Etudu-q¬rmc/oJ¸,+�i^rme¬i]}B�\����-p� �

� �0� i�oJodi^kna �¥� �&q|lnw
s/oP� Etodu-l/.i&_-`badqjx\i^l��!s�oNu � s�k�_Dkni�xJadi�oJrmcpo � �fqj²paBk ° i�qj²/kY`�s/ydrns�e-s/oNu�s!kncpw(qj`
²/lnc/ydx�w1yde|knqj`�s�r½k � 8 510 - 9(32L D 2 5 /2G �$7 1321�4�2DC132¬� � � � $� � � � � � � �Y�����-� �

� ��5 s�{Dqji^l « .i^g�s�²pcJ�MEHoNu-l/.i)_-`badqjx\i^l��Bs/oNu � .i^kni^l z ln®6.s�o � ��c/kbs�e\c/lbu-i^l"®Jlncpspu-`�s/r½k�s�oNu(w1yJe|knq¬`�s/r½k
s/ej²/c/lnq|knadw(r7� �¥s�´-c/odcpw�}�s/oNu�rmyJln{Li]} � 8 510 5 /2G ��7�1328�$7�9�#�2¬� � � � $� � � � � 9� �p� ������ �

� � Ete¬s�o;:di^¯Li^knip� � s�od`^}NE � �P}-od`baf�Ps�oNuNEteji^´Js/oduJi^l�E � _-aD{ps!lmknrmw
s/o � _Dx\i�`�q|g@}-qjod²�s/odu³ydrmqjoJ²
s�xNs�lmknq|knqjcpods/®Je¬i0²�lncpyJx�`�c/w(w1yJodqj`�s�knqjc/o�rmi]ln{-qj`�i � 8 510F- 9P3 L D 2#5 /2G �$7 1321�4�2DC132¬�K��� � � $�j�!�B�$�
� � �-� ����� � �

- � � �<± spu4�^q¬e¬s�`�cpr�s/oduÛ_ � ��c/ydi�² � Eêw(cDu-yde¬s�l�s�xdx-lncLs/`baçknc³g�s/yJe|km¸ knc/eji^lbs/oBk�®JlncpspuJ`�s/r½knr�s/odu
lni�e¬s�kni�u�xJlnc/®deji�w(r � ��i�`badoJqj`�s/e �ti^x\c/lmk�� � � ¸n� (� �D�Kv&c/lnodi^e¬e z oJq¬{pi^lnrmq|k~}B� �
��\����� �

� � �fqjods/r<�fs/qj®dqjodqjr��-hYeji�oNs �flncpyJ®dq|knr½}-oNsD�-_Js!lnq=�fi�xJx1>s/oJi�of�B�pcpads/o?�fqjejq¬yJr��-s/odu?@Gs�qjrns�l�E � s/ejqj¯ �
:dc�lnw
s/e-rmi^ln{Dq¬`^i^¸ c/lnqji�oBkni�u(uJi^{Li�ejcpxJw(i�oBkYc/gKg�s�yde|kºknc/eji^lbs/oBk+`^cpw(w1yJodqj`�s!knq¬oJ²)r½}-r½kni�w(r �\¾ oA!?H J��
/29(/�7�D�%�;$#2;+5 / �0G�;=LM1 /CB 5 / G � 5 ;EDGFO3�7 5 1 � - /65 ;=9(32L 1H�4�2DC1 ;=G�Db�fxNs�²pi�r � �-��� � -p�D��{pcpejydw(i ���p�
c/gI�fi�`^kny-lni � c�kni�r�q¬o#v&cpw(xJyJkni^lt_D`�qji�od`�i/�_DxJlnqjod²/i^l�� ����� � �

� � � �fi^rme¬qjiJ�fs/w(x\c/lmk � �+qjw(ip�<`�ejcB`b¯-r��&s/odu»knaJi#c/lbu-i^lnqjod²³c/g0i�{pi�oBknr¶qjo¼s³uJqjr½kmlnqj®dyJkni�uçr½}-r½kni�w �
5 /2G�G 7�L=2 8 510� � � � �� $� ����-�� � � �B�Y���L��- �

�p� � �fi^rme¬qji6�fs/w(x\c/lmk<s�oNu � s/oJ`^}�E � �P}-od`ba � « qjr½kmlnqj®dy-kni�u�`^cpw(xdy-knqjod²4� cDu-i�ejr&s�oNu�w(i]knadcDuJr �J¾ o
�#32L :('C/@/�
$/CB�-�� ;P/29C;=1 HIBC365 5 /2G ��7�1 ;=9K�0B+H4;=L B ;$LNMM/65 7�G�;�> �OFO/29 G 365O0N/@:<;+5 D 3 L :?� ;=G 321 HIB+D
P >RQ��dxds/²/i�r��/���/�S�N�/����� � ����� � �

� � � �¥� � i�ejejq¬s�lm¸~_-w(q|knaP�=�fc/ydqjrmi¶h � cprmi^l��Ps�oNuT�)qj{Li^¯�EH²/lbs ° s�eÏs � �ºlncpspuJ`�s/r½k�xJlnc�kncB`�cpejr)g@c/l
uJqjr½kmlnqj®dy-kni�u�r½}-r½kni�w(r �VU �R�R� - 9P3 L D 2O�?329(365 5 ;+5�%#H DC1 9 H,'�21�*� D 132j��� � �� $�j�!�S� � �B������� � �

� � � v i^kbs�}Bi^l��¥� � EH®Jlnq¬s/e���s�oNuW�X�ºc/qjrmcpo � hY{Li�oBkm¸ � e¬s/od²/yNs�²pi � �H� « ¾ � uJi�ejqj{Li^lbs�®deji�r � � � �
aBkmknxO� Y�Y�lncDuJqjo � `�r � oJ`�e � s�` � yd¯4Y/u-i�ejqj{Li^lbs/®Jeji�r�Y « � � xKu-g~� ����� � �

� � �fc/ydqjrmiÂh � cprmi^l�� ��� � i�ejejq¬s�lm¸~_-w(q|knaf� « i^®\c/lbs/a E � Et²ps�l ° s/e�� �ts�{Dq �¶� �ºyNuJaJq¬s-�ºs/odu
v&cpejeji�i�o$E � �fqjoJ²peji^}D¸ � s/xNs/uJc/x\cpydejc/r � ��c/kni�w�� Eãg�s�yde|km¸Ükncpeji^lbs�oDkHw�yde|knqj`�s/r½k"²�lncpyJx�`�c/w(w1yJodq|¸
`�s!knq¬c/o#r½}-r½kni�w � 5 /2G�G 7�L=2 8 510� � � � $� � � � � ��������� �

��� � � �¥s/w(i^l >�Z�^rmy�s/odu � s�kmlnqj`b¯J�&s�eÏu-yJlnqji7� � �89 H L B+H �05 ;=D�/CB�%#H D 1 9 H,'-7�1 ;P:T%�32143('C32D+;A�*� DC1 ;=G%D[L
� ;PBC/2L0:K�?:2H 1 HI/ L � � lni^oDknqj`�i]¸ ± s/eje���� ����� �

� � � Etodu-lni_D`]aJqjx\i^l�s/odu qj`]aJi�e �ts�}-oNs/e � :Jlnc/w ²/lnc/ydxÛ`�c/w(w1yJodqj`�s�knqjc/oçkncRkmlbs�odrns/`]knq¬c/odr�qjo
uJqjr½kmlnqj®dy-kni�u�r½}-r½kni�w(r � 5 / G%G 7�LMHIBC321 HI/2LN/CB 1 � ; 8 510� � � � $� - �9-L�D��� ��� � �

�!� � v � �fcpqjoNs!lbuP� ¹ i^lbs!lbuJ:¥e¬c�lnqjof�Ks�oNuÂv � v+s!lmlni7� � E$g@c/lnw
s/e�w(i^knadcDu
knc�x-lnc!{Li0c/lbu-i^lnqjod²
xJlnc/xJ¸
i^lmknqji�r�c/gYw�yde|knqj`�s/r½k�r½}-r½kni�w(r � 8 510F7 �M;=9(321 H L<JA�*� DC1 ;=G%DZ!?;$#@H4;$\Y� ��� � $� ���S�/-��-��� ����� �

�S- � « qj{/s/¯/s�l
&spuds�{³s/odu qj`]ads/i�e"�ºyJkneji^l � EHxdxJe¬qj`�s!knqjcpo�c/gHhY{Li�oBk�� knc#²pejc/®Ns/e&`�s/yJrns/e+c�lbuJi^lm¸
qjod²(gTc�lGg�s�yde|kGknc/e¬i]lbs/oBkGkmlbs/oJrns/`^knqjc/odr �0¾ o]� 9(/@B�28/CB]^�/29
 D � / ��/2L]! H J2H 9P/)7 DH�8L�J2H L ; ;=9 H L<J$/CB
FO3�7 5 1%- /65 ;=9P3 L 1H�4�2DC1 ;=GKL�!6�RF�-R_�`/��xNs�²pi�r � � �d� ��� � � i ° `�s/r½kneji#yJx\cpo �<}-odip�º���Â�pyJe|} ����� �R�
aBkmknxO� Y�Y!i�xJlnqjoBknr � i�`�r � rmc/knc/o � s/` � yJ¯4YD� � ��-D��Y �

��� � « qj{/s/¯/s�l
&spuds�{�s/odu qj`]ads/i�e��&yJkneji^l � :dc�lnw
s/ePrmx\i�`�q|¿N`�s!knqjcpodrts/odu�{Li^lnq|¿d`�s�knqjcpo�c/gYw(i�rmrns�²pi
c/lbu-i^lnqjod²(x-lncpx\i^lmknqji�rtq¬o#s
®-lncLs/uJ`�s�r½k)r½}-r½kni�w ydrmqjoJ²
h<{Li^oDkt� ��¾ o - ;PB ��LMHIBC365�!?; � /29=1aL�� B �M/@/65
/CB�� 5 ;PB+1 9P/2LMHIB+D 3 L : 5 /2G ��7�1 ;=9"� B+H4;=L0B ;$LAb L H�#2;=9=DCH 1a�$/CBK� /�7�1 �M3 G �014/2L4L6� /�7�1 �M32G �014/2L4L7b=c0�
 s�} ����� �D�\aBkmknx�� Y�Y�i�x-lnqjoDknr � i�`^r � rmc�kncpo � s�` � yd¯4YD� (��� ��Y �

��� � « qj{/s/¯/s�l
&spuds�{
s�oNu qj`baNs/i^e��&y-kneji^l � �tqj²pc�lncpyJr)u-i�rmqj²po#c�g�g�s/yJe|km¸ knc/eji^lbs/oBk�kmlbs/oJrns/`^knqjcpoJrHg@c/l
lni�xJe¬qj`�s!kni�uÛuJs�kbs/®ds/rmir½}-r½kni�w(r(ydrmqjoJ²»h<{Li^oDk�� �$¾ od!?H JA/ 9P/�7�D?%�;$#2;+5 / �0G�;=LM1 /CB 5 /2G � 5 ;ED
FO3�7 5 1 � - /65 ;=9(32L 1e�*� DC1 ;=G%Dn�YxNs�²pi�r ���� � � � � �º{pcpejydw(i ���p�Âc/gf�Pi�`^knyJlni � c/kni�r�q¬oÖv&c/w(xdy-kni^l
-`^q¬i^od`�ip�N-x-lnqjod²pi]l�� ����� � �

42

Reasoning about System-Degradation and

Fault-Recovery with Deontic Logic

Pablo F.Castro and T.S.E.Maibaum

McMaster University
Department of Computing & Software

Hamilton, Canada
castropf@mcmaster.ca

tom@maibaum.org

Abstract. In this paper we outline the main characteristics of a deontic
logic which is useful for modeling of and reasoning about fault-tolerance
and related concepts. Towards this goal, we describe a temporal extension
of this formalism together with some of its properties. We use a simple
example to show how some fault-tolerance concepts (like fault-recovery
and system degradation) can be expressed using deontic constructs.

Key words: Fault-Tolerance, Formal Specification, Deontic Logics, Soft-
ware Design

1 Introduction

Fault-tolerance has emerged as an important research field in recent years; the
increasing complexity of software code in current applications has implied that
techniques such as program verification (e.g., Hoare logic) are very expensive to
be used in practice, in part because the total elimination of errors is a hard task
in large programs. This implies that designers have to find other techniques to
develop critical software. To produce fault-tolerant programs (software which is
able to recover from errors) is an interesting option. Although the main tech-
niques for fault-tolerance have been proposed for the implementation phase, in
the past few years some techniques and formalisms have been proposed for the
design phase. We intend to take some steps towards this goal; in this paper we
introduce a propositional deontic logic (a detailed introduction is given in [1])
to specify and to reason about fault-tolerance at the design level. We give some
examples of application to show how concepts like fault-recovery and system-
violation can be formalized using our logic.

Although deontic logics (or DL for short) were created to formalize moral and
ethical reasoning, they have been proposed as a suitable formalism for dealing
with fault-tolerance by several authors (for example: [2], [3] and [4]). This logic
has the main benefit of allowing us to distinguish between qualitative different
scenarios: normative (following the rules, expected, normal) and non-normative
(violating the rules, unexpected, abnormal) situations. However, it is hard to
find a suitable version of DL to apply in practice. Some formalisms have been

43

2 Pablo F.Castro and T.S.E.Maibaum

described to be used in computer science (for example:[5] or [6]), but most of
them are not designed to be used in the context of fault-tolerance. In addition,
the notion of time has been useful for reasoning about program properties, so
we need to mix both deontic notions and temporal frameworks; as a result the
logic obtained is very expressive, allowing us to express several properties, like
those related to fault recovery.

The paper is organized as follows. In section 2 we present a brief description
of our deontic logic. In section 3 we describe a practical example. Finally, we
describe some conclusions and future works.

2 A Temporal Deontic Logic

The logic presented in this section takes some features from the dynamic deontic
logic described by Meyer in [5], and the modal action logic proposed by Maibaum
and Khosla in [7]. In the language, we have a set of atomic (or primitive) actions:

∆0 = {α, β, γ, ...}

and a set of atomic propositions:

Φ0 = {ϕ, ψ, ϑ, ...}

More complex actions can be constructed from the atomic ones using the fol-
lowing operators: t,u,−, that is: nondeterministic choice, concurrent execution
and action complement. In addition, we consider two special actions: ∅ and U.
The former is an impossible action (an action that cannot be executed), while
the latter is universal choice (the non-deterministic choice between the enabled
actions). The complement operator is particularly useful to specify wrong behav-
ior, for example, to say that if a given system is obliged to perform an action and
it executes another action (this action is in the complement), then we have an
error. We must be very careful with the complement because it can bring unde-
cidability in the logic (for example, if we combine it with the iteration operator,
see [8]).

The intuition behind each construct in the logic is as follows:

– α =act β: actions α and β are equal.

– [α]ϕ: after all the possible executions of α, ϕ is true.

– [α t β]ϕ: after the non-deterministic execution of α or β, ϕ is true.

– [α u β]ϕ: after the parallel execution of α and β, ϕ is true.

– [U]ϕ: after the non-deterministic choice of any possible action, ϕ is true.

– [∅]ϕ: after executing an impossible action, ϕ becomes true.

– [α]ϕ: after executing an action other than α, ϕ is true.

– P(α): every way of executing α is allowed.

– Pw(α) : some way of executing α is allowed.

44

Title Suppressed Due to Excessive Length 3

The deontic part of the logic is given by the permission predicates. Note that
we consider two different versions of permission. Both are useful, in particular
since we can define an obligation operator using them:

O(α)
def
⇐⇒ P(α) ∧ Pw(α)

That is, an action is obliged if it is permitted and the remaining actions are not
weakly permitted (you are not allowed to execute them in any context).

This definition of obligation allows us to avoid several deontic paradoxes
(some of the most well-known paradoxes in deontic logic can be found in [9]).
For example, the so-called Ross’s paradox: if we are obliged to send a letter then
we are obliged to send it or burn it. This is a paradox in the sense that we do
not expect this sentence to be valid in snatural language. The formalization of
this paradox is as follows: O(send) → O(send t burn). The reader can verify
that this formula is not valid in our framework.

The semantics of our logic is defined by a labelled transition system, M =
〈W ,R, E , I,P〉, where:

– W is a (non empty) set of worlds.
– E is set of events (the set of events that occurs during system execution).
– R is a E-labelled relation between worlds.
– I is an interpretation which tells us which predicates are true in which world;

in addition, it maps an action to a set of events (the events that this action
produces during its execution).

– the relation P ⊆ W × E tells us which event is allowed in a given world.

The relation � can be defined in a standard way; we have two novel rules for the
two versions of permission:

– w,M � p
def
⇐⇒ w ∈ I(p)

– w,M � α =act β
def
⇐⇒ I(α) = I(β)

– w,M � ¬ϕ
def
⇐⇒ not w � ϕ.

– w,M � ϕ→ ψ
def
⇐⇒ w � ¬ϕ or w � ψ or both.

– w,M � 〈α〉φ
def
⇐⇒ there exists some w′ ∈ W and e ∈ I(α) such that w

e
→ w′

and w′,M � φ.

– w,M � P(α)
def
⇐⇒ for all e ∈ I(α), P(w, e) holds.

– w,M � Pw(α)
def
⇐⇒ there exists some e ∈ I(α) such that P(w, e).

They are a formalization of the intuition explained above. Note that using modal-
ities we can define the composition of actions, that is:

[α;β]ϕ
def
⇐⇒ [α]([β]ϕ)

However, we introduce it only as notation. (We can introduce this operator in
the language but it complicates in several ways the semantics, in particular the
semantics of the action complement.)

45

4 Pablo F.Castro and T.S.E.Maibaum

We describe in detail the semantics and axioms of the logics in [1]. We can
explain intuitively the deontic operators with some diagrams. Consider the fol-
lowing model M :

•w1

w•

e1

77
n

n
n

n
n

n
n

n
n

n
n

n e2
//

e3

''

•w2

•w3

The dotted arrow means that this transition is not allowed to be performed.
e1, e2 and e3 represent possible events during the execution of the system; we
can suppose that they are generated by two actions: α and β. Suppose that α
produces (during its execution) events e1 and e2, and action β produces event
e3. Here we have w,M � P(α), because every way of executing it is allowed,
and also we have w,M � Pw(α), because α is allowed to be executed in a least
one way. On the other hand, we have w,M � ¬P(β) and also w,M � ¬Pw(β).
Finally, since w,M � P(α) and w,M � ¬Pw(α) we obtain w,M � O(α).

Some interesing properties of the modal and deontic operators are the fol-
lowing:

P1. [α t α′]ϕ↔ [α]ϕ ∧ [α′]ϕ
P2. [α]ϕ→ [α u α′]ϕ
P3. P(∅)
P4. P(α t β) ↔ P(α) ∧ P(β)
P5. P(α) ∨ P(β) → P(α u β)
P6. ¬Pw(∅)
P7. Pw(α t β) ↔ Pw(α) ∨ Pw(β)
P8. Pw(α u β) ↔ Pw(α) ∧ Pw(β)

P1 says that if after executing α or β ϕ is true, the ϕ is true after executing
α and after executing β. P2 says that parallel composition preserves properties.
P3 says that the impossible action is allowed. P4 and P5 are similar to P1 and
P2 but for strong permission. P6, P7 and P8 are the dual properties for the
weak permission. In particular, P6 says that the impossible action is not weakly
permitted, i.e., there is no (allowed) way of executing it. It is in this sense that ∅
is the impossible action. This explains the seemingly paradoxical nature of P3:
every way of executing the impossible action is allowed (but there is no way!).

Note that we do not have, as in dynamic logic, the iteration as a valid op-
eration over actions. Even though it is desirable, it will bring us undecidability.
Instead, we prefer to enrich our logic with temporal operators in a branching
time style (precisely, similar to CTL [10]). We consider the following temporal
formulae:

– ANϕ (in all possible executions ϕ is true at the next moment).

46

Title Suppressed Due to Excessive Length 5

– AGϕ (in all executions ϕ is always true),
– A(ϕ1 U ϕ2) (for every possible execution ϕ1 is true until ϕ2 becomes true)
– E(ϕ1 U ϕ2) (there exists some execution where ϕ1 is true until ϕ2 becomes

true).

As usual, using these operators we can define their dual versions. It is interesting
to note that iteration and the temporal operators are related; with iteration we

can define: [U∗]ϕ
def
= AGϕ. But the temporal formulae do not make the logic

undecidable because the temporal operators cannot be mixed with the modal
ones.

In addition, we consider the operator Done(α), which means the last action
executed was α. Using it, together with the temporal operators, we can reason
about the traces of our models. Some useful formulae can be expressed using the
Done() operator; some examples are:

– ANDone(α), the next action to be executed will be α.
– Done(α) → Done(β), the execution of α implies the execution of β
– Done(α) → O(β), if you performed α then you are obliged to perform β.
– A(Done(α1 t ... t αn) U Done(β)), on every path you perform some αi until

you perform β.

Some of these formulae are important to express error-recovery, as we illustrate
in the next section.

The Done(−) operator has some interesting properties:

Done1. Done(α t β) → Done(α) ∨ Done(β)
Done2. Done(α u β) ↔ Done(α) ∧ Done(β)
Done3. Done(α t β) ∧ Done(α) → Done(β)
Done4. [α]ϕ ∧ [β]Done(α) → [β]ϕ

Property Done1 says that if a choice between two actions was executed then one
of them was executed. Done2 means that if we execute the parallel composition
of two actions then we have to perform both actions. Done3 allows us to dis-
cover which action of a choice was executed. And the last property is a kind of
subsumption property: if after executing α ϕ is true, and after of β α is done,
then after β also ϕ is true.

The semantics of the temporal operators can be defined using traces (as

usual). Suppose that π = s0
e0→ s1

e1→ ... is an infinite trace on a given model
(note that we can extend the finite traces to infinite ones, as is usually done in
temporal logics). We says that π′ � π if π′ is an initial segment of π. Then we
define the formal semantics of the temporal operators as follows:

– π, i,M � Done(α)
def
⇐⇒ i > 0 and ei−1 ∈ I(α).

– π, i,M � ANϕ
def
⇐⇒ ∀π′ such that π[0, i] � π′, we have that π′, i+ 1,M � ϕ.

– π, i,M � AGϕ
def
⇐⇒ ∀π′ such that π[0, i] � π′, we have that ∀j ≥ i : π′, j,M �

ϕ.

47

6 Pablo F.Castro and T.S.E.Maibaum

– π, i,M � A(ϕ1 U ϕ2)
def
⇐⇒ ∀π′ such that π[0, i] � π′, we have that ∃j ≥ i :

π′, j,M � ϕ2 and ∀i ≤ k < j : π′, k,M � ϕ1.

– π, i,M � E(ϕ1 U ϕ2)
def
⇐⇒ ∃π′ such that π[0, i] � π′, we have that ∃j ≥ i :

π′, j,M � ϕ2 and ∀i ≤ k < j : π′, k,M � ϕ1.

Note that the relation � is now defined with respect to a sequence, an instant
and a model.

3 A Practical Example

We will use a small example to illustrate why the deontic operators are useful
to model fault-tolerance:

In a factory which produces some kind of object, the process of making an
object is as follows: we have two mechanical hands (A and B), one press and
one drill; the hand A puts an element in the press and the hand B takes the
pressed element and puts it in the drill. If the hand A fails and does not put
some element in the press then the hand B should put the element in the press
and then it should continue doing its work. And vice-versa (if hand B fails). If
both hands fail, an alarm sounds and the system is shut down.

The interesting point in the example is how a violation (when a mechanical
hand fails) can be overcome using the other hand (taking advantage of the
redundancy in the system); of course, using only one hand for whole the process
implies a slower process of production, and therefore the entire process is more
expensive. Note that here we have an important difference between prescription
and description of behavior: the hand A should put an element in the press. We
need to model this as a prescription of behavior; that is, what the system is
obliged to do in a given situation. One of the main advantages of deontic logic
is that it allows us to distinguish between the description and prescription of a
system (as established in [7]). For example, if we proceed to say that the hand
A puts an element in the press (in a descriptional way):

¬el2press→ ANDone(A.putselpress)

which means that if there is no element in the press then the hand A puts one
in it (note that ANDone(α) could be thought of as a do operator). On the other
hand, the deontic version:

¬el2press→ O(A.putselpresser)

says that, if there is no element in the press, then the hand A should put one
in the press. The difference is that, in the second case, the obligation could be
violated.

Having these facts in mind, we can give a part of the specification:

A1 ¬Done(U) → ¬el2press ∧ ¬el2drill ∧ ¬v1 ∧ ¬v2
A2 (¬el2press→ O(A.putselpress)) ∧ (v2 ∧ elpressed→ O(A.putseldrill))

48

Title Suppressed Due to Excessive Length 7

A3 (¬el2drill ∧ elpressed→ O(B.putseldrill)) ∧ (v1 → O(B.putselpress))
A4 ¬v1 ∧O(A.putselpresstA.putseldrill) → [A.putselpress tA.putseldrill]v1
A5 ¬v2∧O(B.putselpresstB.putseldrill) → [B.putselpress tB.putseldrill]v2
A6 ¬v1 → [A.putselpress tA.putseldrill]¬v1
A7 ¬v2 → [B.putselpress tB.putseldrill]¬v2
A8 (v1 → [A.fix]v1) ∧ (v1 → [A.fix]¬v1)
A9 (v2 → [B.fix]v1) ∧ (v2 → [B.fix]¬v2)
A10 v1 ∧ v2 → ANDone(alarm)
A11 [alarm]AF(Done(A.fix uB.fix))

Some explanation will be useful about the axioms. We have only shown the
deontic axioms; some other axioms should be added (for example frame axioms).
Axiom A1 establishes the initial condition in the system: at the beginning (when
no action has occurred) there is no element to press, and no element to drill,
and no violations. A2 says that if there is no element in the press then the hand
A should put an element there; in addition it says that if the hand B is not
working, then A has to put pressed elements in the drill. A3 says that if there is
no element to drill and there exists a pressed element, then the hand B should
put that element in the drill. Axiom A4 expresses when a violation of type v1 is
committed: if there is no violation v1 and hand A is obliged to put an element in
the press but the hand does not do it, then v1 becomes true. A5 is the specification
of violation v2: it happens when the hand B does not fulfill its obligation. A6 and
A7 model when normal states are preserved. A8 and A9 express when we can
recover from violation, that is, when some hand is repaired. Finally, A10 and
A11 tell us when the worst situation is achieved, that is, when both hands are
in violation; then an alarm is initiated and the hands are repaired.

� � � � � �

� � � � �

	
 � �

� �

� � � � � � � � � � � � � � � � �

� ! " # $ % ! # & '

(') ! # (' (% ! # & '

& ! * % * & # $ % ! # & '
� � � � � � + , � � � � � �

� � � � � � + , � � � � � �

Fig. 1. ordering violations

It is interesting to analyze the different faults that we can have in the system;
we can see that there exists an order relation between them. The situation is
shown in figure 1. The ideal scenario is when ¬v1 ∧¬v2 is true, that is, when no
hand is faulty. From here, the system can suffer a degradation and then it goes

49

8 Pablo F.Castro and T.S.E.Maibaum

to violation 1 (v1 is true) or violation 2 (v2 is true); both situations of violation
are incomparable, in the sense that none of them implies the other. Then, the
system can be degraded again and both violations hold; in this case, both hands
are not working correctly and there is no other option than repairing both hands.
Otherwise, the entire process of production will be effected. It is important to
note that, though in violation 1 (or violation 2) the system can work correctly
(because of the redundancy of the hands), the process of production is slower
(only one hand will do all the work).

Note that the hand A can try to put an element in the drill. Indeed, if hand
B is working correctly, this scenario is obviously not desirable. We can use the
forbidden operator to avoid this. The forbidden operator can be defined using
the weak permission or the strong permission; depending on the choice, we get
different results. We define it using the weak permission, as follows:

F(α)
def
⇐⇒ ¬Pw(α)

That is, an action is forbidden if it is not allowed to be performed. Using this
operator we can include the following formulae:

– ¬v1 → F(A.putseldrill)
– ¬v2 → F(B.putselpress)

Using these new formulae we can define new violations in the case that prohi-
bitions are violated, and therefore, the corresponding recovery actions can be
introduced.

Some properties can be proved from the specification. In particular, some
interesting properties to prove are:

AG(¬v1 ∧ ¬v2) ∧ ¬el2drill ∧ AFel2press→ AFel2drill

if there is no violation, and eventually we have an element to press, then we will
have an element to drill.

AG(v1 ∧ ¬v2) ∧ ¬el2drill ∧ AFel2press→ AFel2drill

if there is a violation of type v1 (but no violation of type v2), then the pressed
elements will be brought to the drill, that is, the system continues working, in a
degraded way.

AG(v1 ∧ v2) → AF(EG(¬el2drill ∧ ¬el2press))

if both hands are not working correctly, then there exists the possibility that the
elements will not be transported to the press or to the drill.

Of course, a lot of interesting different properties can be proposed, and
proven. We have described another example of application in [1]. The point to
make here is the way in which system violation and fault recovery are specified;
we can mix modal and deontic operators to specify these system properties. And
the expressiveness that temporal operators give us allow us to prove important
properties about the specification.

50

Title Suppressed Due to Excessive Length 9

We note that the logic described is decidable and, therefore, techniques such
as model checking could be used to validate specifications and to prove properties
of corresponding programs.

4 Conclusions

We have shown, using an example, how deontic logics can be used to express
some properties about fault-tolerant systems. Though the example is simple, it
illustrates a non-trivial complex scenario of failure and recovery, demonstrating
that these ideas themselves are non trivial. For this purpose we have developed
our own version of deontic logic, which has some interesting properties (like
compactness and decidability).

As we demonstrate in the example, it is possible to formalize the notion of
violation and normal state, which give us the possibility of analyzing how the
system is degraded and repaired through time, and therefore some interesting
properties can be proved. The utilization of deontic operators allows us to dif-
ferentiate between model description and prescription in a natural way. We have
presented another (more complex) example in [1], and we proved several prop-
erties about it; from these examples, it seems possible to conclude that we can
apply the underlying logic calculus in practice.

However, we need to do research about practical decision methods for the
proposed logic. Our final goal is to provide automatic tools which allow designers
to analyze models (and programs) in a practical way. Towards this goal, it is also
interesting to research how we can modularize the deontic specifications, in such
a way that different components have different deontic contracts (obligations
and permissions) and then the system specification could be derived from the
individual ones.

Another interesting branch of research seems to be contrary to duty reasoning
(see [11]), in particular how this kind of reasoning is applied in fault-tolerance.
Contrary to duty structures are sets of sentences where there exists a primary
obligation and a secondary obligation which arises from the violation of the
primary one. These kinds of formulae are hard to reason about, as is shown
everywhere in the deontic literature; indeed, several paradoxes are contrary to
duty structures. This kind of reasoning is usual in fault-tolerance; for example, if
we violate some system obligation, then we are obliged to perform some correc-
tive action. At first sight, it seems possible to extend our formalism (e.g., with
several versions of obligation) to support contrary to duty reasoning. We leave
this as a further work.

References

1. P.F.Castro, T.S.E.Maibaum: Torwards a deontic logic for fault tolerance. Techni-
cal Report SQRL39, McMaster, Department of Computing & Software, Software
Quality Research Laboratory (2007)

51

10 Pablo F.Castro and T.S.E.Maibaum

2. T.S.E.Maibaum: Temporal reasoning over deontic specifications. In: Deontic Logic
in Computer Science, John & Wiley Sons (1993)

3. J.Magee, T.S.E.Maibaum: Towards specification, modelling and analysis of fault
tolerance in self managed systems. In: Proceeding of the 2006 international work-
shop on self-adaptation and self-managing systems. (2006)

4. S.Kent, T.S.E.Maibaum, W.Quirk: Formally specifying temporal constraints and
error recovery. In: Proceedings of IEEE International Symposium on Requirements
Engineering. (1993) 208–215

5. J.J.Meyer: A different approach to deontic logic: Deontic logic viewed as variant
of dynamic logic. In: Notre Dame Journal of Formal Logic. Volume 29. (1988)

6. F.Dignum, R.Kuiper: Combining dynamic deontic logic and temporal logic for the
specification of deadlines. In: Proceedings of the thirtieth HICSS. (1997)

7. S.Khosla, T.S.E.Maibaum: The prescription and description of state-based sys-
tems. In B.Banieqnal, H., A.Pnueli, eds.: Temporal Logic in Computation,
Springer-Verlag (1985)

8. J.Broersen: Modal Action Logics for Reasoning about Reactive Systems. PhD
thesis, Vrije University (2003)

9. J.J.Meyer, R.J.Wieringa, F.P.M.Dignum: The paradoxes of deontic logic revis-
ited: A computer science perspective. Technical Report UU-CS-1994-38, Utrecht
University (1994)

10. E.A.Emerson, J.Y.Halpern: Decision procedures and expressiveness in the tempo-
ral logic of branching time. In: 14th Annual Symposiun on Theory of Computing
(STOC). (1982)

11. M.Sergot, H.Prakken: Contrary-to-duty obligations. In: DEON 94 (Proc.Second
International Workshop on Deontic Logic in Computer Science). (1994)

52

Engineering Fault-tolerance Requirements using
Deviations and the FIDJI Methodology

Andrey Berlizev1,2, Nicolas Guelfi1

1 Laboratory for Advanced Software Systems, University of Luxembourg
6, rue Richard Coudenhove-Kalergi L-1359 Luxembourg-Kirchberg, Luxembourg
2 Software Modeling and Verification group, Centre Universitaire D'Informatique

Université de Genève, Route de Drize, 7 CH-1227 Carouge, Switzerland
{Andrey.Berlizev, Nicolas.Guelfi}@uni.lu

Abstract. Contemporary software systems are usually complex and prone to
errors due to their complexity. If dependability attributes are defined, some
strategies must be adopted. One approach is to follow a component based
approach allowing reuse of dependable components. The FIDJI methodology is
a semi-formal approach that allows reuse of existing analysis, design or
implementation elements in a product line perspective. FIDJI elements can be
reused at any abstraction level by derivation. This paper presents how we can
modify the FIDJI analysis models to adapt them to the semi-formal
specification of fault-tolerance requirements. For this purpose, the main
contribution of this article is to introduce the concept of deviation from
requirements and to propose the specification of recovery requirements
associated to deviations for the use case description of the FIDJI methodology.
The proposed approach is illustrated using a running example.

