
Behaviour-Preserving Evolution of Interface Exceptions

Anna Mikhailova1 and Alexander Romanovsky2

1 Department of Electronics & Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
2 Department of Computing Science
University of Newcastle upon Tyne

Newcastle upon Tyne, NE1 7RU, UK

Abstract. Interface exceptions (explicitly declared exceptions that a method can propagate
outside) are an inherent part of the interface describing the behaviour of a particular class
of objects. Evolution of system behaviour is thus necessarily accompanied by and reflected
in the evolution of interface exceptions. While evolution of normal system behaviour is
adequately supported by various language mechanisms, such as subtyping and inheritance,
few contemporary object-oriented programming languages offer support for the evolution of
interface exceptions. Some languages permit specialising and deleting interface exceptions
while subtyping, but none of them provides an adequate support for adding exceptions.
In this paper we propose two solutions for dealing with additional exceptions introduced
while system evolution. To solve the problem of non-conforming interfaces resulting from
the addition of new exceptions in a development step, the first proposal uses rescue handlers
and the second one employs the forwarding technique.

1 Introduction

Organising exceptions into hierarchies and specialising exceptions along with the specialisation of
classes is in the spirit of the object-oriented paradigm. Few contemporary programming languages
support a systematic hierarchical treatment of exceptions in an object-oriented style. We analyse
what a more permissive object model supporting evolution of interface exceptions should be like,
and propose an improved model, supporting exception addition, that can be incorporated into
existing languages.

When specialising a class into a subclass, it is often necessary to

– specialise interface exceptions to subtypes of the exceptions signaled by the superclass
– remove interface exceptions signaled by the superclass
– add new interface exceptions, in addition to those signaled by the superclass

We study in detail these cases, focusing on the semantic implications that they cause in re-
sulting programs. Our analysis of the existing languages supporting an object-oriented style of
exception handling, most notably Java [5], Arche [6], and Modula-3 [2], indicates that, at best,
these languages permit specialising and deleting interface exceptions while subtyping, but none of
them provides an adequate support for adding exceptions.

We propose two type-safe solutions for the problem of non-conforming interfaces resulting from
the addition of new exceptions in a development step. The first proposal is best suited for the top-
down system development approach, when we face the need to introduce an interface exception in
a development step. The need for introducing a new interface exception may arise, e.g., because a
new data structure can deliver new exceptional behaviour. This proposal is based on extending a
language with a new construct, a rescue handler, which steps in to rescue the situation when no
ordinary handlers are available. Our second proposal is best suited for the bottom-up approach
to system development, with which we might want to match an existing class (e.g., from a class
library) to an existing interface (e.g., provided by a framework). If the class has extra interface
exceptions not signaled by the interface which the class matches otherwise, we propose to employ
the forwarding technique, widely used in practical system development to solve the closely related
interface mismatch problems.



2 Object-Oriented Exception Handling: The Object Model

Exceptions are abnormal events which can happen during the program execution. Several object-
oriented languages and systems provide special features for handling exceptions in a disciplined
way. An object, a method, or a block of code can be viewed as an exception context, so that
developers can declare exceptions and associate handlers with such a context: when an exception
is raised in an exception context, the control is transferred to the corresponding handler.

In our view, an important feature of an exception handling mechanism is its ability to dif-
ferentiate between internal exceptions to be handled inside the context and external exceptions
propagated from the context. These two kinds of exceptions are not clearly separated in many
languages, although they obviously serve different purposes. The separation can be achieved un-
der two conditions: contexts are program units that have interfaces (e.g. classes or methods), and
the concept of exception context nesting is defined. Most of the existing exception handling mech-
anisms use dynamic exception context, such that the context is the method or the object being
currently executed. Some mechanisms use static exception contexts based on the corresponding
object declaration.

The execution of the context can be completed either successfully or by propagating an (ex-
ternal) interface exception. The propagated interface exception is treated as an internal exception
raised in the containing context. The simplest example of the dynamic nested context is nested
procedure calls. In fact, this is the dominating approach to exception handling which suits well
the client/server or remote procedure call paradigms.

In our model methods are dynamic exception contexts. Each method can be dealing with
a set of internal exceptions, each of which must have a corresponding handler associated with
the method. Internal exceptions are raised in the method code and have to be handled inside the
method. Each object type (interface) can have explicitly declared interface exceptions; all interface
exceptions that a method can signal are to be declared in the method signature using a special
signal clause. Interface exceptions are signaled by the method code or by handlers associated with
it. Note that interface exceptions of the method called in another method are internal exceptions
of the latter and have to be handled at its level. We follow the termination model of exception
handling [4].

