
The Architecture of a Dynamically Updatable, Component-based System

Work-in-progress Report, March 2002

Robert Pawel Bialek
Department of Computer Science

University of Copenhagen
Universitetsparken 1, DK-2100 Copenhagen, Denmark

bialek@diku.dk

Abstract

On-the-fly replacement of software may require simultanous
distributed updates of components. If an update changes some
interfaces or protocols, the update must be performed in a
globally consistent manner.

This paper describes an architecture of a dynamically up-
datable component-based system that unifies research within
architecture definitions, architecture configuration, and dy-
namic software update. It proposes a layered, modular de-
sign with meta-components, being responsible for performing
the updates. The system is open for architectural and imple-
mentational extensions such as update constraints, or different
update functions.

1. Introduction

Updating software components in a distributed environ-
ment, depending on the scope of the update, may have different
impacts on the nodes of a distributed application. If an update
only causes minor changes to the component implementation,
no other components are affected by such an update. On the
other hand, if a component changes its interface, connections,
or a protocol it uses to communicate with other components;
the update requires that all the components connected to the
updated one need to be updated at the same time.

In this paper, we want to present the architecture of a system
model that allows dynamic software updates in a distributed
environment. The model uses abstractions to distribute respon-
sibilities of the updates. The abstractions are represented in
modules, which can make it easily expandable with architec-
tural and implementational features.

2. Background

From the research areas addressing software updates and
architecture reconfigurations, we were inspired to propose a
model for a distributed updatable system that clearly defines
responsibilities for distributed application’s updates.

In the following, we will briefly present the motivating
research areas and outline the ideas that had impact on our
model.

2.1. Updatable Software Models
The development of software is a long task that stretches

beyond the analysis, design, implementation and test phase.
While executing the software, new requirements arise, bugs
are observed and to meet the new requirements, software up-
dates are needed. One way to ease the software update process
is to have an open architecture, which makes it possible to in-
troduce new functionalities or modifications as fast as possible.
One of the major design models, for open architectures, is the
Component Based Model (CBM) [3]. CBM has two important
properties which make it scalable and expandable: First, com-
ponents are implementations and architectural abstractions at
the same time, which makes the architectural changes easier.
Second, extensions are made (almost) independently of other
components because interaction between components is well-
defined in component interfaces [1].

Because modifications to a code often affect a single part of
application, CBM with its encapsuled design and isolation is a
flexible model that can handle updates. Furthermore, CBM is
one of the mostly used design models now a days with several
implementations , e.g. EJB, CORBA, DCOM.

2.2. Dynamic Architectures
Components can be placed on different computers, easily

transported (e.g. using serialization) and connected with each
other in a variety of ways. To describe (inter)relations between
components in a distributed system, we can use Architecture
Definition Languages (ADLs). Among many ADLs, Olan [2]
is a model that encapsules legacy software in components, ab-
stracts the middleware communication into connectors, and al-
lows to specify the geographical placement of components.

Nowadays ADLs are used to describe distributed applica-
tions. ADLs are describing fixed configuration, and are used
to ease deployment of such applications.

Another approach, addresses the issues of dynamism in the
ADLs. In [6] three levels of dynamism are introduced in
ADLs: 1. Interactive dynamism (allows changing data only
in fixed connections between fixed components), 2. Structural
dynamism (allows adding/removing components and connec-
tions to a system), 3. Architectural dynamism (allows chang-
ing whole configurations of components).

A model supporting dynamism in ADLs is represented by
MARMOL (Meta ARchitectural MOdeL) [6]. MARMOL uses
a language called Pilar, which allows reifying (creating links



with meta-components) base components (called avatars) by
their meta-components. Then, base components can take ac-
tions (reflect) on the basis of the meta-component behavior. All
components can interact with other components on the same
level, reify some avatars or be themselves reified by compo-
nents on a meta-level.

Updates can be seen as dynamic operations from the archi-
tectural point of view. One update may affect the interactive
dynamism (change communication methods). Update may as
well add new components - Structural dynamism, or the update
may address the whole architecture of a distributed application
- Architectural dynamism.

Because update may affect one or more levels of the dis-
tributed applications, there must be a way to control the
changes, so they do not break the distributed applications con-
sistency.

2.3. Dynamic Software Updates
Besides the research within Dynamic Architectures, several

researches address the problem of updating the software while
it is running.

Generally, there are the following update methods:

Dynamic linking Upon updates of some object implementa-
tions, the new object versions can be deployed by ex-
changing all object references from old to new object ver-
sions. The old object can then be removed. The new ver-
sions of objects do not have to be present on the same
node ([9] introduces an algorithm for linking across dif-
ferent spaces without compromising security). Gilgul [5],
on the other hand, is an extension to Java, where all point-
ers to an object can be updated by a single substitution
operation, which speeds up the update process.