Keywords: integrated approaches, fault-tolerant systems development,
deviations, Semi-formal methodology, MDE.

1 Introduction

Contemporary software development is a difficult process because systems have to be
built with high complexity (large size, distribution, cross platform, etc.). Because of
this, systems are prone to developer mistakes and highly dependant on the hardware
they use. In safety-critical applications such as medical systems, the quality
requirements demanded by users are further increased and software correctness is of
utmost importance. Although there are special development methods for such systems
that satisfy these requirements, they are usually very costly and need special skills.
Therefore, they are rarely used when developing standard systems that are not highly
critical. We believe that simplification of the process for developing dependable
systems will help enhance the dependability of developed software.

A widely accepted definition of dependability for computing systems was
introduced by Jean-Claude Laprie in 1985 as, “the trustworthiness of the system by
which reliance can be justifiably placed on the services the system delivers” [5].

53

Developer mistakes or hardware defects are known as faults. If they are executed and
manifest, faults may lead to an error: an improper internal state of the system. If an
error is not recovered to normal state and reaches the border of the system, it is a
failure of the system for the environment (behavior different from the specified).
Fault-tolerance (FT) is the ability to comply specification even in the presence of
faults. Usually FT is introduced during the design phase, however, we believe that the
earlier FT and dependability are introduced during development, the better the
outcome [1]. For example, abnormal behavior is introduced during requirement
elicitation phase [4] by extending use case based requirements elicitation with ideas
from the exception handling world.

FIDJI is a software development methodology, which uses the UML 2.0 notation
and textual descriptions and is based on the so called architectural framework
concept, which is a set of models devoted to the definition of product line assets at the
analysis and design level, and which is instantiated into the product line members via
model transformation [2, 3]. Product Line (PL) is the development of “product
families” [7], which use some functionality of one product to further develop new
ones. Model Driven Engineering (MDE) is the systematic use of models as primary
engineering artifacts throughout the engineering lifecycle. The most well-known
MDE is Model-Driven Architecture by OMG [6]. Model transformation is the process
of converting one model to another model of the same system. Thus, FIDJI defines
how to develop products within a PL by reusing parts of the models and then using
model transformations.

There are four layers defined in FIDJI corresponding to different levels of
abstraction: SPL requirements, analysis, design and implementation. In this work, we
concentrate on the analysis layer. Its purpose is to specify the functionalities offered
as well as the concepts manipulated by the architectural framework. FIDJI analysis
model is used to describe the architectural framework, as well as the analysis of the
product. It consists of the following sub-models:
• Domain Model precisely defines concepts manipulated by use case and operations.
• Use Case Model extends and refines the use cases described at the requirements

elicitation time. Its purpose is to express the architectural framework’s behavior in
terms of sequence of operations.

• Operational Model specifies in detail each operation: informal descriptions,
parameters, return values and pre/postconditions.
FIDJI does not consider fault-tolerance as a primary concept. By integrating

deviation and recovery specifications coherently with the FIDJI models, this article
proposes a solution for improving the FIDJI analysis models in order to cope with
fault-tolerance. In order to do this, Section 2 introduces a running example and its
requirements; Section 3 presents the notions of deviation and recovery; and Section 4
illustrates these notions for the running example within the FIDJI use case model.

2 Running example

As an academic running example, we will consider a software system that allows
several banks to collaborate and borrow money from each other. The task of the

54

system is to find a lender at the request of the borrower and handle the money transfer
(which is conducted outside the system itself).

Our illustration is based on the Use Case Model. Due to the issue of space we are
omitting Domain Model, a class diagram with all used elements, and Operational
Model. Note, that FIDJI use case is not only a textual description in informal
language but, whenever possible, it is formalized using OCL 2.0 expressions.

Figure 1 shows the use case for the main scenario used by the borrower. In this
scenario, system finds a lender (by internal algorithms) then sends a request to the
lender to send the money to the borrower and confirm this. Then, system sends the
confirmation to the borrower. GetLender represents the system. This is not a fully
formal specification but rather a semi-formal specification, since every step in use
case has Object Constraint Language (OCL) postcondition expression. In the next
section we will consider abnormal behavior, as well.

Name Borrow Money
ID UC1 BorrowMoney

Description
Bank requests from the system to find a lender bank agreeing to work
with the requester bank send the money directly to the borrower

Primary actors Borrower: Bank
Secondary actors Lender: Bank

Trigger event
Borrowing is requested
Post: BorrowMoney^borrowRequest(requestedAmount:Money)

Preconditions
An actor is logged into the system
Pre: bankAcc.isUserSignedIn=true

Postconditions

The lender is sent
Post: lender^Lend(borrower:Bank; requestedAmount:Money)
and Borrower^confirmMoney(Lender: Bank)

Main success scenario:
1. Bank requests the amount
Post: BorrowMoney^borrowRequest(requestedAmount:Money)
2. The system finds bank as a lender and sends request
lender^Lend(borrower:Bank; requestedAmount:Money)
3. The lender candidate sends confirmation
GetLender^confirm(lender:Bank; borrower:Bank)
4. The system confirms with the borrower
Post: Borrower^confirmMoney(Lender: Bank)

Fig. 1. Use case of normal behavior

3 Deviation and Recovery

A specification describes what a system should do: its normal behavior. Fault-
tolerance aims at making sure that a system continues to behave as specified, even in
the presence of faults. We want to change the specification in such a way that it
describes abnormal behavior as well, and simplify sometimes classical FT at the
design level, for which some decisions made during the analysis phase about error

55

messages, etc., will be predefined. Fault-tolerance at the analysis level aims at
providing a specification not only describing the normal system behavior, but also
behavior that is still acceptable by customer behavior. In classical FT, the
mechanisms used are implicit and hidden from the customer. It means that for usual
specification any deviation from the specified behavior is a failure and is not accepted
by customer. In FT specification we can say that some deviations are still acceptable
by customer with the proper recovery or, with normal service it may be acceptable to
have some degraded service.

To support fault-tolerance at the analysis level we introduce the notion of
Deviation, which is the expression of the difference between two elements that should
be equal. For any deviation defined we also want to define acceptable recovery. Thus,
we extend the specification of normal behavior with deviations and recovery
accordingly. We use the stereotype <<deviation>> followed by detection statement
and some additional stereotypes with their statements description for the full
description of fault-tolerance requirements:
• <<recovery>> - this required section describes what should be done to tolerate

detected deviation.
• <<impact>> - there is an additional optional clause, which allows to define use

cases, classes or other elements which will be impacted by this deviation.
• <<continue>> - this optional section defines what should happen after the

recovery.
Within use case we propose to add deviations as additional blocks or lines (Fig. 2),

and leave only those parts that were changed (compare with Fig. 1).

4 Running example with fault-tolerance requirements

During FT analysis we should find possible deviations to answer the question of
“what can go wrong?” for every step and element of the normal specification. There
needs to be a decision of what faults should be considered during the development of
the system, which depends on the system type and the desired dependability (quality)
level. Not every found deviation should be considered since we cannot offer a
solution at the analysis level. For instance, we cannot consider communication is lost
with the user, because we do not have definition of communication at the analysis
level and it will appear only during the design. At the analysis level we can abstract
from the details of the fault and simply consider the omission of the message from the
actor. Typically this can be detected with a timeout, which is illustrated by the
deviation in Fig. 2 at Step 3, on the right. On the left, we define that an error message
should be sent and that the use case is finished when sentAmount is not equal to
requiredAmount. In a real system it would be better to compare with the received
amount, but in this case it would require new steps to be added to the use case.

For trigger event we add reaction on the situation when the borrower does not use
proper type for request parameter (such a situation may happen in web services, for
example, when all parameters are passed through textual XML file, and may therefore
be of wrong type). For deviation we have informal error detection.

56

Trigger event

Borrowing is requested
Post: BorrowMoney^borrowRequest(requestedAmount:Money)
<<deviation>> amount is not type of Money
<<recovery>> Borrower^WrongAmountType

Preconditions
An actor is logged into the system
Pre: bankAcc.isUserSignedIn=true

Postconditions

The lender is sent
Post: lender^Lend(borrower:Bank; requestedAmount:Money)
and borrower^confirmMoney(Lender: Bank;
requestedAmount:Money) and requestedAmount=sentAmount

…
3. the lender candidate sends confirmation
GetLender^confirm(lender:Bank; borrower:Bank; sentAmount:Money)

<<deviation>>
not requestedAmount=sentAmount
<<recovery>>
Borrower^lessAmountSent(Amount:Money)
<<continue>> UC finishes

<<deviation>>
GetLender^confirmTimeout
<<recovery>> find other lender
<<continue>> from 2

…

Fig. 2. Use case with abnormal behavior

5 Perspectives & Conclusion

Future work on this topic is planned in several directions. First of all, all the models
of FIDJI should be enhanced with our proposal given for use case description.
Secondly, deviations and recovery deal with only a part of dependable requirements
and should include other aspects of dependability like, availability, security, etc.
Thirdly, testing is costly in the development process and should be simplified by
reusing tests for common sets in PLs and through automatic test generation from the
analysis model. We would like to study the links between fault-tolerant requirement
specification and test cases.

Acknowledgments. We would like to thank Alexander Romanovsky and Jörg
Kienzle for their helpful discussions. This research is partially supported by the
Ministry of Culture, Higher Education and Research of Luxembourg by grant
BFR04/053.

57

References

1. Beder D.M., Randell B., Romanovsky A., Rubira C.M.F.: On Applying Coordinated Atomic
Actions and Dependable Software Architectures for Developing Complex Systems. ISORC
- 2001 Proceedings. Fourth IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing. IEEE Computer Society Press, (2001) 103-112

2. Guelfi, N., Perrouin G.: Using Model Transformation and Architectural Frameworks to
Support the Software Development Process: the FIDJI Approach. In 2004 Midwest Software
Engineering Conference (2004) 13–22

3. Guelfi, N., Perrouin, G.; A Flexible Requirements Analysis Approach for Software Product
Lines. International Working Conference on Requirements Engineering: Foundation for
Software Quality (REFSQ'07), June 11-12th, Trondheim, Norway, LNCS 4542, Springer-
Verlag (2007)

4. Shui, A., Mustafiz, S., Kienzle, J.: Exception-Aware Requirement Elicitation with Use
Cases. In Romanovsky, A., Dony, C., Knudsen, J. L., and Tripathi, A., editors, Advanced
Topics in Exception Handling Techniques. Springer Verlag, October, n. 4119 in Lecture
Notes in Computer Science, (2006) 221 - 242.

5. Laprie J. C.: Dependability: A Unifying Concept For Reliable Computing and Fault
Tolerance. In Anderson T (Ed) Dependability of Resilient Computers. BSP Professional
Books, Oxford (1989)

6. OMG: MDA® Specifications http://www.omg.org/mda/specs.htm
7. Parnas, D.L.: On the Design and Development of Program Families. TSE, 2(1):1–9, (1976)

58

http://www.omg.org/mda/specs.htm

Model-based Testing Using Scenarios and

Event-B Refinements

Qaisar A. Malik, Johan Lilius, and Linas Laibinis

Åbo Akademi University, Department of Information Technologies
Turku Centre for Computer Science (TUCS), Finland
{Qaisar.Malik, Johan.Lilius, Linas.Laibinis}@abo.fi

Abstract. In this paper, we present a model-based testing approach
based on user provided testing scenarios. In this approach, when software
model is refined to add/modify features, the test cases are automatically
refined to incorporate these changes. We use the Event-B formalism for
software models, while user scenarios are represented as Communicating
Sequential Process (CSP) expressions.

1 Introduction

Testing is an important activity in the software development life cycle. With ad-
vancements in the model-based approaches for software development, new ways
have been explored to generate test-cases from existing models of the system.
This is often referred to as model-based testing. A software model is usually a
specification of the system which is developed from the given requirements early
in the development cycle [5]. For dependable systems, software model should
also include fault tolerance mechanism as part of their functionality. In this pa-
per, we present a model-based testing approach based on user-provided testing
scenarios. As our formal framework we use the Event-B method [4, 3] supporting
stepwise system development by refinement. Generally, implementation code for
a system-under-test (SUT) can be generated from a sufficiently detailed specifi-
cation. But often, due to the remaining abstraction gap between a model and the
implementation, it is not always feasible to generate implementation code. As a
result, the implementation is not shown to be correct by construction but instead
it is hand-coded by programmer(s). Identifying and writing testing scenarios
for such an implementation is a very time consuming and error-prone process.
In our approach, test scenarios are identified at an abstract specification level
and are automatically refined (together with a specification) at each refinement
step. These scenarios can also include tests of the incorporated fault tolerance
mechanisms. In our approach, test scenarios are represented as Communicating
Sequential Process (CSP) [6] expressions. In the final step, executable test cases
are generated from these CSP expressions to be tested on SUT. This work is
based on our earlier approach [10] for scenario-based testing from B models.

The organisation of the paper is as follows. Section 2 discusses stepwise de-
velopment using the Event-B formalism. Section 3 describes our approach for

59

model-based testing as well as addresses the topics on refinement and represen-
tation of test scenarios. In Section 4, we illustrate our approach by development
of a fault-tolerant system. Section 5 contains some concluding remarks.

2 Developing Systems by Refinement using the Event-B

Method

This section gives a brief introduction to the Event-B [4, 3] formalism. We also
discuss the stepwise development methodology in Event-B focusing on the basic
types of system refinement.We will use these basic refinement rules in our model-
based testing approach described in the next section.

2.1 Modeling in Event-B

The Event-B [4, 3] is a recent extension of the classical B method [2] formalism.
Event-B is particularly well-suited for modeling event-based systems. The com-
mon examples of event-based systems are reactive systems, embedded systems,
network protocols, web-applications and graphical user interfaces.

In Event-B, the specifications are written in Abstract Machine Notation
(AMN). An abstract machine encapsulates state (variables) of the machine and
describes operations (events) on the state. A simple abstract machine has fol-
lowing general form

MACHINE AM

SETS TYPES

VARIABLES v

INVARIANT I

INITIALISATION INIT

EVENTS
E1 = . . .

. . .

EN = . . .

END

A machine is uniquely defined by its name in the MACHINE clause. The
VARIABLE clause defines state variables, which are then initialized in the
INITIALISATION clause. The variables are strongly typed by constraining
predicates of the machine invariant I given in the INVARIANT clause. The
invariant defines essential system properties that should be preserved during
system execution. The operations of event based systems are atomic and are
defined in the EVENT clause. An event is defined in one of two possible ways

E = WHEN g THEN S END

E = ANY i WHERE C(i) THEN S END

where g is a predicate over the state variables v, and the body S is an Event-B
statement specifying how the variables v are affected by execution of the event.
The second form, with the ANY construct, represents a parameterized event
where i is the parameter and C(i) contains condition(s) over i. The occurrence
of the events represents the observable behavior of the system. The event guard
(g or C(i)) defines the condition under which event is enabled.

60

2.2 Refinement of Event-Based Systems

The basic idea underlying the formal stepwise development is to design system
implementation gradually, by a number of correctness preserving steps, called
refinements. The refinement process starts from creating an abstract, albeit im-
plementable, specification and finishes with generating executable code. In gen-
eral, refinement process can be seen as a way to reduce non-determinism of
the abstract specification, to replace abstract mathematical data structures by
data structures implementable on a computer, and, hence, gradually introduce
implementation decisions.

We are interested how refinement affects the external behavior of a system
under construction. Such external behavior can be represented as a trace of ob-
servable events, which then can be used to produce test cases. From this point
of view, we can distinguish two different types of refinement called atomicity

refinement and superposition refinement.
In Atomicity refinement, one event operation is replaced by several opera-

tions, describing the system reactions in different circumstances the event occurs.
Intuitively, it corresponds to a branching in the control flow of the system. Let us
consider an abstract machine AM A and a refinement machine AM AR given
below. It can be observed that an abstract event E is split (replaced) by the
refined events E1 and E2. Any execution of E1 and E2 will correspond to some
execution of abstract event E1. It is also shown graphically in Fig.1(a).

REFINEMENT AM AR

MACHINE AM A REFINES AM A

.
EVENTS EVENTS

E = WHEN g E1 ref E = WHEN g ∧ g1 THEN S1 END
THEN S END E2 ref E = WHEN g ∧ g2 THEN S2 END

END END

In Superposition refinement, new implementation details are introduced into
the system in the the form of new events that were invisible in the previous
specification. These new events can not affect the variables of the abstract spec-
ification and only define computations on newly introduced variables. For our
purposes, it is convenient to further distinguish two basic kinds of superposition
refinement, where

– a non-looping event is introduced,
– a looping but terminating event is introduced.

Let us consider an abstract machine AM S and a refinement machine AM SR
as shown below

REFINEMENT AM SR

MACHINE AM S REFINES AM S

.
EVENTS EVENTS

E = WHEN g E = WHEN g THEN S END
THEN S END E1 = WHEN g1 THEN S1 END

END END

It can be observed that the refined specification contains both the old and the

61

new events, E and E1 respectively. To ensure termination of the new event(s),
the VARIANT clause is added in a refinement machine. This VARIANT

clause contains an expression over a well-founded type (e.g., natural numbers).
The new events should decrease the value of the variant, thus guaranteeing that
the new events will eventually return the control as the variant expression can
not be decreased indefinitely. These two types of refinements are also shown
graphically in Fig.1(b) and (c).

Let us note that the presented set of refined types is by no means complete.
However, it is sufficient for our approach based on user defined scenarios.

E
E1

E2

EE1E

EE

(a)

(b)

(c)

E1

Fig. 1. Basic refinement transformations

3 Our Approach for Model-Based Testing

3.1 Scenario-based approach for testing

In the literature, we can find several definitions of the term scenario. Scenarios
are generally used to represent system requirements, analysis, user and compo-
nent interaction,test cases etc [9].

We use the term scenario to represent a test scenario for our system under
test (SUT). A test scenario is one of possible valid execution paths that the sys-
tem can follow. In other words, it is one of expected functionalities of the system.
For example, in a hotel reservation system, booking a room is one functionality,
while canceling a pre-booked room is another one. In this article, we use both
terms functionality and scenario interchangeably.

Each scenario usually includes more than one system-level procedure/event,
which are executed in some particular sequence. In a non-trivial system, identi-
fying such a sequence may not be an easy task. Our testing approach is based on
stepwise system development, where an abstract model is first constructed and
then further refined to include more details (e.g., functionalities) of the system.
On the abstract level, an initial scenario is provided by the user. Afterwards, for
each refinement step, scenarios are refined automatically. In Fig.2, an abstract
model Mi is refined by Mi+1 (denoted by Mi ⊑ Mi+1). Scenario Si is an ab-
stract scenario, formally satisfiable (|=) by specification model Mi, provided by

62

the user. In the next refinement step, scenario Si+1 is constructed automatically
from Mi, Mi+1 and Si in such a way that Si+1 formally satisfies model Mi+1.

SUT Test cases

S i

S
i+1

S
i+n

T

T

M i

M
i+1

M
i+n

 Test
implementation

 System
implementation

Test application

Fig. 2. Overview of our Model-based testing approach

Each scenario can be represented as a Communicating Sequential Process (CSP)
[6] expression. Since we develop our system in a controlled way, i.e. using ba-
sic refinement transformations described in Section 2.2, we can associate these
Event-B refinements with syntactic transformations of the corresponding CSP
expressions. Therefore, knowing the way model Mi was refined by Mi+1, we can
automatically refine scenario Si into Si+1. To check whether a scenario Si is
a valid scenario of its model Mi, i.e., model Mi satisfies (|=) scenario Si, we
use Pro-B model checker [8]. Pro-B supports execution (animation) of Event-B
specifications, guided by CSP expressions. The satisfiability check is performed
at each refinement level as shown in the Fig.2. The refinement of scenario Si is
the CSP trace-refinement denoted by ⊑T .

After the final refinement, the system is implemented from the model Mi+n.
This implementation is called system under test (SUT). The scenario Si+n, ex-
pressed as a CSP expression, is unfolded into the executable test cases that are
then applied to SUT. In the next sections we will demonstrate how scenarios are
represented and refined as CSP expressions.

3.2 Scenario Refinement and Representation

As we have described before, the scenarios are represented as CSP expressions.
We refine our models in a controlled way targeting at individual events. We
assume that the events are only executed when their guards are enabled. For
simplicity, we omit the guard information from CSP expressions. Here we will
discuss how individual refinement steps effect the scenarios. Let us assume we
are given an abstract specification M0 with three events, namely, A, B and C, and
a scenario S0 representing the execution order of these events: first the event A,
then the event B, and finally the event C. As a regular expression, we can write
this sequence as:

63

A.B.C

and its corresponding CSP expression is given by

S0 = A → B → C → SKIP

In the next refinement step, the model M0 is refined by M1. This refinement
step may involve any of three types of the supported refinements discussed in
Section 2.2. We will discuss them one by one.
Atomicity Refinement. Let us suppose an event B is refined using atomicity
refinement. As a result, it is split into two events namely B1 and B2. It means
that the older event B will be replaced by two new events B1 and B2 modelling a
branching in the control flow. This can be shown as the regular expression

A.(B1 + B2).C

As a CSP expression we can represent it as

S1 = A → ((B1 → C → SKIP) ⊓ (B2 → C → SKIP))

where ⊓ is an internal choice operator in CSP.
Superposition refinement. Let us suppose we use superposition refinement
to refine an event C. As a result, a new non-looping event D is introduced in the
system. The new scenario can be expressed as a regular expression:

A.B.D.C

and as a CSP expression:

S1 = A → B → D → C → SKIP

Finally, let us suppose we again use superposition refinement to refine event C.
However, this time a new looping event D is introduced into the system. The
new scenario can be represented as a regular expression

A.B.D∗.C

and its corresponding CSP expression is given as

S1 = A → B → D → C → SKIP

where D is defined as

D = D ⊓ SKIP

In the next section, we outline how scenarios are unfolded into test cases.

3.3 From Scenarios to Test-cases

Unfolding of scenarios into test cases is a process that is very similar to system
simulation. During this process, an Event-B model is initialised and executed,
which being guided by the provided scenarios. For our approach, we use Pro-B
model checker,which has the functionality to animate B specifications guided by
the provided CSP expression. After the execution of each event, present in the
scenario, information about the changed system state is stored.

In other words, the execution trace is represented by a sequence of pairs
< e, s >, where e is an event and s is a post-state (the state after execution of
event e). From now on we will refer to a single pair < e, s > as an ESPair.

For a finite number of events e1, e2.....en, present both in the model M and
the System Under Test (SUT), a test case t of length n consists of an initial
state INIT and a sequence of ESPairs

64

t = INIT, {< e1, s1 >,< e2, s2 >, < en, sn >}

Similarly, a scenario is formally defined as finite set of related test cases, i.e.,
scenario S = {t1, t2, .., tn} As mentioned earlier, ESPair relates an event with
its post-state. This information is stored during test-case generation. For SUT
these stored post-states become expected outputs of the system and act as a
verdict for the testing. After execution of each event, the expected output is
compared with the output of the SUT. This comparison is done with the help
of probing functions. The probing functions are such functions of SUT that at
a given point of their invocation, return state of the SUT. For a test-case to
pass the test, each output should match the expected output of the respective
event. Otherwise, we conclude that a test case has failed. In the same way, test
cases from any refinement step can be used to test implementation as long as
both the implementation and the respective test cases share the same events and
signatures.

4 Testing Development of a Fault-Tolerant System

In this section, we show how our testing methodology can be used in the devel-
opment of a fault-tolerant system . We consider an example of a mobile agent
system [7], where an agent performs three basic tasks when connected to the
server. These basic tasks are named as Engage, NormalActivity and Disengage.
To incorporate the fault-tolerant behavior, the system is repeatedly refined using
the basic refinement types described in Section 3.2. The introduction of fault-
tolerance increases the complexity of the system. Our testing methodology can
be applied to test the new scenarios that result from this complexity. The initial
Event-B machine named Cama specify the three basic events, mentioned above.

MACHINE Cama

SETS Agents

VARIABLES agents

INVARIANT agents ⊆ Agents

INITIALISATION agents:= ∅

EVENTS

Engage = ANY aa WHERE aa ∈ Agents ∧ aa 6∈ agents

THEN agents := agents ∪ {aa} END;

NormalActivity = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN skip END ;

Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

END

In the specification Cama, let us note that the event NormalActivity may happen
zero or more times. The sequence of events, as determined by the specification,
is shown in Fig.3(a).

In the next refinement machine Cama1, the event Disengage is refined into

65

two new events in order to differentiate between leaving normally or because of
a failure. This refinement step is atomicity refinement as discussed in Section
3.2. The other events of the specification remain the same. The execution graph
for this refinement is shown in Fig.3(b).

REFINEMENT Cama1 REFINES Cama

. . .

EVENTS

. . .

NormalLeaving ref Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

Failure ref Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

END

INIT
Engage

NormalActivity

Disengage

(a) Execution graph of Cama

INIT
Engage

NormalActivity

NormalLeaving

Failure
Final states

(b) Execution graph of Cama1

NormalActivity

INIT
Engage

NormalLeaving

Failure
Final states

TempFailure

(c) Execution graph of Cama2

NormalActivity

INIT
Engage

NormalLeaving

Failure
Final states

TempFailure Disconnect

(d) Execution graph of Cama3

NormalActivity

INIT
Engage

NormalLeaving

AgentFailure

Connect

Disconnect

Timer
Timer Expiration

Final states

(e) Execution graph of Cama4

Fig. 3. All possible Event execution scenarios across refinements

In the next refinement machine Cama2, we introduce temporary loss of connec-
tion for our agents. This new event is called TempFailure. This refinement step
introduces a looping event (see superposition refinement in Section 3.2). To guar-
antee termination of the new event, we introduce a new variable disconn limit,
which is used as a variant.

66

REFINEMENT Cama2 REFINES Cama1

. . .

VARIABLES agents, disconn limit

INVARIANT disconn limit ∈ NAT

VARIANT disconn limit

EVENTS

. . .

NormalActivity = ANY aa WHERE aa ∈ agents

THEN disconn limit := Disconn limit END;

TempFailure = ANY aa WHERE (aa ∈ agents)

THEN disconn limit := disconn limit - 1 END;

END

The execution flow for Cama2 is given in Fig.3(c). In next refinement machine
Cama3, a new event Disconnect is introduced. It is the event that precedes
(causes) TempFailure. This refinement is a superposition refinement introducing
a non-looping event. A new variable timers is used to ensure order of execution.

REFINEMENT Cama3 REFINES Cama2

. . .

EVENTS

. . .

Disconnect = ANY aa WHERE aa ∈ agents

THEN timers := timers ∪ {aa} END

TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || timers := timers - {aa} END;

END

The execution flow for Cama3 is shown in Fig.3(d). In the final refinement
step, we elaborate on error recovery and time expiration by splitting the events
TempFailure and Failure by atomicity refinement.

REFINEMENT Cama4 REFINES Cama3

. . .

EVENTS

. . .

TimerExpiration ref Failure = ANY aa WHERE

(aa ∈ agents) ∧ (aa ∈ ex agents)

THEN agents := agents - {aa} || ex agents := ex agents - {aa} END;

AgentFailure ref Failure = ANY aa WHERE

(aa ∈ agents) ∧ (aa 6∈ timers) ∧ (aa 6∈ ex agents)

THEN agents := agents - {aa} END;

Connect ref TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || timers := timers - {aa} END;

Timer ref TempFailure = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN disconn limit := disconn limit - 1 || ex agents := ex agents ∪ {aa} ||

67

timers := timers - {aa} END

END

The execution graph for Cama4 is shown in Fig.3(e). This graph shows all
the possible events with their respective states but the order of execution is
controlled by their guards. In addition, the Fig.4 shows all the possible scenarios
based on the information derived from events’ guards and bodies. The dashed

INIT
Engage

NormalActivity

NormalLeaving

DisconnectConnect

(a) Event execution possibility 1

INIT
Engage

NormalActivity

AgentFailure

Disconnect
Connect

(b) Event execution possibility 2

INIT
Engage

NormalActivity

TimerExpiration

Disconnect
Timer

(c) Event execution possibility 3

Fig. 4. All possible Event execution scenarios

arrows represent possible loops of the event(s) during the execution. In order to
generate concrete test cases from such models, the number of executions of an
event in the loop can be restricted to some finite bound. The value for this bound
depends on user’s coverage criteria. The CSP representations of the Cama and
Cama4 machines are shown in the following.

Cama = Engage_Guard & Engage -> Node2;;

Node1 = NormalActivity_Guard & NormalActivity -> Node1;;

Node1 = Disengage_Guard & Disengage -> SKIP ;;

⊑
....

⊑

Cama4 = Engage_Guard & Engage -> Node1;;

Node1 = NormalActivity_Guard & NormalActivity -> Node1 ;;

Node1 = Disconnect_Guard & Disconnect -> Node2 ;;

Node1 = Failure_Guard & Failure -> SKIP ;;

Node1 = NormalLeaving_Guard & NormalLeaving -> SKIP ;;

Node1 = TimerExpiration_Guard & TimerExpiration -> SKIP ;;

68

Node2 = TempFailure_Guard & TempFailure -> Node1 ;;

Node2 = Timer_Guard & Timer -> Node1 ;;

These CSP expressions can be unfolded into test cases as described in Section
3.3.

5 Conclusions

In this paper, we presented a model-based testing approach based on auto-
matic refinement of test scenarios. This work is being done as a possible exten-
sion (plug-in)for the RODIN open-source platform [1]. The EU project RODIN
adopts systemic approach for development of complex systems in which fault-
tolerance mechanisms are incorporated together with main system functionality.
The scenario-based testing approach, presented in this paper, has been tried
in several RODIN case-studies where fault-tolerance is the major concern. Our
approach can also be used in formal software development process in general.

Acknowledgments

This work is supported by IST FP6 RODIN Project.

References

1. Rigorous Open Development Environment for Complex Systems. IST FP6 STREP
project, online at http://rodin.cs.ncl.ac.uk/.

2. J.-R. Abrial. The B-Book. Cambridge University Press, 1996.
3. J.-R. Abrial. Event Driven Sequential Program Construction. 2000. Available at

http://www.matisse.qinetiq.com.
4. J.-R. Abrial and L.Mussat. Introducing Dynamic Constraints in B. Second Inter-

national B Conference, LNCS 1393, Springer-Verlag, April 1998.
5. Dalal S.R. et al. Model Based Testing in Practice . Proc. of the ICSE’99,Los

Angeles,pp 285-294, 1999.
6. C. A. R. Hoare. Communicating sequential processes. Prentice-Hall, Inc., 1985.
7. Linas Laibinis, Elena Troubitsyna, Alexei Iliasov, and Alexander Romanovsky.

Rigorous development of fault-tolerant agent systems. In RODIN Book, pages
241–260, 2006.

8. M. Leuschel and M. Butler. Prob: A model checker for b. Proc. of FME 2003,
Springer-Verlag LNCS 2805, pages 855-874., 2003.

9. Leila Naslavsky, Thomas A. Alspaugh, Debra J. Richardson, and Hadar Ziv. Using
Scenarios to support traceability. Proc of 3rd int. workshop on Traceability in
emerging forms of software engineering, 2005.

10. Manoranjan Satpathy, Qaisar A. Malik, and Johan Lilius. Synthesis of scenario
based test cases from b models. In FATES/RV, pages 133–147, 2006.

