
Adapting C++ Exception Handling to an Extended COM Exception Model

Bjørn Egil Hansen
DNV AS, DT 990 Risk Management Software

Palace House, 3 Cathedral Street,
London SE1 9DE, UK

Bjorn.Egil.Hansen@dnv.com

Henrik Fredholm
Computas AS

Vollsveien 9, P.O.Box 482,
1327 Lysaker, Norway

hf@computas.no

This paper describes how correctness and robustness of component-based systems can be improved by
categorising exceptions by component state and cause, and handling them accordingly. Further, it is
shown how this model is supported in C++ in a COM-based environment, also simplifying the code for
exception detection, signalling, and handling.

1. INTRODUCTION

The reliability of a software system is to a high degree determined by the reliability of the software
components comprising the system [KriMat97]. For a software component to be reliable it must be able recover
various exceptions or failures that may arise at run-time, i.e. it must be fault tolerant. Code for exception
detection, handling, and signalling often amounts to a substantial portion of the code. This is especially the case
in a multi-language environment, mixing different exception models, and requiring transformation between
different exception representations.

To allow flexible system configuration and system evolution, e.g. making changes to a component,
replacing a component with another, or adding new components, each of the components should have minimum
dependency on the other components. Loose coupling between components is also important with respect to
exception handling and the mechanisms used. As argued in [Cri95], a termination mechanism mixes well with
the information hiding principles underlying data abstraction, and consequently also component based systems.
The focus should be on the local transition and consistent local state of the component and on exceptions that
may arise during a state transition. It is the responsibility of the developer of the component to detect, handle,
and signal exceptions based on the state of the component, the arguments of the call, and the results from lower-
level components.

In software development project there are always conflicts between different requirements, and the
development team has to make trade-offs between time-to-market, functional requirements, and non-functional
requirements, like reliability. The resources used on reliability are often scarce, hence it is important to
concentrate the effort on those exception situations that contributes to the overall reliability of the system.
Whenever reliability is sacrificed for other requirements, the failure situations should be clearly distinguishable
from correct behaviour and easily traceable in the code. If the system reliability turns out to be unacceptable it
should be possible to increase the overall reliability by improving individual components of the system, i.e.
taking control over more of the failure situations.

This paper is based on work done in the BRIX team in DNV IT Solutions. The main purpose of this group
is to provide the various application development teams with common solutions to software technical needs.
Most BRIX solutions are based on Microsoft's COM technology and C++ as implementation language.

In section 2 the differences between C++ exception handling and COM exception handling are briefly
outlined. Section 3 describes the BRIX language independent exception model, which is based on the COM
exception model. In section four we present how the BRIX exception model is supported at C++ level. Finally,
in section 4 we draw some conclusions.

2. COM EXCEPTION HANDLING IN C++

COM supports signalling of exceptions [Box98], but the mechanisms used are different from the throw and
catch in C++ [ElStro90]. To signal an exception in COM, three different mechanisms are used in combination:

• By convention all interface methods on a COM objects should return a status (an HRESULT), indicating
success or exception/failure of the method invocation.

• To pass extra information to the client, COM provides to API functions:
SetErrorInfo: Used by the COM object (signaller) to pass an exception object containing the extra
information to the client.
GetErrorInfo: Used by the client to obtain the exception object.

• In addition, the COM object must implement the ISupportErrorInfo interface to indicate which interfaces
support exceptions. This interface should be used by the client to determine whether or not the result of the
GetErrorInfo is reliable.

This obviously increases the burden on a C++ programmer. When implementing a COM object in C++, the
programmer must be careful to catch all C++ exceptions and convert them into HRESULTs, possibly
augmented with extra information in an exception object.

To detect and handle exceptions from a COM object in a C++ client, the result of each COM-call must be
checked specifically by looking at the returned HRESULT. In a naïve implementation of a C++ client this will
typically result in an unreadable mix of HRESULT checking of the COM calls and catching of C++ exceptions
of internal C++ calls.

There is also a mismatch in the exception models of COM and C++. While we in C++ may specialise
exceptions in hierarchies, COM overloads the HRESULT. Thus, the meaning of an HRESULT code very likely
will be different for different methods, and the code should not propagate unmodified up through the call stack.

When programming in Visual Basic or Java (on Microsoft's Java VM), the conversion between native
exceptions and the HRESULT and the COM exception information object is done automatically by the
respective run-time systems. Thus, in these environments the COM exception representation and signalling
mechanism are integrated with native exception mechanisms, giving a more transparent programming model. In
section 4 we will see how the BRIX Exception System contributes to integration with the C++ exception
mechanisms.

