
Metadata Support for Safe Component Upgrades∗

P̌remysl Brada
University of West Bohemia in Pilsen

Czech Republic
brada@kiv.zcu.cz

Abstract

Component platforms play a major role in current dis-
tributed information systems. As these systems evolve, com-
ponents need to be upgraded without breaking the con-
sistency of component interconnections. In this paper we
present a method for the support of automated safe up-
grades of black-box components. It relates component ver-
sioning with indication of changes between revisions of the
same component and uses pre-computed information stored
in component metadata. We show how this information is
derived from component specifications and used to speed
up pre-upgrade checks.

1. Introduction

Component platforms like ACME [2], SOFA [12], En-
terprise JavaBeans [1], or CORBA components [9] play a
major role in the research, development and operation of
current distributed industrial information systems. As these
systems evolve, their parts need to be replaced or upgraded
safely – i.e. in a compatibility-preserving way.

In this paper we present a method supporting automat-
ed safe upgrades of black-box components [15] which u-
ses pre-computed information stored in component metada-
ta to speed up the necessary compatibility checks. It links
component versioning with indication of changes that af-
fect compatibility between revisions of the same compo-
nent. This link is motivated by the observation that in most
cases, the upgrade entails replacing a current (old) version
by a replacement (new) one.

The structure of the paper is as follows. First we mention
the related research in the area and give a brief overview of
the ENT model used in our work. Section 3 presents the key
contribution of this paper – the component change and revi-
sion data based on the ENT model and their use in compati-

∗This work is partly supported by the Research Plan number
MSM235200005 funded by the Ministry of Education of the Czech Re-
public.

bility checks. Then we shortly describe the implementation
of this approach, and the paper ends with a conclusion and
statement of future work.

1.1. Related Research

Analyses of software changes based on its specification
are substantial for our work. Although this area is quite
well researched [11, 16] the known approaches mostly work
with software structured at a granularity of method signa-
tures which is too fine for coarse-grained components.

There exist many industrial approaches to safe upgrades.
However, they are either tightly bound to the given language
or environment [7], or use only manually provided compati-
bility data [6]. Even the latest developments in the area [10]
do not deal explicitly with this issue. The research goes in
two directions. Interface adaptation [14] is flexible but there
are situations which preclude its use, namely unattended up-
grades. Type-safe replacement [4] is easier to automate but
may be overly restrictive due to its use of contravariant sub-
typing.

On the side of versioning research, there have been
works which suggest the requirements on component ver-
sioning support [8] and which include the possibility to re-
flect architecture changes in the version identification [5].
What we are missing in these approaches are hints on prac-
tical implementation.

2. The ENT Interface Model

In this section we briefly describe the ENT model of
component interface upon which our work is based (see [3]
for details). In this model, the interface specification of a
component is at the lowest level dissected into the decla-
rations of individualelements– features (attributes, event
sources/sinks, etc.) and semantic properties (run-time pro-
tocol, invariant, etc.).

Each element is then assigned ametatypeand classified
using a simple faceted system with dimensions that reflect
various usage-related characteristics:contents, role, kind,



lifecycle. In particular, therole dimension with the classi-
fier terms{provided,required} is important as the provided
and required elements play different roles in component in-
terconnections. They consequently need different treatment
during the pre-upgrade compatibility checks.

provisions metatype=interface∧ role=provided

dependenciesmetatype=interface∧ role=required

properties metatype=property∧ role=required

protocol metatype=protocol∧ role∈ {provided,required}

Figure 1. Trait definitions for SOFA compo-
nents (abbreviated)

Element classification lets us split the interface into sets
(calledtraits) of element declarations which have the same
metatype and classification values (see Figure 1). Traits
have the notable characteristic that they group interface ele-
ments in a manner and on a granularity suitable to the needs
of human users and developers (cf. the common request to
“see which new interfaces this version provides”).

Figure 2. SOFA component in the ENT model

To enable coarse-grained views of the component useful
for first-cut analyses, we use the notion ofcategorieswhich
are sets of traits that share some classification values. A
prominent set of categories calledE-N-T (Exports,Needs,
oTher; see Figure 2) is used to formalize the split of the
component interface along the provides-requires line.

3. Upgrade Support: Versioning
and Compatibility Related

To achieve successful component upgrades, we need to
compare the specifications of the replacement component
versionCr and the current oneCc with respect to compa-
tibility. We use the fact that their differences show up as
changes in the corresponding interface traits.

These changes can be of four types:none, specializa-
tion, generalization,andmutation(specialization and gen-
eralization mean extending and reducing the interface trait,
respectively; mutation means a mix of changes). For ex-
ample, thepropertiestrait in Figure 2 was specialized by
adding thedefaultOrder property.