In our model only interface exceptions can be propagated outside the class. All possible vio-
lations of this rule must be either detected at compile time or must cause a predefined Failure
exception to be propagated outside the class. This exception is signaled in some other situations,
for example, when it is impossible to leave the object in a known consistent state corresponding
to one of the interface exceptions.

3 Behaviour Refinement Requires Exception Evolution

3.1 Behaviour Evolution

The evolution of system behaviour is always performed as the evolution of system components.
Changes of the component behaviour often cause changes of their interface. Very often the be-
haviour evolution results in increasing complexity of software, forcing system developers to modify
the system structure, to handle this complexity. The most typical way of achieving this is by decom-
posing some components into several subcomponents. These subcomponents can either be hidden
in a higher-level wrapping component which conforms to the interface of the original component,
or they can themselves replace the initial component and be used by the original component’s
clients.

There are multiple ways in which the system behaviour can evolve. The most obvious are
improving functionality of the components by replacing old fragments of the design (e.g. code)
with new better ones (refinement), and adding new functionality (extension). Apart from these,
there are however other forms of evolution that deserve attention as well: deleting functionality and
merging functionality. These four forms of behaviour evolution cover the main possible directions
in which system design can proceed.

2



There are several language mechanisms supporting behaviour evolution. The principle mecha-
nism supporting behaviour evolution in the context of object-oriented programming is inheritance.
The classical view is to associate inheritance with conceptual specialisation in system modelling
[8]. This is so called strict inheritance. Many researchers have argued that this mechanism is rather
restrictive for dealing with evolutionary development of complex systems because it does not allow
more creative ways of abstraction modification. In particular, the addition of truly new properties
requires re-constructing system parts from scratch [8].

Existing OO languages usually provide weaker forms of inheritance, for example, name com-
patibility or signature (input and output parameters) compatibility. Subclassing, in its typical
form found in many existing OO languages, allows developing new classes by adding new variables
and methods, and by overriding parent methods with checking the signature compatibility. These
forms of inheritance are easier for system developer to apply and for the compiler to check. At the
same time they facilitate using inheritance for different forms of system evolution.

3.2 Conceptual Specialisation, Subtyping and Subclassing

Conceptual specialisation, sometime also referred to as subtyping, underlies the evolution and be-
haviour refinement of object-oriented software. Subtyping polymorphism can be used to substitute
subtype objects for supertype objects dynamically, at run-time. This permits clients of supertype
objects to benefit from conceptual specialisation by using more specialised subtype objects instead
of more general supertype objects. For example, method transfer of Bank can take as argument
toAccount an object of type CurrentAccount or SavingsAccount, both of which are subtypes of
type Account which is the declared type of toAccount.

To ensure that all client’s requests for method calls on subtype objects can be responded to
by supertype objects instead, subtyping requires syntactic conformance of objects’ methods. In
the simplest case, subtyping is type extension, in the sense that a subtype has all the method
signatures of its supertype and possibly also new ones. For example, SavingsAccount is a subtype
of Account if in addition to methods Owner, Balance, Deposit and Withdraw of the latter it also
has a method PayInterest specific to savings accounts.

The subtyping relation, however, does not have to be a simple extension, but can be more
permissive in the sense that inherited method signatures can be modified in a subtype so that the
types of method input parameters become contravariant and the types of method output param-
eters become covariant. Contravariance means that subtyping on the types of method parameters
is in the opposite direction from subtyping on the interfaces having these methods. Respectively,
covariance means that subtyping on the types of method parameters is in the same direction as
subtyping on the interfaces having these methods. Contravariance in input parameter types and
covariance in output parameter types are the basic subtyping properties of function types [1]. As
methods are essentially (object state modifying) functions of input parameters returning output
parameters, they naturally have these properties as well.

The intuitive meaning of method input parameters is that clients should be able to invoke
methods on a subtype object, supplying it with input arguments and obtaining from it results,
the same way as they would invoke the corresponding methods on a supertype object. Then
input supplied by a client should always be accepted by a subtype method and output produced
by the latter should always be acceptable for the client. The contravariance restriction on input
parameters and the covariance restriction on output parameters addresses these issues.