69

Formalizing UML-based Development of

Fault Tolerant Control Systems⋆

Dubravka Ilić1, Elena Troubitsyna1, Linas Laibinis1, and Colin Snook2

1 Åbo Akademi University, Department of Information Technologies,
20520 Turku, Finland

{Dubravka.Ilic, Elena.Troubitsyna, Linas.Laibinis}@abo.fi
2 School of Electronics and Computer Science,

University of Southampton, SO17 1BJ, UK
cfs@ecs.soton.ac.uk

Abstract. In this paper we demonstrate how to formalize UML-based
development of protective wrappers for tolerating transient faults. In
particular, we focus on the fault tolerance mechanisms common in the
avionics domain and show the development of a protective wrapper,
called Failure Management System. We demonstrate how to integrate
the formal refinement approach proposed earlier into the UML-based
development.

Keywords: Event-B, fault tolerance, refinement, statemachines, tran-
sient faults, UML-B.

1 Introduction

To guarantee dependability [1] of safety-critical software-intensive systems, we
should ensure that they are not only fault-free but also tolerant to faults [2]
of system components. This paper focuses on designing controlling software for
tolerating transient faults [3]. Transient faults are temporal defects within the
system. The mechanisms for tolerating this type of faults should ensure that
the controlling software does not overreact on isolated faults yet does not allow
the errors caused by these faults to propagate further into the system. These
mechanisms constitute a large part of software in complex systems and hence
they could be perceived as a separate subsystem dedicated to fault tolerance. In
avionics, such a subsystem is traditionally called Failure Management System

(FMS).
Earlier we proposed a generic formal pattern for specifying and developing

the FMS [4] in the B Method [5, 6]. However, industrial engineers often per-
ceive constructing a formal specification from informal requirements to be too
complex to be done without an intermediate modeling stage. They usually use
graphical modeling, mostly in UML [7], to facilitate this process. In this paper we

⋆ This work is supported by EU funded research project IST 511599 RODIN (Rigorous
Open Development Environment for Complex Systems).

70

demonstrate how to integrate the formal approach proposed previously into the
UML-based development. We use a subset of UML called UML-B [8] to specify
and develop the FMS. To automate the process of obtaining a formal specifica-
tion from UML models, we use the U2B tool [9], which translates UML-B models
into Event-B [10]. Event-B is an extension of the B Method for developing re-
active and distributed systems. We use the automated tool support for Event-B
to verify the correctness of our development. Therefore, the proposed approach
has a high degree of automation.

The paper is structured as follows. In Section 2 we shortly describe the FMS.
Section 3 gives a brief introduction into our modeling frameworks – Event-B and
UML-B. Section 4 demonstrates the process of developing the FMS in UML-B.
We start from an abstract model of the FMS and obtain more detailed FMS
models through a number of development phases. Moreover, we show how to
translate these models into Event-B and verify their correctness. Finally, Section
5 concludes the paper.

2 Failure Management System

The Failure Management System (FMS) [11, 12] is a part of the embedded safety-
critical control system as shown in Fig. 1. It can be perceived as a protective
”wrapper” with the task to detect erroneous inputs from the sensors and prevent
their propagation into the controller.

Environment

Actuators

…

Control Unit

FMS

Controller

Sensor n

Sensor 1

Sensor 2

Fig. 1. Structure of an embedded control system

Based on sensor readings, the FMS calculates the output and forwards it
to the controller. While calculating the output, the FMS has to ensure that
only fault-free inputs received from the system environment are passed to the
controller. This is achieved by considering the following pattern of the FMS
behavior. We assume that initially the system is fault-free. Since control systems
are usually cyclic, it is natural to describe the behavior of the FMS as cyclic
as well. The FMS operating cycle starts by obtaining the readings from the
monitored sensors as the inputs to the FMS. The FMS then tests the inputs by
applying a certain error detection procedure. As a result, depending on whether
the error was detected or not, the inputs are categorized as fault-free or faulty.
Then the FMS takes the corresponding remedial actions that can be classified
as healthy, temporary or confirmation [12]. An important part of these actions
is input analysis, which distinguishes between recoverable and non-recoverable
faulty inputs by assigning them different statuses.

71

To explain how the remedial actions work, for simplicity we consider a single
sensor. Healthy action describes the ”normal” FMS reaction when a received
input is fault-free. In such a case, the input is assigned the status ok and it is
forwarded unchanged to the controller. Temporary action describes the FMS re-
action when a received input is faulty and recovering, meaning that the number
of previously received faulty inputs has not yet reached some predefined limit.
If this is the case, the input is assigned the status suspected. Then, the FMS
calculates the output using the last good value of this input obtained in the pre-
vious FMS cycles. Finally, confirmation action describes the FMS reaction when
a received input is faulty and it has failed to recover. Then, the input is assigned
the status confirmed failed and the system proceeds with the control actions
defined for freezing (stopping) the system or switching to a backup controller, if
possible.

The pattern of the FMS behavior described above can be used in the prod-
uct line development of the controlling software [13]. We use this pattern for
developing the aircraft engine FMS in UML-B (and indirectly in Event-B). In
the next section we introduce these modeling frameworks.

3 Modeling Frameworks – Event-B and UML-B

Event-B. The Event-B Method [10] is an approach for modeling dependable
systems, which extends the B Method [5, 6]. In Event-B, a model of a system
is described by contexts and machines. Contexts describe the static part of the
system using carrier sets, constants and axioms. Machines describe system dy-
namics using variables, invariants, theorems, events and variants. Variables of
the machine define the machine state. They are strongly typed by invariants
and can be altered by events. Events are given in the form event=WHEN

guard THEN action END, where guard is a state predicate on the variables,
and action is a set of assignments, which simultaneously update the machine
variables. If guard is satisfied, the event is enabled and the behavior of the event
corresponds to the execution of its action. If guard is false, then the event is
disabled, i.e., its execution is blocked.

The development methodology adopted by Event-B is based on stepwise
refinement [14]. The result of a refinement step in Event-B is the machine that
refines the state and events of an abstract machine. The invariant of this machine
additionally contains the gluing invariant that describes the connection between
the state spaces of the more abstract and refined machines.

To ensure correctness of a specification, we should verify that each event of
the machine, including the initialisation, preserves the invariant. A high degree
of automation in verifying correctness is provided by the available Event-B tool
support [15].

UML-B. UML-B [8] is a specialisation of UML [7], which combines UML and
Event-B to define a graphical formal modeling notation. UML is widely used
graphical modeling language. However, it lacks precise semantics. Event-B, on

72

the other hand, is a formal modeling framework, but it requires significant math-
ematical training from the users. The UML-B is developed as an alliance of these
two modeling approaches. It contains a limited subset of UML entities which se-
mantics is provided by their translation into Event-B using the U2B [9] translator
tool. U2B converts a UML-B model into its equivalent Event-B model. We can
then verify the model correctness by using the Event-B tool support.

In UML-B, a model of a system is described by package, context, class, and
state-machine diagrams. A package diagram describes the abstract view on the
system architecture. In other words, it describes the packages encapsulating the
system on different levels of abstraction and the dependencies between them. In
addition, it allows separating specification of the static and the dynamic parts
of the system. This is achieved by defining two types of packages: Context and
Machine package, which coincide with the concepts defined in Event-B. Each
context has the associated context diagram defining the constants and properties
of these constants (axioms). Each machine has the associated class diagram
capturing the functional requirements of the modeled system. The classes of
the class diagram define system components whose properties are specified as
class attributes. The behavior of each component is defined by a statemachine
diagram. Hence, on the abstract level the system is described by a set of class
diagrams and statemachines encapsulated within the abstract machine package.

UML-B adopts the same approach to system development as Event-B, i.e.,
stepwise refinement. In particular, it uses superposition refinement [14], which
allows us to extend the state space while preserving the existing data structures
unchanged. The first step of refining a UML-B model is ’cloning’ the current
model in order to preserve the old class diagrams and statemachines. Then, we
introduce new UML-B elements gradually by incorporating more details about
the system structure and behavior. Specifically, more detailed behavior of the
system is modeled with hierarchical states by adding sub-states and new tran-
sitions to the existing statemachines. Refinement of UML-B statemachines is
described in detail in [16].

In general, while developing the system in a number of refinement steps,
we create a chain of machine packages, where each subsequent package is a
refinement of the previous package, i.e., of its class diagrams and statemachines.
The refinement relation is established by adding the association Refines between
the corresponding packages.

A more detailed description of UML-B entities is given in the following sec-
tion, where we demonstrate how to specify and refine the FMS in UML-B. We
also show how to obtain the Event-B models of FMS from their UML-B coun-
terparts and verify their correctness.

4 Developing the FMS with specification and refinement

templates in UML-B

The development of the FMS in UML-B is done in several phases. Each devel-
opment phase corresponds to a refinement step. It is characterized by a set of

73

UML-B models (class and statemachine diagrams) representing the main struc-
tural and behavioral aspects of the FMS at the corresponding level of abstraction.

FMS abstract specification. At the highest level of abstraction, we con-
sider a very simple FMS as shown in Fig. 2. In the class diagram FMS0, the
fixed class SENSORS describes the set of n analogue sensors that are monitored
by the FMS. Signals from each sensor are modeled as the class attribute Value.
The output of the FMS is modeled as the machine variable Output. At this de-
velopment phase, the FMS nondeterministically calculates the output using the
last good sensor readings. Hence, we introduce an additional attribute to the
class SENSORS – Last Good Value. Moreover, the subclass FAILED SENSORS is
introduced to model the sensors that have failed.

(a) (b)

Fig. 2. (a) class diagram FMS0 and (b) statemachine fms state for the 1st FMS devel-
opment phase

The way in which the FMS behaves is described via the statemachine fms state.
The states env, det, act, out and freeze in this statemachine denote different
stages of the FMS cycle. At this phase, we model the FMS cycle very abstractly:
the FMS reads input values from the sensors, then it performs error detec-
tion, and either continues the cycle by calculating the output or fails. If the
output is successfully calculated, the FMS cycle starts again. The FMS state
changes are described by transitions between the states in the statemachine
fms state. For instance, the transition determine failed simulates the error detec-
tion by nondeterministically choosing failed sensors, i.e., FAILED SENSORS:∈
{x | x ∈ P(SENSORS)}. At the later development stages this transition will be
refined to implement a more detailed error detection procedure.

To ensure that the FMS can proceed operating only with the sensors that
have not failed, we define state invariants in the statemachine fms state. For-
mally, the invariant (∃s · s ∈ SENSORS ∧ s /∈ FAILED SENSORS) is associated
with the states env, det, and out. It means that, when the FMS is in these
states, it processes readings from at least one operational (non-failed) sensor.
The machine invariant, which is a part of the class diagram, additionally states
the properties of the FMS when all the sensors have failed.

74

FMS refinement. The abstract FMS model is actually encapsulated in the
machine package FMS01, as shown in Fig. 3. We further continue the FMS devel-
opment by creating the refinement package FMSR1, which introduces changes
into the abstract FMS model. At this development phase we refine the error
detection from the abstract model by introducing sensor testing.

Fig. 3. FMS package diagram Fig. 4. sub-statemachine det state

The diagrams from the previous phase remain the same. However, to intro-
duce sensor testing, we refine the statemachine fms state by creating the sub-
statemachine det state inside the state det, as shown in Fig. 4. The newly in-
troduced sub-statemachine defines two new states tes and anl, designating the
steps of the FMS error detection. Namely, after obtaining the sensor readings,
the FMS performs testing the sensors (tes) and then analysis of inputs (anl) in
order to detect errors, and then continues by determining which sensors have
failed. The actual testing procedure is modeled as the transition test sensors in
the sub-statemachine det state. It nondeterministically decides on the result of
error detection. This result is modeled as a value assigned to a newly intro-
duced attribute of the existing class SENSORS – Error Detected. The FMS now
uses this information to decide which sensors have failed. Hence, the transition
determine failed from the statemachine fms state is refined as follows:

FAILED SENSORS:∈ {x | x ∈ P(SENSORS) ∧
(∀s · s ∈ x ⇒ Error Detected(s) = TRUE)}

In addition, a new machine invariant is added to the existing class diagram. It
describes in detail the properties of sensors: i.e., it requires that all failed sensors
should be detected. The invariant is formally expressed as follows:

fms state = act ⇒ (∀s · s ∈ FAILED SENSORS ⇒ Error Detected(s) = TRUE)

The way in which sensors are analyzed after testing is further refined in the
3rd development phase by creating the refinement package FMSR2. It contains
all the class and statemachine diagrams from the previous phase. In addition, it
contains a new sub-statemachine inside the state anl from the sub-statemachine
det state. This sub-statemachine defines more precisely the FMS behavior af-
ter performing tests on the sensors. Namely, the FMS decides about the sta-
tus of each particular input before taking the corresponding remedial actions.

1 FMS0 gets the access to the context Global by the association type Sees.

75

The structure of the FMS is refined as well, by introducing a new attribute
Sensor Status for modeling the result of this decision. The machine invariants
can now be further strengthened to describe situations in which faulty sensors
can recover. If they can not recover, the invariant guarantees that they will be
considered as failed.

The following FMS development phases continue to refine the structure and
the behavior of the original system. Due to the lack of space, we only outline
these further development phases and omit their detailed description: the 4th

development phase introduces detailed analysis of inputs based on the results of
error detection. The input analysis is further elaborated in the 5th development
phase by specifying a customizable counting mechanism, which reevaluates the
status of the analyzed inputs at each FMS cycle. In a similar way, the 6th de-
velopment phase describes in detail the error detecting procedure performed on
each sensor and continues by introducing error detection tests in the 7th devel-
opment phase. The 8th development phase further elaborates on different types
of these tests.

Creating FMS Event-B models from UML-B models. Using the U2B
tool, the Event-B models are automatically generated from the above UML-B
models. For instance, the machine package FMS0 containing the diagrams given
in Fig. 2 corresponds to the FMS0 Event-B machine shown in Fig. 5.

MACHINE

SEES

VARIABLES

INVARIANTS

EVENTS

INITIALISATION

BEGIN END

WHEN THEN END

WHEN THEN

END

ANY WHERE

THEN END

ANY WHERE

THEN END

WHEN THEN END

WHEN THEN END

END

FMS0
Global, FMS0_implicitContext

fms_state, FAILED_SENSORS, Value, Output, Last_Good_Value

fms_state∈fms_state_STATES ∧FAILED_SENSORS∈#(SENSORS) ∧
Value∈SENSORS→% ∧…

fms_state'env ∥FAILED_SENSORS'∅ ∥Value'SENSORS×{InitInput}∥…
read_sensors ==

fms_state=env fms_state'det ∥Value:∈SENSORS→%
determine_failed ==

fms_state=det fms_state'act
FAILED_SENSORS:∈{xx∣xx∈#(SENSORS)}

continue ==
yy yy∈#(Value) ∧fms_state=act ∧FAILED_SENSORS≠SENSORS
fms_state'out ∥Last_Good_Value'Last_Good_Value,yy

calculate_output ==
xx xx∈#(Last_Good_Value) ∧fms_state=out ∧…
fms_state'env ∥Output:∈ran(xx)

stop ==
fms_state=act ∧FAILED_SENSORS=SENSORS fms_state'freeze

fail ==
fms_state=freeze skip

∥

Fig. 5. Excerpt from the Event-B abstract specification FMS0

Informally, the rules for mapping some frequently used UML-B concepts into
Event-B can be summarized as follows:

76

– a fixed class is defined as a constant, e.g., the class SENSORS corresponds to a
constant defined in the automatically generated context FMS0 implicitContext;

– a subclass is represented as a variable, which is typed as a subset of its
superclass, e.g., the subclass FAILED SENSORS is defined as a subset of
SENSORS;

– the name of a statemachine corresponds to a variable, which type is de-
fined by enumerating its states, e.g., the statemachine fms state is defined as
the variable fms state of the type fms state STATES, where the type is the
enumerated set {env,det,act,out,freeze} defined in FMS0 implicitContext;

– an attribute of a fixed class becomes a machine variable typed as a function
from the constant designating that class to the given attribute type, e.g.,
Value ∈ SENSORS → N is an array of input readings for n sensors;

– a machine variable and an invariant are equivalent to the same concepts in
Event-B;

– the transitions from a statemachine correspond to the events defined using
the transition properties stated in UML-B. The complete list of translation
rules can be found elsewhere (e.g., [8, 9]).

Similarly to the translation of the package FMS0 into the Event-B machine
FMS0, the package FMSR1 refining the abstract package FMS0 is translated into
the corresponding refined Event-B machine as shown in Fig. 6.

MACHINE

REFINES

SEES

VARIABLES

INVARIANTS

EVENTS

INITIALISATION

BEGIN END

WHEN

THEN END

WHEN

THEN

END

END

FMSR1
FMS0

Global, FMSR1_implicitContext

…, det_state, Error_Detected

… ∧ det_state∈det_state_STATES ∧ Error_Detected∈SENSORS→BOOL ∧
fms_state=act⇒(∀s·s∈FAILED_SENSORS⇒Error_Detected(s)=TRUE)

… det_state'tes ∥ Error_Detected'SENSORS×{FALSE}
read_sensors == …
test_sensors ==

fms_state=det ∧ det_state=tes
det_state'anl ∥ Error_Detected:∈SENSORS→BOOL

determine_failed (refines determine_failed) ==
fms_state=det ∧ det_state=anl
fms_state'act ∥ det_state'tes ∥

continue == …
calculate_output == …
stop == …
fail == …

FAILED_SENSORS:∈{x∣x∈*(SENSORS)∧(∀s·s∈x⇒Error_Detected(s)=TRUE)}

Fig. 6. Excerpt from the Event-B refinement FMSR1

Observe that the machine FMSR1 explicitly states which machine it refines. It
obtains two additional variables: one for the newly introduced class attribute Er-

ror Detected and another one modeling the current state in the sub-statemachine

77

det state. The invariant of the machine FSMR1 is strengthened by typing the
newly introduced variables and adding the gluing invariant that connects the
new variable Error Detected with the existing variable FAILED SENSORS. Fur-
thermore, FMSR1 introduces the new event test sensors corresponding to the
new transition in the sub-statemachine det state from Fig. 4. It describes how
the new variable Error Detected is changed during the FMS error detection pro-
cedure. Moreover, the event determine failed from the machine FMS0 is refined
in the machine FMSR1. The guard of this event is strengthened by adding the
new predicate that specifies the event enabling state of the sub-statemachine
det state. Correspondingly, the actions of the event are refined as well in order
to incorporate the knowledge of the newly introduced variables.

Formal verification of the obtained Event-B machines is done using the au-
tomatic tool support for Event-B [15].

5 Conclusion

In this paper we demonstrated how to integrate the classical refinement develop-
ment of the FMS [4] with UML-based development. Moreover, we showed how
to use the available tool support to automate modeling and verification. Our
approach has been validated by a case study – modeling and verification of the
engine FMS for tolerating transient faults. The approach has several phases.
Each phase is characterized by the set of UML-B models (class diagrams and
statemachines). The complete specification of the FMS is obtained through a
series of gradually refined UML-B models. Using the U2B translator tool, we
generated Event-B models from the overall set of previously developed UML-B
models. By translating UML-B models into Event-B, we were able to use the
Event-B proof tool support to verify the correctness of our development. The
results showed that we were able to prove the correctness of models significantly
faster, with a higher percentage of automatic proofs than in our previous B
development [4].

In the future, we are planning to investigate instantiation of the developed
templates by using the obtained FMS UML-B contexts.

References

1. J. C. Laprie. Dependability: Basic Concepts and Terminology. Springer-Verlag,
1991.

2. A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable

and Secure Computing, 1(1), 2004.
3. N. Storey. Safety-critical computer systems. Addison-Wesley, 1996.
4. D. Ilic, E. Troubitsyna, L. Laibinis, and C. Snook. Formal Development of Mecha-

nisms for Tolerating Transient Faults. In REFT 2005, LNCS 4157, pages 189–209.
Springer-Verlag, November 2006.

5. J.-R. Abrial. The B Book: Assigning Programs to Meanings. Cambridge University
Press, 1996.

78

6. S. Schneider. The B Method. An Introduction. Palgrave, 2001.
7. J. Rumbaugh, I. Jakobson, and G. Booch. The Unified Modelling Language Ref-

erence Manual. Addison-Wesley, 1999.
8. C. Snook and M. Butler. UML-B: Formal modelling and design aided by UML.

pages 92–122. ACM Transactions on Software Engineering and Methodology, ACM
Transactions on Software Engineering and Methodology, 15(1), 2006.

9. C. Snook and M. Butler. U2B - A tool for translating UML-B models into B,
chapter 6. UML-B Specification for Proven Embedded Systems Design. Springer,
2004.

10. J.-R. Abrial and S. Hallerstede. Refinement, Decomposition and Instantiation of
Discrete Models: Application to Event-B. In Fundamentae Informatic, 2006.

11. I. Johnson, C. Snook, A. Edmunds, and M. Butler. Rigorous development of
reusable, domain-specific components, for complex applications. In Proceedings of

3rd International Workshop on Critical Systems Development with UML, pages
115–129. Lisbon, 2004.

12. I. Johnson and C. Snook. Rodin Project Case Study 2: Requirements Specifica-
tion Document. In Rigorous Open Development Environment for Complex Sys-

tems(RODIN), Deliverable D4 - Traceable Requirements Document for Case Stud-

ies, pages 24–52, 2005.
13. J. Bosch. Design and Use of Software Architectures: Adopting and Evolving a

Product-Line Approach. Addison-Wesley, 2000.
14. R.J. Back and J. von Wright. Refinement Calculus: A Systematic Introduction.

Springer-Verlag, 1998.
15. J.-R. Abrial, M. Butler, S. Hallerstede, and L. Voisin. An open extensible tool

environment for Event-B. In Proceedings of ICFEM’06, LNCS 4260, pages 588–
605. Springer-Verlag, 2006.

16. C. Snook and M. Walden. Refinement of Statemachines Using Event B Semantics.
In B 2007, LNCS 4355, pages 171–185. Springer-Verlag, 2006.

79

Graphical modelling for simulation and formal
analysis of wireless network protocols

A. Fehnker1, M. Fruth2, and A. K. McIver3

1 National ICT Australia, Sydney, Australia;? ansgar@nicta.com
2 School of Computer Science, University of Birmingham, UK; ??

m.fruth@cs.bham.ac.uk
3 Dept. Computer Science, Macquarie University, NSW 2109 Australia, and National

ICT Australia; anabel@ics.mq.edu.au

Abstract. The aim of this research is to enhance performance analy-
sis of wireless networks based on simulation with formal performance
analysis.
It is well-known that the performance of protocols for wireless networks,
and their ability to tolerate faults arising due to the uncertainties un-
derlying wireless communication, relies as much on the topology of the
network as on the protocols’ internal algorithms. Many general-purpose
simulation tools however do not use realistic models of wireless commu-
nication, and indeed results of simulation experiments can differ widely
between simulators and often bear scant relation to field experiments [7,
6].
On the other hand, whilst model checking can supply more robust and
exhaustive measures of performance, as for simulation, it is similarly
flawed in that the details of the wireless communication are often overly
simplified.
In this paper we propose a graphical specification style, which eases the
study of the effect of topologies in performance analysis by visualising
both the spatial characteristics of the network as well as critical mea-
sures of performance that they imply. Unlike other graphical visualisation
tools, our proposal integrates both simulation using the novel Castalia
simulator [3] as well as probabilistic model checking using PRISM [8],
where we capture the effect of the topology by using probabilistic ab-
stractions to model reception rates.

Keywords: Graphical modelling, simulation, lossy communica-
tion channels, probabilistic model checking, wireless networks.

1 Introduction

Wireless networks comprise devices with limited computing power together with
wireless communication. Protocols for organising large-scale activities over these
? National ICT Australia is funded through the Australian Government’s Backing

Australia’s Ability initiative, in part through the Australian Research Council.
?? This work was in part supported by the EPSRC grant EP/D076625/1

80

networks must be tolerant to the random faults intrinsic to the wireless medium,
and their effectiveness is judged by detailed performance evaluation. One of the
major factors impacting on the accuracy of an evaluation method is the math-
ematical model for the “communication channels” and, especially important,
is that it must account for the unexpected disturbances induced by noise and
interference amongst close neighbours. Conventional analysis methods rely on
simulators [1, 2] incorporating some measure of random faults, however simula-
tion in this context suffers from a number of well-documented problems [7, 6] —
most notable is that accurate channel models validated against physical data do
not normally feature. This leads to unrealistic results of performance analyses,
which can vary widely between different simulators.

An alternative to simulation is formal modelling and analysis, which is nor-
mally ideally suited to investigating complex protocols, and gives access to
profiles of performance which exhaustively range over worst- and best-case be-
haviour. Inclusion of realistic models of wireless communication implies appeal
to analytical formulae to determine the effect on performance of the spatial re-
lationships between nodes, such as the distance and density of near neighbours.
These context-dependent details however are not easily added to textual-style
formal modelling languages, and indeed they militate against a clear and mod-
ular specification style.

In this paper we overcome these difficulties by proposing a simple graphical
style of specification. We exploit the observations that (a) the distance between
and the density of nodes in a network is the major factor impacting on the in-
tegrity of wireless communication (together with physical parameters such as
transmission strength), and (b) the simplest way to express the crucial spatial
relationships is graphically, so that the details of the formal model of communi-
cation are transparent to the user and are provided separately.

Besides its simplicity, the graphical style has other benefits in that it allows
designers to visualise various performance indicators such as best- or worst-
case signal strength between pairs of nodes, or the nodes’ individual power con-
sumption. Similarly the critical events occurring in a sample experiment may be
“stepped through” in a typical debugging style. Finally — unlike other graphical
visualisation tools — it acts as a “bridge” between formal analysis and the more
conventional simulation, providing the option to investigate performance using
probabilistic model checking, or to carry out more traditional system-wide sim-
ulation experiments. In both cases realistic models for wireless communication
play a fundamental role.

Our specific contributions are

1. CaVi, a graphical user interface specialised for modelling networks com-
prising simple wireless nodes. The tool gives immediate access to crucial
performance indicators such as signal strength between pairs of nodes;

2. A translation from a CaVi model to either a formal transition-style model
suitable for model checking in the PRISM model checker [8] or as input to the
recently-developed Castalia simulator [3]. Castalia is novel in that it incor-
porates an accurate wireless channel model. The PRISM models are the first

81

such formal models which take network topology into account. At present
both Castalia and PRISM capture only flooding and gossiping protocols [4,
5].

3. The option to visualise the network-wide performance metrics calculated
from Castalia simulation experiments.

In Sec. 2 we summarise the interference model of wireless communication,
and in Sec. 3 we describe how the CaVi graphical tool can visualise the effects
of the spatial relationships. We also describe a translation from the graphical
representation to Castalia and PRISM.

2 Wireless networks and lossy communication

In this section we describe the context of wireless applications, and the challenges
that arise for their formal modelling.

In abstract terms a wireless network is a collection of nodes, running one
protocol or a combination of protocols that are deployed over a two-dimensional
area. The behaviour of the network depends not only on the protocol, but also on
the placement of the nodes in the network, and in particular on the interference
patterns arising from neighbouring communications. Inspired by other graphical
tools [1], we propose a graphical-style of specification whose novelty is that it
acts as a uniform modelling language to combine simulation and model checking.
In either case, the interference effects disturbing communication are accounted
for by the spatial representation, and are converted to reception probabilities in
the translation to formal models.

In the next section we summarise the characteristics of wireless communica-
tion, which will set the scene for the graphical style of network specification.

2.1 Interference in wireless networks

Standard formal modelling of networked systems features both the behaviour
of the individual “processors” (in this case “wireless nodes”) and an explicit
description of the “communication medium” connecting them. The assumption
is that if two nodes are “connected” then they are able to send and receive
messages without loss.

In reality, whether two nodes can communicate effectively depends on a num-
ber of context-specific factors, including the physical distance between the nodes,
the signal strength of the sending node, and the extent to which other neighbour-
ing nodes’ activities, and those of the receiver, interfere with the sent message.

This complex “interference model” has been studied in depth and analytical
formulae have been developed and experimentally validated [9]. Here we are
able to appeal to those formulae to define a convenient conceptual abstraction of
communication in terms of the “probability” that a sent message is received, with
the probability computed by taking the distance, signal strength and interference
of other nodes into account.

82

For example given two nodes A and B a distance d apart (see Fig. 1), the
probability that A receives a message from B is given by

pA
B(d, ιB) =̂ (1− e−γB(d,ιB)/(1.28))8f , (1)

where f is the size of the message and γB is the signal-to-noise ratio. The latter
is a function of the distance d, and the ambient noise ιB . The signal-to-noise
ratio is a measure of how much the background noise interferes with the wireless
signal. The signal is dominant and the reception probability is high if γB(d, ιB)
is large.

The ambient ιB includes effects due to the noise contributed by the signals
from nearby nodes. For example, in Fig. 1 if nodes B,C and D all try to send
to node A, then the mutual interference effects will produce a probability distri-
bution over the message which A actually receives.

Because of the nature of the wireless communication, however, A will receive
at most one message. The probability pA

B at (1) is the probability that a message
from B is received, and that either no message is received from either of the
other nodes, or nothing is received at all. If all three nodes B,C and D send
then the probability that A receives any message at all is given by the sum
pA

B(d, ιA)+pA
C(d′, ιC)+pA

D(d′′, ιD). We note that this sum also takes into account
the contribution to the ambient noise generated by each sender.

A

B

C

D

d

d'

d''

Sender D is closest to receiver A, so its signal is strongest; Sender B’s is weakest. All
reception probabilities are affected by the others’ activities. Here d, d′ and d′′ are the
distances from the senders to the receiver A.

Fig. 1. Signal strength varying with distance and interference

3 CaVi: A graphical specification tool

CaVi is a tool which provides specification and analysis support optimised for
studying wireless protocols. Its main feature is a graphical interface which eases
the task of exploring the effect on performance of different topologies and net-
work parameters. Nodes may be created in a “drag-and-drop” fashion, and the

83

properties of individual nodes (such as the available power) may be tuned as
necessary. Whilst the network is being created, a user can visualise the optimal
“one-hop” signal strength between any pair of nodes, calculated from equation
(1). In Fig. 2 we illustrate two examples of how the graphical interface may be
used in the design and analysis. The figure shows two panes, with the left being
the pane where designers may create and edit a network, and the pane on the
right is for visualising the results of simulation experiments.

The pane on the left illustrates visualisation of “one-hop” signal strength by
colour-coding the nodes according to probability thresholds calculated from (1).
The user may indicate which node is the receiving node (in this case the central
node), and the others are assumed to be senders. Colours then differentiate
between nodes whose messages will be almost certainly lost (red), or have a
good chance of succeeding (green), or merely a variable chance (yellow).

The pane on the right indicates how the events may be viewed as a result of
a simulation experiment. The panel on the right gives a list of possible “colour-
coded” events (e.g. transmitting, receiving etc.); users may select which events
to observe, and the nodes assume the colour of the corresponding event as the
simulation is “stepped through”.

Fig. 2. CaVi:Visualising network performance indicators

Once the network is specified, the graphical representation forms the basis
for formal models which take account of the effect of the topology in terms
of the reception probabilities. At present we have implemented the automated
conversion to a textual format suitable for evaluation directly in the Castalia
simulator [3], and as mentioned above the results of experiments may be visu-
alised in various ways described at Fig. 2. We note that the Castalia simulator is
a recently-developed simulator whose novelty is a realistic channel/radio model

84

which builds on recent work done on modelling of the radio and the wireless
channel based on empirically measured data [9].

3.1 Formal model checking

One of the major outcomes of this work has been to introduce realistic channel
behaviour into formal models for more detailed analysis via probabilistic model
checking. We use an abstraction of signal strength in terms of the probability of
reception, computed from a formula based on on (1). In Fig. 3 we illustrate the
formal template model of a simple node whose only capabilities are that it can
receive or send a message, or “do nothing”. If in receiving mode (recv=1) then
the chance that it receives a message is pr which is computed from (1) based
on the states of the surrounding nodes. A network is made up of a collection of
similar nodes in parallel.

This abstraction of the wireless communication using reception probabilities
has been implemented in the PRISM model checker for simple flooding protocols,
where the use of the formula rather than expanding the size of the resulting
model leads to exceedingly compact models making probabilistic model checking
a viable option.

At present we do not have an automated generation of PRISM models from
CaVi — that remains a topic for future research.

Node =̂

var send, recv: {0, 1}
tick : (recv = 1) → send, recv: = 1, 0; pr⊕ skip;
tick : (send = 1) → send, recv: = 0, 0;
tick : (send = 0 ∧ recv = 0) → skip;

The probability pr is computed as a function of the state dependent on the neighbour-
ing nodes. Here tick is a named event, each “guarded” by a Boolean-function of the
state; if any one of the guards is true, then the variables are updated according to the
assignments on the right-hand side of the arrow. The probabilistic choice operator pr⊕
means that the left-hand side of the operator is executed with probability pr, and the
right-hand side with probability 1−pr.

Fig. 3. A template for a node with parameterised reception probability.

4 Conclusions and future work

In this paper we have described a prototype tool which supports a uniform mod-
elling approach optimised for specifying wireless protocols. Its main features in-
clude the capabilities to take account of the topology and other parameters of the
network which, experiments have shown, have a major impact on the integrity
of the communication. The CaVi tool allows the specification of a network via

85

a graphical interface, and the automated generation to a format for simulation.
Detailed performance indicators may be visualised during specification of the
network, as well as the results of subsequent simulation experiments.