Dynamic linking allows replacing objects dynamically
and does not require any functionality from the objects.
This method is mainly preferred with object that do not
have persistent state.

Static State transfer uses persistent state and is used for ob-
jects that preserve the state after the update.

State transfer has the following steps: a program state is
saved, program is stopped, the new version replaces the
old one, the state from the previous version is rolled to
the new one.

IF the program can not be stopped (after a state is saved),
e.g., because it is a part of critical service, the next method
can be used.

Dynamic State transfer Gupta [7] introduces a state transfer
function that transports a state of an executing program to
its new version. The State Transfer function can be gener-
ated (almost) automatically. Hicks [8] describes a system
that atomically generates such functions on the basis of
two different implementations.

The state transfer function is used to update a running part
of code. Both Gupta and Hicks argue that state trans-
fer can not move a running program from any particular

place in the program flow to an arbitrary other one. The
programmer must be involved and inform where the state
transfer should appear.

None of these methods was related to the research within
Dynamic Architectures. In section 3, we will present how
these methods are used in our Updatable Distributed System.

3. The Updatable Distributed System

Our updatable, distributed system is inspired by MARMOL
[6] and Olan [2]. Olan encapsules legacy software and commu-
nication in classes. This gives a freedom to control program
flows during updates. MARMOL, on the other hand, intro-
duces a multi-abstractional, layered architecture, where com-
ponents have well defined responsibilities on each layer.

Component


Interface


implementation


Application


layer


Compo-


nent

Connector


ComponentMgr


CD

implementation


ComponentMgr


CD

implementation


Configuration

layer


Configu-


rator

Connector


Architecture


layer


components
 components
connectors


ArchitectureMgr


AD

implementation


Component


Interface


implementation


ArchitectureMgr


AD

implementation


Figure 1. Three-layer model
The model consists of components and connectors.
Components provide interface and implementation,

connectors represent higher level abstractions encapsulating
communications between components.

In our model, similarly to [12], we split the system into
three layers. Each layer includes components and connectors.

components are the single entities having their implementa-
tions, and interfaces.

One component may have many objects in it. The inter-
faces define which objects are handling the communica-
tion with other components.

All the information about the component configuration is
saved in the component descriptor.1

connectors are entities that encapsule the communication be-
tween components. It means that components do not in-
teract directly but through the connectors that are used
to save communication channel’s states during updates.
They are placed one layer above the components that they
connect.

Connectors can be treated as components that have a well-
defined function. Components on the same level can in-
teract with each other. So, a component can signal to a

1This solution is similar to the EJB model, where each elements has its
Home/Remote interface, and the connection between the implementation and
interfaces is defined in the Bean descriptors.



connector to take some actions upon an update, e.g., to
store the communication during an update of some com-
ponents under it.

As we see on figure 1, the three layers in our model are:

Application layer includes components’ implementation and
data.

On this level we can add, remove, or update new objects
and data.

Configuration layer includes Connectors (connections be-
tween components), ComponentMgr that manages the ap-
plication layer and the component descriptor (CD).

On this level, we can add update-constraints, version con-
trol mechanisms and different object loading methods.

Architecture layer includes architecture description
(AD), i.e., data describing components and their
(inter)connections. And the ArchitectureMgr that
manages the Configuration layer. The communication
between ComponentMgrs is encapsuled in connectors.

This layer can be expanded with reconfiguration con-
straints.

3.1. Update request
Update request, sent either by a user or an ArchitectureMgr,

initiates an update.
Figure 2 shows an example of an update request that in-

cludes many kinds of updates. Generally an update descriptor
includes:

� update type - whether it is an addition, removal, or update
of a new component,

� list of updated objects - IDs for the object classes that
need to be updated.

� new versions of the objects - the implementations of the
new object versions,

� update method that should be used to update each object:
replace/dynamic

� update function which is a state transfer function that is
used to update an executing object process.