Subclassing or implementation inheritance allows the developer to build new classes from exist-
ing ones incrementally, by inheriting some or all of their attributes and methods, overriding some
attributes and methods, and adding extra methods.

In most object-oriented languages, such as Simula, Eiffel, and C++, subclassing forms a basis
for subtype polymorphism, i.e. signatures of subclass methods automatically conform to those
of superclass methods, and, syntactically, subclass instances can be substituted for superclass
instances. As the mechanism of polymorphic substitutability is, to a great extent, independent of
the mechanism of implementation reuse, languages like Java and Sather separate the subtyping
and subclassing hierarchies.

3



For simplicity, we will consider here subclassing to be the basis for subtyping and will analyse
how behaviour refinement of subclasses with respect to their superclasses influences evolution of
exceptions. However, the same principles also apply to systems with separate subclassing and
interface inheritance hierarchies.

3.3 Specialising Exceptions

Analysing the nature of interface exceptions, it is easy to see that like method output parameters,
they are entities returned from a method. As such, like output parameters they are likely to have
covariant nature. Indeed, if instead of signaling an exception of type ArrayException in a subtype
SortedArray of Array, we will signal an exception SortedArrayException, clients using SortedArray
object and expecting an exception of type ArrayException should be able to deal with its special
case, SortedArrayException. Such covariant exception specialisation ensures that clients using a
subtype object instead of a supertype object are never faced with unexpected method results, in
this case exception occurrences.

As it is perfectly type-safe to covariantly redefine (specialise) interface exceptions, some lan-
guages actually permit this kind of redeclaration. The object-based language Modula-3 was one
of the first to introduce some form of interface exception specialisation. A procedure declaration
includes a list of all exceptions that can be signaled (exceptions are not classes here). The lan-
guage allows procedure redeclaration while exporting interfaces: all exceptions that a redeclared
procedure can signal must be declared in the exported procedure declaration.

Method declaration in Java can contain the throws clause that has to include all checked
exceptions that the method can signal. Java imposes the following rule on the checked exceptions
that method n overriding method m of the superclass can throw: for every exception class listed
in the throws clause of n, either the exception class or one of its superclasses must be listed in the
throws clause of m. As example from [5] illustrates this rule:

public interface Buffer {
char get() throws BufferEmpty , BufferError ;

}

public interface InfiniteBuffer extends Buffer {
char get() throws BufferError ;

}

A very similar approach is used for dealing with interface exceptions during subtyping in the
programming language Arche.

As demonstrated by these examples, the existing languages support covariant redeclaration of
interface exceptions. However, considering general ways in which systems can evolve (Section 3.1),
it is clear that this way of redeclaring and inheriting interface exceptions is too restrictive and
should be relaxed to support other forms of behaviour evolution as well.

3.4 Exception Inheritance for Exception Evolution

Miller and Tripathi in [7] rightfully point out that the exception handling mechanisms in existing
object-oriented languages are oriented towards implementation only and, as such, do not provide
an adequate support for system development. We are interested in a mechanism supporting imple-
mentation development as well as system evolution. This kind of an exception handling mechanism
will help to bridge the gap between different models used at various stages of the software life-cycle
and to make the transition between different stages seamless.

First, we would like to identify the features that an exception handling mechanism supporting
various forms of behaviour evolution should possess. For this, let us consider all the possibilities
one might potentially like to exercise in redeclaring exceptions when developing a subclass. The
existing languages allow specialising and removing exceptions – which covers only a part of the
complete picture. This is useful but insufficient. Exception merging is another exception-specific
form of refinement. It seems to be possible that at some step of class evolution it will be decided
that several independent interface exceptions of a method have to be merged into one exception.
This can happen if we find that they are caused by similar reasons or that we do not want them

4



Application

CreateDocument

NewDocument

OpenDocument

CloseDocument

MyApplication

CreateDocument

NewDocument

OpenDocument

CloseDocument

Document

Open

Close

Save

MyDocument

Open

Close

Save

AttachView

DetachView

Notify

View

Update

docs

views

doc

Fig. 1. Example of new functionality requiring new exceptions

to be different (e.g. usually heap and stack are implemented in the same space but one grows
from the bottom and another from the top: we may decide to merge two exceptions into single
no memory exception if they have to be treated in the same way). Although it may be possible to
propose some specialised solutions supporting such functionality, for simplicity we consider that
this problem can be solved by deleting exceptions and adding new one.

