
Exception Handling
versus

Fault Tolerance

Jørgen Lindskov Knudsen
Computer Science Department, Aarhus University

Aabogade 34, DK-8200 Aarhus C, Denmark
Tel.: +45 89 42 56 69 – Fax.: +45 89 42 56 24

E-mail: jlknudsen@daimi.au.dk

A large part of any software design is the handling of error situations or rare situations
that are unlikely to happen. For small programs, it is common to print an error message
and terminate the program execution. The user must then correct the error and execute
the program again.

For most non-trivial programs it is not satisfactory just to terminate the program with an
error message. Consider the situation where the program is a word processor. An error
message saying e.g. that some internal register has overflowed is in general not
meaningful to a user of such a word processor. Another example is a flight reservation
system. Such a system runs over a very long period of time, and it would not be
acceptable if e.g. a table overflow simply resulted in an error message and a subsequent
termination of the program.

There are many types of errors or exceptional situations that a program may have to deal
with. An exception is a class of computational states that requires an extraordinary
computation. It is not possible to give a precise definition of when a computational state
should be classified as an exception occurrence; this is a decision for the programmer. In
practice, most people have a good feeling of what is the main computation and what are
exceptional situations. The exceptional situations are all those situations that imply that
the main computation fails.

A program must be able to deal with exceptions. A good design rule is to list explicitly
the situations that may cause a program to break down . Many programming languages
have special constructs for describing exception handling.

Many proposals have been put forward on defining language constructs for handling
exceptions. Most of these are dynamic in nature (i.e. the exception is handled by some
component found by examining the dynamic calling sequence leading to the exceptional
occurrence), while others are static (i.e. the exception is handled by some component
found by analyzing the static context of the exception occurrence).

This short paper describes the BETA approach to exception handling and fault tolerance
programming, gives a few hints to the differences between exception handling and fault
tolerance programming, as well as a few pointers to existing exception handling
constructs.

2

1. STATIC EXCEPTION HANDLING IN BETA

In BETA [Madsen et al. 93], exception handling is introduced into the language in the
form of static exception handling [Knudsen84], [Knudsen87]. The support is introduced
without actually adding any new language constructs, but only by adding a predefined
pattern1.

A virtual pattern dealing with an exception is called an exception pattern, or just an
exception. The invocation of an exception pattern is called an exception occurrence. An
exception is raised when an exception pattern is invoked. The code associated with an
exception pattern is called a handler or an exception handler.

The code associated with a specialization of the exception pattern will be the default
handler for the exception in the case where no further binding of it is made. A sub-
pattern may extend the default handler by a further binding. A specific instance handler
may be associated with each instance by instantiating a singular object with a further
binding of the exception pattern.

1.1 Experiences
The exception handling mechanism shortly introduced above is based on the static
approach to exception handling. The benefits of this approach is a very declarative
exception handling style, where the consequences of raising an exception can be deduced
from the static properties of the program. This also implies that the cost of these
mechanisms are extremely low, both in the case of the exceptions never being raised, and
in the case of an exception being raised. The cost of static exception handling is fully
comparable with ordinary programming.

It is our experience, that static exception handling is the exception handling model per se
for well-designed object-oriented systems. It focus on the use-relation between objects: it
is the responsibility of the user (or client) of an object (or a service) to specify explicitly
the consequences of exception occurrences in the object. The static exception handling
model gives the ability for an object (through its pattern declaration) to specify the
exception occurrences that may occur within it (by declaring virtual attributes, that are
specialization’s of the exception pattern). Moreover, the static exception handling
model offers the ability for the client of the object (or service) to explicitly (and
statically) to specify the handling of such exception occurrences through virtual bindings
of these exception patterns. The effectiveness of static exception handling is
demonstrated by the fact, that the entire Mjølner System2 is programmed entirely using
static exception handling as the only exception handling model.