3. BRIX EXCEPTION MODEL

A component-based system is comprised of components accessing each other through interfaces. An
interface may be defined specifically for a concrete implementation, complete both with respect to standard and
exceptional behaviour. However, in COM it is common to have general interfaces allowing a variety of
implementations. For a specific implementation there may be resource constraints not anticipated on the
specification level, resulting in exceptions outside the specified exceptions.

One of the main goals of the BRIX Exception System is to provide the component developer with
mechanisms of detection, handling, and signalling of specified exceptions, as well as mechanisms for detection
and signalling of unspecified exceptions. To facilitate this, when focusing on the state transition within one
component, we categorise exceptions/failures of lower-level components according to two orthogonal criteria:
• State of the lower-level component after the exception/failure has occurred:

• Controlled exception: The component is in the same consistent state as before the method call.
• Uncontrolled exception: The component is in an undefined and possibly inconsistent state. This

corresponds to the notion of failure exceptions in [Cri95].
• Cause of the exception:

• Operational exception: The cause of the exception is outside the control of the component, typically
when allocating resources (e.g. memory, files, or network connections) or validating input.

• Implementation exception: The cause of the error is due to faults in program code.

In the table below we assume having a higher-level component A calling a method on component B, being
our focus, and B calls a method on lower-level component C. We discuss the four categories of possible
exceptional situations, and propose a recommend action and an alternative action as a guide to where to
concentrate the exception handling effort.

Operational Implementation

C
on

tr
ol

le
d

Controlled Operational Exception: The cause is an
operational exception the lower level component C.
C has recovered to the same state as before the call.

Controlled Implementation Exception: The lower-
level component C has rejected the call because of
violation of precondition, i.e. the exception is
caused either by improper use by component B, too
strict implementation of the precondition validation,
or incomplete interface specification. C has
recovered to the same state as before the call.

Recommended action: If it is a specified exception,
mask the exception if possible. Otherwise, recover
state and signal a Controlled Operational Exception
to higher level component A.

Recommended action: Use default mechanism that
signals an Uncontrolled Implementation Exception
to the higher-level component A. Fix bug at
appropriate level.

Operational Implementation
Alternative action: Use default mechanism that
signals an Uncontrolled Operational Exception to
the higher-level component A.

Alternative action: If the cause is an incomplete
specification or a too strict precondition
implementation in C, and neither of these can be
changed, component B should be rewritten to avoid
the problem.

U
nc

on
tr

ol
le

d Uncontrolled Operational Failure: The failure is
due to an operational exception in the lower-level
component C which C was not prepared to handle,
and C has not been able to recover to a consistent
state.

Uncontrolled Implementation Failure: The failure
is due to an unanticipated exception occurrence in
the lower-level component C, resulting in a
possibly inconsistent state. Hence, invalidating the
invariant or post-condition.

Recommended action: Use default mechanism that
signals an Uncontrolled Operational Exception to
the higher-level component A. Make C more robust
by taking control of the exception.

Recommended action: Use default mechanism that
signals an Uncontrolled Implementation Exception
to the higher-level component A. Fix fault in C.

Alternative action: If component C cannot be
changed, component B or high-level component A
should be rewritten to avoid the problem, or more
run-time resources should be made available to
avoid the problem

Alternative action: If component C cannot be
changed, component B or high-level component A
should be rewritten to avoid the problem.

Table 1: Exception categories in BRIX

In the table we see that controlled operational exceptions are the only cases where explicit exception
handling is recommended to increase the overall robustness of the system. Using the default BRIX exception
mechanisms in this case will lower the robustness of the system, as the exception is transformed to an
uncontrolled exception when propagated and most likely will cause the system to abort.

For the other cases it is generally difficult and time-consuming to handle them in way that increases the
robustness of the system. Instead it is recommended to use the default mechanisms to signal an uncontrolled
exception to the higher-level component. The cause of the failure should be fixed off-line if required to achieve
long term robustness.

Our goal is not to write totally correct programs, but to write partially correct programs [Cri95], that is,
programs that either produce the specified result (normal or exceptional) or a confined failure (unspecified
exceptions) with respect to a complete specification. Partially correct programs are safe, in the sense that there
are no unanticipated inputs (incomplete specification) and no unconfined failures (apparently correct results but
actually erroneous with respect to specification). Thus, they will either produce the specified results or obvious
failures.

A component may contain implementation faults. The BRIX Exception System contributes to the fault
tolerance of the system by distinguishing between uncontrolled and controlled failures. Uncontrolled failures
should result in abortion, while controlled failures may be tolerated, because the system is still in a well-defined
state.