Algorithms appropriate for the elements contained in
each trait (based on element metatype) must be used in
determining these changes – subtype checks for elements
which are declared as typed variables, boolean expression
comparison for pre- and post-condition elements, etc.

This method createschange dataat the trait level. Since
the provides/requires role of elements fundamentally affects
compatibility, for basic checks it is useful to aggregate such
data using theE-N-Tcategories. This is done as follows: the
change of categoryK is none if no trait in theK category
has changed,spec (gen) if the differences inK ’s traits are
of thespecialization (generalization) or none type, and
mut if some ofK ’s traits have mutated, or some became
specialized while others generalized, or both.

3.1. From Changes to Compatibility

The change data obtained by the approach described
above are suitable for compatibility checking in which we
distinguish two cases.

Strict compatibilityrequires that the replacement compo-
nent exhibits “contravariant” changes in its interface. This
ensures upgrade in any context. In terms of category change
data, the replacement componentCr = (Er, Nr, T r) is
strictly compatible with the current oneCc = (Ec, N c, T c)
iff change(Ec, Er) ∈ {none, spec} ∧ change(N c, Nr) ∈
{none, gen} ∧ change(T c, T r) ∈ {none, gen}.

In concrete situations however, upgrade may be possi-
ble even in the presence of covariant or type-incompatible
changes – for example when theCr specification omits
some provided elements ofCc that are not being used in
its deployment context.

The contextual compatibilityis defined to capture this
case. It uses an ENT representation of the deployment con-
textCx = (E′c, N̄ c, T c/E′c) whereE′c are traits of provi-
ded elements that are actually bound to (used by) other com-
ponents,N̄ c are traits of elements that other components
provide and that can satisfy the requirements ofCr, and
T c/E′c are the semantic declarations related to the bound



provided features. The context categories are used in the
compatibility definition in place ofEc, Nr, andT c.

3.2. From Changes to Revision IDs

In software configuration management, the revision
numbers of a software item express the time order of its re-
visions and implicitly their ability to be backward compat-
ible. We now formalize this intuitive usage via ENT-based
structure and semantics of revision numbers.

Specification traits represent the smallest interface struc-
tures to be meaningfully versioned separately (individual
elements are too small for this). On the first release of a
component, each trait is therefore assigned revision number
revnum(ti) = 1. The number is incremented on subse-
quent releases if there is a change in the trait.

However, the number of component traits (e.g. 4 for SO-
FA, 8 for CORBA components) is usually such that trait da-
ta would hardly lead to simple version identifiers. We there-
fore use theE-N-Tcategory set to create a revision number-
ing scheme that is concise enough for practical purposes.

This component revision datais a triple (rE , rN , rT )
whererα ∈ N. Its parts are derived using the category
change data: for categoryK, if change(Kc,Kr) 6= none
then rr

K = rc
K + 1. The component revision ID is a

“rE .rN .rT ” string form of this data.
These component revision identifiers have the interest-

ing property that their differences indicate in which aspects
the component revisions vary. This is very useful for quick
visual checks as well as in avoiding compatibility checking
for categories which have not changed. They of course also
express the time ordering of component revisions.

As this section shows, the ENT model provides a con-
venient vehicle for a formalization of the intuitive link be-
tween revision identification and compatibility indication
of software components. The following section describes
briefly our implementation of this approach.

4. Implementation in Component Metadata

In many software deployment systems the application
packages contain metadata which describes their purpose,
version, dependencies and compatibility information. In a
similar way we propose to include the change and revision
data with each component. This should free the target en-
vironment of the computationally intensive task of specifi-
cation comparison that may introduce long delays with se-
mantic specifications like protocols [13] or CSP [2].

Additionally, our metadata comprises the change and re-
vision data for the whole revision history of the component
(see Figure 3). This makes it easier to perform compatibil-
ity checks even when several intermediate revisions were
not installed.

<compdata system="sofa">
<provider>cz.zcu.kiv</provider>
<name>OfficeApps/AddressBook</name>
<revision>

<parent>3.1.1</parent>
<data level="component">

<trait name="E"> <revnum>4</revnum>
<change>spec</change> </trait>

<trait name="N"> <revnum>2</revnum>
<change>spec</change> </trait>

<trait name="T"> <revnum>1</revnum>
<change>none</change> </trait>

</data>
</revision>
<history>
<!-- shortened for brevity -->
<revision seq="2">

<parent>2.1.1</parent>
<data level="component">

<trait name="E"><revnum>3</revnum>
<change>spec</change> </trait>

...
</data>

</revision>
</history>

</compdata>

Figure 3. Component metadata example

The implementation uses a XML representation of the
data. When the new revision is downloaded for upgrade,
several actions can be done. First, the revision IDs ofCc

andCr might be compared to see which parts need to be
checked for compatibility. Then, the change data parts of
the component metadata would be compared for strict com-
patibility. If they pass this check the upgrade is allowed.