2. DYNAMIC EXCEPTION HANDLING IN BETA

The static exception handling model is based on two assumptions:

Perfect Design
There is an underlying assumption that all users of a given pattern with exception
specifications makes a complete handling of the exceptional occurrences (i.e.
further binds the proper virtual).

1 Pattern is the BETA name for a class – this is not the whole story, but hopefully sufficient.
2 You can find more information on the Mjølner System at http://www.mjolner.com/mjolner-system.

3

Nearly by definition, designers will make mistakes, forgetting to take care of
some exceptional occurrences, giving rise to the program being terminated.

Object Creation
There is also an underlying assumption that the objects being used by the
application, are also created by that application (making it possible to handle the
exceptional occurrences in these objects through static exception handling).

In a persistent or distributed environment, objects are not created only by the
running application, but also by other applications and made available to the
running application.

This implies that there is a need for offering an additional model for exception handling
in order to be able to support truly fault-tolerant programming with respect to exception
handling.

Error handling can therefore be divided into two distinct disciplines: exception handling
and fault-tolerant programming. Exception handling deals with the handling of well-
defined error conditions within a well-defined system or framework. And fault tolerant
programming deals with error handling in all other cases: ill-designed systems, faults in
the exception handling code, errors originating from outside the system or framework.

Our experience with the static exception handling mechanisms of BETA have proved
static error handling as an effective exception handling mechanism, but also that it is
difficult (and in some cases impossible) to use for fault tolerant programming.

We therefore propose the introduction of a dynamic error handling mechanism to be used
for effective fault tolerant programming.

We would like to stress that the static exception handling model should be used almost
exclusively, since it gives the most well-designed exception handling, integrated with the
object-oriented tradition, and reserve dynamic exception handling only to those case
where no other error handling solution can be found. One could say, that the relation
between static and dynamic exception handling is fairly similar to the relation between
structured programming and the GOTO controversy.

In the dynamic approach, there is no static connection between the definitions of an
exception, the raising of an exception, and the actual handling of an exception.
Exceptions are defined anywhere in the program, and may be raised anywhere where
these exceptions are visible in the program text. Handling of the exception is on the other
hand possible in all parts of the program (even places where the exact definition of the
exception is unknown).

2.1 Dynamic Exception Handling Model in BETA
The dynamic model for exception handling for BETA is heavily inspired by the C++
model for exception handling, which in turn is inspired by the ML model for exception
handling3.

The dynamic exception handling model for BETA is concentrated around the following
four main concepts: exception objects, throwing exceptions, try blocks, and exception
handlers.

3 It should be noted that this is a p roposal for extending the BETA exception handling model. The proposal

has not been certified, and the Mjølner System does not implement it.

4

Exception Objects

An exception object is a regular BETA object. The purpose of an exception object is to
act as a messenger between the point where the exception occurrence have been
identified, and the place where the exception is handled. The exception object may have
attributes, carrying information from the exception occurrence to the exception handler,
but it may also act merely as a signal (without attributes).

Throwing Exceptions

When an exception occurrence have been identified, the dynamic exception model offers
the possibility of throwing an exception object. When an exception object is thrown, the
intuition is that the exception object 'travels' back the dynamic call-chain until an
exception handler for this exception object type have been located. When located, the
particular exception handler is given access to the exception object, and may then initiate
proper exception handling processing, possibly based on the information brought to it by
the exception object. During the processing of the exception object, the exception
handler may decide on the proper continuation of execution of the application.

If the entire dynamic call chain have been exhausted in the search for an exception
handler and no matching exception handler have been found, then the exception is
automatically converted into an instance of the predefined exception unknown . This
unknown exception object contains a reference to the original exception object and is
automatically thrown at the same spot as the original exception object. If any handlers on
the dynamic call chain do also not handle this unknown exception object, the unknown
exception object is raised as a static exception occurrence, giving raise to termination of
the entire application.