4. BRIX SUPPORT FOR C++ EXCEPTION HANDLING IN COM

The exception handling code itself may be a significant source of errors. It is difficult to test and should be
kept as simple as possible. In the following we will see how the BRIX exception mechanisms supports
detection, handling, and signalling of exceptions according to the categorisation of exceptions in the previous
section, in a programming environment as described in section 2. The examples below are based on [Cri95].

Firstly, to prevent C++ exceptions from propagating out of
the component, two macros are used to enclose the code
establishing default try and catch blocks. The macros take care
of converting from C++ exceptions to HRESULT. Any
exceptions not detected in the program code will be caught and
signalled as an uncontrolled implementation exception. Figure 1
shows an implementation for computing factorials. Assuming n
is specified to be ≥0, this implementation may result in either a)

HRESULT Calc::Fact(int n, int* pf)
{ BX_ENTER_COM(Calc,Fact)
 int k=0,m=1;
 while (k<n) { k++; m*=k; }
 *pf = m;
 BX_RETURN_COM
}
Figure 1: Computing factorial

an unconfined failure for values of n<0 by returning 1 (erroneous result), or b) a confined failure if n! is larger
than the maximum int value returned as an uncontrolled implementation exception.

We can increase the correctness of this program by
detecting and signalling a) properly. There is no support for
automatic checking of preconditions like in Eiffel [Mey88].
However, this can be coded explicitly, as shown in figure 2. If a
precondition fails this results in a controlled implementation
exception (E_BX_PRECONDITION), thus we have eliminated a) and made the program partially correct.

Assume the specification states that E_OVERFLOW
should be returned if n! is too large. To take control over this
situation we must add explicit detection and handling of the
overflow. Figure 3 illustrates this, where we have a try-catch
block to detect the overflow. In the catch block we use bxhr
which is defined by BX_ENTER_COM. This is an instance of
BxHResult, which offers a range of functionality for detecting,
signalling and handling exceptions. In this example RaiseError
throws an exception containing the specified HRESULT value.
This exception is caught by BX_RETURN_COM and the E_OVERFLOW is returned to the client. Thus, we
have made the code more correct by handling this exception as specified. Also, we have contributed to the
overall robustness of the system by eliminating an uncontrolled exception.

In the examples above we have seen how exceptions are detected and signalled using different mechanisms,
e.g. precondition checking, explicit raising of exception, and by use of default detection and signalling. All is
resulting in a corresponding HRESULT being returned to the client.

To detect, handle, and signal exceptions from a COM
component, various mechanisms can be used resulting in
different degrees of robustness. BxHResult redefines some of
the assignment operators to provide short hand notation for
detection and signalling of exceptions. In figure 4 we have a
class to represent a vector of 10 ints and defining a method to
compute the factorial of each of the values and store them in the
same vector. Using the |= operator we say that any exceptions
returned from the method on the lower-level component will
result in an uncontrolled exception in this component and a
corresponding C++ will be thrown. If the Fact method in figure
4 returns an exception, we may have an intermediate state
where some values have been changed to their factorials where as others are unchanged, i.e. the component will
be left in an uncontrolled and erroneous state.

To avoid the uncontrolled exception we must be able to
recover the initial state in case of exceptions. Figure 5 shows
how this can be done in this simple case by keeping the new
values in a temporary array until all the calculations have been
done successfully. Thus, if the Fact method signals an
exception, our state is still consistent and we should just signal
a controlled exception to our caller. This is done by using the
&= operator instead of the |= operator, which will transform any
controlled exceptions to controlled implementation exceptions. However, if the Fact method signals an
uncontrolled exception, as in figure 1 and 2, an uncontrolled implementation exception will be signalled from
this component. By focusing on the local transition and on keeping a local consistent state, we reduce the
number of uncontrolled exception propagating through the system and the likelihood of abortions.

Further, assume that the Factorials specification also states
that an E_OVERFLOW exception should be signalled in case
of overflows. With respect to this specification, the
implementation in figure 5 is partial correct and will result in a
confined failure in case of overflow. In cases where the state is
still consistent and the specified exceptions from the method on
lower-level component is the same as for this method, we can
use another operator %= to signal the same exception to the
higher-level component, as illustrated in figure 6. Hence, the implementation will be correct with respect to the
overflow exception.