� update constrains specifying order of (sub)updates and
relations between them, e.g., Object A can be updated if
version of

�������	�
�

3.2. Performing the update
To perform the update, we need to use one of the methods

presented in 2.3. Generally, updates require to go through sev-
eral steps:

1. Identify the scope of the update.

From the update descriptor, we can see if an update only
affects components being under the entity responsible for
the update and is a local update; or if it requires other

<update_descriptor>
<add_obj to="server01//comp1">

<object name="C">
<implementation>...</>

</object>
</add>
<remove_obj from="server01//comp1">

<object name="D">
</object>

</remove>
<update_obj in="server01//comp1">

<object name="A" method="replace">
<old_version>1.0</>
<new_version>1.1</>
<implementation>...</>

</object>
</update>
<update_obj in="server01//comp1">

<object name="B" method="dynamic">
<old_version>1.1</>
<new_version>1.2</>
<update_function>...</>
<implementation>...</>

</object>
</update>

</update_descriptor>
Figure 2. Example of an update descriptor

The update request includes an addition, removal and two
kinds of updates: update by object replacement and dynamic
update which involves execution of update function. The new

object implementations, as well as implementation of the
update function, are included in the update request.

elements to be updated and is a global update. Depending
on the result, we either run the update locally or send an
update request to the higher abstraction layer.

2. Prepare the application for the update.

The application waits until the affected components are
ready for the update. If it is application layer, Compo-
nentMgr waits for the participating processes (or threads)
to signal that they are in a state that is safe to perform
the updates. On the configuration layer, we wait for con-
nectors to block the communication, and for other Com-
ponentMgrs to finish their updates. On the Architecture
level, we just start the update because we only have one
ArchitectureMgr. The ArchitectureMgr can queue many
update requests and perform them serially.

3. Perform the update.

Execute the update function and inform the update initia-
tor about its result. The update function is using dynamic
update techniques, and it coordinates the connectors.

4. Reflect changes by saving all the modifications to the
component in the component description. The changes



made to the application configuration and components
need to be reflected in the Architecture Description and
Component Description, respectively.

3.3. Maintaining application consistency
Seen from the reconfiguration point of view, updates may

break application’s consistency on a local or global level. So-
lutions to maintain local consistency are present in the area
of process migration, which generally include checkpointing,
and cloning. To handle global consistency, apart from main-
taining local consistency, we should maintain all the inter-
communication between the components. Stuurman et.al. [11]
use dedicated communication channels to do so. Another so-
lution is presented by De Palma [10], who introduces an ex-
tended transaction model that builds on an isolation property.
If an update process does not interfere with normal compu-
tational process then the update can proceed. Otherwise, it
should be rolled back, which may lead to reconfiguration (up-
date) starvation.

In our model, we propose encapsulating all the communi-
cation in Connectors. Connectors store the data during inavail-
ability of processes being updated. Connectors only ensure
applications consistency during local updates, i.e. updates that
do not change the connectors interface.

Global updates, on the other hand, require involvement of
ArchitectureMgr that will control execution of the whole dis-
tributed application and, if necessary, temporarily block the in-
volved components. Such updates require that requests made
to the old component (component from before the update) are
serviced before the interface is changed, forcing:

1. The interacting components to stop sending new requests.

2. All the requests queued in the connectors are executed
before update starts.

4. Examples

In the following, we will show two kinds of updates that
present how the architecture is used to control the update pro-
cess. We will first show a local update, where Component-
Mgr isolates the update of its object by blocking the connector.
Later, we will show a global update that involves Architec-
tureMgr in administrating the connected components.

4.1. Local update
On figure 3, we see that update of an interface object is per-

formed in the following steps (step numbers correspond to the
arrow numbers in the figure and indicate the order of opera-
tions during an update)

1. An update request is sent to the ComponentMgr1, which
evaluates the update type and concludes that it is a local
update of the interface object.

2. The ComponentMgr1 blocks the communication to the
Component1 by sending a signal to the Connector.

Update Initiator
CompMgr


Interface


Implemen

tation


CompMgr


Interface


Implemen

tation


conne

ctor


Component1


Component2


3. update


1. Update


2. Wait


4. Continue


5. Success


Figure 3. Local update
Nubers indicate the order of messages massping between the

components.

3. ComponentMgr1 starts the update. The update uses the
update method provided in the update request.

4. After the update, the component descriptor in Compo-
nent1 is updated, and the connection is restored by send-
ing a message to the Connector

5. Finally, the update result is returned to the update initiator

We can see that Component2 is unaffected during the up-
date of Component1.

4.2. Global Update

Server


CompMgr1


Interface


Implemen

tation


Client


CompMgr2


Interface


Implemen

tation


8.Update


1.Update


2.Prepare


Conn-


ector


3.Prepare
4.Prepare
 6.Ready
5.Ready
7.Ready


ArchitectureMgr


ADL

B


C


A


Figure 4. Global update
Numbers indicate the order of messages passing between

components.

Figure 4 shows steps during a global update:

1. ComponentMgr1 receives an update request and con-
cludes that it is a global update

2. ComponentMgr1 asks ArchitectureMgr to prepare the up-
date



3. ArchitectureMgr, on the basis of the architecture descrip-
tion ADL, prepares all the involved components, and

4. Connectors.

5. After the preparation request, connector confirms that it
is ready to perform the update, and

6. Component2 confirm that it is ready

7. Then, the ArchitectureMgr informs the initiating Com-
ponentMgr1 that all involved components and connectors
are ready.