Try Blocks

The BETA model for dynamic exception handling is based on try blocks as the means for
specifying the extent of exception handlers. A try block is a special kind of nested blocks
(similar to nested blocks in ALGOL, PASCAL and C/C++). The purpose of a try block
is to function as a definition place for exception handlers, and a try block is capable of
handling those exceptions for which there are defined a handler. In the description of the
semantics of throwing an exception object, it was mentioned that a handler was sought.
To be more specific: during a throw of an exception object, the dynamic call-chain is
scanned to find the first try block with an exception handler, matching the exception
object. If no matching exception handler is found in a try block, the exception is
automatically propagated to the next try block in the dynamic call chain.

Exception Handlers

As described above, dynamic exception handlers are defined in try blocks. An exception
handler is capable of handling a series of exceptions through the specification of a series
of when-clauses. Each when-clause is capable of handling one particular exception
object type (or any subtype hereof).

The sequence of when-clauses in a handler is important, since more than one when-clause
in a handler may match a given exception object (the two subtypes overlap). The handler
handles this potential ambiguity by choosing the first when-clause that matches the
particular exception object.

During the handling of an exception in a when-clause, the when-clause has access to the
exception object being handled.

5

Execution Control

During the handling of an exception object, the chosen when-clause has five different
possibilities for controlling the execution of the program, namely continue, propagate,
retry, abort, and terminate.

Continue:
If continue is chosen, the exception occurrence have been fully recovered, and
the execution may continue from the spot, where the exception object was
originally thrown.

Propagate:
If propagate is chosen, the exception object is propagated further backwards
along the dynamic call chain in order to be further handled by some other try
block. Propagation is the default for exception objects for which no exception
handlers are found in a try block. Propagation is also the default for exception
objects with a matching when-clause if no other execution control is specified in
the when-clause. Propagation implies that the exception handling have only
partially been concluded.

Retry:
If retry is chosen, the execution is resumed from the beginning of the try block in
which the chosen when-clause is specified. Retry implies that the best way to
continue the application is to re-execute the entire execution from which the
exception occurrence arose. Usually this implies that the exception handling
have brought the application back to a stable state.

Abort:
If abort is chosen, the execution is resumed after the try block in which the
chosen when-clause is specified. Abort implies that the actions of the exception
handler have replaced the remained of the try block (i.e. the actions after the spot,
where the exception object was thrown).

Terminate:
If terminate is chosen, the execution of the entire application is terminated.
Choosing terminate implies that the exception is impossible to handle (i.e. the
exception occurrence is indeed severe).

3. A SHORT OVERVIEW OF EXCEPTION HANDLING
MECHANISMS
The foundation of most research on exception handling is the pioneering work by J.B.
Goodenough [Goodenough75]. Most procedural languages with special language
facilities for exception handling are more or less directly based on this work (e.g.
languages like Clu and Ada). Several object-oriented languages have included special
language facilities for exception handling (e.g. Smalltalk, Eiffel, C++, and Java).

All these facilities employ a dynamic approach to finding the handlers of a particular
exception. This implies (with variations) that the handler for an exception is found by
traversing the call chain of procedure invocations and enclosed block backwards, until a
block or a procedure invocation is found in which a handler for the exception is defined.
This dynamic approach implies the separate definition of the exception and the handler,
and association of the exception with the handler based on the dynamic behavior of the

6

program. This implies that it is very difficult to trace the exceptional computation (works
somewhat like a series of computed GOTOs) and it is very difficult to ensure that all
exception occurrences will be handled eventually (i.e. it is very difficult to verify that a
program will respond sensible to all perceived exceptional conditions)4.

This dynamic behavior (dynamic binding of handlers to exceptions) is often in contrast to
the host language (e.g. Ada and Clu) that uses static name binding (e.g. when binding
procedure invocations to procedure declarations). This has resulted in criticisms from
several sources. E.g. C.A.R. Hoare [Hoare81] states that "... the objectives of languages
including reliability, readability, formality and even simplicity ... have been sacrificed ...
by a plethora of features ... many of them unnecessary and some of them, like exception
handling, even dangerous."