HRESULT Calc::Fact(int n, int* pf)
{ BX_ENTER_COM(Calc,Fact)
 BX_PRECOND(n>=0)
 …
Figure 2: No unconfined failures

…
try {
 int k=0,m=1;
 while (k<n) { k++; m*=k; }
 *pf = m;
} catch(…)
{ bxhr.RaiseError(E_OVERFLOW,…);}
…
Figure 3:Controlled overflow as specified

class Vector
{ int v[10];
 HRESULT Factorials();
 …
}
HRESULT Vector:: Factorials ()
{ BX_ENTER_COM(Vector, Factorials)
 for (int i=0; i<10; i++)
 { bxhr|=pCalc->Fact(v[i],&v[i]);
 }
 BX_RETURN_COM
}
Figure 4: Uncontrolled exception

 …
 int u[10];
 for (int i=0; i<10; i++)
 { bxhr&=pCalc->Fact(v[i],&u[i]);
 }
 v = u;
 …
Figure 5: Controlled exception

 …
 int u[10];
 for (int i=0; i<10; i++)
 { bxhr%=pCalc->Fact(v[i],&u[i]);
 }
 v = u;
 …
Figure 6: Propagation of exception

The examples in figure 4 to 6 show compact detection and signalling of uncontrolled, controlled, and
specified exceptions using the redefined operators |=, &=, and %=, respectively, and how we gradually can
increase the robustness and correctness of the system by making the local transitions more robust and correct.

In other situations it might be required that the exceptions
are masked or at least handled more specifically. Figure 7
shows one way this can be done using the redefined ^=
operator. Instead of throwing an exception, the results from the
call will be kept in bxhr for subsequent handling of the excep-
tion. In the case of a time-out, the exception is recovered and
the call is retried once. If this fails the exception is propagated
using the &= operator. If the first exception was not a time-out
exception, the same exception is signalled to the caller.
Exceptions can also be handled in the normal C++ way by
enclosing a sequence of statements with a try and catch block.

Other features of the BRIX exception system which have not been emphasised here include checking of
intermediate and final states by use of assertions and post-conditions, possibly resulting in uncontrolled
implementation failures. Also there is rich support for logging of exceptional events, which may serve various
purposes: simplifies debugging of the system both during development and operation, supports operator/end-
user in identifying possible lack of resources (causing operational exceptions).

5. CONCLUSION

The BRIX Exception System contributes to correctness and robustness in several ways:
• By distinguishing controlled and uncontrolled exceptions, we believe to achieve fault-tolerance both with

respect to specification and implementation faults. Also we avoid unconfined errors by having an explicit
notion of and support for uncontrolled exceptions. Hence, it will be easier to achieve partial correctness
[Cri95], assuming that the specification is complete.

• By taking control over more failure situations at the component level, we may increase the overall
robustness of a system by upgrading or replacing individual components.

• By focusing on the local state and transition, providing a programmed exception handling style using
pre/post-conditions and assertions for state validation and mechanisms for tight control of the results from
lower-level components. Contrary to [Mey88] all pre/post condition validation has to be done explicitly.
However, when handling complex states and transitions, expressing pre/post-condition may be difficult
resulting in possible unconfined failures [Cir95], and intermediate checks may be preferable.

• By virtually forcing the developer to decide on the local implications of exceptions occurring for each line
of code. Also the BRIX exceptions mechanisms make it simple to implement those decisions by providing
default propagation mechanisms and overloaded operators for exception checking.

6. ACKNOWLEDGEMENT

Many thanks to Are F. Tjønn and Johannes Hermanrud who supported both the development and the
writing of this paper. Thanks also to Daniel Vatier and Egil P. Andersen for reviewing the paper and to rest of
the BRIX team for providing an inspiring working environment.

7. REFERENCES

[Box98] Box, Don, Essential COM, Addison Wesley, 1998.
[Cri95] Cristian, Flaviu, “Exception Handling and Tolerance of Software Faults”, chapter 4, pages 81-107,

in Software Fault Tolerance, Lyu, M. (ed.), Wiley, 1995.
[ElStro90] Ellis, Margaret A and Stroustrup Bjarne, The Annotated C++ Reference Manual, Addison Wesley,

1990.
[KriMat97] Krishnamurthy, S and Mathur, A.P., "On the Estimation of Reliability of a Software System Using

Reliabilities of its Components", Eighth International Symposium on Software Reliability
Engineering (ISSRE '97), November 2-5, 1997 Albuquerque, US

[Mey88] Meyer, Bertrand, Object-Oriented Software Construction, Prentice Hall, 1988.

 …
 bxhr ^= pSrv->Submit(data);
 if (bxhr==E_TIMEOUT)
 { // Retry once
 bxhr.ErrorRecovered();
 bxhr &= pSrv->Submit(data);
 }
 else if (bxhr!=S_OK)
 bxhr.RaiseError(…);
 …
Figure 7: Masking/handling exceptions