The principal difference between CaVi and other specification tools is the link
it provides between simulation and formal model checking. To simplify the details
related to the topology in the formal specification task, we use a translation
directly to reception probabilities. Those probabilities are calculated according
to a validated analytic formula.

An understanding of realistic channel behaviour has suggested some novel
approaches to formal verification of wireless protocols, and in the future we
hope to incorporate such detailed analyses within the CaVi tool.

For the future we would like to automate the translation from CaVi to
PRISM, making CaVi a truly uniform interface between simulation and model
checking. Whilst we do not envisage a translation from a CaVi model of an ar-
bitrary protocol to PRISM, we aim rather to provide a library of templates for
certain classes of protocol whose precise behaviour can be defined by a number
of parameters, in the same way that models are defined in Castalia.

One of the benefits would be a single “top-level” graphical model for simu-
lation and model checking and the ability to visualise the results obtained from
both in a uniform way. Such a “bridging language” would allow “counterexam-
ples” computed via model checking to be validated in the simulator, for example.

In the longer term we would like to expand the repertoire of protocols, and to
build up a repository of well-studied templates for Castalia and PRISM patterns.

References

1. OPNET.
http://www.opnet.com/.

2. The network simulator ns-2.
http://www.isi.edu/nsnam/ns/.

3. A. Boulis. Castalia: A simulator for wireless sensor networks.
http://castalia.npc.nicta.com.au.

4. A.Fehnker and P. Gao. Formal verification and simulation for performance analysis
of probabilistic broadcast protocols. In 5’th International Conference, ADHOC-
NOW, volume 4104 of LNCS, pages 128–141. Springer, 2006.

5. A.Fehnker and A. McIver. Formal analysis of wireless protocols. In Proc 2nd
International Symposium in Leveraging applications in formal methods, verification
and validation, 2006.

6. D. Cavin, Y. Sasson, and A. Schiper. On the accuracy of manet simulators. In
Proceedings of the second ACM international workshop on Principles of mobile com-
puting, pages 38–43. ACM Press, 2002.

7. K. Kotz, C. Newport, R.S.Gray, J. Liu, Y. Yuan, and C. Elliott. Experimental
evaluation of wireless simulation assumptions. In Proceedings of the 7th ACM in-
ternational symposium on Modeling, analysis and simulation of wireless and mobile
systems, pages 78–82. ACM Press, 2004.

8. PRISM. Probabilistic symbolic model checker.
www.cs.bham.ac.uk/~dxp/prism.

86

9. M. Zuniga and B. Krishnamachari. Analyzing the transitional region in low power
wireless links. In First IEEE International Conference on Sensor and Ad hoc Com-
munications and Networks (SECON), pages 517–526. IEEE, 2004.

87

Temporal Verification of Fault-Tolerant Protocols

Michael Fisher, Boris Konev, and Alexei Lisitsa

Department of Computer Science, University of Liverpool, Liverpool, United Kingdom
{M.Fisher, B.Konev, A.Lisitsa}@csc.liv.ac.uk

1 Introduction

The automated verification of concurrent and distributed systems is a vibrant and suc-
cessful area within Computer Science. Over the last 30 years, temporal logic [8, 16] has
been shown to provide a clear, concise and intuitive description of many such systems,
and automata-theoretic techniques such as model checking [5] have been shown to be
very useful in practical verification. In recent years, the verification of infinite-state sys-
tems, particularly parametrised systems comprising arbitrary numbers of identical pro-
cesses, has become increasingly important. Practical problems of an open, distributed
nature often fit into this model. However, once we move beyond finite-state systems,
which we do when we consider systems with arbitrary numbers of components, prob-
lems occur. Although temporal logic still retains its ability to express such complex
systems, verification techniques such as model checking must be modified. In particu-
lar, abstraction techniques are typically used to reduce an infinite-state problem down
to a finite-state variant suitable for application of standard model checking techniques.
However, it is clear that such abstraction techniques are not always easy to apply and
that more sophisticated verification approaches must be developed. In assessing relia-
bility of these systems, formal verification is clearly desirable and so several new ap-
proaches have been developed:

1. model checking for parametrised and infinite state-systems [1, 2];
2. constraint based verification using counting abstractions [7, 9]; and
3. deductive verification in first-order temporal logics [10, 6].

The last of these approaches is particularly appealing, often being both complete (un-
like (1)) and decidable (unlike (2)), able to verify both safety and liveness properties,
and adaptable to more sophisticated systems involving asynchronous processes or com-
munication delays.

Now we come to the problem of verifying fault tolerance in protocols involving an
arbitrary number of processes. What if some of the processes develop faults? Will the
protocol still work? And how many processes must fail before the protocol fails? Rather
than specifying exactly how many processes will fail, which reduces the problem to a
simpler version, we wish to say that there is some number of faulty processes, and that
failure can occur at any time. Again we can capture this using temporal logics. If we
allow there to be an infinite number of failures, then the specification and verification
problem again becomes easier; however, such scenarios appear unrealistic. So, we are
left with the core problem: can we develop deductive temporal techniques for the ver-
ification of parametrised systems where a finite number of failures can occur? This
question is exactly what we address here.

88

We proceed as follows. Section 2 gives a brief review of first-order temporal logic
(FOTL) and its properties. In Section 3, we propose two mechanisms for adapting de-
ductive techniques for FOTL to the problem of finite numbers of failures in infinite-state
systems, and in Section 4 we outline a case study. Finally, in Section 5, we provide con-
cluding remarks.

2 Monodic First-Order Temporal Logics

First-order linear time temporal logic (FOTL) is a very powerful and expressive for-
malism in which the specification of many algorithms, protocols and computational
systems can be given at the natural level of abstraction [16]. Unfortunately, this power
also means that, over many natural time flows, this logic is highly undecidable (non
recursively enumerable). Even with incomplete proof systems, or with proof systems
complete only for restricted fragments, FOTL is interesting for the case of parametrised
verification: one proof may certify correctness of an algorithm for infinitely many pos-
sible inputs, or correctness of a system with infinitely many states.

FOTL is an extension of classical first-order logic by temporal operators for a dis-
crete linear model of time (isomorphic to N, being the most commonly used model
of time). Formulae of this logic are interpreted over structures that associate with each
element n of N, representing a moment in time, a first-order structure Mn = (D, In)
with the same non-empty domain D.

The truth relation Mn |=a φ in the structure M and a variable assignment a is de-
fined inductively in the usual way under for the following (sample) temporal operators:

Mn |=a gφ iff Mn+1 |=a φ;
Mn |=a ♦φ iff there exists m ≥ n such that Mm |=a φ;
Mn |=a φ iff for all m ≥ n, Mm |=a φ;
Mn |=a �φ iff there exists 0 ≤ m < n such that Mm |=a φ.

M is a model for a formula φ (or φ is true in M) if there exists an assignment a such that
M0 |=a φ. A formula is satisfiable if it has a model. A formula is valid if it is satisfiable
in any temporal structure under any assignment. The set of valid formulae of this logic
is not recursively enumerable. Thus, there was a need for an approach that could tackle
the temporal verification of parametrised systems in a complete and decidable way. This
was achieved for a wide class of parametrised systems using monodic temporal logic.

Definition 1. A FOTL formula is said to be monodic if, and only if, any subformula
with its main connective being a temporal operator has at most one free variable.

Thus, φ is called monodic if any subformula of φ of the form gψ, ψ, ♦ψ, �ψ,
etc., contains at most one free variable. For example, the formulae ∀x ∃yP (x, y) and
∀x P (x, c) are monodic, while ∀x, y(P (x, y) ⇒ P (x, y)) is not monodic.

The monodic fragment of FOTL has appealing properties: it is axiomatisable [17]
and many of its subfragments, such as the two-variable or monadic cases, are decidable.
This fragment has a wide range of applications, for example in spatio-temporal log-
ics [11] and temporal description logics [3]. A practical approach to proving monodic

89

temporal formulae is to use fine-grained temporal resolution [14], which has been im-
plemented in the theorem prover TeMP [13]. It was also used for deductive verification
of parametrised systems [10]. One can see that in many cases temporal specifications
fit into the even narrower, and decidable, monodic monadic fragment. A formula is
monadic if all its predicates are unary.

3 Incorporating Finiteness

When modelling parametrised systems in temporal logic, informally, elements of the
domain correspond to processes, and predicates to states of such processes. For exam-
ple idle(x) means that a process x is in the idle state. For many protocols, especially
when fault tolerance is concerned, it is essential that the number of processes is fi-
nite. Although decidability of monodic fragments holds also for the case of semantics
where only temporal structures over finite domains are allowed [12], the proof is model-
theoretic and no practical procedure is known.

We here examine two approaches that allow us to handle the problem of finiteness
within temporal specification. First, we consider proof principles which can be used to
establish correctness of some parametrised protocols; then we prove that, for a wide
class of protocols, decision procedures that do not assume the finiteness of a domain
can still be used.

3.1 Formalising Principles of Finiteness

The language of FOTL is very powerful and one might ask if a form of finiteness can be
defined inside the logic. We have found the following principles (which are valid over
finite domains, though not in general) useful when analysing the proofs of correctness
of various protocols and algorithms specified in FOTL (recall: �ϕ means ϕ was true in
the past):

Fin1: ♦(∀ x.(P (x) ∨ ♦P (x) → �P (x))) (deadline axiom)
Fin2: [∀x.2(P (x) → g2¬P (x)] ⇒ [♦2(∀x.¬P (x))] (finite clock axiom)
Fin3: [2(∀x.(P (x) → gP (x))] ⇒ [♦2(∀x.(gP (x) → P (x))] (stabilisation axiom)

Actually the Fin1 principle is a (more applicable) variant of the intuitively clearer
principle [∀x.♦P (x)] ⇒ [♦∀x.�P (x)] which is also valid over finite domains.

Consider now Fini for i = 1, 2, 3 as axiom schemes which can be added to AxFOTL

in order to capture, at least partially, “finite reasoning”. We show that all these three
principles are actually equivalent modulo any reasonable AxFOTL (i.e. they can be
mutually derived).

The principle (an axiom scheme) F1 is said to be derivable from F2 if, for every instance
α of F1, we have AxFOTL + F2 ` α. We will denote it simply AxFOTL + F2 ` F1.

Theorem 1 The principles Fin1, Fin2 and Fin3 are mutually derivable.

90

3.2 Eventually Stable Protocols

In the previous section we highlighted some deduction principles capturing the finite-
ness of the domain. Alternatively, we can consider a family of protocols which termi-
nate after a certain (but unknown) number of steps. For example, if every process sends
only a finite number of messages, such protocol will eventually terminate. Consensus
protocols [15], distributed commit protocols [4], and some other protocols fit into this
class. Temporal models of specifications of such terminating protocols will eventually
stabilise, that is, the interpretations In will be the same for sufficiently large n. We show
that for these eventually stable specifications satisfiability over finite domains coincides
with satisfiability over arbitrary domains.

LetP be a set of unary predicates. The stabilisation principle w.r.t.P is the formula:

StabP = (∀x
∧

P∈P
[P (x) ≡ gP (x)]).

Informally, if StabP is true at some moment of time, from this moment the interpreta-
tion of predicates in P does not change. Let φ be a monodic temporal formula. Let P
be the set of unary predicates occurring in φ. Then the formula

φStab = φ ∧ ♦Stab

is called an eventually stable formula. We formulate the following proposition for
monodic monadic formulae; it can be extended to other monodic classes obtained by
temporalisation by renaming [6] of first-order classes with the finite model property.

Proposition 1. Let φ be a monodic monadic formula. The eventually stable formula
φStab is satisfiable in a model with a finite domain if, and only if, φStab is satisfiable in
a model with an arbitrary domain.

This proposition implies that if a protocol is such that it can be faithfully represented
by an eventually stable formula, correctness of such protocol can be established by a
procedure that does not assume the finiteness of the domain.

4 Case Study: FloodSet Protocol

Next, we provide an example of how both methods described in previous section (ex-
plicit finiteness principles, and stabilisation principle for protocols with finite change)
can be used for the proof of correctness of a protocol specified in monodic FOTL.

The setting is as follows. There are n processes, each having an input bit and an
output bit. The processes work synchronously, run the same algorithm and use broad-
cast for communication. Some processes may fail and, from that point onward, such
processes do not send any further messages. Note, however, that the messages sent by
a process in the moment of failure may be delivered to an arbitrary subset of the pro-
cesses. Crucially, there is a finite bound, f , on the number of processes that may fail.

91

The goal of the algorithm is to eventually reach an agreement, i.e. to produce an
output bit, which would be the same for all non-faulty processes. It is required also that
if all processes have the same input bit, that bit should be produced as an output bit.

This is a variant of FloodSet algorithm with alternative decision rule (in terms of
[15], p.105) designed for solution of the Consensus problem in the presence of crash
(or fail-stop) failures, and the basic elements of the protocol (adapted from [15]1) are
as follows.

– In the first round of computations, every process broadcasts its input bit.
– In every later round, a process broadcasts any value the first time it sees it.
– In every round the (tentative) output bit is set to the minimum value seen so far.

The correctness criterion for this protocol is that, eventually (actually, no later than in
f + 2 rounds) the output bits of all non-faulty processes will be the same.

Claim. The above FloodSet algorithm and its correctness conditions can be specified
(naturally) within monodic monadic temporal logic without equality and its correctness
can be proved in monodic monadic temporal logic, using the above finite clock axiom.

We do not include the whole proof here, but will reproduce sample formulae to give the
reader a flavour of the specification and proof.

1. Each process (s) must be categorised as one of the above types:
(∀x(Normal(x) | Failure(x) | Faulty(x)))

2. If we see a ‘0’ (the process has this already, or receives a message with this value)
then we output ‘0’:

(∀x(¬Faulty(x) ∧ Seen(x, 0) → gOutput(x) = 0))
3. If we have not seen a ‘0’ but have seen a ‘1’, then we output ‘1’:

(∀x(¬Faulty(x) ∧ ¬Seen(x, 0) ∧ Seen(x, 1) → gOutput(x) = 1))
4. The condition to be verified, namely that eventually all (non faulty) processes agree

on the bit ‘0’, or eventually all agree on the bit ‘1’:

♦((∀x¬Faulty(x) ⇒ Output(x) = 0) ∨ (∀x¬Faulty(x) ⇒ Output(x) = 1))

Notice that the temporal specification uses among others the predicates Normal() to
denote normal operating processes, Failure() to denote processes, experiencing fail-
ure (at some point of time), Faulty() for the processes already failed. There are also
predicates such as Seen(,) specifying the effect of communications. Having these, it
is straightforward to write down the temporal formulae describing the above protocol
and correctness condition (i.e. (4) above). In the proof of correctness the finite clock
axiom has to be instantiated to the Failure(x) predicate (i.e. replace P by Failure in
Fin2).

One may also verify the FloodSet protocol using the eventual stabilisation principle
from Section 3.2. To establish the applicability of the principle one may use the fol-
lowing arguments: every process can broadcast at most twice, and taking into account

1 In [15], every process knows the bound f in advance and stops the execution of the protocol
after f + 2 rounds, producing the appropriate output bit. We consider the version where the
processes do not know f in advance and produce a tentative output bit at every round.

92

finiteness of both the numbers of processes and of failures, one may conclude that even-
tually the protocol stabilises. Note that such an analysis only allows us to conclude that
the protocol stabilises, but its properties still need to be proved. Let φ be a temporal
specification of the protocol. Taking into account the stabilisation property, the proto-
col is correct iff (φ ∧ ¬ψ)Stab is not satisfiable over finite domains. By Proposition 1,
there is no difference in satisfiability over finite and general domains for such formulae
and so one may use theorem proving methods developed for monadic monodic temporal
logics over general models to establish this fact.

5 Concluding Remarks

In this paper we have studied two approaches to handling the finiteness of the domain
in temporal reasoning.

The first approach uses explicit finiteness principles as axioms (or proof rules), and
has potentially wider applicability, not being restricted to protocols with the stabilisa-
tion property. On the other hand, the automation of temporal proof search with finiteness
principles appears to be more difficult and it is still largely an open problem.

In the approach based on the stabilisation principle, all “finiteness reasoning” is
done at the meta-level and essentially this is used to reduce the problem formulated for
finite domains to the general (not necessarily finite) case. When applicable, this method
is more straightforward for implementation and potentially more efficient. Applicabil-
ity, however, is restricted to the protocols which have stabilisation property (and this
property should be demonstrated in advance as a pre-condition).

Finally, we briefly mention some future work. Automated proof techniques for
monadic monodic FOTL have been developed [6, 14] and implemented in the TeMP
system [13], yet currently proof search involving the finiteness principles requires im-
provement. Once this has been completed, larger case studies will be tackled. The tech-
niques themselves would also benefit from extension involving probabilistic, real-time
and equational reasoning.

93

References

1. P. A. Abdulla, B. Jonsson, M. Nilsson, J. d’Orso, and M. Saksena. Regular Model Checking
for LTL(MSO). In Proc. 16th International Conference on Computer Aided Verification
(CAV), volume 3114 of LNCS, pages 348–360. Springer, 2004.

2. P. A. Abdulla, B. Jonsson, A. Rezine, and M. Saksena. Proving Liveness by Backwards
Reachability. In Proc. 17th International Conference on Concurrency Theory (CONCUR),
volume 4137 of LNCS, pages 95–109. Springer, 2006.

3. A. Artale, E. Franconi, F. Wolter, and M. Zakharyaschev. A Temporal Description Logic for
Reasoning over Conceptual Schemas and Queries. In Proc. European Conference on Logics
in Artificial Intelligence (JELIA), volume 2424 of LNCS, pages 98–110. Springer, 2002.

4. D. Chkliaev, P. van der Stock, and J. Hooman. Mechanical Verification of a Non-Blocking
Atomic Commitment Protocol. In Proc. ICDCS Workshop on Distributed System Validation
and Verification, pages 96–103, IEEE, 2000.

5. E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Dec. 1999.
6. A. Degtyarev, M. Fisher, and B. Konev. Monodic Temporal Resolution. ACM Transactions

on Computational Logic, 7(1):108–150, January 2006.
7. G. Delzanno. Constraint-based Verification of Parametrized Cache Coherence Protocols.

Formal Methods in System Design, 23(3):257–301, 2003.
8. E. A. Emerson. Temporal and Modal Logic. In Handbook of Theoretical Computer Science,

pages 996–1072. Elsevier, 1990.
9. J. Esparza, A. Finkel, and R. Mayr. On the Verification of Broadcast Protocols. In Proc. 14th

IEEE Symp. Logic in Computer Science (LICS), pages 352–359. IEEE CS Press, 1999.
10. M. Fisher, B. Konev, and A. Lisitsa. Practical Infinite-state Verification with Temporal Rea-

soning. In Verification of Infinite State Systems and Security, volume 1 of NATO Security
through Science Series: Information and Communication. IOS Press, January 2006.

11. D. Gabelaia, R. Kontchakov, A. Kurucz, F. Wolter, and M. Zakharyaschev. On the Computa-
tional Complexity of Spatio-Temporal Logics. In Proc. 16th International Florida Artificial
Intelligence Research Society Conference (FLAIRS), pages 460–464. AAAI Press, 2003.

12. I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable Fragments of First-order Tempo-
ral Logics. Annals of Pure and Applied Logic, 106:85–134, 2000.

13. U. Hustadt, B. Konev, A. Riazanov, and A. Voronkov. TeMP: A Temporal Monodic Prover.
In Proc. 2nd Second International Joint Conference on Automated Reasoning (IJCAR), vol-
ume 3097 of LNAI, pages 326–330. Springer, 2004.

14. B. Konev, A. Degtyarev, C. Dixon, M. Fisher, and U. Hustadt. Mechanising First-order
Temporal Resolution. Information and Computation, 199(1-2):55–86, 2005.

15. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
16. Z. Manna and A. Pnueli. Temporal Logic of Reactive and Concurrent Systems. Springer,

1992.
17. F. Wolter and M. Zakharyaschev. Axiomatizing the Monodic Fragment of First-order Tem-

poral Logic. Annals of Pure and Applied Logic, 118(1-2):133–145, 2002.

94

Interaction Analysis for Fault-Tolerance in

Aspect-Oriented Programming⋆

Nathan Weston, Francois Taiani, Awais Rashid

Computing Department, InfoLab21, Lancaster University, UK.
{westonn,f.taiani,marash}@comp.lancs.ac.uk

Abstract. The key contribution of Aspect-Oriented Programming (AOP)
is the encapsulation of crosscutting concerns in aspects, which facilities
modular reasoning. However, common methods of introducing aspects
into the system, incorporating features such as implicit control-flow,
mean that the ability to discover interactions between aspects can be
compromised. This has profound implications for developers working on
fault-tolerant systems. We present an analysis for aspects which can re-
veal these interactions, thus providing insight into positioning of error
detection mechanisms and outlining candidate containment units. We
also present Aida, an implementation of this analysis for the AspectJ
language.

1 Introduction and Problem Statement

The key contribution of Aspect-Oriented Programming (AOP) is the encapsu-
lation of crosscutting concerns in aspects, which are then introduced into the
system using advice - code which applies at a particular joinpoint in the system,
be that in the base program or within aspect advice. Advice is then woven into
the system, either statically at compile-time or dynamically later on. This cru-
cial feature of AOP supports modularity and evolvability of otherwise scattered
and tangled code, as well as offering the possibility of aspect reuse.

However, it also raises a potential difficulty for developers working with as-
pects in a fault-tolerant context. For example, the usual method of implementing
aspects - such as the popular AspectJ[1] compiler - allows a developer to code a
piece of advice which applies implicitly at multiple points in the code. This can
cause problems in determining how faults might propagate through the system,
as it is not immediately clear from the code how advice code interacts with the
base system, and especially how aspects interact with one another.

To see this, let us consider the example of a version control system which
includes the following code:

⋆ This work is supported by European Commission Framework 6 Grant: AOSD-
Europe: European Network of Excellence on Aspect-Oriented Software Development
(IST-2-004349).

95

void commitChanges(String username, String server) {

...
sendFile(username, file , server);
...

}

The system has two aspects - one which logs all calls to the sendFile()

method, and one which encrypts usernames at calls to the commitChanges()

method:

void aspect LogFileSends {

after(): call (void sendFile(String, String, String)) && args(uname, file, serv) {

printToFile(”Sent to server, sender is ”+uname);
}

}

void aspect Encrypt {

around(): call(void commitChanges(String, String)) ∧ args(uname, serv) {

encrypt(uname);
proceed(uname, serv);

}

}

Although these two advices apply at different joinpoints in the system, they
have an indirect interaction with one another - the Encrypt aspect modifies
the username variable, which the LogFileSends aspect reads. Therefore there
is a potential coupling between the two advices. Knowing this could impact the
strategy for making this system fault-tolerant - for example, if the LogFileSends
aspect is considered particularly crucial to the system, this might require the
Encrypt aspect to be hardened with additional fault-detection mechanisms.

As well as this indirect interaction, we must also consider the possibility
of transitive interactions between aspects. By contrast to indirect interactions,
which are based on shared accesses of a single variable (for example, the uname

variable in the above example), transitive interactions occur when a chain of
variable accesses link advices. That is, consider the system in Fig. 1. The system
has an aspect A which modifies a variable x. The variable is then passed to a
method f , which uses x to define a variable y. Subsequently, the value of y is used
in aspect B to determine its behaviour. Hence there is a transitive interaction
between the two aspects, even though they do not access a shared variable.

Aspect A
x=4

Method f
y=x

Aspect B
if(y>3)...

Fig. 1: Transitive interaction

In general, the ability to identify and trace these interactions can help devel-
opers understand how error might propagate, and thus decide where to position
error detection mechanisms (such as assertions or acceptance tests) in order to

96

maximise error detection coverage while minimising overhead. It can also pro-
vide insight into error handling by identifying parts of the system which might
simultaneously become corrupted, thus outlining candidate containment units.

This kind of interaction analysis also has applications should AO techniques
be used to implement fault-tolerance itself. As has been noted, AOP can be
an extremely helpful tool to aid developers in building fault-tolerant systems.
For example, transaction mechanisms can be implemented as aspects in order to
perform rollback in the event of failure[5]; similarly, the mechanisms for switching
between versions in N-version programming can be encapsulated in an aspect.
Contract enforcement[3] can also be modularised in this way. In this formulation,
then, the interactions between fault-tolerance aspects and others can shed light
on potential problems which could cause the system to be intolerant to faults
- for example, if it can be seen that the presence of another aspect causes a
contract enforcement aspect to be bypassed.

In this article we investigate how Data-Flow Analysis can be adapted to
be applied to aspect-oriented programs in order to help developers with this
problem. We also present Aida, an implementation of our analysis for use with
the AspectJ language. Section 2 gives some background in Data-Flow Analysis,
and we discuss possible modifications with respect to AO programs in Section 3.
Section 4 presents Aida, and Section 5 concludes and looks to potential future
work.

2 Data-Flow Analysis

Data-Flow Analysis (DFA)[6] is an ideal tool in determining this kind of indirect
interference between aspects. DFA gives us the ability to see which data aspect
advice modifies, and (crucially) trace the effects of that modification throughout
the program, including its effect on other aspects. In this section we present the
basic tenets of DFA which are necessary in order to understand our approach.

The classical Definition-Use analysis forms the basis of our approach. The
idea behind this analysis is to find Definition-Use chains or du-chains, associ-
ations between an assignment to a variable and all its uses in a program. The
def-use analysis is based on a classical data-flow analysis called Reaching Defi-
nitions Analysis[6]. Given a program point, the analysis returns the definitions
which may have been made and not re-defined when the execution of the pro-
gram reaches that point. Comparing these definitions with uses of variables at
the program point enables us to determine du-chains, which are candidates for
error propagation paths. Our approach to performing this inter-procedural anal-
ysis is an extension to the functional approach proposed by Shahir and Pnueli[7],
which has an acceptable tradeoff between efficiency and accuracy.

The approach operates on an Inter-procedural Control Flow Graph (ICFG),
which contains a control-flow graph (representing code statements as nodes and
potential flow as edges) for each of the methods and aspect advices in the pro-
gram. From this, an intra-procedural analysis computes a transfer function for
each program point within a method, which represents the effect of the Reach-

97

ing Definitions Analysis up to that point. As this happens within the method,
it models which definitions reach the program point based on abstract initial
values at the start of the method. For example, in Fig. 2, the transfer function
at program point n2 in method A is ρ2 = f1.

Procedure A

Procedure B

n1

n2

f1 n3
f3

f2

n4 n5f4 n6f5

Fig. 2: Computing transfer functions

In order to model method calls, a special instance of a transfer function is
created which defines the summary of calling a method - effectively the con-
junction of the transfer functions at the exit points of each method. In Fig. 2,
the summary transfer function φB modelling the effect of calling method B is
φB = ρ6 = f5 ◦ f4. This information is propagated bottom-up using a fixpoint
calculation to determine the transfer functions for each method, taking calls into
account. For example, the final transfer function at node n3 is:

ρ3 = f3 ∧ (f2 ◦ φB ◦ f1) = f3 ∧ (f2 ◦ ρ6 ◦ f1)

= f3 ∧ (f2 ◦ f5 ◦ f4 ◦ f1)

The next step is to propagate real data-flow information in a top-down fash-
ion, starting from main() methods with an empty set of reaching definitions. At
this stage, information is only propagated to entry points of procedures and to
call sites, which is possible because transfer functions based on abstract initial
values have already been computed at these points. Again a fixpoint calculation
is used to resolve any circular dependencies. In the above example, the real so-
lution S4 at node n4 is S4 = ρ4(ρ2(η)), where η is the data-flow information
present at the beginning of procedure A.

Once this is done, it is trivial to calculate the results of the reaching defi-
nitions analysis on-demand, as both the concrete data-flow information at the
beginning of each procedure and transfer functions for each program point within
that procedure are available. Therefore, the analysis result at node n5 is the re-
sult of the function ρ5(S4), both elements of which have previously computed.

98

3 Transfer functions for advice

One consideration in applying this technique to AO programs is that of com-
puting transfer functions for advice. In languages such as AspectJ, advice which
applies around a joinpoint can be difficult to reason about independently of the
base system, mainly due to the inability to discover what a proceed() statement
could refer two. We present two main options:

Advices as methods Perhaps the simplest option is to perform the analysis
after the aspect advice has been woven, and treat aspect advices identically
to method calls. An around advice’s proceed() statement would therefore be
transformed to another call back to the advised procedure, and computing the
transfer functions would proceed as normal.

Binding functions The disadvantage of the first option is that, as we perform
the analysis after the advice has been woven, it is difficult to consider the effect
of the advice independently of its binding. Therefore, there could be no partial
analysis results associated with library aspects which include around advice,
as it would be impossible to know the effect of a proceed() statement before
weaving. One solution is to transform the around advice into before and after
advice and treat it as two separate advices - however, real-world advices may well
have multiple proceed() statements or have control-flow paths which bypass the
proceed() instruction altogether (see Fig. 3).

Advice C

n7 n8

n9. proceed()

n10
f8

f9

Fig. 3: Computing transfer functions for advice

Instead, then, we can compute a partial transfer function based on unknown
bindings using a binding function ψ, which represents the effect of the proceed()
statement. So for the advice in Fig. 3, the summary transfer function for the
whole advice would be φC = ρ10 = f9 ∧ (f8 ◦ ψ8).

Using this formulation, then, we compute the summary transfer functions for
methods without considering advices first. We then introduce binding informa-
tion based on the possible joinpoints of each advice, and at each binding point,
propagate the values of the binding function - namely, the call to the method

99

which is being advised - to the advice such that a summary transfer function
can be calculated. The fixpoint calculation is then re-run to propagate the effect
of the advice to the rest of the system.

The main advantage of this approach is that partial analysis results can be
pre-computed for aspect advice, which means that when an advice is used in a
different context - as a library advice, for example, or at a different joinpoint -
we no longer have to start from scratch in our analysis. As well as this, we may
be able to infer generic properties of the advice - in the form of a categorisation
of its behaviour, for example - which could then inform our later analysis.

4 Aida

Fig. 4: Aida in Eclipse

We have implemented the simpler version of the algorithm presented above
- namely, that which treats advices as method calls - as an extension to the abc
compiler[2] for AspectJ called Aida - Aspect Interference Detection Analysis.
The goal of Aida is to provide developers with a summary and visualisation
of the potential interactions within the system, such that they can develop and
evolve a strategy for fault-tolerance.

abc is built on the Soot[8] framework, and so transforms the woven bytecode
into an intermediate representation called Jimple, which allows inspection and
analysis of the code. On running the analysis, Aida produces annotated Jimple
code which shows the links between advices in terms of which statements are
directly affected by other advice being present in the system (see Fig. 4 for how
this looks to the user in Eclipse[4]). The analysis also works at any specified
depth of transitivity - that is, it can chain any given number of definition-use
chains together to find even more subtle interactions. Aida also produces a visual
representation of interactions by means of an interaction graph, shown in Fig. 5.
Here we have trimmed the graph to show the results of analysing the example

100

Version Control system presented in Section 1, and the interaction between the
Encrypt and LogFileSends aspects is clearly shown by tracing the red arrows.

LogFileSends
virtualinvoke $r0.<java.io.PrintStream: void println(java.lang.String)>(uname)

Encrypt
uniqueArgLocal0 = "enc"

$r2 = virtualinvoke $r1.<java.lang.StringBuffer: java.lang.StringBuffer append(java.lang.String)>(uniqueArgLocal0)

uname = virtualinvoke $r2.<java.lang.StringBuffer: java.lang.String toString()>()

$r1 = virtualinvoke $r0.<java.lang.StringBuffer: java.lang.StringBuffer append(java.lang.String)>(uname)

$r0 = new java.lang.StringBuffer

$r0 = <java.lang.System: java.io.PrintStream out>

uname = $r2

Fig. 5: Aida-generated interaction graph

5 Conclusion and future work

In this article we have motivated the adaptation of summary-based DFA for
discovery of interactions between aspects. We have motivated the importance of
this interaction analysis with respect to its application to fault-tolerant systems
- it can reveal error-propagation paths and outline containment units; give hints
to the developer on where modules need hardening with assertions and the like;
and show how aspects for fault-tolerance can be impacted by other aspects in
the system. We have presented Aida, an implementation of this analysis which
works on AspectJ programs. We are currently extending our implementation
to incorporate the more AO-specific algorithm described above, which treats
advices differently to methods and is able to pre-compute some analysis results
such that they can be reused. We have also developed a categorisation schema
which describes the interactions between aspects in a more meaningful way, and
we hope to incorporate all of this into an Eclipse plugin.

References

1. AspectJ. Home page of the AspectJ project. http://eclipse.org/aspectj.
2. Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jen-

nifer Lhoták, Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam,
and Julian Tibble. abc: an extensible aspectj compiler. In AOSD ’05: Proceedings of

the 4th International Conference on Aspect-Oriented Software Development, pages
87–98. ACM Press, 2005.