As an alternative to the dynamic approach to exception handling, a proposal has been
made for a static approach to exception handling [Knudsen84, Knudsen87] that is based
on the sequel concept, proposed by R. Tennent [Tennent77]. The static approach have
been further developed to incorporate support for smooth termination (i.e. allowing for
clean-up etc. of blocks being terminated during an exceptional "backtrack") [Knudsen87].

The BETA approach to static exception handling is inspired by this static approach to
exception handling. The rationale for the concrete design have been to introduce static
exception handling into BETA without introducing any new language constructs, but
instead by utilizing the powerful abstraction mechanisms of the language to construct an
exception handling concept.

Static exceptions in BETA are designed such that ignoring to handle an exception will
automatically terminate the entire program block. The handler of an exception may be
split into different parts, spanning several block levels, resulting in smooth termination of
the different blocks. The termination level of static BETA exceptions is default defined
to be the program block. The default termination level of a static BETA exception can
be redefined in the handler. If the programmer wishes to define another termination
level, this is done in the do part of the handler by specifying leave B, where B is the
label of some enclosing block. The programmer may also choose to restart some part of
the computation as a result of the static exception. This is also done in the do part of the
handler by specifying restart B where B is the label of some enclosing block.
Finally, the programmer may choose to resume the computation immediately after
handling the computation. This is done by specifying continue in the handler (i.e. in
the do part of the exception). In order to be able to construct fault tolerant programs,
BETA offers a dynamic exception handling mechanism, which e.g. is used to enable
coping with static exceptions that are not handled, enabling the construction of fault
tolerant programs.

Dynamic exceptions in BETA are very similar to those dynamic exceptions found in
languages like C++, Java, and ML. When comparing with those approaches, the BETA
dynamic exceptions have been introduced without the need to introduce any new
language constructs, and the matching process during the dynamic search for a handler
along the call-chain is much more flexible. The BETA dynamic exception matching
includes facilities for exception object identity matching and exception information
matching – facilities which, to our knowledge, cannot be found in other dynamic
exception models.

4 It is important to note that exception handling in any programming language is only capable of handling

exceptional conditions that have been perceived during program design.

7

4. EXCEPTION HANDLING VERSUS FAULT TOLERANCE

As it can de seen above, it might be too simple to deal with the problem of errors in
programming from one perspective, namely the predominant view of dynamic exception
handling. There seem to be two different, but closely related problems here, namely that
of exception handling and that of fault tolerant programming.

Let us try to define these two concepts:

Exception handling:
Exception handling is the techniques by which the designer of a piece of software
– an abstraction (library, module, class, etc.) can define possible exceptional
occurrences that are expected to occur in the abstraction. Moreover, these
exceptional occurrences are part of the definition of the abstraction in the sense
that the users of the abstraction knows about the possibilities of these exceptional
occurrences, and thereby are able (or forced) to deal with these occurrences when
using the abstraction.

Fault tolerant programming:
Fault tolerant programming, on the other hand, is the techniques to cope with
exceptional occurrences, that are not defined as part of the abstraction definition.
Examples of such occurrences are programming errors in the code of the
abstraction, unhandled exceptions, and unexpected system states (e.g. the disk
system suddently becomes inaccessible).

The experiences with the BETA exception handling mechanism indicates the need for
separation these two issues, possibly giving rise to two separate, but related language
mechanisms for exception handling and fault tolerant programming.

Interestingly, the dynamic trend (exemplified by Java) is to introduce more static analysis
in order to make exception handling more safe (exceptions are declared in the interfaces,
and the language compiler enforces static checks to ensure, that these exceptions are
handled). This gives a static verifiability of an otherwise dynamic mechanism. On the
other hand, the static constructs have realized that there are cases, where the static nature
of the constructs makes it very difficult to ensure that a program never terminates due to
an unhandled exception.