3.5 New Functionality – New Exceptions

When specialising or extending classes, the existing approaches to dealing with interface exceptions
at best permit to specialise and remove superclass interface exceptions in subclasses. However,
when developing complex software, developers might be faced with the need to address system
evolution requirements for which these interface exception changes are too restrictive.

Consider, for example, the setting illustrated in Fig. 1. Suppose that initially our design consists
of classes Application and Document. An application works with a number of documents and can
create new documents, open existing documents and close documents. The correspondingly named
methods in class Application implement this functionality. A document provides methods that its
clients, in particular the application using this document, can invoke to open, save, and close
the document. For example, when an application needs to close a specified document, it checks
whether the document has been saved since the last modification, saves it if it hasn’t and closes
the document.

Suppose now that we want one document to be viewed and edited in several windows. To
achieve this, we employ the usual Observer Pattern[3], creating new classes MyDocument and
View, such that each MyDocument instance can be observed by a set of View instances. Views
can be attached to and detached from a document using the correspondingly named methods of
MyDocument. Whenever a document is changed in one of the views, it notifies each of its views
about the change by broadcasting the method Update.

The problem arises when we are trying to implement MyDocument’s Close method. When an
attempt is made to close a document which is simultaneously modified is several windows, we’d
like to signal an exception MultipleViewCloseException. But as method Close of Document does
not signal any exceptions, this redeclaration of its interface in MyDocument would be illegal in all
the languages supporting only covariant interface exception redeclaration.

As demonstrated by this example, what we would like to have is more flexibility, enabling
the kind of interface exception redeclaration when a subtype method can signal completely new
exceptions. This observation is also made by Miller and Tripathi, who note in [7]: “For exceptions,
new functionality may need new exceptions that are not subtypes of exceptions from the parent
method”. Further, the authors conclude that “[...] evolutionary program development suggests
exception non-conformance”.

Fortunately, this apparently desirable exception non-covariance (or “non-conformance” in terms
of [7]) can be successfully dealt with, to circumvent type-theoretic problems. In the following sec-
tion we present our proposal on how to deal with non-covariant interface exception redeclaration,

5



C'

m() throws D

n() throws F

ClientOfC'
use

C

m() throws E

use

try {... c'.m(); ...}

catch D {...}

catch F {...}

ClientOfC

try {... c.m(); ...}

catch E {...}

rescue D {...}

rescue F {...}

Fig. 2. Rescue handler

without sacrificing the type safety provided by the existing exception handling mechanisms. In
this manner, a more flexible, yet safe, exception handling mechanism can be built.

4 Adding New Interface Exceptions

We envision two closely related ways of dealing with new interface exceptions added in a subclass.
The first approach is based on using rescue handlers - default handlers attached to the class
introducing new exceptions. The second approach employs the forwarding technique.

4.1 Using Rescue Handlers

The General Idea Consider a class C and its subclass C ′, which inherits methods of C ′, over-
riding some of them, and adds some new methods. Suppose that a method m of C signals an
exception E and its counterpart in C ′ signals instead an exception D which is not a subtype of
E. In addition, suppose that a new method n of C ′ signals an exception F .

As we know, clients of C might not be aware of the existence of C ′ and the handlers that these
clients provide are only prepared to handle the exceptions explicitly declared in the interface of C.
On the other hand, clients of C ′ which see the new exception signaled by m can provide a handler
for this exception.

To deal with the new exceptions for which no handlers are available in the client code which
invoked the methods that signaled these exceptions, we can define a default handler – the rescue
handler. We chose to call this handler a rescue handler because it is used for the specific situation
when clients don’t know how to deal with new interface exceptions of their servers, being unaware
of their existence, and the rescue handler steps in to rescue the situation. Naturally, this rescue
handler should be attached to a class in which the new exceptions are declared. We illustrate this
solution in Fig. 2.

An important point to note here is that this scenario is type-safe. The client calling a method
will never be asked to handle an exception which it does not expect and for which it does not have
a handler. The client only gets to handle those exceptions that are declared in the interface of
its declared server. The new exceptions signaled by the server’s subclass are handled by a rescue
handler associated with the server’s subclass itself. The task of the compiler is then to check that
every new exception of the subclass has an associated rescue handler attached to the subclass.