3. Contract4Java. Homepage of the C4J project. http://www.contract4j.org.

101

4. Eclipse. Homepade of the Eclipse project. http://eclipse.org.
5. Jorg Kienzle and Rachid Guerraoui. Aop: Does it make sense? the case of concur-

rency and failures. In ECOOP ’02: Proceedings of the 16th European Conference on

Object-Oriented Programming, pages 37–61, London, UK, 2002. Springer-Verlag.
6. Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Program

Analysis, chapter 2, pages 35–135. Springer, 2nd edition, 2005.
7. M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.

In Program Flow Analysis: Theory and Applications, pages 189–234. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

8. Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon,
and Phong Co. Soot - a Java optimization framework. In Proceedings of CASCON

1999, pages 125–135, 1999.

102

Rigorous Development of Ambient Campus

Applications that can Recover from Errors

Budi Arief, Alexei Iliasov, and Alexander Romanovsky

School of Computing Science, University of Newcastle upon Tyne,
Newcastle upon Tyne NE1 7RU, England.

{L.B.Arief, Alexei.Iliasov, Alexander.Romanovsky}@newcastle.ac.uk

Abstract. In this paper, we discuss a new method for developing fault-
tolerant ambient applications. It supports stepwise rigorous development
producing a well structured design and resulting in disciplined integra-
tion of error recovery measures into the resulting implementation.

1 Introduction

Ambient campus is a loosely defined term to describe ambient intelligence (AmI)1

systems in an educational (university campus) setting. As such, ambient cam-
pus applications are tailored to support activities typically found in the campus
domain, including – among others, delivering lectures, organising meetings, and
promoting collaborations among researches and students.

This paper presents our work in the development of the ambient campus
case study within the RODIN project [1]. This EU-funded project, led by the
School of Computing Science of Newcastle University, has an objective to create
a methodology and supporting open tool platform for the cost-effective rigor-
ous development of dependable complex software systems and services. In the
RODIN project, the ambient campus case study acts as one of the research
drivers, where we are investigating how to use formal methods combined with
advanced fault-tolerance techniques in developing highly dependable AmI ap-
plications. In particular, we are developing modelling and design templates for
fault-tolerant, adaptable and reconfigurable software. This case study consists
of several working ambient applications (referred to as scenarios) for supporting
various educational and research activities.

Software developed for AmI applications need to operate in an unstable envi-
ronment susceptible to various errors and unexpected changes (such as network
disconnection and re-connection) as well as delivering context-aware services.
These applications tend to rely on the mobile agent paradigm, which supports
system-structuring using decentralised and distributed entities (agents) working
together in order to achieve their individual aims. Multi-agent applications pose

1 Ambient intelligence is a concept developed by the Information Society Technologies
Advisory Group (ISTAG) to the European Commission’s DG Information Society
and the Media, where humans are surrounded by unobtrusive computing and net-
working technology to assist them in their activities.

103

many challenges due to their openness, the inherent autonomy of their compo-
nents (i.e. the agents), the asynchrony and anonymity of the agent communica-
tion, and the specific types of faults they need to be resilient to. To address these
issues, we developed a framework called Cama (Context-Aware Mobile Agents)

[2], which encourages disciplined development of open fault-tolerant mobile agent
applications by supporting a set of abstractions ensuring exception handling, sys-
tem structuring and openness. These abstractions are backed by an effective and
easy-to-use middleware allowing high system scalability and guaranteeing agent
compatibility. More details on Cama and its abstractions can be found in [2–4].
The rest of this paper outlines our case study scenarios (Section 2), discusses
important fault-tolerance issues in AmI systems (Section 3), and describes our
design approach (Section 4).

2 Case Study Scenarios

We have so far implemented two scenarios for our ambient campus case study
using the Cama framework as the core component of the applications. The first
scenario (ambient lecture) deals with the activities carried out by the teacher and
the students during a lecture – such as questions and answers, and group work
among the students – through various mobile devices (PDAs and smartphones).
The second scenario (presentation assistant) covers the activities involved in
giving or attending a presentation/seminar. The presenter uses a PDA to control
the slides during their presentation and they may receive ’quiet’ questions on
the topic displayed on the slide from the audience. Each member of the audience
will have the current slide displayed on their PDA, which also provides a feature
to type in a question relevant to that slide.

We are now working on a more challenging scenario which involves greater
agent mobility as well as location specific services. Agents may move physically
among multiple locations (rooms), and depending on the location, different ser-
vices will be provided.

In this scenario – we call it student induction assistant scenario – we have
new students visiting the university campus for the first time. They need to
register to various university departments and services, which are spread on
many locations on campus, but they do not want to spend too much time looking
for offices and standing in queues. They much prefer spending their time getting
to know other students and socialising. So they delegate the registration process
to their personalised software agent, which then visits virtual offices of various
university departments and institutions, obtains the necessary information for
the registration, and makes decisions based on the student’s preferences. The
agent also records pieces of information collected during this process so that the
students can have all the details about their registration.

Unfortunately, not all the registration stages can be handled automatically.
Certain steps require personal involvement of the student, for example, signing
paperwork in the financial department and manually handling the registration
in some of the departments which do not provide fully-featured agent able to

104

handle the registration automatically. To help the students to go through the rest
of registration process, their software agent creates an optimal plan for visiting
different university departments and even arranges appointments when needed.

Walking around on the university campus, these new students pass through
ambients – special locations providing context-sensitive services (see Figure 1).
An ambient has sensors detecting the presence of a student and a means of
communicating to the student. An ambient gets additional information about
students nearby by talking to their software agent. Ambients help students to
navigate within the campus, provide information on campus events and activi-
ties, and assist them with the registration process. The ambients infrastructure
can also be used to guide students to safety in case of emergency, such as fire.

Fig. 1. Student induction assistant scenario: the dots represent free roaming student
agents; the cylinders are static infrastructure agents (equipped with detection sensors);
and the ovals represent ambients – areas where roaming agents can get connection and
location-specific services.

3 Challenges in Developing Fault-Tolerance Ambient

Intelligence Systems

Developing fault-tolerant ambient intelligence systems is not a trivial task. There
are many challenging factors to consider; some of the most important ones are:

– Decentralisation and homogeneity

Multi-agent systems are composed of a number of independent computing
nodes. However, while traditional distributed systems are orchestrated – ex-
plicitly, by a dedicated entity, or implicitly, through an implemented al-
gorithm – in order to solve a common task, agents in an ambient system
decide independently to collaborate in order to achieve their individual goals.
In other words, ambient systems do not have inherent hierarchical organisa-
tion. Typically, individual agents are not linked by any relations and they
may not have the same privileges, rights or capabilities.

– Weak Communication Mechanisms

Agent systems commonly employ communication mechanisms which provide

105

very weak, if any, delivery and ordering guarantees. This is important from
the implementation point of view as agent systems are often deployed on
wearable computing platforms with limited processing power, and they tend
to use unreliable wireless networks for communication means. This makes
it difficult to distinguish between a crash of an agent, a delay in a mes-
sage delivery and other similar problems caused by network delay. Thus, a
recovery mechanism should not attempt to make a distinction between net-
work failures and agent crashes unless there is a support for this from the
communication mechanism.

– Autonomy

During its lifetime, an agent usually communicates with a large number of
other agents, which are developed in a decentralised manner by independent
developers. This is very different from the situation in classical distributed
system where all the system components are part of a closed system and thus
fully trusted. Each agent participating in a multi-agent application tries to
achieve its own goal. This may lead to a situation where some agents may
have conflicting goals. From recovery viewpoint, this means that no single
agent should be given an unfair advantage. Any scenarios where an agent
controls or prescribes a recovery process to another agent must be avoided.

– Anonymity

Most agent systems employ anonymous communication where agents do not
have to disclose their names or identity to other agents. This has a number
of benefits: agents do not have to learn the names of other agents prior to
communication; there is no need to create fresh names nor to ensure naming
consistency in the presence of migration; and it is easy to implement group
communication. Anonymity is also an important security feature - no one can
sense an agent’s presence until it produces a message or an event. It is also
harder to tell which messages are produced by which agent. For a recovery
mechanism, anonymity means that we are not able to explicitly address
agents which must be involved in the recovery. It may even be impossible
to discover the number of agents that must be involved. Even though it is
straightforward to implement an exchange for agents names, its impact on
agent security and the cost of maintaining consistency usually outweigh the
benefits of having named-agents.

– Message Context

In sequential systems, recovery actions are attached to certain regions, ob-
jects or classes which define a context for a recovery procedure. There is no
obvious counterpart for these structuring units in asynchronously commu-
nicating agents. Agent produces messages in a certain order, each being a
result of some calculations. When the data sent along with a message cause
an exception in an agent, the agent may want to notify the original message
producer, for example, by sending an exception. When an exception arrives
at the message producer (which is believed to be the source of the problem),
it is possible that the agent has proceeded with other calculations and the
context in which the message was produced is already destroyed. In addition,
an agent can disappear due to migration or termination.

106

– Message Semantics

In a distributed system developed in a centralised manner, semantics of
values passed between system components is fixed at the time of the system
design and implementation. In an open agent system, implementation is
decentralised and thus the message semantics must be defined at the stage
of a multi-agent application design. If an agent is allowed to send exceptions,
the list of exceptions and their semantics must also be defined at the level of
an abstract application model. For a recovery mechanism, this means that
each agent has to deal only with the exception types it can understand,
which usually means having a list of predefined exceptions.

We have to take these issues into account when designing and developing
fault-tolerant AmI systems. In the following section, we outline the design ap-
proach that can be used for constructing ambient campus case study scenarios.

4 Design Approach

In our previous work, we have developed several case study scenarios [5, 6, 4].
In these scenarios, we focused on the implementation aspects and the general
problems of applying formal methods in ambients systems. In our new case study
scenario (student induction assistant scenario – see Section 2), we shift our focus
from implementation to design to validate our formal development approach.

The new scenario will be modelled using Event-B formalism [7]. Our intention
is to have a fairly detailed model which covers issues such as communication,
networking failures, proactive recovery, liveness, termination, and migration.

4.1 Overview

We are using design patterns, refinement patterns, and mobility modelling in
developing the student induction assistant scenario.

Design patterns are described using a natural language and act as guide in
formal development. Typically, design patterns are narrowly focused and can be
applied only within a given problem domain. We have developed a set of design
patterns that are specific for ambient systems [8]. These patterns are inspired
by the architecture of the Cama system and help us to formally design a system
which can be implemented on top of the Cama framework.

Refinement patterns are rules describing a transformation of an abstract
model into a more concrete one. These patterns are specified in an unambiguous
form and can be mechanically applied using a special tool, which is a plugin to
the RODIN Event-B platform [7, 1]. Some refinement patterns can be seen as a
possible implementation of the design patterns. Others are simply useful for the
transformation steps, which we believe are common in this kind of systems.

We are planning to apply the Mobility Plugin [9] for verification of dynamic
properties, such as liveness, termination, and mobility-related properties. Using
this plugin, we are able to extend the Event-B model with process algebraic

107

description of dynamic behaviour, agent composition and communication sce-
narios. The plugin handles additional proof-obligation using a built-in model
checker. It also includes an animator for visual interactive execution of formal
models.

4.2 Application to the Scenario

To proceed any further, we need to agree on same major design principles, iden-
tify major challenges and outline the strategy for finding the solution.

To better understand the scenario, we apply the agent metaphor. The agent
metaphor is a way to reason about systems (not necessarily information systems)
by decomposing it into agents and agent subsystems. In this paper, we use term
agent to refer to a component with independent thread of control and state and
the term agent system to refer to a system of cooperative agents.

From agent systems’ viewpoint, the scenario is composed of the following
three major parts: physical university campus, virtual university campus and
ambients. In physical university campus, there are students and university em-
ployees. Virtual campus is populated with student agents and university agents.
Ambients typically have a single controlling agent and a number of visiting
agents. These systems are not isolated, they interact in a complex manner and
information can flow from one part into another.

However, since we are building a distributed system, it is important to get an
implementation as a set of independent but cooperative components (agents).
To achieve this, we apply the following design patterns:

agent decomposition During the design, we will gradually introduce more
agents by replacing abstract agents with two or more concrete agents.

super agent It is often hard to make a transition from an abstract agent to a
set of autonomous agents. What before was a simple centralised algorithm
in a set of agents must now be implemented in a distributed manner. To aid
this transition, we use super agent abstraction, which controls some aspects
of the behaviour of the associated agents. Super agent must be gradually
removed during refinement as it is unimplementable.

scoping Our system has three clearly distinguishable parts: physical campus,
virtual campus and ambients. We want to isolate these subsystems as much
as possible. To do this, we use the scoping mechanism, which temporarily
isolates cooperating agents. This is a way to achieve the required system
decomposition. The isolation properties of the scoping mechanism also make
it possible to attempt autonomous recovery of a subsystem.

orthogonal composition As mentioned above, the different parts of our sce-
nario are actually interlinked in a complex manner. To model this connec-
tions, we use the orthogonal composition pattern. In orthogonal composition,
two systems are connected by one or more shared agents. Hence, information
from one system into another can flow only through the agent states. We
will try to constrain this flow as much as possible in order to obtain to a
more robust system.

108

locations definition To help students and student agents navigate within the
physical campus and the virtual campus, we define location as places asso-
ciated with a particular agent type.

decomposition into roles The end results of system design is a set of agent
roles. To obtain role specifications, we decompose scopes into a set of roles.

4.3 Fault-Tolerance Mechanism

We are going to address the fault-tolerance issues at three levels: architectural,
modelling and implementation.

At the architectural level, we use the agent metaphor to introduce fault-
tolerance properties such as redundancy (spawning an agent copy to survive an
agent crash) and diversity (having the same service provided by independently
implemented agents).

At the modelling level, we apply the assumptions mechanism [10] along with
FT-specific design patterns. The assumptions mechanism helps us to build more
robust agent applications and it has two different styles. In the first one, it is
assumed that certain undesirable events are not going to happen during some
activity. If such an event happens, the whole activity is aborted. In the second
style, through negotiations, agents agree to temporarily restrict their behaviour
and cooperate in a simpler environment. Design patterns help developers to in-
troduce some common fault-tolerance techniques when modelling an agent sys-
tem. These techniques range from abstract system-level patterns to very specific
agent-level patterns dealing with specific faults.

Early on, we have extended the blackboard communication pattern [11] with
nested scopes and exception propagation [12]. These two extensions are essen-
tially the implementation techniques for recovery actions introduced during the
modelling stage. We also rely extensively on reactive agent architecture. This has
two immediate benefits: its implementation style matches the modelling style of
Event-B, and the recovery of multi-threaded agents becomes similar to that of
the asynchronous reactive architecture.

5 Conclusion

This paper provides an outline of the work that we have carried out in developing
fault-tolerant ambient applications. We use design patterns, refinement patterns,
and mobility modelling during the design process. By using these techniques, we
aim to validate the formal development approach that we take in developing
more robust and fault-tolerant ambient applications.

We plan to demonstrate our approach through an ambient campus student

induction assistant scenario. We are currently developing an agent-based system
for this scenario, using the Cama framework and middleware [2] that we have
previously developed as the centre piece of the system. This will be augmented
with sensors for providing location specific services, as well as fault-tolerance
mechanism at the architectural, modelling and implementation levels.

109

6 Acknowledgements

This work is supported by the IST RODIN Project [1]. A. Iliasov is partially
supported by the ORS award (UK).

References

1. Rodin: Rigorous Open Development Environment for Complex Systems. IST FP6
STREP project, http://rodin.cs.ncl.ac.uk/ (Last accessed: 17 May 2007)

2. Arief, B., Iliasov, A., Romanovsky, A.: On Developing Open Mobile Fault Tolerant
Agent Systems. In Choren, R., et al., eds.: SELMAS 2006, LNCS 4408. Springer-
Verlag (2007) 21–40

3. Iliasov, A.: Implementation of Cama Middleware.
http://sourceforge.net/projects/cama (Last accessed: 17 May 2007)

4. Iliasov, A., Romanovsky, A., Arief, B., Laibinis, L., Troubitsyna, E.: On Rigorous
Design and Implementation of Fault Tolerant Ambient Systems. Technical report,
CS-TR-993, School of Computing Science, Newcastle University (Dec 2006)

5. Arief, B., Coleman, J., Hall, A., Hilton, A., Iliasov, A., Johnson, I., Jones, C.,
Laibinis, L., Leppanen, S., Oliver, I., Romanovsky, A., Snook, C., Troubitsyna,
E., Ziegler, J.: Rodin Deliverable D4: Traceable Requirements Document for Case
Studies. Technical report, Project IST-511599, School of Computing Science, Uni-
versity of Newcastle (2005)

6. Troubitsyna, E., ed.: Rodin Deliverable D8: Initial Report on Case Study Develop-
ment. Project IST-511599, School of Computing Science, University of Newcastle
(2005)

7. Metayer, C., Abrial, J.R., Voisin, L.: Rodin Deliverable 3.2: Event-B Language.
Technical report, Project IST-511599, School of Computing Science, University of
Newcastle (2005)

8. Laibinis, L., Iliasov, A., Troubitsyna, E., Romanovsky, A.: Formal Approach to
Ensuring Interoperability of Mobile Agents. Technical report, CS-TR-989, School
of Computing Science, Newcastle University, UK. October (2006)

9. Butler, M., ed.: Rodin Deliverable D11: Definition of Plug-in Tools. Project IST-
511599, School of Computing Science, University of Newcastle (2005)

10. Iliasov, A., Romanovsky, A.: Choosing Application Structuring and Fault Toler-
ance Using Assumptions, To be presented at DSN 2007 (2007)

11. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System Of Patterns. West Sussex, England:
John Wiley & Sons Ltd. (1996)

12. Iliasov, A., Romanovsky, A.: Structured Coordination Spaces for Fault Tolerant
Mobile Agents. In Dony, C., Knudsen, J.L., Romanovsky, A., Tripathi, A., eds.:
LNCS 4119. (2006) 181–199

110

SERENITY: A Generic framework for Dependability
Construction

A Patterns Oriented Approach

Ayda Saidane
1 University of Trento, via sommarive 14 Povo, Italy

ayda.saidane@unitn.it

Abstract. The applications are becoming more sophisticated and guaranteeing their
correct functioning is an everyday more difficult task. The apparition of new
environments characterized by the combination of heterogeneity, mobility and
dynamism makes it even more difficult the development of trustworthy and
dependable systems. We present in this paper the SERENITY Framework as a generic
construction framework for dependable and fault tolerant systems.

Keywords: dependability, fault tolerance, patterns, construction framework.

1 Introduction

The combination of heterogeneity, mobility, dynamism, sheer number of devices, along
with the growing demands for dependability and trustworthiness, is going to make the
dependability provision for complex systems increasingly difficult to achieve with existing
solutions, engineering approaches and tools.

Applications are becoming more and more complex. Their development and deployment
need to be rigorously monitored considering both functional requirements and
dependability requirements. This complexity makes it impossible, even for the most
experienced and knowledgeable dependability experts, to foresee all possible situations and
interactions, which may arise, and therefore create suitable solutions to address the users’
dependability requirements. Additionally dependability experts will be faced with pieces of
software, communication infrastructures and hardware devices not under their control.
Thus, approaches based on the application-level dependability will not be sufficient to
fulfill the requirements of the new applications.

The SERENITY project [1] aims to develop a framework to support the automated
integration, configuration, monitoring and adaptation of security and dependability (S&D)
in Ambient Intelligence (AmI) ecosystems. The purpose of this paper is to demonstrate the
efficiency of the SERENITY approach during the development and deployment of
dependable and fault tolerant systems.

The paper is structured as follows. Section 2 presents some basic definitions of
dependability and fault tolerance. Section 3 describes the SERENITY Framework and
Section 4 explains the development of fault tolerant systems using SERENITY. Section 5
concludes the paper and discusses some future work.

111

2 Definitions

A dependable system [2] is defined as one that is able to deliver a service that can
justifiably be trusted; attributes of dependability include availability (readiness for correct
service), reliability (continuity of correct service), confidentiality (prevention of
unauthorized disclosure of information), and integrity (absence of improper system state
alterations). There exist four mechanisms for developing dependable systems: 1) fault
prevention; 2) fault tolerance; 3) fault removal; 4) fault forecasting.

Fault Tolerance (Fig.1) is carried out via error detection and system recovery, which
aims at transforming a system state that contains errors into a state without detected errors
or faults that can be activated.. It consists of two steps: error handling and fault handling.
There are two main strategies for fault tolerance: 1) detection and recovery or 2) fault
masking. The first category corresponds to the deployment of error handling on demand
followed by fault handling. Fault masking results from the systematic usage of
compensation.

Figure 1. Fault Tolerance Techniques

Current systems are so complex that it is impossible to identify and correct all their
faults before they are put in operation. Thus, the deployment of fault tolerance techniques is
becoming more and more required in the construction of dependable and survivable
systems. Actually, the application designers are not generally familiar with foundation and
techniques of dependability and in particular fault tolerance. In the same way, dependability
experts are not necessary familiar with software engineering best practices. Thus,
separating the two issues would benefit on the trustworthiness of the system-to-be. The
approach would be to create a repository of dependability solutions that can be used by
application designers to architect the system.

3 SERENITY Framework

The framework was developed in the context of the SERENITY project [1]. The
framework consists of two parts: design time framework and runtime framework. In this
section we are going to present an overview of the SERENITY approach [3,4] that will be
customized for the development of adaptive fault tolerant systems.

112

3.1 Basic Concepts

 Before presenting the SERENITY framework, it is necessary to define the basic
concepts. In particular, we introduce the notions of: S&D patterns, S&D integration
schemes and S&D implementation.
- S&D pattern: A self-contained description of an S&D Solution, meaning that it does

not refer to (or depend on) other S&D Solutions.
- S&D integration scheme: it is a special type of S&D Patterns that is used to represent

ways of correctly combining other S&D Patterns.
- S&D implementation: it represents working S&D Solutions. These solutions are made

accessible to applications thanks to the SERENITY Runtime Framework.
- Context: it is defined as a set of elements that are recorded and tracked by the

SERENITY Runtime Framework in order to evaluate the state of the framework and
assist the S&D Manager in choosing the appropriate patterns or undertake pre-active or
pro-active actions.

3.2 SERENITY Design time Framework

The SDF consists of a set of modeling and validation tools intended to help security
engineers to design generic and correct solutions and to help application designers to select
and customize the appropriate security solutions for their applications.

The framework includes the following elements:
- S&D Patterns’ Library: it contains organizational, workflow and network patterns

that describe, at different levels of abstraction, security solutions that solve specific
security problems. The patterns not only hold the description of the solution but also
how to use it, the conditions needed for its application and how to monitor the
correctness of the process.

- Modeling and verification tools: there are 5 tools for specifying solutions at
different levels of abstraction: Business & Organizational Tool, Workflow Static
Analysis Tool, Net Pattern Static Analysis Tool, S&D Pattern Specification Tool,
S&D Pattern Management Tool and

3.3 SERENITY Runtime Framework

The Run-Time Framework has been designed to allow different security requirements to
be fulfilled through a number of available patterns.

The SRF architecture includes the following components:
- S&D Patterns’ Library
- S&D Manager: it implements the logic of S&D patterns by combining application

requirement, available S&D patterns and current system context in order to choose
the appropriate implementation that needs to be activated. The S&D Manager is the
component responsible for activating and deactivating pattern implementations and
will also be accountable for taking necessary actions (based on the monitoring rules)
when informed by the Monitor Service of a violation.

- Event Manager: it is responsible for collecting events from the Event Collector,
- Context Manager: it is in charge of the context, as previously defined for the SRF

environment

113

- Monitor Service: it is in charge of analyzing events and mapping them onto the
monitoring rules, in order to identify any violations and consequently inform the
S&D Manager.

Figure 2. An overview on the SERENITY Architecture

4 SERENITY framework for the development of dependable and
fault tolerant systems

As presented in section 2, the provision of fault tolerance requires three elements: 1/ error
detection; 2/ errors handling and 3/ fault handling. This section aims to illustrate how the
SERENITY framework facilitates the development of fault tolerant systems.

4.1 Patterns’ Repository

As mentioned before, the main interest of SERENITY at design time is the provision of
validated dependability solutions and mechanisms to combine them. Thus, we are going to
adopt a component-based development process where the crucial point is choosing the
appropriate components fulfilling the dependability requirements of the system-to-be.

The patterns included in the repository, are characterized by different information that
are used for selecting the appropriate pattern at both design time and runtime. The patterns’
description includes the dependability properties provided by the solution, the fault model,
the validation process, the pattern’s provider and the monitoring rules used at runtime to
monitor the status of the component. The patterns that are intended for runtime use, one or
more implementations should be defined. They will be activated for reconfiguration
purposes when a failure is detected on one of the components.

The SERENITY patterns are specified according to Patterns Specification Language [3]
but we are going to present some examples using the natural language description for more
clarity. The proposed description includes:

- context description,
- dependability properties,
- a high level solution description.

The knowledge of dependability experts will be captured in the patterns and used by the
application designers to develop dependable and fault tolerant applications. The
applications’ designers have only to express properly their dependability requirements and
do not need to have advance knowledge on dependability principles to be able to create
high quality dependable systems.

114

In the following, we present some examples of dependability patterns. The examples are
described here in natural language for more clarity. In this section we present two patterns:
1) Rollback through Primary Backup Redundancy; 2) Fault masking through active
redundancy.

Example 1: Rollback through Primary Backup Redundancy

Context: At organizational level, the context is presented as the set of agents, their goal and
their resources. It is also needed to describe the relations between the agents such as
delegation and trust. Figure 3 presents the pattern’s context modeled with Tropos [5]. It
consists of two agents a server and a client. The client delegates on execution the
fulfillment of the goal service. There is no trust between the client and the server that can
be justified by the unsatisfactory service failure’s rate.

Provided Properties: Availability (Server,Client,Service) : Server must provide acceptable
Service to Client. The property can be specified qualitatively or quantitatively.

Solution: In order to establish the trust relation between the client and the server, the latter
has to improve the availability of the service. The proposed solution is to adopt the rollback
technique by adding a backup that is updated after each request (Fig. 3).

Context Solution

Figure 3. Tropos models of Context/Solution for Primary Backup pattern

Example 2: Fault masking through Active Redundancy

Context: it corresponds to the same context as the previous pattern.

Provided Properties: Availability (Server,Client,Service), Reliability (Server,Client,
Service),: Server must improve the quality of Service provided to Client.

Solution: In order to establish the missing trust relation between the client and the server,
the latter has to improve the availability and reliability of the service. Active redundancy
constitutes an appropriate technique providing the requested (Fig. 4).

115

Context Solution

Figure 4. Tropos models of Context/Solution for active redundancy pattern

 4.2 SERENITY Runtime

The SERENITY framework enables the creation of adaptive fault tolerant systems
through the patterns’ repository and the runtime framework. When analyzing the properties
provided by the runtime serenity framework, we realize that all serenity enabled systems
will be adaptive and fault tolerant. In fact, the framework itself implements both detection
and recovery mechanisms.
- Detection: the Monitoring Manager (MM) implements the error detection step. In

fact, it is in charge of detecting the failures of the active patterns and to raise alerts
to the Security Manager (SM). In fact, the patterns’ implementations include event
captures that capture the events referenced in the monitoring rules and notify
consequently the MM.

- Recovery: the SM is responsible for ensuring the recovery of the system when
receiving MM’s alerts. In order, to bring back the system to a correct state, the SM
selects new patterns to be applied as counter-measurements to the detected failures.
The error handling is realized according to the architecting patterns chosen at design
time but it is also possible to change from an error handling technique to another at
runtime under certain conditions and if the necessary resources for such
reconfiguration are available. The fault handling is implemented by the application
of the new patterns. This operation allows the reconfiguration of the system
avoiding the reactivation of the detected faults.

6 Conclusions

We have presented in this paper the SERENITY approach for developing dependable and
fault tolerant applications. The key issue is to capture the knowledge of dependability
experts into validated patterns to be used by application designers when developing the

116

system. The runtime framework provides monitoring and recovery mechanisms facilitating
the development of fault tolerant systems.

Acknowledgments. This work has been partly supported by the project EU-IST-IP
SERENITY- 27587.

References

1. http://www.serenity-project.org
2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic Concepts and Taxonomy of

Dependable and Secure Computing. IEEE TDSC. 1(1) (2004)
3. SERENITY Project, A5 Deliverable – A5.D2.1 – Patterns and Integration Schemes Languages.

http://www.serenity-project.org
4. SERENITY Project, A6 Deliverable – A6.D3.1 – Specification of SERENITY Architecture

http://www.serenity-project.org
5. Giorgini P., Massacci F. and Zannone N. (2005). Security and Trust Requirements Engineering. In

Foundations of Security Analysis and Design III - Tutorial Lectures, LNCS 3655, pages 237-272.
Springer-Verlag GmbH.

117

Documenting the Progress of the System Development*

Marta Pląska1, Marina Waldén1 and Colin Snook2

1 Åbo Akademi University/TUCS, Joukahaisenkatu 3-5A, 20520 Turku, Finland
2 University of Southampton, Southampton, SO17 1BJ, UK

Abstract. While UML gives an intuitive image of the system, formal methods
provide the proof of its correctness. We can benefit from both aspects by combining
UML and formal methods. Even for the combined method we need consistent and
compact description of the changes made during the system development. In the
development process certain design patterns can be applied. In this paper we introduce
progress diagrams to document the design decisions and detailing of the system in
successive refinement steps. A case study illustrates the use of the progress diagrams.

Keywords: Progress diagram, Statemachines, Stepwise development, Refinement,
UML, Event-B, Action Systems, Graphical representation.

1. Introduction

For complex systems the stepwise development approach of formal methods is beneficial,
especially considering issues of ensuring the correctness of the system. However, formal
methods are often difficult for industrial practitioners to use. Therefore, they need to be
supported by a more approachable platform. The Unified Modelling Language (UML) is
commonly used within the computer industry but, currently, mature formal proof tools are
not available. Hence, we use formal methods in combination with the semi-formal UML.

For a formal top-down approach we use the Event B formalism [10] and associated proof
tool to develop the system and prove its correctness. Event-B is based on Action Systems
[4] as well as the B Method [1], and is related to B Action Systems [17]. With the Event-B
formalism we have tool support for proving the correctness of the development. In order to
translate UML models into Event B, the UML-B tool [14] is used. UML-B is a
specialisation of UML that defines a formal modelling notation combining UML and B.

The first phase of the design approach is to state the functional requirements of the
system using natural language illustrated by various UML diagrams, such as statechart
diagrams and sequence diagrams that depict the behaviour of the system. The system is
built up gradually in small steps using superposition refinement [3, 9]. We rely on patterns
in the refinement process, since these are the cornerstones for creating reusable and robust
software [2, 7]. UML diagrams and corresponding Event B code are developed for each
step simultaneously. To get a better overview of the design process, we introduce the
progress diagram, which illustrates only the refinement-affected parts of the system and is
based on statechart diagrams. Progress diagrams support the construction of large software
systems in an incremental and layered fashion. Moreover, they help to master the

* Work done within the RODIN-project, IST-511599

118

complexity of the project and to reason about the properties of the system. We illustrate the
use of the diagrams with a case study.

Design patterns in UML and B have been studied previously. Chan et al. [6] work on
identifying patterns at the specification level, while we are interested in refinement patterns.
The refinement approach on design patterns was presented by Ilič et al. [8]. They focused
on using design patterns for integrating requirements into the system models via model
transformation. This was done with strong support of the Model Driven Architecture
methodology, which we do not consider in this paper. Instead we provide an overview of
the development from the patterns.

The rest of the paper is organised as follows. In Section 2 we give an overview of our
case study, Memento, from a general and functional perspective. An abstract specification
is presented as a graphical, as well as a formal representation in Section 3. Section 4
describes stepwise refinement of the system and introduces the idea of progress diagrams.
The system development is analysed and illustrated with the progress diagrams relying on
the case study. We conclude with some general remarks in Section 5.

2. Case study – Memento application

The Memento application [13] that is used as a case study in this paper is a commercial
application developed by Unforgiven.pl. It is an organiser and reminder system that has
lately evolved into an internet-based application. Memento is designed to be a framework
for running different modules that interact with each other.

In the distributed version of Memento every user of the application must have its own,
unique identifier, and all communication is done via a central application server. In addition
to its basic reminder and address book functions, Memento can be configured with other
function modules, such as a simple chat module. Centralisation via the use of a server
allows the application to store its data independently of the physical user location, which
means that the user is able to use his own Memento data on any computer that has access to
the network.

The design combines the web-based approach of internet communicators and an open
architecture without the need for installation at client machines. During its start-up the
client application attempts to connect to a central server. When the connection is
established, the preparation phase begins. In this phase the user provides his/her unique
identifier and password for authorisation. On successful login the server responds by
sending the data for the account including a list of contacts, news, personal files etc.
Subsequently the application searches for modules in a working folder and attempts to
initialise them, so that the user is free to run any of them at any time. During execution of
the application, commands from the server and the user are processed at once. Memento
translates the requested actions of the user to internal commands and then handles them
either locally or via the server. Upon a termination command Memento finalises all the

modules, saves the needed data on the server, logs out the user and closes the connection.
To minimise the risk of losing data, in case of fatal error, this termination procedure is also
part of the fatal exception handling routine.