8. ComponentMgr1 performs the update

9. Finally ComponentMgr1 informs the ArchitectureMgr
and update initiator about the update’s result.

10. ArchitectureMgr informs the components that the update
is finished and that they can continue with their normal
execution.

11. Update initioator is informed about the update result

5. Discussion

Component in our model communicate with each other. In
this paper, however, we have not discussed the concepts of
communication between components neither on the same nor
different abstraction layers. We suggest though to use asyn-
chronous communication, which supports flexibility and au-
tonomy of the components. The security issues in the sys-
tem can be solved using authentication and cryptography tech-
niques.

Updates of component interfaces are very challenging.
They may force the whole distributed application to freeze dur-
ing the update process, which may not be acceptable. Fur-
thermore, interface updates change the application semantics,
which may introduce consistency problems between different
versions of components. This raises a fundamental question:
whether changing application semantics at runtime is possi-
ble? We believe that global updates are possible and practical
in cases where programmer updates both ends of the updated
interface, e.g. pairwise update of client and server component.
We have not analyzed the possible application areas, or seman-
tical constrains, in which interface updates are possible. We
believe that our model can be expanded with advanced con-
trol and update management tools, which can handle on-line
semantical changes.

Granularity of updates is an other topic that has not been
discussed. One update request may include many sub-updates,
which may be related to each other. This introduces the need
for specifying relationships between sub-updates (For exam-
ple, updates of objA may happen after objB has been added),
and range of one atomic update (whether an sub-update may
be performed alone or together with other sub-updates). The
update constrains have not been analyzed in this paper but be-
cause neither ComponentMgr nor ArchitectureMgr have been

restricted in the functionality, they can be expanded with virtu-
ally any kind of update rules and constrains. The only restric-
tion is that ComponentMgr and ArchitectureMgr are responsi-
ble for local and global updates, respectively.

6. Conclusion

The contribution of this paper is a proposal for an updatable
system that unifies research within architecture definitions, ar-
chitecture configuration, and dynamic software update areas in
one modular system. The responsibilities of every module are
well defined. The system is open for improvements in every
layer, so additions in areas from architecture reconfiguration to
pointer update techniques can be easily implemented. Updates
can be initiated at any layer and depending on the updates’
scope, they will be propagated throughout the system.

We plan to address the issues presented in the previous sec-
tion in the nearest future. We will especialy focus on analysis
of update protocol that supports updating interface objects.

7. Status

This paper presents the ideas underlying the author’s Ph.D.
project concerning remote and dynamic update of component
based distributed systems. We will start building a prototype
late summer 2002.

References

[1] F. Bachman. Technical concepts of component-based software
engineering, May 2000.

[2] R. Balter, L. Bellissard, F. Boyer, M. Riveill, and J. Vion-
Dury. Architecturing and configuring distributed applications
with olan, 1998.

[3] P. Bengtsson, N. Lassing, J. Bosch, and H. van Vliet. Analyzing
software architectures for modifiability, 2000.

[4] J. E. Cook and J. A. Dage. Highly reliable upgrading of com-
ponents. In International Conference on Software Engineering,
pages 203–212, 1999.

[5] P. Costanza. Transmigration of object identity: The program-
ming language gilgul. http://citeseer.nj.nec.com/483031.html.

[6] C. E. Cuesta, P. de la Fuente, and M. Barrio-Solorzano. Dy-
namic coordination architectur through the use of reflection.
SAC 2001, Las Vegas, NV, ACM 1-58113-287-5/01/02:134–
140, 2001.

[7] D. Gupta, P. Jalote, and G. Barua. A formal framework for on-
line software version change. IEEE Transactions on Software
Engineering, 22(2):120–131, February 1996.

[8] M. W. Hicks, J. T. Moore, and S. Nettles. Dynamic software
updating. In SIGPLAN Conference on Programming Language
Design and Implementation, pages 13–23, 2001.

[9] J. Kempf and P. B. Kessler. Cross-address space dynamic link-
ing. SMLI TR-92-2, 1992.

[10] N. D. Palma, P. Laumay, and L. Bellissard. Ensuring dynamic
reconfiguration consistency. 1999.

[11] S. Stuurman and J. van Katwijk. On-line change mechanisms
the software architectural level. SIGSOFT 98,ACM l-58113-
108-9/98/0010..., 1998.

[12] M. Wermelinger and A. Lopes. A graph based architectural
(re)configuration language.