Looking more closely at the Java exception handling mechanism [Java], one will find an
interesting change in the rules of the game when we investigate the rules concerning the
very basic exceptions (such as numeric exceptions). While the compiler enforces the
handling of all exceptions in an interface, the compiler does not enforce this rule on the
basic exceptions 5.

Looking more closely into the arguments for this, it is interesting to see, that sentences
like “it would become tedious top properly declare them all, since practically any method
can conceivably generate them” are given. And an example is “every method running on
a buggy Java interpreter can throw an InternalError exception”.

One interpretation of these differences in semantics is exactly, that regular exceptions
(i.e. Throwables) are handled using exception handling, whereas non-Throwables are
handled using fault tolerance. In the Java case, this implies that the type system of
exception are used to differentiate between exception handling and fault tolerance.

5 To be specific, the Java compiler only enforces this rule on exceptions that are instances of subclasses of
Throwable.

8

In the BETA case, the type system of exceptions does not introduce any differentiation
between exceptions for exception handling and exceptions for fault tolerance. This is
actually a deliberate design decision. The reason is, that in some parts of a system, a
given exceptional case might be known as a part of the definition of an abstraction,
whereas the same exceptional case may occur other places, where it is unreasonable to
define it as part of the abstraction. In the Java case, this situation imply that the system
must have two exception types defined – one for the exception handling case, and another
for the fault tolerance case. In BETA, this is handled by the same exception definition. If
the exception is raised using the static exception handling system, then the exception is
handled using exception handling, whereas if the exception is raised using the dynamic
exception handling mechanisms, then the exception is handled using fault tolerance.

It should be noted, that the BETA mechanisms are actually connected, such that if an
exception is raised as an static exception, but unfortunately not handled by anyone, then
the exception ahndling system will automatically convert it into a dynamic exception,
implying that the error is converted to a fault to be handled through fault tolerance.

In conclusion, it is the current understanding of this author, that the relationship between
exception handling and fault tolerance needs further investigation, and that there is a need
for further development in the area og language constructs for supporting both exception
handling and fault tolerance. However, it seems important not to do this through separate
language constructs, but the develop interconnected language constructs, enabling there
two approaches to error handling to be integrated, improving the stability of future
system designs.

5. REFERENCES

[Eiffel89] Eiffel: The Language, (Version 2.2), Interactive Software Engineering Inc.,
Santa Barbara, CA, USA, 1989

[Ellis90] Margaret A. Ellis and Bjarne Stroustrup, The Annotated C++ Reference
Manual, Addison-Wesley, 1990

[Goodenough75] J.B. Goodenough, Exception Handling: Issues and a Proposed
Notion, Comm. ACM, 18(12), Dec 1975, (683–696)

[Hoare81] C.A.R. Hoare, The Emperor's Old Clothes, Comm. ACM, 24(2), Feb
1981, (75–83)

[Java] David Flanagan, Java in a Nutshell, Second Edition, O’Reilly.

[Knudsen84] Jørgen Lindskov Knudsen, Exception Handling — A Static Approach,
Software, Practice and Excerience, 14(5), May 1984, (429–449)

[Knudsen87] Jørgen Lindskov Knudsen, Better Exception Handling in Block-
Structured Systems, IEEE Software, 4(3), May 1987

[Madsen et al. 93] O.L. Madsen, B.Møller-Pedersen, and K. Nygaard, Object-
Oriented Programming in the BETA Programming Language, Addison Wesley,
Reading, MA, June 1993.

[Tennent77] R.D. Tennent, Language Design Methods based on Semantic Principles,
Acta Informatica, 8(2), 1977, (97–112)

[Wikstrom87] A. Wikstrøm, Functional Programming Using Standard ML, Prentice-
Hall Inc., 1987