119

3. Abstract specification

3.1. UML-models

We use the Unified Modelling Language™ (UML) [5], as a way of modelling not only the
application structure, behaviour, and architecture of a system, but also its data structure.
UML can be used to overcome the barrier between the informal industry world and the
formal one of the researchers. It provides a graphical interface and documentation for every
stage of the (formal) development process. Although UML offers miscellaneous diagrams
for different purposes, we focus on two types of these in our paper: sequence diagrams and
statechart diagrams.

The sequence diagram can be used within the development of the system to show the
interactions between objects and in which order these interactions occur. The diagram can
be derived directly from the requirements. Furthermore, it can give information on the
transitions of the statemachines. The interaction between entities in the sequence diagram
can be mapped to self-transitions on the statechart diagram to model communication
between the modelled entity and its external entities.

In our case study the external entities are the server and the users interacting with the
modelled entity Memento. An example of a sequence diagram for the application is given
in Fig. 1, where part of the requirements (the emphasized text in Section 2) concerning the
server connection and the program preparation phase is shown. In the diagram we describe
the initialisation phase of the system, which consists of establishing a connection (in the
connection phase) and then preparing the program (in the preparation phase). The first of
these actions requires the interaction with the server via an internet connection. The second
action requires user interaction as well. The described interaction (in Fig. 1) is transferred
to a statechart diagram as transition tryInit (to later be refined to the transitions tryConn and
tryPrep as in section 4.1).

Fig. 1. Sequence diagram presenting the object interaction in the initialisation phase

120

In statechart diagrams objects consist of states and behaviours (transitions). The state of
an object depends on the previous transition and its condition (guard). A statechart diagram
provides graphical description of the transitions of an object from one state to another in
response to events [12, 11]. The diagram can be used to illustrate the behaviour of instances
of a model element. In other words, a statechart diagram shows the possible states of the
object and the transitions between them.

The statemachine depicting the abstract behaviour of Memento is shown in Fig. 2. The
first phase is to initialise the system by communicating with the server, which is modelled
with the event tryInit. When initialisation has been successfully completed, the transition
goReady brings the system to the state ready, where it awaits and processes the user and
server commands. Upon the command close, the system enters the finalisation phase, which
leads to the system cleanup and proper termination.

The detection of errors in each phase is taken into consideration. In the model, the errors
are captured by transitions targeting the suspended state (susp), where error handling
(rollback) takes place. The system may return to the state where the error was detected, if
the error happens to be recoverable. If the error is non-recoverable, the fatal termination
action is taken and the system operation finishes. Any error detected during or after
finalisation phase is always non-recoverable.

Fig. 2. The abstract statemachine of Memento

3.2. Formal specification

In order to be able to reason formally about the abstract specification, we translate it to the
formal language Event B [10]. An Event-B specification consists of a model and its context
that depict the dynamic and the static part of the specification, respectively. They are both
identified by unique names. The context contains the sets and constants of the model with
their properties and is accessed by the model through the SEES relationship [1]. The
dynamic model, on the other hand, defines the state variables, as well as the operations on
these. Types and properties of the variables are given in the invariant. All the variables are
assigned an initial value according to the invariant. The operations on the variables are
given as events of the form WHEN guard THEN substitution END in the Event-B specification.
When the guard evaluates to true the event is said to be enabled. The events are considered

121

to be atomic, and hence, only their pre and post states are of interest. In order to be able to
ensure the correctness of the system, the abstract model should be consistent and feasible
[10].

Each transition of a statechart diagram is translated to an event in Event-B. Below we
show the Event B-translation of the statemachine concerning the initialisation (state init) of
the cooperation with the server in Fig. 2:

MODEL Memento
SEES Data
VARIABLES is_fatal, is_ok, cmd, state

INVARIANT is_fatal ∈ BOOL ∧ is_ok ∈ BOOL ∧ cmd ∈ CMD ∧ state ∈ STATE ∧

 (state=init ⇒ cmd=no_cmd) ∧ ...
INITIALISATION is_fatal:=FALSE || cmd:=no_cmd || is_ok:=FALSE || state:=init
EVENTS

 tryInit = WHEN state=init ∧ is_ok=FALSE THEN is_ok :∈ BOOL END;

 failInit = WHEN state=init ∧ is_ok=FALSE THEN state:=susp || is_fatal :∈ BOOL END;

 recoverInit= WHEN state=susp ∧ is_ok=FALSE ∧ is_fatal=FALSE THEN state:=init || cmd:=no_cmd END;

 goReady = WHEN state=init ∧ is_ok=TRUE THEN state:=ready END;
 …
END

The variables model a proper initialisation (is_ok), occurrence of a fatal error (is_fatal), as
well as the command (cmd) and the state of the system (state). Initially no command is
given and the initialisation phase is marked as not completed (is_ok := FALSE). The guards
of the transitions in the statechart diagram in Fig. 2 are transformed to the guards of the
events in the Event B model above, whereas the substitutions in the transitions are given as
the substitutions of the events. The feasibility and the consistency of the specification is
then proved using the Event-B prover tool.

4. Modelling refinement steps

It is convenient not to handle all the implementation issues at the same time, but to
introduce details of the system to the specification in a stepwise manner. Stepwise
refinement of a specification is supported by the Event-B formalism. In the refinement
process an abstract specification A is transformed into a more concrete and deterministic
system C that preserves the functionality of A. We use the superposition refinement
technique [3, 9, 17], where we add new functionality, i.e., new variables and substitutions
on these, to a specification in a way that preserves the old behaviour. The variables are
added gradually to the specification with their conditions and properties. The computation
concerning the new variables is introduced in the existing events by strengthening their
guards and adding new substitutions on these variables. New events, assigning the new
variables, may also be introduced.

System C is said to be a correct refinement of A if the following proof obligations are
satisfied [10, 15, 17]:

1. The initialisation in C should be a refinement of the initialisation in A, and it should
establish the invariant in C.

2. Each old event in C should refine an event in A, and preserve the invariant of C.
3. Each new event in C (that does not refine an event in A) should only concern the new

variables, and preserve the invariant.
4. The new events in C should eventually all be disabled, if they are executed in

isolation, so that one of the old events is executed (non-divergence).

122

5. Whenever an event in A is enabled, either the corresponding event in C or one of the
new events in C should be enabled (strong relative deadlock freeness).

6. Whenever an error detection event (event leading to the state susp) in A is enabled, an
error detection event in C should be enabled (partitioning an abstract representation of an
error type into distinct concrete errors during the refinement process [16]).

The tool support provided by Event-B allows us to prove that the concrete specification
C is a refinement of the abstract specification A according to the proof obligations (1) - (6)
given above.

In order to guide the refinement process and make it more controllable, refinement
patterns [11] can be used. The size of the system grows during the development making it
difficult to get an overview of the refinement process. In this paper we introduce progress
diagrams to give an abstraction and graphical-descriptive view documenting the applied
patterns in each step.

4.1. Progress diagrams

We introduce the idea of progress diagram in the form of a table that is divided into a
description part and a diagram part. With this type of table we can point out the design
patterns derived from the most important features and changes done in the refinement step.
It provides compact information about each refinement step, thereby indicating and
documenting the progress of the development. The tabular part briefly describes the
relevant features or design patterns of the system in the development step. Moreover, it
depicts how states and transitions (initiated, refined or anticipated) are refined, as well as
new variables that are added with respect to these features. The diagram part gives a
supplementary view of the current refinement step and is in fact a fragment of the statechart
diagram.

During the development we benefit from the progress diagram, as we concentrate only
on the refined part of the system. The combination of descriptive and visual approaches to
show the development of the system gives a compact overview of the part that is the current
scope of development. This enables us to focus on the details we are most interested in, and
provides a legible picture of the (possibly complex) systems development. The visualisation
helps us to better understand the refinement steps and proofs that need to be performed.
Progress diagrams do not involve any mathematical notation and are, therefore, useful for
communicating the development steps to non-formal methods colleagues. We will illustrate
the use of progress diagrams with our case study Memento.

Fig. 3 depicts the progress diagram of the first refinement step, where states are
partitioned into substates and transitions are added with respect to these. Partitioning the
state init indicates that the initialisation phase is divided into a connection (state conn) and
a preparation (state prep) phase, that both need the cooperation with the server. The state
susp is treated in a similar way. Namely, the hierarchical substates sc, sp, sr and sf are
created, implying that there are in fact various ways of handling the errors, corresponding
to the states conn, prep, ready and finalised. Thereby, more elaborate information about
conditions of error occurrence is added. Note that introducing hierarchical substates
corresponds not only to a more detailed model in the structural sense, but also in the
functional sense. The transitions (events) tryInit, failInit and recoverInit are refined to more
detailed ones taking into account the partitioning of the initialisation phase. The self-
transition tryInit is refined by two events, tryConn and tryPrep, which remain self-

123

transitions for the states conn and prep, respectively. The error handling is refined by
events: failConn and recoverConn for the substate conn, and failPrep and recoverPrep for
the substate prep. The anticipating transition cont is added between the new substates conn
and prep. The new variables are introduced to control the system execution flow. Note that
for the substates sr and sf there are separate diagram parts.

Description States Ref. States Transitions Ref. Transitions New Var.

tryInit tryConn, tryPrep
init

conn
prep

- Cont

failInit failConn, failPrep

1
st
 refinement step:

• creating hierarchi-
cal substates (in
states int and susp)

• adding new transi-
tions concerning
the substates

susp
sc, sp,
sr, sf

recoverInit recoverConn, recoverPrep

is_conn
is_prep
wwaited

Fig. 3. Progress diagram of the first refinement step of Memento

As the refined specification is translated to Event B for proving its correctness, the
progress diagram can provide an overview of the proof obligations needed for the
refinement step concerning the refined and the anticipating events. In the progress diagram
the refined events are the ones given in the column “Refined Transitions” that have a
corresponding event in the column “Transitions” (Proof Obligation (2)). For example in
Fig. 3 events tryConn and tryPrep refine tryInit. Also the anticipating events are given in
the column “Refined Transitions” (event cont in Fig. 3). However, they do not have a
corresponding event in the column “Transitions”. They may only assign the variables in
column “New Variables” according to the invariant (Proof Obligation (3)). Furthermore,
the non-divergence of the anticipating transitions (Proof Obligation (4)) is indicated in the
diagram part by the fact that these transitions do not form a loop [15]. From the columns
“Transitions” and “Refined Transitions” also partitioning of the error detection events is
indicated (Proof Obligation (6)). In Fig. 3 the error detection event failinit is partitioned
into failConn and failPrep.

The result of the first refinement step is shown in the statechart diagram in Fig. 4. When
comparing this diagram to the one in Fig. 3, it is worth mentioning that even if the former
shows the complete system, the diagram is more difficult to read with all its details. As we
focus on the development of a certain part of the system, we particularly want to
concentrate on visualising that part. This is of high importance especially when the system
develops into a significant sized one. Hence, the progress diagram shows the relevant
changes in a more legible way.

124

Fig. 4. Statechart diagram of the first refinement step of Memento

In the second refinement step (not shown) new hierarchical substates are added in the
state prep along with new transitions that make use of them. These hierarchical substates
indicate that the preparation phase is actually composed of two phases (program as well as
module preparation). This step is similar to the one above and is not further described here.

The third refinement step (Fig. 5) strengthens the guards of the transitions (events)
(using the choice symbol - salmiakki [15]) and shows a more detailed failure management.
In fact we split transitions into alternative paths using the choice points. Each path
represents a separate transition whose guard is the conjunction of all the segment guards of
that path [15]. Hence, new variables, concerning communication with the server, are
introduced to express the details of the program preparation phase. These variables
represent sending the identification data (idDataSent), reading the response (respRead), and
checking whether the values for response and user are valid (respValid and userValid).
Furthermore, new failure transitions nIdDS, nRR, nRV and nUV corresponding to these
variables refine the old general failure transition.

Description States Ref. States Transitions Ref. Trans. New Var.

3
rd

 step – adding alternative
paths to transitions - -

FailPrepPr

nIdDS, nRR,
nRV, nUV

idDataSent, respRead,
respValid, userValid

 Fig. 5. Third refinement step

125

Here, the progress diagram also gives an intuitive representation of the proof obligations,
now concerning strengthening the guards of the old events (Proof Obligation (2)). This is
indicated by the transitions between the salmiakki symbols [15] in the diagram part of the
progress diagram. Moreover, the outgoing transitions of these symbols illustrate intuitively
that the relative deadlock freeness (Proof Obligation (5)) is preserved. Again the
partitioning of the error detection event failPrepPr in the columns “Transitions” and
“Refined Transitions” visualises Proof Obligation (6).

5. Conclusion

This paper presents a new approach to documentation of the stepwise refinement of a
system. Since the specification for each step becomes more and more complex and a clear
overview of the development is lacking, we focus our approach on illustrating the
development steps. This kind of documentation is not only helpful for the developers, but
also for those that later will try to reuse the exploited features. The documentation is also
useful for communicating the development to stakeholders outside of the development
team. Thus, a clear and compact form of progress diagrams is appropriate both for industry
developers and researchers.

Formal methods and verification techniques are used in the general design of the
Memento application to ensure that the development is correct. Our approach uses the B
Method as a formal framework and allows us to address modelling at different levels of
abstraction. The progress diagrams give an overview of the refinement steps and the needed
proofs. Furthermore, the use of progress diagrams during the incremental construction of
large software systems helps to manage their complexity and provides legible and
accessible documentation.

In future work we will further explore the link between the progress diagrams and
patterns. We will investigate how suitable the progress diagrams are for identifying and
differentiating patterns used in the refinement steps. Although progress diagrams already
appear to be a viable graphical view of the system development, further experimentation on
other case studies is envisaged leading to possible enhancements of the progress diagrams.
Tool support will be developed for drawing progress diagrams and linking their analysis
with the refined models.

Acknowledgements
We would like to thank Dr Linas Laibinis and Dubravka Ilič for the fruitful discussions on
the use of the tools supporting the research.

References

[1] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, 1996.
[2] J. Arlow and I. Neustadt. Enterprise Patterns and MDA: Building Better Software with

Archetype Patterns and UML. Addison-Wesley, 2004.
[3] R.J.R. Back and R. Kurki-Suonio. Decentralization of process nets with centralized control. In:

Proc. of the 2nd ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, pp.
131-142, 1983.

126

[4] R.J.R. Back and K. Sere. From modular systems to action systems. Software - Concepts and

Tools 17, pp. 26-39, 1996.
[5] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language - a Reference

Manual. Addison-Wesley, 1998.
[6] E. Chan, K. Robinson and B. Welch. Patterns for B: Bridging Formal and Informal

Development. In Proc. of 7th International Conference of B Users (B2007): Formal

Specification and Development in B, LNCS 4355, pp. 125-139, 2007. Springer.
[7] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns. Elements of Reusable

Object-Oriented Software. Addison-Wesley Professional Computing Series, 1995.
[8] D. Ilič and E. Troubitsyna. A Formal Model Driven Approach to Requirements Engineering.

TUCS Technical Report No 667, Åbo Akademi University, Finland, February 2005.
[9] S.M. Katz. A superimposition control construct for distributed systems. ACM Transactions on

Programming Languages and Systems, 15(2):337-356, April 1993.
[10] C. Metayer, J.R. Abrial and L. Voisin. Event-B Language, RODIN Deliverable 3.2 (D7),

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf (May 2005)
[11] Object Management Group. Unified Modelling Language Specification - Complete UML 1.4

specification, September 2001. http://www.omg.org/docs/formal/01-09-67.pdf
[12] Object Management Group Systems Engineering Domain Special Interest Group (SE DSIG). S.

A. Friedenthal and R. Burkhart. Extending UML™ from Software to Systems. (accessed
04.05.2007) http://www.syseng.omg.org/

[13] M. Olszewski and M. Pląska. Memento system. http://memento.unforgiven.pl, 2006.
[14] C. Snook and M. Butler. U2B - a tool for translating UML-B models into B. In UML-B

Specification for Proven Embedded Systems Design, chapter 5. Springer, 2004.
[15] C. Snook and M. Waldén. Refinement of Statemachines using Event B semantics. In Proc. of

7th International Conference of B Users (B2007): Formal Specification and Development in B,
Besançon, France, LNCS 4355, January 2007, pp. 171-185. Springer.

[16] E. Troubitsyna. Stepwise Development of Dependable Systems. Turku Centre for Computer
Science, TUCS, Ph.D. thesis No. 29. June 2000.

[17] M. Waldén and K. Sere. Reasoning About Action Systems Using the B-Method. Formal

Methods in Systems Design 13(5-35), 1998. Kluwer Academic Publishers.

127

Recording Accurate Process Documentation in

the Presence of Failures

Zheng Chen, Luc Moreau

School of Electronics and Computer Science
University of Southampton

Southampton, SO17 1BJ, UK
zc05r@ecs.soton.ac.uk, L.Moreau@ecs.soton.ac.uk

Abstract. Scienti�c and business communities present unprecedented
requirements on provenance, where the provenance of some data item is
the process that led to that data item. Previous work has conceived a
computer-based representation of past executions for determining prove-
nance, termed process documentation, and has developed a protocol,
PReP, to record process documentation in service oriented architectures.
However, PReP assumes a failure free environment. The presence of fail-
ures may lead to inaccurate process documentation, which does not re-
ect reality and hence cannot be trustable and utilised. This paper out-
lines our solution, F PReP, a protocol for recording accurate process
documentation in the presence of failures.

1 Introduction

In scienti�c and business communities, a wide variety of applications have pre-
sented unprecedented requirements [11] for knowing the provenance of their data
products, e.g., where they originated from and what has happened to them since
creation. In chemistry experiments, provenance is used to detail the procedure
by which a material is generated, allowing the material to be patented. In health-
care applications, in order to audit if the proper decisions were made and the
proper procedures were followed for a given patient, there is a need to trace
back the origins of these decisions and procedures. In engineering manufactur-
ing, keeping track of the history of generated data in simulations is important for
users to analyze the derivation of their data products. In �nance business, the
provenance of some data item establishes the origin and authenticity of the data
item produced by �nancial transactions, enabling users, reviewers and auditors
to verify if these transactions are compliant with speci�c �nancial regulations.

To meet these requirements, Groth et al. [7] have proposed an open architec-
ture to record and access a computer-based representation of past executions,
termed process documentation, which can be used for determining the prove-
nance of data. A generic recording protocol, PReP [8], has been developed to
provide interoperable means for recording process documentation in the context
of service oriented architectures. In their work, process documentation is mod-
elled as a set of assertions (termed p-assertions) made by actors (i.e., either

128

clients or services) involved in a process (i.e., the execution of a workow). Each
p-assertion documents some steps of the process, e.g., a client invoked a service
or the amount of CPU an actor used in a computation. A dedicated repository,
termed provenance store, is used to maintain p-assertions. For scalability rea-
son, multiple provenance stores may be employed and process documentation
may end up distributed, linked by pointers recorded along with p-assertions in
each store. Using the pointer chain, distributed process documentation can be
retrieved from one store to another.

Process documentation serves as evidence for what actually happened in
computer systems [9]. Users interpretate such a documentation as statements
made by actors about what they have observed. Therefore, process documenta-
tion should in nature be accurate, i.e., it must document events that happened
in a process and must not be based on inferences. Otherwise, users would not
trust and utilize it when deriving the provenance of their data products.

Recording process documentation in the presence of failures is an issue that
has been lacking attention. PReP assumes a system in which no failure occurs.
However, large scale, open distributed systems are not failure-free [4]. For ex-
ample, a service may not be available and network connection may be broken.
Failures can lead to inaccurate process documentation: documentation may fail
to describe events that occurred, it may describe events that did not happen, or
the pointer chain may be broken. Inaccurate process documentation can have dis-
astrous consequences. For example, in a provenance-based service billing system,
if a user invoked a service, but documentation fails to describe this invocation,
or if a user failed to invoke a service, but its recorded documentation reveals that
the invocation occurred, then the user will be charged too little or too much,
respectively, which is not acceptable. Also, process documentation distributed
in multiple provenance stores may not be retrievable in its entirety because the
pointer chain may be broken due to failures.

To address these problems, we have designed a protocol, F PReP [3], to
record accurate process documentation in the presence of failures. It consists of
three phases: Exchanging, Recording and Updating. In Exchanging phase, two
actors exchange an application message and produce documentation describing
the exchange of that message. Asynchronously, in Recording phase, both actors
submit their documentation to their respective provenance store. F PReP pro-
vides guaranteed recording of documentation in the presence of failures through
the use of redundant provenance stores. If the pointer chain is broken in the two
phases, the Updating phase begins. A novel component, Recovery Coordinator,
is introduced to �x any broken pointer chain. The protocol has been formalised
as an abstract state machine and its correctness has been proved. In this paper,
we outline F PReP, and introduce its formalisation and proof.

2 F PReP Overview

Terminology and Requirements Process documentation describes a process that
led to a result. Such a process is modelled as a set of interactions between actors

129

involved in that process [7]. Each interaction is concerned with one application
message exchanged between two actors, i.e., the sender and the receiver. Each
actor documents the interaction using p-assertions and records them in a prove-
nance store. Since the two asserting actors in an interaction may use di�erent
stores, they must also record a pointer, termed viewlink, indicating where the
other actor records its p-assertions. After repeating these actions for all interac-
tions of a process, the documentation of that process is obtained resulting in a
bidirectional pointer chain, connecting all the stores hosting the documentation
of that process. Therefore, to record accurate process documentation, we need
to ensure that each interaction record, i.e., the documentation of an interaction,
is accurate preserving the following properties: (1) Each actor's p-assertions de-
scribe what actually happened in that interaction from that actor's viewpoint
(Assertion Accuracy); (2) Each actor's viewlink points to the provenance store
where the other actor recorded p-assertions in that interaction (ViewLink Ac-

curacy). In addition, the protocol needs to enforce that (3) all p-assertions pro-
duced by each actor in an interaction and the actor's viewlink must be recorded
in a provenance store in the presence of failures (Documentation Availability).

Assumptions Our failure assumptions are the following: asserting actors, prove-
nance stores may crash, i.e., they halt and stop any further execution, and never
recover. However, we assume that there is no failure in a provenance store's per-
sistent storage. We assume that each asserting actor keeps a list of provenance
store addresses and at least one store is available. Communication channels can
lose and reorder, but not duplicate messages. Process documentation may be in-
accurate when an actor is maliciously recording incorrect information. However,
we assume this case does not happen.

To ensure separation of concerns, each actor employs a Communication Agent
(CA) to send/receive messages to/from other actors. We assume that the sender
CA can use acknowledgement, timeout and retransmission to reliably deliver a
message, and report the delivery outcome to the sending actor: success or failure.
It reports success noti�cation if the message is acknowledged, indicating that the
receiver CA has received that message. It also reports failure noti�cation if the
message fails to be delivered or it is not acknowledged even after retry attempts.
In this way, our protocol does not have to handle communication details but can
focus on actions in response to the noti�cations (in sending actors) and messages
(in receiving actors) provided by CA.

Exchanging Phase In the exchanging phase, two actors, the sender S and the
receiver R, exchange an application message app and document the interaction,
as demonstrated in Figure 1. To facilitate creating and recording interaction
records, each actor employs a Recording Manager (RM). In order to form a
pointer chain, the two actors also exchange a pointer to their respective prove-
nance store. For this purpose, S embeds its pointer in app, while R informs
S with its pointer in a separate message linkr. Meanwhile, each actor creates
an interaction record which includes the p-assertions describing the interaction,
and a viewlink, i.e., the other actor's pointer. The created interaction record

130

is accumulated in RM before being sent to a provenance store. This bu�ering
of interaction records is designed to reduce the performance penalty upon the
application by allowing the actor to send interaction records when convenient.

Fig. 1. Exchanging Phase

In order to create an accurate interaction record, an actor must only assert
facts that it can observe. Hence, we specify some rules for asserting actors to
follow. (1) S must assert that an interaction occurred if and only if it receives
SUCCESS noti�cation from its CA for delivering app message; (2) S must assert
failure information when receiving FAILURE noti�cation from its CA for deliv-
ering app message. One reason for this rule is that failure information provides
evidence that an interaction was attempted even if that interaction failed. With-
out such information, there would be no record of the attempted interaction; (3)
S must record R's pointer as its viewlink if it receives the pointer; (4) R must as-
sert that an interaction occurred after it receives app message; (5) R must record
S's pointer as its viewlink after it receives the pointer; (6) R must assert failure
information when receiving a FAILURE noti�cation from its CA for delivering
linkr. This is because S may not receive the pointer, disconnecting the chain. In
this case, S takes no action and the assertion made by R will be used to �x the
broken chain in Updating phase; (7) S and R may generate application speci�c
p-assertions.

Recording Phase F PReP provides guaranteed recording of interaction record
in the presence of failures through the use of redundant provenance stores. Figure
2 illustrates this phase. In Step 1, an actor's RM submits an interaction record
to a provenance store PS. In Step 2, PS stores the interaction record that it
receives in its persistent storage. After successfully recording the interaction
record, it replies the submitting actor with an acknowledgement (Step 3). We
have assumed that there is no failure in persistent storage; hence any interaction
records stored in a provenance store's persistent storage remain available forever.
If the actor's RM receives FAILURE noti�cation from CA for delivering the
interaction record or it does not receive the acknowledgement before a timeout,
then it can imply that failures may have occurred, e.g., PS has crashed. In the
two cases, the RM may resend the interaction record to PS. Since a crashing
provenance store can no longer be used for further recording, the RM needs to
use an alternative store after retry attempts also fail. We have assumed that
each asserting actor keeps a list of provenance store addresses and at least one

131

store is available, therefore, the use of redundant stores ensures that an actor's
interaction record is eventually recorded. Only after the acknowledgement is
received, can the RM eliminate the accumulated interaction record. The use of
an alternative store would result in a broken pointer chain if an actor's original
pointer has been sent to the other actor, which now does not point to a correct
location. Hence, the RM needs to add an assertion documenting the use of an
alternative store in its interaction record so that actions can be taken to �x any
broken chain in the next phase.

Fig. 2. Recording Phase

Updating Phase In this phase, the protocol updates an actor's viewlink in
order to �x a potentially broken pointer chain. A pointer chain may be broken in
two situations, as demonstrated in Figure 3. (1) R gets a FAILURE noti�cation
when sending linkr to S in Step 2, hence S may not know R's pointer; (2) If
an actor, say S, does not successfully record its interaction record in Step 3 and
selects an alternative store, say PS10, to submit the record, then S's pointer
sent to R in Step 1 does not point to the correct location, PS10. In either
case, an actor has made an assertion documenting failure information when
delivering linkr or the use of an alternative store, as described in the previous
two phases. We use BROKEN to denote any of the two assertions in Step 4, since
either assertion documents a fact that may cause a broken pointer chain. Upon
receipt of a BROKEN, a provenance store requests a novel component, Recovery
Coordinator, to facilitate repairing the broken chain (Step 5). By taking remedial
actions, the Recovery Coordinator updates the viewlink in a destination store
(Step 6) with any broken pointer chain �xed. In the example of Figure 3, when
the protocol terminates, PS10 has a viewlink to PS2 and vice versa.

We assume that the Recovery Coordinator does not fail. There is only one
Recovery Coordinator, so we can use traditional fault-tolerant mechanisms such
as replication to ensure its reliability and availability. Recovery Coordinator is
necessary to �x a broken pointer chain, since both actors in an interaction may
each report a BROKEN, as shown in Figure 3. In this case, direct communication
between two actors' provenance stores does not help, because at that moment,
one does not know which store the other actor is using. For example, in the
�gure, R does not know that S is using PS10 and S does not know where R's p-
assertions are stored. Assuming that the pointer chain is not broken frequently,

132

Fig. 3. Updating Phase

the Recovery Coordinator is not involved in each interaction and hence does not
a�ect the system's scalability, despite being centralised.

3 Protocol Analysis and Formalisation

Protocol Analysis The agreement on interaction occurrence may not be reached
by the sender and receiver of an application message. If the sender gets a failure

noti�cation, it is impossible for it to decide whether the receiver has received that
message or not [10]. If the receiver happens to receive the application message, an
inconsistency occurs, i.e., the sender asserts failure information while the receiver
documents that the interaction has occurred. Such an inconsistency reects the
di�erence between the sender and receiver's knowledge of an interaction, which
does not contradict the Assertion Accuracy requirement. Therefore, our protocol
does not need to remove such an inconsistency.

Concurrency is a major concern to the correctness of the protocol. The pro-
tocol speci�es actions for asserting actors, provenance stores, and Recovery Co-
ordinator, which may co-operate with one another. On receiving messages from
di�erent components, the receiver has to respond properly against all the pos-
sible message arrival orders. For example, a provenance store may concurrently
receive an interaction record from an asserting actor and an update message from
Recovery Coordinator; Recovery Coordinator may receive two repair messages
from two provenance stores in any order. The concurrency issue hence requires
us to rigorously design the protocol.

Formalisation F PReP has been formalised through the use of an abstract state
machine (ASM). The machine's behaviour is described by states and transitions
between those states. Such a formalisation provides a precise, implementation-
independent means of describing the system.

Figure 4 shows the system state space. We identify speci�c subsets of ac-
tors in the system, namely, senders, receivers, provenance stores, and Recovery

133

Coordinator. Protocol messages are sent over communication channels, denoted
by K. Since no assumption is made about message order in channels, channels
are represented as bags of messages between pairs of actors. The set of each of
protocol messages is de�ned formally as an inductive type. For example, the set
of Application Messages is de�ned by an inductive type whose constructor is app
and whose parameters are from the set of Data, ID and OL1. The set of all
messagesM is de�ned as the union of these message sets. CA's noti�cations are
modelled as two messages: failure(m) and success(m). The power set notation
(P) denotes that there can be more than one of a given element. We specify
several notations representing p-assertions. The notation Occurrence stands for
an assertion which documents the occurrence of an interaction. The notation
FailureInfo(pa) denotes any assertions describing failure information during the
delivery of an application message, while Broken(pa) represents any assertions
documenting a fact that may cause a broken pointer chain.

The internal functionality of each kind of processes is modelled as follows.
(1) The set ACTOR models all the asserting actors, each identi�ed by an actor
identity. Informally, each asserting actor contains a table (actor T) that maps an
interaction identity (id) and the actor's view kind (v), i.e., Sender or Receiver, to
a tuple: the state of its ownlink (stl), the state of an interaction record (st), the
actor's ownlink (ol) and its viewlink (vl). An asserting actor's p-assertions are
accumulated in a message queue before being sent to a provenance store. The
queue is modelled by a table (queue T). The table timer T maintains timing
information such as timer status, current time, timing interval and timeout,
which is used by an asserting actor's RM in Recording phase. The notation
LC de�nes a function that maps a sender identi�er to a natural number, used
to distinguish interactions between the sender and receiver. The sender needs
to ensure that the natural number is locally unique in each interaction. (2)
The set PS models provenance stores, each identi�ed by an actor identity. Each
provenance store contains a table (store T) that maps an interaction identity (id)
and a view kind (v) to a tuple: recorded p-assertions (pas) and a viewlink (vl).
(3) The set C models coordinators. There is only one coordinator, identi�ed by
ac, and it also keeps a table (coord T). For each interaction (id) and for each view
kind (v) in the interaction, the table stores a tuple: the destination provenance
store (adps) to be updated and the ownlink (ol) of the asserting actor with this
view kind.

Given the state space, the ASM is described by an initial state and a set
of transitions. Figure 4 contains the initial state, which can be summarised as
empty channels and empty tables in all processes. The ASM proceeds from this
state through its execution by going through transitions that lead to new states.

The permissible transitions in the ASM are described through rules. Rules
are identi�ed by their name and a number of parameters that the rule operates
over. Once a rule's conditions are met, the rule �res. The execution of a rule
is atomic, so that no other rule may interrupt or interleave with an executing

1 An asserting actor's ownlink, OL, refers to the provenance store where the asserting
actor records its own p-assertions.