Using this approach, we can now solve the problem in our example of applications and docu-
ments. We can allow MyDocument’s Close method to signal the new interface MultipleViewClose-
Exception, and define a rescue handler for it, attached to the class MyDocument. Such a rescue
handler, can, for example, close all views open on the document and then close the document it-
self. Then any Application instance invoking MyDocument’s Close method will never be faced with
MultipleViewCloseException unknown to it: the rescue handler will handle it and return control
to Application.

6



Moreover, the clients of MyDocument, aware of the fact that the method Close of the latter
can signal MultipleViewCloseException, can handle this exception in a more sensible manner,
superseding the rescue handler provided by MyDocument. For example, MyApplication which
works with MyDocument directly, rather than via subsumption through Document, can define a
handler for MultipleViewCloseException that will pop-up a dialog enquiring the user whether he
really wants to close the document along with all its views, or only wants to close specific views,
leaving the document open in the other views.

Apart from providing some computations attempting to fix the problem, or simply returning
the object into a consistent state, the rescue handler can also signal exceptions. Naturally, the
exceptions that it can signal must be either subtypes of the exceptions signaled in the corresponding
parent method, or they also can be the predefined Failure exceptions.

Implementation Let us consider now how our proposal can be implemented in practice; in par-
ticular, how the control is passed at runtime between client objects and supplier objects signaling
new exceptions. Two general scenarios are of interest here:

1. The client is not aware of the new exceptions and the rescue handler is to be invoked
2. The client is aware of the new exceptions and its own handler is to be invoked, superseding

the rescue handler.

Suppose that we have a certain class NewSupplier extending some parent class Supplier and
overriding a method m of the latter so that it signals a new (non-covariant) exception E.

class NewSupplier extends Supplier {
void m() signals E {

try {
S1;
signal new E();
S2;

}
catch (−internal exceptions−) {−handle internal exceptions−}

}
. . .
rescue E {RE}

}

Suppose also that we have two clients for NewSupplier, the one using it through subsumption
and unaware of the new exception E (we will call it Client), and NewClient which knows that it
uses NewSupplier and is prepared to deal with its new exception.

class Client {
void n() {

try {
T1;
s.m();
T2;

}
catch B {HB}
catch C {HC}
. . .

}
. . .

}

class NewClient {
void p() {

try {
U1;
s.m();
U2;

}
catch D {HD}
catch E {HE}
. . .

}
. . .

}

We illustrate the control flow for both scenarios in Fig. 3, using sequence diagrams. As usual,
the vertical dimension represents time and the horizontal dimension represents the actors involved
in a collaboration; time proceeds down the page. Solid arrows denote method invocations and

7



Client

n

m

T1

signal E

T2

NewSupplier

S1

[no handler for E]

search for rescue for E

RE

NewClient

p

m

U1

signal E

NewSupplier

S1

[handler for E found]

HE

return

return return

Fig. 3. Control flow for clients invoking a method signaling a new exception

ordinary actions, like assignments and iterative statements; dashed arrows denote control passing
between the actors involved; finely dashed arrows denote exception handler invocations.

As shown in this diagram, when the method n is invoked on Client, the first action to be
performed is T1. For simplicity, we have shown this action as the one preformed on Client itself,
but in reality it can be something more involved, like a sequence of method invocations. The
invocation of m on NewSupplier results in transferring control to the latter, which executes S1

and then can signal the exception E, which is new and unknown to Client. The control is passed
to Client, which searches for e handler for E and, having not found one, returns the control back
to NewSupplier. The latter searches for a rescue handler for E, and having found RE executes
it. Provided that RE successfully fixes the problem, the control is returned back to Client which
executes T2 and returns control to the client which invoked method n. In case the rescue handler RE

itself signaled an exception, this exception is propagated to Client which reacts to this exception
in the usual way, handling it or propagating it further. Recall that all exceptions signaled by RE

are required to be either covariant to one of the interface exceptions of Supplier’s method m, or
the predefined Failure exception.

Consider now the collaboration between NewClient and NewSupplier. NewClient is aware of
the possibility that method m of NewSupplier signals E and is prepared to handle it. When E is
indeed signaled, NewClient catches it and invokes the handler HE . This handler supersedes the
rescue handler provided by NewSupplier. It is interesting to note that, conceptually, the “ordinary”
handler defined in the client overrides the rescue handler in the server, although they are located
in different classes.