Otherwise, the system may try to determine the context
of Cc and check for contextual compatibility. At any stage,
the interface specification can still be used for direct “man-
ual” checking. (This may be useful if intermediate revisions
were skipped – the change data based on pair-to-pair com-
parison may not give enough information in these cases).

5. Conclusion and Future Work

In this paper we have shown how safe component up-
grade can be supported by appropriate metadata. The key
advantage of the approach lies in the possibility to create
structured revision identification and compatibility informa-
tion and provide a well defined relation between them.

As this information can be determined once upon com-
ponent release and stored in component metadata, its use
can reduce the computational complexity of compatibility
checks done prior to the upgrade. We consider this approach



to be suitable for unattended upgrades in many component-
based systems, among others CORBA [9] and EJB [1].

There are however some aspects that need further work.
First, practical implementations of the approach require
suitable parsers and interface element comparison algo-
rithms which further increase system complexity. We will
therefore investigate the possibilities for model support and
automation in this area.

Second, the relation to assembly comparison [10] needs
to be considered. Lastly, the approach does not support any
means of interface adaptation which may be impractical in
some cases. To this end, the ENT interface model and com-
patibility definitions will probably need to be redesigned.

The presented work is still in progress. The tools for gen-
erating the ENT-based representation of components and
their metadata are partly implemented for the SOFA compo-
nent framework. A working support of pre-upgrade checks
as well as a CORBA implementation are a near future goal.

References

[1] Enterprise JavaBeans(TM) Specification, version 2.0. Tech-
nical report, Sun Microsystems Inc., August 2001.

[2] R. Allen, R. Douence, and D. Garlan. Specifying and ana-
lyzing dynamic software architectures. InProceedings of the
1998 Conference on Fundamental Approaches to Software
Engineering (FASE’98), Lisbon, Portugal, March 1998.

[3] P. Brada. The ENT model: A general model for software
interface structuring. Technical Report DCSE/TR-2002-03,
Department of Computer Science and Engineering, Univer-
sity of West Bohemia, Pilsen, Czech Republic, 2002.

[4] M. Buchi. Safe Language Mechanisms for Modularization
and Concurrency. PhD thesis, Department of Computer Sci-
ence,Åbo Akademi University, Turku, Finland, 2000.

[5] H. Christensen. Experiences with architectural software
configuration management in Ragnarok. InProceedings of
SCM-8 Workshop, ECOOP 1998. Springer-Verlag, 1998.

[6] Desktop Management Task Force.Desktop Management In-
terface Specification, version 2.0, 1998.

[7] J. Gosling, B. Joy, and G. Steele.Java Language Specifi-
cation. Sun Microsystems, 1996. Chapter 13 (Java Binary
Compatibility).

[8] M. Larsson and I. Crnkovic. New challenges for configura-
tion management. InProceedings of the SCM-9 workshop,
ECOOP 1999, LNCS 1675, Toulouse, France, Sep 1999.

[9] P. Merle. CORBA 3.0 new components chapters. Tech-
nical Report ptc/2001-11-03, Object Management Group,
November 2001.

[10] Object Management Group. Deployment and configura-
tion of component-based distributed applications. request
for proposals. Technical Report orbos/2002-01-19, OMG,
January 2002.

[11] D. Perry. Version control in the Inscape environment. In
Proceedings of ICSE’87, Monterey, CA, 1987.

[12] F. Pĺǎsil, D. Bálek, and R. Janeček. SOFA/DCUP: Architec-
ture for component trading and dynamic updating. InPro-
ceedings of ICCDS’98, Annapolis, Maryland, USA, 1998.
IEEE CS Press.

[13] F. Pĺǎsil, M. Bešta, and S. Vǐsňovsḱy. Bounding component
behavior via protocols. InIn Proceedings of TOOLS USA
’99, Santa Barbara, USA, 1999.

[14] H. W. Schmidt and R. H. Reussner. Automatic component
adaptation by concurrent state machine retrofitting. Techni-
cal Report 2000/81, School of Computer Science and Soft-
ware Engineering, Monash University, Melbourne, Australi-
a, 2000.

[15] C. Szyperski.Component Software. ACM Press, Addison-
Wesley, 1998.

[16] A. M. Zaremski and J. Wing. Specification matching of soft-
ware components.ACM Transactions on Software Engineer-
ing and Methodology, 6(4), Oct. 1997.


	. Introduction
	.  Related Research 

	.  The ENT Interface Model 
	.  Upgrade Support: Versioning  and Compatibility Related 
	.  From Changes to Compatibility 
	.  From Changes to Revision IDs 

	.  Implementation in Component Metadata 
	.  Conclusion and Future Work 