134

A = fa1; a2; : : : ; ang (Set of Actor Identities)
SID � A (Sender Identities)
RID � A (Receiver Identities)
PID � A (Provenance Store Identities)
ac � A (Coordinator Identity)

M = app : Data� ID� OL!M (Application Messages)
j linkr : ID� VK� OL!M (R's Ownlink Messages)
j record : ID� VK� VL� P (PAssertion)!M (Interaction Record Messages)
j ack : ID� VK!M (Record Ack Messages)
j repair : ID� VK� DestPS� OL!M (Repair Messages)
j update : ID� VK� OL!M (Update Messages)
j failure :M!M (Failure Noti�cations)
j success :M!M (Success Noti�cations)

ID = fid1; id2; : : : ; idng (Set of Interaction Identi�ers)
VK = fS, Rg (Set of ViewKinds)
OL = PID (Set of an Actor's Ownlinks)
VL = PID (Set of an Actor's Viewlinks)

DestPS = PID (Set of Destination Stores)
PAssertion = fOccurrence; FailureInfo(pa);Broken(pa); pa1; : : : ; pang (Set of P-Assertions)

ACTOR = A! ID� VK! STL� STR� OL� VL (Set of Asserting Actors)
STL = f?; SENT; F;OKg (States of an OwnLink)
STR = f?; SENT;OKg (States of Interaction Record)

QUEUE = A� ID! Bag(PAssertion) (Set of Quened P-Assertions)

TIMER = A� ID! Status� CurrentTime�
Interval�Timeout (Set of Timers)

Status = f?; Enabled;Disabledg (Set of Timer Statuses)
CurrentTime = ft1; t2; : : : ; tng (Set of Current Times)

Interval = f�1; �2; : : : ; �ng (Set of Timing Intervals)
Timeout = fto1; to2; : : : ; tong (Set of Timeouts)

LC = SID! N (Sender's Local Counts)

PS = A! ID� VK! VL� P (PAssertion) (Set of Provenance Stores)

C = A! ID� VK! DestPS� OL (Set of Coordinators)

K = A� A! Bag(M) (Set of Channels)

Characteristic Variables:
a 2 A, as 2 SID, ar 2 RID, aps 2 PID, m 2 M, d 2 Data, pa 2 PAssertion, pas 2 P (PAssertion),
id 2 ID, v 2 VK, adps 2 DestPS, ol 2 OL, vl 2 VL, stl 2 STL, str 2 STR, status 2 Status,
t 2 CurrentTime, � 2 Interval, to 2 Timeout, actor T 2 ACTOR, queue T 2 QUEUE,
timer T 2 TIMER, lc 2 LC, store T 2 PS, coord T 2 C, k 2 K

Con�guration: c = hactor T; queue T; timer T; store T; coord T; ki

Initial State: ci = hactor Ti; queue Ti; timer T; store Ti; coord Ti; kii
where:
actor Ti = �a�idv � h?;?;?;?i, queue Ti = �aid � ;,
timer Ti = �a�idv � h?;?;?;?i, store Ti = �a�idv � h?; ;i,
coord Ti = �a�idv � h?;?i, ki = �aiaj � ;

Fig. 4. System State Space

135

send app(as; ar; id; ls; d) :
id = newIdentifier(as; ar)

! f
send(app(d; id; ls); as; ar);
actor T (as)(id; S) := hSENT;?; ls;?i ;

g

failure app(as; ar; id; ls; d) :
failure(app(d; id; ls)) 2 k(as; ar)^
fFailureInfo(pa); pa2; : : : ; pang = createPA()

! f
receive(failure(app(d; id; ls)); as; ar);
queue T (as; id) := queue T (as; id)�
fFailureInfo(pa); pa2; : : : ; pang ;
actor T (as)(id; S):stl := F;

g

success app(as; ar; id; ls; d) :
success(app(d; id; ls)) 2 k(as; ar)^
fOccurrence; pa2; : : : ; pang = createPA()

! f
receive(success(app(d; id; ls)); as; ar);
queue T (as; id) := queue T (as; id)�
fOccurrence; pa2; : : : ; pang ;
actor T (as)(id; S):stl := OK;

g

receive linkr(as; ar; id; lr) :
linkr(id; R; lr) 2 k(as; ar)

! f
receive(linkr(id; R; lr); ar; as);
actor T (as)(id; S):vl := lr;

g

Fig. 5. The Sender's rules in Exchanging phase

receive app(as; ar; id; d; ls; lr) :
app(d; id; ls) 2 k(as; ar)^
fOccurrence; pa2; : : : ; pang = createPA()

! f
receive(app(d; id; ls); as; ar);
queue T (ar; id) := queue T (ar; id)�
fOccurrence; pa2; : : : ; pang ;
send(linkr(id; R; lr); ar; as);
actor T (ar)(id; R) := hSENT;?; lr; lsi ;
// business logic

g

failure linkr(as; ar; id; lr) :
failure(linkr(id; R; lr)) 2 k(as; ar)^
fBroken(pa)g = createPA()

! f
receive(failure(linkr(id; R; lr)); ar; as);
queue T (ar; id) := queue T (ar; id)�
fBroken(pa)g ;
actor T (ar)(id; R):stl := F;

g

success linkr(as; ar; id; lr) :
success(linkr(id; R; lr)) 2 k(as; ar)

! f
receive(success(linkr(id; R; lr)); ar; as);
actor T (ar)(id; R):stl := OK;

g

Fig. 6. The Receiver's rules in Exchanging phase

rule. This maintains the consistency of the ASM. A new state is achieved after
applying all the rule's pseudo-statements to the state that met the conditions
of the rule. A rule's pseudo-statements consist of a set of send, receive and
table update operations. Informally, send(m; a1; a2) inserts a message m into
the channel from actor a1 to actor a2, and receive(m; a1; a2) removes m from
the channel between a1 and a2. A table update operation places a message into
a table or changes the state of a table �eld.

Due to space restriction, we only give the Sender and Receiver's rules in
Exchanging Phase in Figure 5 and 6. These rules precisely specify an asserting
actor's behaviour described in Section 2. The whole set of rules can be found
at [3]. The function newIdentifier(as; ar) creates a globally unique interaction
identi�er, which can be a tuple consisting of the sender and receiver's identity
plus a locally unique number managed by the sender, expressed as has; ar; lc(as)i.
The function createPA() generates a set of p-assertions and the operator �
denotes union on bags.

The propertiesDocumentation Availability,Assertion Accuracy andViewLink
Accuracy have been formalised as the following invariants. The notations v and v

stand for the two views in an interaction and actor T (as; id; S):stl = OK marks

136

the occurrence of an interaction.

Documentation Availability:
(P1) If actor T (as)(id; S):stl = OK, then
8v 2 VK, Occurrence 2 store T (aps)(id; v):pas ^ store T (aps)(id; v):vl 6= ?,
such that aps = actor T (av)(id; v):ol.
(P2) If actor T (as)(id; S):stl = F, then
FailureInfo(pa) 2 store T (aps)(id; S):pas, such that aps = actor T (as)(id; S):ol.

Assertion Accuracy:
(P3) If 8v 2 VK, Occurrence 2 store T (aps)(id; v):pas, then
actor T (as)(id; S):stl = OK, such that aps = actor T (av)(id; v):ol.
(P4) If FailureInfo(pa) 2 store T (aps)(id; S):pas, then
actor T (as)(id; S):stl = F, such that aps = actor T (as)(id; S):ol.

Viewlink Accuracy:
(P5) If actor T (as)(id; S):stl = OK, then
8v 2 VK, store T (aps)(id; v):vl = actor T (av)(id; v):ol,
such that aps = actor T (av)(id; v):ol.

We have proved that these invariants hold when the protocol terminates.
Given an arbitrary valid con�guration of the ASM, our proofs typically proceed
by induction on the length of the transitions that lead to the con�guration, and
by a case analysis on the kind of transitions. We show that a property is true
in the initial con�guration of the machine and remains true for every possible
transition. This kind of proof is systematic, less error prone and can be easily
encoded in a mechanical theorem prover.

4 Related Work and Conclusion

Much research has been seen to support recording process documentation, e.g.,
Chimera [5], myGrid [12], PReP [8, 7] and Kepler [1]. From an analysis of these
works, only PReP provides an application-independent solution to recording pro-
cess documentation. However, all the surveyed systems either assume a failure-
free execution environment or do not discuss this issue.

Redundancy has long been used as a means to provide fault tolerance in
distributed systems [2]. Key components may be replicated (replication in space)
or re-executed (replication in time) to protect against hardware malfunctions or
transient system faults. Our work adopts this mechanism through the use of
redundant provenance stores and retransmission of messages.

Distributed transactions typically requires all-or-nothing atomicity to main-
tain system consistency [6]. The all-or-nothing property is not applicable to our
work. Assume that the asserting actors and provenance stores are the partici-
pants in a transaction. If any participant fails after the interaction took place,
then the recording action is aborted and hence the documentation about that
interaction cannot be recorded. This is not desired since process documenta-
tion must reect reality and document events that happened in a process. As

137

long as the interaction has occurred, its documentation must be recorded in a
provenance store.

In conclusion, we have presented a protocol F PReP for recording accu-
rate process documentation in the presence of failures. Compared with PReP,
F PReP not only keeps the application-independent nature, but also guarantees
that process documentation is accurate and available in a provenance store in
the presence of failures. Also, it enables distributed process documentation to
be still retrievable in large scale distributed environments where failures may
occur. The protocol is being implemented and its performance will be evaluated
in future work.

References

1. Ilkay Altintas, Oscar Barney, and Efrat Jaeger-Frank. Provenance collection sup-
port in the kepler scienti�c workow system. In Proceedings of the International
Provenance and Annotation Workshop (IPAW'06), pages 118{132, 2006.

2. Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E. Landwehr.
Basic concepts and taxonomy of dependable and secure computing. IEEE Trans.
Dependable Sec. Comput., 1(1):11{33, 2004.

3. Zheng Chen. Accurately recording process documentation in the presence of fail-
ures. Mini thesis, School of Electronics and Computer Science, University of
Southampton, UK, http://www.ecs.soton.ac.uk/�zc05r/protocol, 2007.

4. Ewa Deelman and et. al. Managing large-scale workow execution from resource
provisioning to provenance tracking: The cybershake example. In Proceedings of
the e-Science 2006 Conference in Amsterdam, the Netherlands, December 2006.

5. Ian T. Foster, Jens-S. V�ockler, Michael Wilde, and Yong Zhao. The virtual data
grid: A new model and architecture for data-intensive collaboration. In CIDR,
2003.

6. Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques.
Morgan Kaufmann Publishers, 1993.

7. Paul Groth, Sheng Jiang, Simon Miles, Steve Munroe, Victor Tan, So�a Tsasakou,
and Luc Moreau. An architecture for provenance systems. Technical Report D3.1.1,
University of Southampton, February 2006.

8. Paul Groth, Michael Luck, and Luc Moreau. A protocol for recording provenance
in service-oriented grids. In Proceedings of the 8th International Conference on
Principles of Distributed Systems (OPODIS'04), France, 2004.

9. Paul Groth, Simon Miles, and Steve Munroe. Principles of high quality docu-
mentation for provenance: A philosophical discussion. In Proceedings of Third
International Provenance and Annotation Workshop, Chicago, 2006.

10. Nancy Lynch. Distributed Algorithms. Morgan Kaufmann, 1997.
11. Simon Miles, Paul Groth, Miguel Branco, and Luc Moreau. The requirements of

recording and using provenance in e-science experiments. Journal of Grid Com-
puting, 2006.

12. Jun Zhao, Chris Wroe, Carole A. Goble, Robert Stevens, Dennis Quan, and
R. Mark Greenwood:. Using semantic web technologies for representing e-science
provenance. International Semantic Web Conference, pages 92{106, 2004.

138

Vertical and Horizontal Composition
in Service-Oriented Architecture

Anatoliy Gorbenko1, Vyacheslav Kharchenko1,
Alexander Romanovsky2

1 Department of Computer Systems and Networks, National Aerospace University,

Kharkiv, Ukraine
A.Gorbenko@csac.khai.edu, V.Kharchenko@khai.edu

2 School of Computing Science, Newcastle University, Newcastle upon Tyne, UK
Alexander.Romanovsky@newcastle.ac.uk

Abstract. Achieving high dependability in the Service-Oriented Architecture
(SOA) is an open problem. One of the possible solutions for this problem is
employing service diversity represented by a number of component web
services with the identical or similar functionality at the each level of the
composite system hierarchy during service composition. It is clear that such
redundancy can improve web service reliability (trustworthiness) and
availability. However to apply this approach we need to solve a number of
problems. The paper proposes several solutions for ensuring dependable
services composition when natural service redundancy and diversity are used.

1 Introduction

The Web Services (WS) architecture [1] based on the SOAP, WSDL and UDDI
specifications is rapidly becoming a de facto standard technology for organization of
global distributed computing and achieving interoperability between different
software applications running on various platforms. It is now extensively used in
developing numerous business-critical applications for banking, auctions, Internet
shopping, hotel/car/flight/train reservation and booking, e-business, e-science, GRID-
systems, etc. That is why analysis and dependability ensuring of this architecture are
emerging areas of research and development [1–3]. The WS architecture is in effect a
further step in the evolution of the well-known component-based system development
with off-the-shelf (OTS) components. The main advances enabling this architecture
have been made by the standardisation of the integration process (a set of interrelated
standards such as SOAP, WSDL, UDDI, etc.). WSs are the OTS components for
which a standard way of advertising their functionality has been widely adopted.

In the paper we analyse possible Web Services composition modes and also
propose solutions making use of the natural redundancy and diversity which exists in
such systems and guaranteeing that the overall dependability (availability, correctness
and responsiveness) of the composite system is improving.

139

2 Web Services Composition

Web service composition is currently an active area of research, with many languages
being proposed by academic and industrial research groups. IBM’s Web Service
Flow Language (WSFL) [4] and Microsoft’s XLANG [5] were two of the earliest
languages to define standards for Web services composition. Both languages
extended W3C's Web Service Description Language (WSDL) [6], which is the
standard language used for describing the syntactic aspects of a Web service.
Business Process Execution Language for Web Services (BPEL4WS) [7] is a recently
proposed specification that represents the merging of WSFL and XLANG.
BPEL4WS combines the graph oriented process representation of WSFL and the
structural construct based processes of XLANG into a unified standard for Web
services composition.

In addition to these commercial XML based standards, there have been work on a
unique Web service composition language called Web Ontology Language for
Services (www.daml.org/services) OWL-S (previously known as DAML-S) [8],
which provides for a richer (more semantic) description of Web service compositions.

In our work we focus on the general patterns (types) of this composition and
identify two typical blueprints of composing WSs: i) “vertical” composition for
functionality extension, and ii) “horizontal” composition for dependability
improvement.

The first type of service composition (“vertical”) is used for building the Work-
Flow (WF) of the systems and is already supported by BPEL, BPML, XPDL, JPDL
and other WF languages.

The second one (“horizontal”) deals with a set of redundant (and possible diverse)
Web Services with identical or similar functionality and is used for improvement of
various dependability attributes (availability, trustworthiness, responsibility, etc.).

Bellow we show some illustrative examples of two different types of WSs
composition and discuss the way in which the “horizontal” composition improves
dependability of SOA.

2.1 Vertical Composition for Functionality Extension

Vertical composition (Fig. 1-a) extends the Web Services functionality. New
Composite Web Service is composed out of several target services which provide
different functions. For example, “Travel Agency (TA) Service” can be composed of
“Flight Service”, “Car Rental Service”, “Hotel Service”, etc.

The composite Web Service can invoke a set of target (composed) services
concurrently to reduces the mean execution time or sequentially (if execution of one
service depends on the result of another one). In case when some of the target
(composed) services fails or cannot satisfy user the request all other services will
have to be rolled back and their results should be cancelled. To improve
dependability of such composite system various means of fault-tolerance and error
recovery should be implemented (redundancy, exception handling, forward error
recovery, etc.).

140

Leisure
Web Service

Flight
Web Service

Hotel
Web Service

Flight
Web Service

Car
Web Service

Train/Coach
Web Service

Flight
Web Service

Car
Web Service

Train/Coach
Web Service

Hotel
Web Service

Flight
Web Service

Car Rental
Web Service

Train/Coach
Web Service

Flight
Service

Trip
Service

Travel Agency
Service

Travel&Leisure
Service

. . .

Functionality extension

V
er

tic
al

 C
om

po
si

tio
n

. . .Air
France

Airways
British

Hilton Marriott

Lufthansa

Paramount. . .

Flight
Web Service

Hotel
Web Service

Redundancy/Diversity Extention

Horizontal Composition

a) b)

Fig. 1. Web Services Composition: a) vertical; b) horizontal

2.2 Horizontal Composition for Dependability Improvement

Horizontal composition (Fig. 1-b) uses several alternative (diverse) Web Services
with the identical (or similar) functionality or several operational releases of the same
service (Table 1). Such kind of redundancy which based on natural diversity
improves reliability (correctness and trustworthiness) of Web Service.

Table 1. An example of existed alternative (diverse) Web Services

Diverse Stock Quotes Web Services
stock_wsx.GetQuote:
 http://www.webservicex.com/stockquote.asmx?WSDL
stock_gama.GetLatestStockDailyValue:
 http://www.gama-system.com/webservices/stockquotes.asmx?wsdl
stock_xmethods.getQuote:
 http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl
stock_sm.GetStockQuotes:
 http://www.swanandmokashi.com/HomePage/WebServices/StockQuotes.asmx?WSDL

Diverse Currency Exchange Web Services
currency_exchange.getRate:
 http://www.xmethods.net/sd/CurrencyExchangeService.wsdl
currency_convert.ConversionRate:
 http://www.webservicex.com/CurrencyConvertor.asmx?wsdl

Architecture with horizontal composition includes a “Service Resolver” which
adjudicates the responses from the all diverse Web Services and returns an
adjudicated response to the consumer. In the simplest case “Service Resolver” is a
“Voter” (i.e. performing majority voting using the responses from diverse Web

141

Services). Papers [10-13] introduce special components (called “Mediator”, “Proxy”,
“Service Container” or “Wrapper”) performing similar functionality.

Combined vertical and horizontal composition supports two possible operating
modes:
1. Concurrent-alternative execution (Fig. 2-a) with voting at the each level.
2. Sequential-alternative execution (Fig. 2-b) with voting at the top level.

Air
France

Airways
British Lufthansa

Service Resolver/Voter

Hilton Marriott Paramount

SpeedyLuxury Express

Hotel
Web Service

Coach
Web Service

Car Rental
Web Service

Flight
Web Service

Composite Travel Agency Web Service

Service Resolver/Voter

Service Resolver/Voter

Service Resolver/Voter

Hertz Budget

Service Resolver/Voter

Air
France

Luxury

Hertz

Airways
British

Marriott

Express

Lufthansa

Paramount

Speedy

Budget

Flight

Hilton

Coach

Hotel

Car
Rental

Travel Agency
Web Service v.1

Travel Agency
Web Service v.2

Travel Agency
Web Service v.3

Composite Travel Agency Web Service

b)

a)

Fig. 2. Combined vertical and horizontal Web Service composition: a) concurrent-alternative
execution; b) sequential-alternative execution

3 Middleware-based Architecture Supporting
 Horizontal Composition

In [9] we proposed an architecture which uses a middleware for a managed dependable
upgrade and “horizontal” composition of Web Services. The middleware runs several
diverse WSs (releases). It intercepts the consumer requests coming through the WS
interface, relays them to all the releases and collects the responses from the releases. It is
also responsible for ‘publishing’ the confidence associated with the each target WS.

There are some possible operating modes of the diverse Web Services with several
operational releases:
1. Parallel execution for maximum reliability (Fig. 3). All available diverse WSs (or

releases) are executed concurrently and their responses are used by the middleware
to produce an adjudicated response to the consumer of the WS.

2. Parallel execution for maximum responsiveness (Fig. 4). All available diverse WSs
(releases) are executed concurrently and the fastest non-evidently incorrect
response is returned to the consumer of the service as an adjudicated response.

142

3. Configured parallel execution (Fig. 5). All available diverse WSs (releases) are
executed concurrently. The middleware may be dynamically configured to wait for
up to a certain number of responses to be collected from the deployed releases.

4. Sequential execution for minimal service capacity (Fig. 6). The diverse WSs
(releases) are executed sequentially. The subsequent releases are only executed if
the responses received from the previous releases are evidently incorrect.

Effectiveness of the different operating modes depends on the probability of service
unavailability, occurrence of evident (exceptions raised) and non-evident (erroneous
results returned) failures. The probability of service unavailability due to different
reasons (service overload, network failures, and congestions) is several orders greater
than probability of failure occurrence. Moreover, the different exceptions arise during
service invocation more frequently than non-evident failures occur.

To analyse effectiveness of the proposed operating modes we developed a
simulation model running in MATLAB 6.0 environment and used such initial values:

 Case 1 Case 2 Case 3
P(exception), P(ex) 0,09 0,05 0,09
P(non-evident failure), P(nf) 0,01 0,05 0,01
P(service unavailability), P(ua) 0,20 0,20 0,30
P(correct response), P(cr) 0,70 0,70 0,60

During simulation we also set Mean Response Time (MRT) equals 200 ms and
Maximum Waiting Time (time-out) equals 500 ms.

Simulation results:

 Case1 Case2 Case3

P(cr) 0,966 0,936 0,928

P(nf) 0,010 0,048 0,013

P(ex) 0,016 0,008 0,032

P(ua) 0,008 0,008 0,027

MRT 397,60 397,60 431,40

Proc.

t, ms t, ms

Diverse WSs with
similar functionality

Client

t, ms

Proc.
Proc.Response

Time (RT1)

Request

Result

Concurrent
requests

Result
Result

Response Vot.

Waiting
time

Middleware

- voting; Ex.

- exception; Com - comparison; Proc. - processing; - waiting time

Fig. 3. Simulation results for mode “Parallel execution for maximum reliability”

A practical application of the horizontal composition needs to reply on developing
new workflow patterns and languages constructs, supporting different operating
modes and procedures of multiple results resolving and voting.

143

Simulation results:

 Case1 Case2 Case3

P(cr) 0,961 0,915 0,922

P(nf) 0,003 0,017 0,005

P(ex) 0,029 0,060 0,046

P(ua) 0,008 0,008 0,027

MRT 141,10 133,85 163,82

Proc.

t, ms t, ms

Client

t, ms

Ex. Proc.
Proc.

Cancel

Response
Time (RT2)

Request

Exception

Concurrent
requests

Result
ResultResponse

Waiting
time

Middleware Diverse WSs with
similar functionality

Fig. 4. Simulation results for mode “Parallel execution for maximum responsiveness”

Simulation results:

 Case1 Case2 Case3

P(cr) 0,966 0,936 0,928

P(nf) 0,010 0,048 0,013

P(ex) 0,016 0,008 0,032

P(ua) 0,008 0,008 0,027

MRT 289,72 289,08 330,52

Proc.

t, ms t, ms

Client Middleware

t, ms

Proc.
Proc.

Response Time
(RT1-min)

Request

Result

Concurrent
requests

Result
Result

Response
Com

Waiting
time

Vot.

if equal
else

Response

RT
1-

m
ax

Diverse WSs with
similar functionality

Fig. 5. Simulation results for mode “Configured parallel execution”

Simulation results:

 Case1 Case2 Case3

P(cr) 0,961 0,915 0,922

P(nf) 0,003 0,017 0,005

P(ex) 0,029 0,060 0,046

P(ua) 0,008 0,008 0,027

MRT 283,99 266,25 387,86

Proc.

t, ms t, ms

Client

t, ms

Ex.

Proc.

Response
Time (RT4)

Response Result

Request
Request

Exception

Request

Waiting
time

Middleware Diverse WSs with
similar functionality

Fig. 6. Simulation results for mode “Sequential execution for minimal service capacity”

144

4 Work-Flow Patterns Supporting Web Services Composition

The workflow patterns capture typical control flow dependencies encountered during
workflow modelling. There are more then 20 typical patterns used for description
different workflow constructions of “vertical” composition [14]. The basic ones are:
Sequence, Exclusive Choice, Simple Merge, Parallel Split, Synchronization,
Discriminator, Regular Cycle, etc.

Each WF language describes a set of elements (activities) used for implementing
different WF patterns. For example, BPEL4WS defines both primitive (invoke,
receive, reply, wait, assign, throw, terminate, empty) and structured (sequence,
switch, while, flow, scope) activities. The first ones are used for intercommunication
and invoking operations on some web service. Structured activities present of
complex workflow structures and can be nested and combined in arbitrary ways.

F

In fact, the only one of the basic
WF pattern - “discriminator” fits for
implementing the parallel execution
mode for maximum responsiveness.
Discriminator (see Fig. 7) is a point in
the workflow process that waits for

c
t

F

A
B2

B1
C

[Discriminator]

ig. 7. Workflow pattern “Discriminator”

one of the incoming branches to

omplete before activating the subsequent activity. The first one that comes up with
he result should proceed the workflow. The other results will be ignored.

However, the only BPML language supports such WF pattern [15, 16] (see Fig. 8).

<process name=”PatternDiscriminator”>
 <sequence> <context>
 <signal name=”completed_B”/>
 <process name=”B1”>
 …
 <raise signal=”completed_B”/>
 </process>
 <process name=”B2”>
 …
 <raise signal=” completed_B”/>
 </process>
 </context>
 <action name=”A” …>
 …
 </action>
 <all>
 <spawn process=”B1”/>
 <spawn process=”B2”/>
 </all>
 <synch signal=”completed_B”/>
 <action name=”C” …>
 …
 </action>
 </sequence> </process>

ig. 8. BPML implementation of the pattern “Discriminator”

145

To support different execution modes (workflows) within the “horizontal”
composition the additional WF patterns need to be developed and implemented for
different WF languages. The new activities allowing a business process to support
redundancy and perform voting procedure should be also developed. This is a
motivation of our further work.

5 Conclusions

We have addressed different aspects of a Web Services composition which extend
functionality (vertical composition) or improve dependability (vertical composition).
Vertical composition uses redundancy which based on natural diversity of existed
Web Services with the identical or similar functionality deployed by third parties. We
discussed middleware-based architecture that provides dependable “horizontal”
composition of Web Services. For the best result middleware have to implement on-
line monitoring and flexible control. However, questions like “How many
composition level will provide the maximal improvement?”, “When middleware
should be placed?” are yet unsolved. The technologies supporting WS composition
also should be improved.

“Horizontal” composition, which uses redundancy in combination with diversity,
is one of the basic means of enhancing service availability and providing fault-
tolerance. Different operational modes are applicable here. “Configured parallel
execution” mode gives maximal reliability (as well as “Parallel execution for
maximum reliability” mode) and acceptable response time. “Parallel execution for
maximum responsiveness” mode provides minimal response time (even less than
MRT of target WS) and also improves service availability. An unexpected result was
that “Sequential execution for minimal service capacity” mode both improves
availability and provides rather good response time.

Applying in practice techniques of horizontal composition and other means of
improving SOA dependability require developing new workflow patterns and
implementing them in different WF languages. In our future work we are going to
deal with BPEL4WS which is a modern and popular language for the specification of
business processes and business interaction protocols. It supports extensibility by
allowing namespace-qualified attributes to appear on any standard element and by
allowing elements from other namespaces to appear within BPEL4WS defined
elements.

Novel approaches for custom-oriented quality and dependability control in service
oriented architectures implies that service customer will be able to choice necessary
operating modes for each particular request according to one’s needs. It can be done
explicitly or implicitly by using extended WSDL and SOAP tags.

Acknowledgments. Alexander Romanovsky is particularly supported by the IST

RODIN project.

146

References

1. W3C Working Group. “Web Services Architecture”, http://www.w3.org/TR/ws-arch/ (2004)
2. Ferguson, D.F., Storey, T., Lovering, B., Shewchuk, J. “Secure, Reliable, Transacted Web

Services: Architecture and Composition”. Microsoft and IBM Technical Report,
http://www-106.ibm.com/developerworks/webservices/library/ws-securtrans (2003)

3. Tartanoglu, F., Issarny, V., Romanovsky, A., Levy, N. “Dependability in the Web Service
Architecture”. In: Architecting Dependable Systems. Springer-Verlag (2003) 89–108.

4. Leymann, F. “Web Services Flow Language”. Technical report, IBM (2001)
5. Thatte, S. “XLANG: Web Services for Business Process Design”. Technical report,

Microsoft (2001).
6. Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. “WSDL: Web services

description language”, http://www.w3.org/TR/wsdl (2001)
7. Andrews, T., F. Cubera, H. Dholakia, et all. “Business Process Execution Language for Web

Services Version 1.1”. OASIS, http://ifr.sap.com/bpel4ws (2003).
8. Ankolekar et all. “Ontology Web Language for Services (OWL-S)”,

http://www.daml.org/services (2002)
9 Gorbenko, A., Kharchenko, V., Popov, P., Romanovsky, A. “Dependable Composite Web

Services with Components Upgraded Online”. In R. de Lemos (Eds.) et al. Architecting
Dependable Systems III, LNCS 3549. Berlin, Heidelberg: Springer-Verlag (2005) 92–121

10. Hall, S., Dobson, G. and Sommerville, I. “A Container-Based Approach to Fault Tolerance
in Service-Oriented Architectures”, http://digs.sourceforge.net/papers/2005-icse-paper.pdf
(2005)

11. Maheshwari, P., Erradi, A. “Architectural Styles for Reliable and Manageable Web
Services”, http://mercury.it.swin.edu.au/ctg/AWSA05/Papers/erradi.pdf (2005)

12. Chen, Yu., Romanovsky, A., Li, P. “Web Services Dependability and Performance
Monitoring”. Proc. 21st Annual UK Performance Engineering Workshop (UKPEW'2005),
http://www.staff.ncl.ac.uk/nigel.thomas/UKPEW2005/ukpew-proceedings.pdf (2005)

13. Townend, P. Groth, P. Xu, J. “A Provenance-Aware Weighted Fault Tolerance Scheme for
Service-Based Applications”. Proc. of the 8th IEEE International Symposium on Object-
Oriented Real-Time Distributed Computing (2005)

14. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede “Pattern-Based
Analysis of BPEL4WS”. QUT Technical report, FIT-TR-2002-04, Queensland University
of Technology, Brisbane (Australia), http://is.tm.tue.nl/staff/wvdaalst/publications/p175.pdf
(2002)

15. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. “Pattern-Based
Analysis of BPML (and WSCI)”. QUT Technical report, FIT-TR-2002-05, Queensland
University of Technology, Brisbane (Australia), http://is.tm.tue.nl/research/patterns/
download/qut_bpml_rep.pdf (2002)

16. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. ter Hofstede. “Analysis of Web
Service Composition Languages: The Case of BPEL4WS”. Proc. of the 22nd Int. Conf. on
Conceptual Modeling (ER), Chicago, USA (2003)

147

http://www.w3.org/TR/ws-arch/
http://www-106.ibm.com/developerworks/webservices/library/ws-securtrans/
http://www.w3.org/TR/wsdl
http://ifr.sap.com/bpel4ws
http://www.daml.org/services
http://digs.sourceforge.net/papers/2005-icse-paper.pdf
http://mercury.it.swin.edu.au/ctg/AWSA05/Papers/erradi.pdf
http://www.staff.ncl.ac.uk/nigel.thomas/UKPEW2005/ukpew-proceedings.pdf
http://is.tm.tue.nl/staff/wvdaalst/publications/p175.pdf
http://is.tm.tue.nl/research/patterns/�download/qut_bpml_rep.pdf
http://is.tm.tue.nl/research/patterns/�download/qut_bpml_rep.pdf

$0HWKRG�RI�0XOWLYHUVLRQ�7HFKQRORJLHV�&KRLFH�RQ�
'HYHORSPHQW�RI�)DXOW�7ROHUDQW�6RIWZDUH�6\VWHPV��

9ODGLPLU�6NO\DU�DQG�9\DFKHVODY�.KDUFKHQNR�

1DWLRQDO�$HURVSDFH�8QLYHUVLW\�³.K$,´��&RPSXWHU�6\VWHPV�DQG�1HWZRUNV�'HSDUWPHQW��
&KNDORYD�VWU������.KDUNLY���������8NUDLQH�

9�.KDUFKHQNR#NKDL�HGX

$EVWUDFW�� $� SUREOHP� RI� RSWLPDO�PXOWLYHUVLRQ� WHFKQRORJLHV� �097�� FKRLFH� RQ�
GHYHORSPHQW�RI�IDXOW�WROHUDQW�VRIWZDUH�V\VWHPV�LV�IRUPDOLVHG�E\�XVH�RI�D�JUDSK�
OLIH�F\FOH�PRGHO�RI�PXOWLYHUVLRQ�VRIWZDUH�V\VWHPV��066���7KHUH�DUH�IRXU�PDLQ�
YDULDQWV�RI� WDUJHW� VHWWLQJ�DFFRUGLQJ� WR�FULWHULD�³GLYHUVLW\�FRVW´�ZKLFK� ORRN� OLNH�
SUREOHPV� RI� VHDUFKLQJ� WKH� VKRUWHVW�PD[LPXP� SDWK� LQ� RULHQWHG� JUDSK� RU� OLNH�
SUREOHPV� RI� G\QDPLF� SURJUDPPLQJ�� 5HVXOWV� RI� LPSOHPHQWLQJ� PHWKRG� RQ�
GHYHORSPHQW�RI�066�IRU�1XFOHDU�3RZHU�3ODQW��133��UHDFWRU�SURWHFWLRQ�V\VWHPV�
DUH�GLVFXVVHG��

.H\ZRUGV��RSWLPDO�FKRLFH��D�PXOWLYHUVLRQ�WHFKQRORJ\��GLYHUVLW\�PHWULFV��

� ,QWURGXFWLRQ�
'LYHUVLW\�LV�DQ�HIILFLHQW�PHWKRG�IRU�GHIHQFH�IURP�GHVLJQ�GHIHFWV�DQG�IRU�GHYHORSPHQW�
IDXOW�WROHUDQW�VRIWZDUH�V\VWHPV�>���@��7KHUH�DUH�IROORZLQJ� W\SHV�RI�GLYHUVLW\��KXPDQ��
GHVLJQ��IXQFWLRQDO��VLJQDO��VRIWZDUH��KDUGZDUH�>�@��
7KHUH� DUH� WKH� IROORZLQJ� W\SHV� RI� PRGHOV� IRU� 066� IRUPDO� GHVFULSWLRQ� DQG�
GHYHORSPHQW��

± D�VWUXFWXUDO�IXQFWLRQDO�PRGHO�GHVFULELQJ�D�VWUXFWXUH�RI�YHUVLRQ�WKDW�DUH�DSSOLHG�IRU�
UHDOLVDWLRQ�RI�066�IXQFWLRQV�>�@��

148

mailto:V.Kharchenko@khai.edu

± D� %D\HVLDQ� PRGHO� EDVHG� RQ� FDOFXODWLRQ� RI� FRQGLWLRQDO� SUREDELOLWLHV� RI� 066�
YHUVLRQ�IDLOXUHV�>�@��

± DQ�DXWRPDWD�PRGHO�GHVFULELQJ�D�SURFHVV�RI�066� LQSXW�GDWD� WUDQVIRUPDWLRQ� LQWR�
RXWSXW�GDWD�RQ�WKH�EDVH�RI�DXWRPDWD�WKHRU\�>�@��

± D� WKHRUHWLFDO�VHW� PRGHO� ZKLFK� SUHVHQWV� 066� VRIWZDUH� DQG� KDUGZDUH� DV� D�
FRPSRVLWLRQ�RI�FRPPRQ�IRU�WKH�DOO�YHUVLRQ�FRUHV�DQG�RI�GLVWULEXWHG�VKHOOV�WKDW�SHUPLWV�
WR�GHVFULSW�RI�IDXOWV�DSSHDUDQFH�SURFHVVHV�>�@��

$ SUREOHP� RI�097� FKRLFH� L�H�� GLYHUVLW\� W\SHV� FKRLFH� IRU�066� OLIH� F\FOH� VWDJHV�
WDNLQJ� LQWR� DFFRXQW� WKHLU� FRPSDWLELOLW\� UHPDLQV� XQGHFLGHG� LQ� VSLWH� RI� YDULHW\� RI�
PRGHOV��+LJK�SULFH�RI�097�UHDOLVDWLRQ�UDLVHV�D�SUREOHP�RI�UHVRXUFHV�GLVWULEXWLRQ�IRU�
UHFHLYLQJ� RI� PD[LPXP� HIIHFW� IRU� SUREDELOLW\� RI� FRPPRQ� FDVH� IDLOXUHV� GHFUHDVLQJ��
3HFXOLDULWLHV� RI� FRVW� DVVHVVPHQW� RI� 097� UHDOLVDWLRQ� DUH� FRPPLWWHG� LQ� SURFHHGLQJV�
>���@�� ,W� LV� H[SHGLHQW� WR�XVH�GLYHUVLW\�PHWULFV� >���@�ZKLFK�SHUPLWV� WR� DVVHVV� YHUVLRQV�
PXOWLSOLFLW\� DV� ZHOO� DV� WR� HVWLPDWH� SUREDELOLW\� RI� FRPPRQ� FDVH� IDLOXUHV� DQG� 066�
GHSHQGDELOLW\�DV�D�ZKROH�IRU�DVVHVVPHQW�RI�DQ�HIIHFW�IURP�097�XVLQJ��

7KH� SDSHU¶V� REMHFWLYH� LV� WR� IRUPDOLVH� DQG� WR� GHFLGH� D� SUREOHP� RI�097� RSWLPDO�
FKRLFH� LQ� D� JHQHUDO� IRUP��)RU� WKDW� D� JUDSK� OLIH� F\FOH�PRGHO� RI�066� LV� SURSRVHG� LQ�
VHFWLRQ� ��� 3UREOHPV� VHWWLQJ� DQG� SHFXOLDULWLHV� RI� RSWLPDO�097�FKRLFH� DQG� UHVXOWV� RI�
PHWKRG�LPSOHPHQWDWLRQ�DUH�GHVFULEHG�LQ�VHFWLRQV���DQG���DFFRUGLQJO\��

� $�JUDSK�PRGHO�RI�OLIH�F\FOH�RI�PXOWLYHUVLRQ�VRIWZDUH�V\VWHPV�
066� OLIH� F\FOH� LV� UHSUHVHQWHG� DV� D� VHTXHQFH� RI�1� VWDJHV�� ,W� LV� SRVVLEOH� WR� DSSO\�0L

GLYHUVLW\� W\SHV� IRU� HYHU\� VWDJH� RI� 066� OLIH� F\FOH�� $� FKRLFH� RI� 097� FRQVLVWV� LQ�
VHTXHQWLDO� FKRLFH� RI� 066� GLYHUVLW\� W\SHV� �PHDQV� RI� YHUVLRQ� UHGXQGDQF\�
LPSOHPHQWDWLRQ�� M� �������0L IRU�HYHU\� OLIH�F\FOH� VWDJH� L� �������1��0RUHRYHU� IRU� VRPH�
OLIH�F\FOH�VWDJHV�FDQ�EH�FKRVHQ�RQH�YHUVLRQ�WHFKQRORJ\�RI�GHYHORSPHQW�ZKHQ�GLYHUVLW\�
LV�QRW�XVHG��(YHU\�066�GLYHUVLW\� W\SH� M� �������0L LV�FKDUDFWHULVHG�E\� WZR�LQGLFDWRUV��
E\� D� GLYHUVLW\� PHWULF� GLM� �GLYHUVLW\� GHJUHH�� DQG� E\� D� FRVW� FLM� �D� FRVW� LQFUHPHQW� LQ�
FRPSDULVRQ�ZLWK�RQH�YHUVLRQ�OLIH�F\FOH�VWDJH���

149

7KXV�D�SRVVLEOH�VROXWLRQ�VSDFH�IRU�097�FKRLFH� LV�GHVFULEHG�E\� WR�PDWUL[HV��E\�D�
PDWUL[� RI� GLYHUVLW\� PHWULF� YDOXHV� 0'� �__�GLM�__� DQG� E\� D� PDWUL[� RI� FRVW� YDOXHV�
0 __� LM�__� L� �������1��M� �������0L� 0DWUL[HV�0'�DQG�0 VKRXOG�EH�HQODUJHG�E\�QXOO�
URZV� ZLWK� 1� HOHPHQWV� '� __���������__� DQG� � __���������__� WDNLQJ� LQWR� DFFRXQW� D�
SRVVLELOLW\�RI�RQH�YHUVLRQ�LPSOHPHQWDWLRQ�RI�066�OLIH�F\FOH�VWDJHV��

+HQFH�D�PRGHO�RI�066�OLIH�F\FOH�FDQ�EH�SUHVHQWHG�DV�D�1�OHYHOV�JUDSK�*� �¢9�8²�
ZKHUH�9� �^YLM` ±� D� VHW� RI� QRGHV��8� �^�YL�M�� YL�M��`� ±� D� VHW� RI� HGJHV�� HYHU\� HGJH� LV�
GHILQHG�E\�D�FRXSOH�RI�MRLQW�QRGHV��,I�D�JUDSK�*�LV�HQODUJHG�E\�WKH�LQLWLDO�QRGH�96 DQG�
E\�WKH�WHUPLQDO�QRGH�9)� LW�ZLOO�ORRN�OLNH�D�ELSRODU�QHWZRUN��)LJ������

�
)LJ�����$�JUDSK�PRGHO�RI�OLIH�F\FOH�RI�PXOWLYHUVLRQ�VRIWZDUH�V\VWHPV��

)RUPDOO\� 097� RI� 066� GHYHORSPHQW� FDQ� EH� GHVFULEHG� DV� D� ZD\� LQ� D� JUDSK� *�
097� �^96� Y�&� Y�&������YL&� Y1&� 9)` �ZKHQ�YL&�DUH�QRGHV�FKRVHQ�IRU�OLIH�F\FOH�VWDJHV�
L �������1��ZKLFK�FRQWDLQV�DW� OHDVW�RQH�QRQ�QXOO�QRGH�YL&�z YL�� 097�LV�FKDUDFWHULVHG�
E\� LQWHJUDO�GLYHUVLW\�PHWULF� 1

L
L �

' G¦ DQG�E\� LQWHJUDO� FRVW� �DGGLWLRQDO� LQ� UHVSHFW�RI�
RQH� YHUVLRQ� WHFKQRORJ\�� 1

L&
L �

& F¦ � ZKHQ� GL&� DQG� FL&� DUH� GLYHUVLW\� PHWULF� DQG� FRVW�
YDOXHV�IRU�GLYHUVLW\�W\SHV�FKRVHQ�LQ�OLIH�F\FOH�VWDJHV�L� �������1��

� 2SWLPDO�FKRLFH�RI�PXOWLYHUVLRQ�WHFKQRORJLHV�
$ SUREOHP�RI�097�RSWLPDO�FKRLFH�FDQ�KDYH� IRXU�YDULDQWV�RI�VHWWLQJ��$OJRULWKPV�RI�
GHFLVLRQ�KDYH�EHHQ�UHFHLYHG�IRU�HYHU\�YDULDQW��

7KH�SUREOHP�� LV�D�SUREOHP�RI�097�FKRLFH�ZLWK�DQ\RQH�GLYHUVLW\� OHYHO� �'�z ���
DQG�ZLWK� WKH�PLQLPDO�FRVW�&PLQ� 7KLV�SUREOHP�LV�D�SUREOHP�RI�VHDUFK�RI� WKH�VKRUWHVW�

96 9)

GLM� LM�

���

� L 1

��� ��� ���

�

150

ZD\�WKURXJK�JUDSK�*�QRGHV�ZKLFK�DUH�ODEHOOHG�E\�YDOXHV� LM� ,Q�WKH�FRPPRQ�FDVH�WKH�
VKRUWHVW�ZD\� LV� WKH�ZD\� WKURXJK� QRGHV� YL�� IRU�ZKLFK� L�� ����+RZHYHU�ZLWK� WKDW� WKH�
FRQGLWLRQ�'�z � LV� QRW�PHW� LQDVPXFK� DV� LW� LV� RQH� YHUVLRQ� WHFKQRORJ\��7KHUHIRUH� WKH�
VKRUWHVW�ZD\�PHW� WKH�FRQGLWLRQ�'�z � LV� WKH�ZD\�ZKLFK� LQFOXGHV�RQH�QRGH�YL&� LM�PLQ�
DQG�DOO�RWKHU�QRGHV�YL&� L�� ����

7KH�SUREOHP�� LV�D�SUREOHP�RI�097�FKRLFH�ZLWK�WKH�PD[LPDO�GLYHUVLW\�OHYHO�'PD[�
ZLWKRXW�D�FRVW�OLPLWV��7KLV�SUREOHP�LV�D�SUREOHP�RI�VHDUFK�RI�WKH�ORQJHVW�ZD\�WKURXJK�
JUDSK�*�QRGHV�ZKLFK�DUH� ODEHOOHG�E\� YDOXHV�GLM� 7KH� ORQJHVW�ZD\� LV� WKH�ZD\�ZKLFK�
LQFOXGHV�QRGHV�YL&�GL�PD[� IRU�HYHU\�OLIH�F\FOH�VWDJH�L� �������1��

7KH� SUREOHP� � LV� D� SUREOHP� RI�097� FKRLFH�ZLWK� WKH�PLQLPDO� FRVW� DQG�ZLWK� D�
UHTXLUHG� GLYHUVLW\� OHYHO� �&�o PLQ� DQG� '�t 'UHT��� 7KLV� SUREOHP� LV� D� SUREOHP� RI�
G\QDPLF� SURJUDPPLQJ�� $Q� REMHFWLYH� IXQFWLRQ� LV� 1

L& L&
L �

I�&� F � G �� ��PLQo¦ ZLWK�
OLPLWDWLRQ�� 1

L& UHT
L �

G 't¦ � $� SUREOHP� VROXWLRQ� LV� D� ZD\� LQ� D� JUDSK� *�
097�&�o PLQ�� �^96� � ��& �M �MY F �G PLQ � � ��& �M �MY F �G PLQ � ����� � �L& LM LMY F �G PLQ �«��� �1& 1M 1MY F �G PLQ � 9)`��

7KH�SUREOHP�� LV�D�SUREOHP�RI�097�FKRLFH�ZLWK�WKH�PD[LPDO�GLYHUVLW\�OHYHO�DQG�
ZLWK�D� OLPLWHG�FRVW� �'�o PD[�DQG�&�d &OLP���7KLV�SUREOHP�LV�D�SUREOHP�RI�G\QDPLF�
SURJUDPPLQJ�� $Q� REMHFWLYH� IXQFWLRQ� LV� 1

L& L&
L �

I�'� G �F � ��PD[o¦ ZLWK� OLPLWDWLRQ��
1

L& OLP
L �

F &d¦ � $� SUREOHP� VROXWLRQ� LV� D� ZD\� LQ� D� JUDSK� *� 097�'�o PD[�� �^96�� ��& �M �MY G �F PD[� � ��& �M �MY G �F PD[������ � �L& LM LMY G �F PD[�«�� � �1& 1M 1MY G �F PD[�
9)`��

$V�DQ�LOOXVWUDWLRQ�DQ�DOJRULWKP�RI�WKH�SUREOHP���GHFLVLRQ�LV�SUHVHQWHG�RQ�WKH�)LJ�����
$ PDWUL[�ZLWK�HOHPHQWV� LM LMF �G FRUUHVSRQGLQJ�QRGHV�RI�JUDSK�*�VKRXOG�EH�IRUPHG�IRU�
GHFLVLRQ� RI� D� G\QDPLF� SURJUDPPLQJ� SUREOHP�� $IWHU� WKDW� DQ� LWHUDWLYH� SURFHGXUH� LV�
UHDOLVHG��$�GLYHUVLW\�W\SH�ZLWK�WKH�PLQLPDO�YDOXHV�RI�UHODWLRQ�³FRVW���GLYHUVLW\´�VKRXOG�
EH�FKRVHQ�IRU�HYHU\�VWHS�RI�DQ�LWHUDWLYH�SURFHGXUH��&KRVHQ�GLYHUVLW\�W\SH�LV�LQFOXGHG�
LQ�097�IRU�FRUUHVSRQGLQJ� OLIH�F\FOH� VWDJH�DQG� WKH�FRUUHVSRQGLQJ�FROXPQ� LV�GHOHWHG�
IURP� WKH� EDVH� PDWUL[�� ,I� '�t 'UHT� WKHQ� DQ� LWHUDWLYH� SURFHGXUH� LV� VWRSSHG� HOVH� DQ�
LWHUDWLYH�SURFHGXUH�LV�FRQWLQXHG��

151

' ���N ���
�

�)RUPDWLRQ�RI�D�PDWUL[�

LM

LM�N1��N1�

G
F'�& ��

&KRLFH�RI� PLQG
F

LM

LM
�

�

�0RUH�WKDW�RQH�
PLQ

G

F

LM

LM H[LVW�
��

»»¼
º

««¬
ª

¸̧¹
·

¨̈©
§ � PLQG
FYG''

LM

LM

LM
�

N �N�����,QFOXGLQJ�RI�D�QRGH�WR�D�ZD\�097�LQ�D�JUDSK�*�

�' t 'UHT�

$GGLWLRQ�RI�D�ZD\�097�LQ�D JUDSK�*�E\�©QXOOª�QRGHV�YL��

%HJLQ�

�

�

�&KRLFH�RI�GLM� �GLM�PD[�
�

�

�� �

��

'HOHWLQJ�RI�WKH�FROXPQ�LQFOXGHG�WKH�PDWUL[�HOHPHQW�FKRVHQ�RQ�WKH�VWHS�� IURP�WKH�EDVH�PDWUL[�&�1�N��' �1�N��

�

(QG�

)LJ�����$Q�DOJRULWKP�RI�WKH�SUREOHP���GHFLVLRQ�

152

� 'HILQLWLRQ�RI�LQSXW�GDWD�IRU�D�PHWKRG�LPSOHPHQWDWLRQ�
,QSXW� GDWD� IRU� D� PHWKRG� LPSOHPHQWDWLRQ� D� GHILQHG� IRU�)LHOG� 3URJUDPPDEOH� *DWHV�
$UUD\V�EDVHG��)3*$�EDVHG��V\VWHPV�ZKLFK�FDQ�EH�FRQVLGHUHG�DV�D�NLQG�RI�VRIWZDUH�
V\VWHPV��/LIH�F\FOH�VWDJHV�L� ���������ZLWK�SRVVLELOLWLHV�RI�GLYHUVLW\�LPSOHPHQWDWLRQ�IRU�
)3*$�EDVHG�V\VWHPV�DUH�WKH�IROORZLQJ��)LJ���������GHYHORSPHQW�RI�VFKHPHV�RI�FRQWURO�
DOJRULWKPV�� ���GHYHORSPHQW� RI� SURJUDPPH� PRGHOV� RI� FRQWURO� DOJRULWKPV� LQ� &$6(�
WRROV�DUHD�����LQWHJUDWLRQ�RI�SURJUDPPH�PRGHOV�RI�FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�
DUHD�����LPSOHPHQWDWLRQ�RI�LQWHJUDWHG�SURJUDPPH�PRGHO�LQWR�)3*$��

6RPH�YDULDQWV�RI�LPSOHPHQWDWLRQ�KDYH�SURSRVHG�IRU�HYHU\�GLYHUVLW\�W\SH��7DEOH�����
'LYHUVLW\� PHWULFV� YDOXHV� KDYH� HVWDEOLVKHG� DV� UDQNLQJ� IURP� WKH� PLQLPXP� GLIIHUHQFH�
EHWZHHQ�GLYHUVH�YDULDQWV�WR�WKH�PD[LPXP�GLIIHUHQFH��

7DEOH���� 9DULDQWV�RI�GLYHUVLW\�W\SH¶V�LPSOHPHQWDWLRQ�DQG�GLYHUVLW\�PHWULFV�YDOXHV�

'LYHUVLW\�W\SHV� 9DULDQWV�RI�GLYHUVLW\�W\SH¶V�LPSOHPHQWDWLRQ� 'LYHUVLW\�
PHWULFV�YDOXHV�

$ 'LYHUVLW\�RI�� 'LYHUVLW\�RI�ILUP�GHYHORSHUV�RI�)3*$V��$��� ��
SURJUDPPDEOH� 'LYHUVLW\�RI�WHFKQRORJLHV�RI�)3*$V�SURGXFLQJ��$��� ��
FRPSRQHQWV� 'LYHUVLW\�RI�)3*$V�IDPLOLHV��$��� ��
� 'LYHUVLW\�RI�)3*$V�IURP�WKH�VDPH�IDPLO\��$��� ��
% 'LYHUVLW\�RI� 'LYHUVLW\�RI�GHYHORSHUV�RI�&$6(�WRROV��%��� ��
&$6(�WRROV� 'LYHUVLW\�RI�&$6(�WRROV��%��� ��
� 'LYHUVLW\�RI�FRQILJXUDWLRQV�RI�&$6(�WRROV��%��� ��
&��'LYHUVLW\�RI�
ODQJXDJHV�RI��

'LYHUVLW\� RQ� WKH� EDVH� RI� JUDSKLFDO� ODQJXDJH� DQG�
KDUGZDUH�GHVFULSWLRQ�ODQJXDJH��&���

�

)3*$�SURMHFWV�
GHYHORSPHQW�

'LYHUVLW\�RI�KDUGZDUH�GHVFULSWLRQ�ODQJXDJHV��&��� ��

'��'LYHUVLW\�RI�
VSHFLILFDWLRQ�RI�
VFKHPHV�

'LYHUVLW\�RI�)3*$V�VSHFLILFDWLRQ�ODQJXDJHV��'��� ��

�

153

$QDO\VLV�RI�YHULILFDWLRQ�UHVXOWV�

6\VWHP�LQWHJUDWLRQ

6\VWHPVSHFLILFDWLRQ�UHTXLUHPHQWV 'HYHORSPHQW�RI�VFKHPHV�RI�FRQ�WURO�DOJRULWKPV�

6FKHPHV�RI�FRQWURO�DOJRULWKPV
�

,PSOHPHQWDWLRQ�RI�LQWHJUDWHG�SURJUDPPH�PRGHO�LQWR �)3*$�
�

'HYHORSPHQW�RI�SURJUDPPH�PRGHOV�RI�FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�DUHD�

,QWHJUDWLRQ�RI�SURJUDPPH�PRGHOV�RI�FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�DUHD�

3URJUDPPH�PRGHOV�RI�FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�DUHD�
�

3URJUDPPH�PRGHOV�RI�FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�DUHD�
�

)3*$�ZLWK�LP�SOHPHQWHG�LQWHJUDWHG�SURJUDPPH�PRGHO

9HULILFDWLRQ�RI�VFKHPHV�RI�FRQWURO�DOJRULWKPV�

9HULILFDWLRQ�RI�SURJUDPPH�PRGHOV�RI�FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�DUHD�
�

9HULILFDWLRQ�RI�SURJUDPPH�PRGHOV�RI�FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�DUHD�
�

9HULILFDWLRQ�RI�)3*$�ZLWK�LP�SOHPHQWHG�LQWHJUDWHG�SURJUDPPH�PRGHO�

5HV
XOWV

�RI�
GHY

HOR
SP

HQW
�

9HU
LILF

DWLR
Q�VW

DJH
V�

'HY
HOR

SP
HQW

�VWD
JHV

�

)LJ�����$�VWUXFWXUH�RI�OLIH�F\FOH�RI�)3*$�EDVHG�V\VWHPV��

154

5HVXOWV�RI�FRPSDWLELOLW\�DQDO\VLV�RI�GLYHUVLW\�W\SHV�ZLWK�OLIH�F\FOH�VWDJHV�DUH�JLYHQ�
LQ�WKH�7DEOH����3RVVLEOH�GLYHUVLW\�W\SHV�IRU�HYHU\�OLIH�F\FOH�VWDJH�DUH�VLJQHG�E\�³�´��

7DEOH���� 9DULDQWV�RI�GLYHUVLW\�W\SH¶V�LPSOHPHQWDWLRQ�DQG�GLYHUVLW\�PHWULFV�YDOXHV�

'LYHUVLW\�W\SHV� /LIH�F\FOH�VWDJHV�
'HYHORSPHQW�
RI�VFKHPHV�RI�
FRQWURO�
DOJRULWKPV�

'HYHORSPHQW�RI�
SURJUDPPH�
PRGHOV�RI�
FRQWURO�
DOJRULWKPV�LQ�
&$6(�WRROV�DUHD�

,QWHJUDWLRQ�RI�
SURJUDPPH�
PRGHOV�RI�FRQWURO�
DOJRULWKPV�LQ�
&$6(�WRROV�DUHD�

,PSOHPHQWDWLRQ�
RI�LQWHJUDWHG�
SURJUDPPH�
PRGHO�LQWR�
)3*$�

$ 'LYHUVLW\�RI�
SURJUDPPDEOH�
FRPSRQHQWV�

± ±� ±� ��

% 'LYHUVLW\�RI�
&$6(�WRROV�

� �� �� ��

&��'LYHUVLW\�RI�
ODQJXDJHV�RI�)3*$�
SURMHFWV�GHYHORSPHQW

± �� �� ±�

'� 'LYHUVLW\�RI�
VSHFLILFDWLRQ�RI�
VFKHPHV�

� ±� ±� ±�

� ,PSOHPHQWDWLRQ�RI�D�PHWKRG��
7KH�GHYHORSHG�PHWKRG�KDV�EHHQ�DSSOLHG�IRU�GHVLJQ�RI�D�WZR�YHUVLRQ�UHDFWRU�SURWHFWLRQ�
V\VWHP� IRU� 133V�� 2QH� IURP� WKH� SHFXOLDULWLHV� RI� D� UHDFWRU� SURWHFWLRQ� V\VWHP� LV�
GHYHORSPHQW�RI�D�VRIWZDUH�SDUW�LQ�)3*$V��6XFK�SURMHFWV�RI�)3*$V�LQFOXGH�WKUHH�W\SH�
RI� VRIWZDUH�����JUDSKLFDO� VFKHPHV�����SURJUDP�FRGH� LQ� ODQJXDJH�9+'/�����VRIWZDUH�

155

LQ�ODQJXDJH�&��ZKLFK�RSHUDWHV�LQ�HQYLURQPHQW�RI�HPXODWRUV�RI�PLFURSURFHVVRU�FRUHV��
'LYHUVLW\� W\SHV� IRU� GLIIHUHQW� OLIH� F\FOH� VWDJHV� KDYH� EHHQ� WDNHQ� LQWR� DFFRXQW� IRU�

YDOXHV�GHILQLWLRQ�RI�GLM�DQG�FLM�IRU�D�)3*$�EDVHG�UHDFWRU�SURWHFWLRQ�V\VWHP��'LYHUVLW\�
PHWULFV� ZKLFK� WDNH� LQWR� DFFRXQW� WKH� IROORZLQJ� DVSHFWV� KDYH� EHHQ� SURSRVHG��
GLIIHUHQFHV� IRU� HYHU\� GLYHUVLW\� W\SH�� LQWHJUDO� GLIIHUHQFHV� IRU� HYHU\� OLIH� F\FOH� VWDJH��
LQWHJUDO�GLIIHUHQFHV�IRU�066�OLIH�F\FOH�DV�D�KROH��

9DOXHV�RI�GLYHUVLW\�PHWULFV� DUH� HVWDEOLVKHG�DV� WKH� VHW�GLM� ^�������`� �VHH�7DEOH����
DQG�DUH�GHWHUPLQHG�DFFRUGLQJ�WR�DSSURSULDWH�GLYHUVLW\�W\SH�LQIOXHQFH�WR�SUREDELOLW\�RI�
FRPPRQ� FDVH� IDLOXUHV�� 6XFK� SUREDELOLWLHV� LQ� WXUQ� FDQ� EH� GHILQHG� RSHUDWLRQ� DQG�
GHYHORSPHQW�H[SHULHQFH�DV�ZHOO�DV�RQ�WKH�EDVH�RI�H[SHUW�DVVHVVPHQW��'LYHUVLW\�PHWULFV�
DUH�FDOFXODWHG�E\�DGGLWLYH�IRUPXODV�IRU�WDNLQJ�LQWR�DFFRXQW�LQWHJUDO�GLIIHUHQFH�EHWZHHQ�
066� YHUVLRQV�� 7KH� ILQDO� UHVXOWV� RI� GLYHUVLW\� W\SH� FKRLFH� DQG� GLYHUVLW\� PHWULFV�
FDOFXODWLRQ�IRU�OLIH�F\FOH�VWDJHV�DUH�JLYHQ�LQ�WKH�7DEOH����

7DEOH���� 5HVXOWV�RI�XVLQJ�D�PHWKRG�RI�PXOWLYHUVLRQ�WHFKQRORJLHV�FKRLFH��

/LIH�F\FOH�VWDJHV� &KRVHQ�GLYHUVLW\�W\SHV� 'LYHUVLW\�
PHWULFV�YDOXHV�

'HYHORSPHQW�RI�VFKHPHV�RI�FRQWURO�
DOJRULWKPV�

'LYHUVLW\�RI�&$6(�WRROV� ��

'HYHORSPHQW�RI�SURJUDPPH�PRGHOV�RI�
FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�DUHD�

'LYHUVLW\�RI�ODQJXDJHV� ��

,QWHJUDWLRQ�RI�SURJUDPPH�PRGHOV�RI�
FRQWURO�DOJRULWKPV�LQ�&$6(�WRROV�DUHD�

'LYHUVLW\�RI�ODQJXDJHV� ��

,PSOHPHQWDWLRQ�RI�LQWHJUDWHG�
SURJUDPPH�PRGHO�LQWR�)3*$�

'LYHUVLW\�RI�SURJUDPPDEOH�
FRPSRQHQWV�

�

8VH�RI�GLYHUVLW\� W\SHV� OLNH� LQ� WDEOH���SHUPLWV� HQVXUH� D�YDOXH�RI� LQWHJUDO�GLYHUVLW\�
PHWULF�'� �����$�FRVW�RI�GHYHORSPHQW�RI�GLYHUVH�SURJUDPPDEOH�FRPSRQHQWV�LQFUHDVHV�
WZLFH� DV� PXFK�� +RZHYHU�� XVLQJ� GLYHUVLW\� SHUPLWV� GHFUHDVH� FRPPRQ� FDVH� IDLOXUHV�
LQWHQVLW\�KDOI�LQ�FRPSDULVRQ�ZLWK�RQH�YHUVLRQ�UHDFWRU�SURWHFWLRQ�V\VWHP��

156

� &RQFOXVLRQ�
3URSRVHG�PHWKRG�RI�RSWLPDO�097�FKRLFH�LV�RQH�RI�WKH�SUDFWLFDO�VROXWLRQV�DOORZLQJ�WR�
UHDOLVH�D�FRVW�HIIHFWLYH�DSSURDFK�WR�GHYHORSLQJ�VDIHW\�FULWLFDO�V\VWHPV�IRU�ZKLFK�XVH�RI�
GLYHUVLW\�DUH�QRUPDWLYH�UHTXLUHPHQW���
$SSOLFDWLRQ� RI� WKLV�PHWKRG� FDQ� HQVXUH� UHTXLUHG� GHSHQGDELOLW\� RI�066� DQG�PLQLPDO�
FRVW�GXH�WR�GLUHFWHG�VHOHFWLRQ�RI�GLYHUVLW\�NLQGV���
1H[W�VWHSV�RI�UHVHDUFK�PD\�EH�FRQQHFWHG�ZLWK�ZRUNLQJ�RXW�LQ�GHWDLO�RI�WKH�DOJRULWKPV�
FKRLFH� WDNLQJ� LQWR� DFFRXQW� GLIIHUHQW� WHFKQRORJLHV� RI� 066� GHYHORSPHQW� DQG�
GHSHQGHQFH�RI�GLYHUVLW\�PHWULFV�YDOXHV�IRU�GLIIHUHQW�OLIH�F\FOH�VWDJHV��

5HIHUHQFHV�
��� $YL]LHQLV� $��� /DSULH� -��&��� 5DQGHOO� %��� /DQGZHKU�� &��� %DVLF� &RQFHSWV� DQG� 7D[RQRP\� RI�
'HSHQGDEOH� DQG� 6HFXUH� &RPSXWLQJ�� ,(((� 7UDQV�� RQ� 'HSHQGDEOH� DQG� 6HFXUH� &RPSXWLQJ�
� �������
���/\X��0���6RIWZDUH�)DXOW�7ROHUDQFH��:LOH\��������
���3UHFNVKRW��*���0HWKRG�IRU�3HUIRUPLQJ�'LYHUVLW\�DQG�'HIHQVH�LQ�'HSWK�$QDO\VHV�RI�5HDFWRU�

3URWHFWLRQ�6\VWHPV��/DZUHQFH�/LYHUPRUH�1DWLRQDO�/DERUDWRU\��������
���.KDUFKHQNR��9���0XOWLYHUVLRQ�6\VWHPV��0RGHOV��5HOLDELOLW\��'HVLJQ��7HFKQRORJLHV��3URF��E\�

��WK�(XURSHDQ�&RQI��RQ�6DIHW\�DQG�5HOLDELOLW\��0XQLFK����������
��� /LWWOHZRRG��%��� 6WULJLQL�� /���$� GLVFXVVLRQ� RI� SUDFWLFHV� IRU� HQKDQFLQJ� GLYHUVLW\� LQ� VRIWZDUH�

GHVLJQV��7HFKQLFDO�UHSRUW��&HQWUH�IRU�6RIWZDUH�5HOLDELOLW\��/RQGRQ��������
���.KDUFKHQNR��9���6NO\DU��9���*RORYLU��9���$XWRPDWD�PRGHOV�RI�PXOWLYHUVLRQ�LQVWUXPHQWDWLRQ�

DQG�FRQWURO�V\VWHPV��5DGLR�HOHFWURQLF�DQG�&RPSXWHU�6\VWHPV�����������,Q�5XVVLDQ��
���.KDUFKHQNR��9���<DVWUHEHQHWVN\��0��� 6NO\DU��9���'LYHUVLW\� $VVHVVPHQW� RI� 1XFOHDU� 3RZHU�

3ODQWV� ,QVWUXPHQWDWLRQ� DQG� &RQWURO� 6\VWHPV�� 3URF�� E\� �WK� ,QWHUQDWLRQDO� &RQI�� RQ�
3UREDELOLVWLF� 6DIHW\� $VVHVVPHQW� DQG� 0DQDJHPHQW� DQG� (XURSHDQ� 6DIHW\� DQG� 5HOLDELOLW\�
&RQI��³36$0���±�(65(/�y�� � $GTNKP�
������

���9RJV��8���6RIWZDUH�'LYHUVLW\��5HOLDELOLW\�(QJLQHHULQJ�DQG�6\VWHP�6DIHW\������������

157