When subclassing a class providing rescue handlers for new exceptions, the rescue handlers are
inherited and can be overridden. When no new rescue clause is provided in a subclass, the one
from the parent method is inherited. To override a rescue clause for a particular exception, the
subclass should simply provide a new rescue clause for this exception. There is no need to delete
rescue clauses in a subclass, because even if we drop the interface exceptions for which rescue
handlers were defined in a superclass, no harm is done if these handler are inherited.

As we already mentioned above, our solution to the problem of new exception introduction is
type-safe. The type safety is imposed through requiring that a compiler verifies that every new
exception of a subclass has an associated rescue handler attached to the subclass. To enforce this
safety rule, we can always provide a default rescue handler signaling Failure.

8



4.2 Forwarding to the Rescue

Using rescue handling to solve the problem of new interface exceptions is perfectly suitable for
the top-down system development approach, when we face the need to introduce an interface
exception in a development step. As we discussed above, the need for introducing a new non-
covariant interface exception may arise because a new data structure can deliver new exceptional
behaviour.

However, rescue handling is of little help if we are to use a bottom-up approach to system
development. With this approach, we might want to match an existing class (e.g., from a class
library) to an existing interface (e.g., provided by a framework). It is quite likely to happen that
the class has extra interface exceptions not signaled by the interface which the class matches
otherwise.

Fortunately, architectural solutions that have proven their usefulness in solving closely related
interface mismatch problems, literally speaking, come to the rescue in this situation as well. In
particular, forwarding or the Wrapper Pattern [3], is an architectural solution that allows using
instances of NewClass, which is an improved, more specialised version of some OldClass, but with
a slightly mismatching interface, instead of instances of C.

The idea behind forwarding is to introduce a subclass of OldClass, Wrapper, which aggregates
an instance of NewClass and forwards OldClass method calls to NewClass through this instance.
We illustrate this forwarding scheme in Fig. 4.

OldClass

Wrapper NewClass
impl

Fig. 4. Forwarding OldClass method calls to NewClass via Wrapper

We can apply the same approach to solving the problem of mismatching interface exceptions, if
we turn the new interface exceptions of NewClass into internal exceptions of Wrapper. The latter,
having the same (or conforming) interface as OldClass, simply forwards all method calls to the
corresponding methods of NewClass, catching and handling all NewClass’s interface exceptions
that cause the interface mismatch with OldClass. With this approach, clients of OldClass can
effectively use NewClass, without being concerned that the latter signals an exception of which
they are unaware.

5 Conclusions and Future Work

There is a significant gap between methods used for system modelling and design at the earlier
phases of the life cycle and features which the implementation languages provide. One of reasons
is a different view these methods and languages have on the way interface exceptions can be
evolved. In particular, none of the languages allows adding interface exceptions which is vital for
adding new functionality during system evolution. In this paper we have proposed two type-safe
approaches which can be introduced into object-oriented languages to make it possible to add
interface exceptions during subclassing. Our future research will focus on further development of
these ideas. The intention is to apply these features in design and implementation of several case
studies, to analyse possible implementations of these language mechanisms and their overheads,
and to propose a formalism for reasoning about systems containing subclasses which have new
exceptions and which employ our approaches for dealing with them.

9



References

1. M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. L. Cardelli, J. Donahue, L. Glassman, M. Jordan, B. Kalsow, and G. Nelson. Modula-3 language

definition. Technical Report 52, Digital Equipment Corporation, Systems Research Center, 1989.
3. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable Object-

Oriented Software. Addison-Wesley, 1995.
4. J. B. Goodenough. Exception handling: Issues and a proposed notation. Communications of the ACM,

18(12):683–696, Dec. 1975.
5. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Sun Microsystems, Mountain View,

1996.
6. V. Issarny. An exception handling mechanism for parallel object-oriented programming: towards the

design of reusable, and robust distributed software. Journal of Object-Oriented Programming, 6(6):29–
40, 1993.

7. R. Miller and A. Tripathi. Issues with exception handling in object-oriented systems. In M. Akşit
and S. Matsuoka, editors, ECOOP ’97 — Object-Oriented Programming 11th European Conference,
Jyväskylä, Finland, volume 1241 of Lecture Notes in Computer Science, pages 85–103. Springer-Verlag,
New York, NY, June 1997.

8. A. Taivalsaari. On the notion of inheritance. Comp. Surveys, 28(3):438–479, September 1996.

10


