
Towards Upgrading Actively Replicated Servers on-the-fly

Marcin Solarski† Hein Meling‡

Abstract

Change management is indispensable in most distributed
software systems, which are continuously being modified
throughout their life cycle. Managing the changes at runtime
in highly available distributed systems is especially challeng-
ing as upgrade of a running system should not deteriorate its
availability characteristics.

We present a distributed algorithm that allows to dynami-
cally upgrade an actively replicated server so that the server
is operational even during the upgrade process. The algo-
rithm makes use of the core functionality of an underlying
Group Communication System that has been extended with a
recovery mechanism. Its design enables dependable upgrades
of replicated software in the presence of replica crashes.

1 Introduction

Most distributed software systems evolve during their life-
time. The spectrum of software change is wide, and ranges
from program corrections and performance improvements to
complex changes of the overall functionality and structure of
the system. Such changes may be necessary to adapt the sys-
tem to new user requirements.

In a conventional approach to system maintenance, the sys-
tem runtime has to be interleaved with maintenance breaks
in which the necessary changes are manually applied to the
system. This approach, however, is not suitable in large dis-
tributed systems that have to be highly available.

Dynamic upgrade is a technique that allows the introduc-
tion of necessary changes into the system, so that the system
remains operational even while being upgraded. Thus, system
availability does not decline as a result of the system upgrade.
Traditional techniques for increasing system availability have
been based on masking hardware failures. The idea is to intro-
duce redundancy into the system by replicating certain system
components. A common approach to provide object and pro-
cess replication is based on the concept of a Group Commu-
nication System (GCS) [3]. Replicating system components
eliminates the effects of transient hardware and software fail-
ures. However, replication cannot prevent system failures due

†Fraunhofer Gesellschaft, FOKUS, Kaiserin-Augusta-Allee 31, 10589
Berlin, Germany, Email:solarski@fokus.fhg.de

‡Department of Telematics, Norwegian University of Science and Tech-
nology, N-7491 Trondheim, Norway, Email:meling@item.ntnu.no

to software design faults whose contribution to system un-
availability grows sharply with the increasing complexity of
software systems.

In this paper we present an algorithm for upgrading an
actively replicated server, i.e., a number of server instances
(replicas) processing client requests in parallel. The algorithm
is self-stabilizing and it introduces only minimal additional
load on the system, while maintaining continuous availability
during the upgrade.

The rest of the paper is structured as follows. In Section 2,
we describe the underlying system model and state the as-
sumptions we have made for designing the upgrade algorithm.
Section 3 describe the algorithm and concludes with a brief
analysis. Section 4 discusses other work that relates to our
upgrade algorithm. Finally, Section 5 concludes the paper
and presents our ongoing work to validate the algorithm.

2 System Model and Assumptions

We consider a client-server architecture in an asynchronous
distributed system augmented with unreliable failure detec-
tors, in which the basic unit of replication is the server. We
assume server replicas fail only by crashing, and once crashed
it does not recover. However, a replica that is considered to
have crashed may be replaced by a new instance of the replica.

In this paper, we assume an actively replicated server, in
which each server processes client requests deterministically.
It is implemented using a GCS [3] extended with a recovery
mechanism [2]. The recovery mechanism works by creating
replacement replicas for the replicas that the GCS considers to
have crashed. Clients issue requests through the GCS, using
totally ordered multicast, to the server replicas (group) and
receive replies from the servers.

In this paper, we consider only upgrading the software of
server replicas and not the clients. This puts certain restric-
tions on what can be achieved with respect to compatibility
between client and server objects. Thus, in order to substitute
a versionv of a replica, we have made the following assump-
tions under which our algorithm will work:
• Upgrade atomicity with respect to other upgrades of

the server. Server upgrades are atomic with respect to
each other, i.e., two upgrade processes cannot interleave.
Furthermore, the replica cannot process client requests
while being upgraded.

• Input conformance.Replica versionv + 1 is replaceable
with versionv. In terms of input, the input accepted by

1



versionv + 1, is a subset of the acceptable input to ver-
sionv of the replica. In terms of interfaces, we assume
that versionv + 1 offers a compatible interface to that of
versionv, possibly augmented with new functionality.

• State mapping and output conformance.There exist a
mapping from the state of versionv to the state of version
v +1 of the replica, such that versionv +1 produces the
same output as versionv, given some input acceptable to
versionv.

• Upgrade atomicity with respect to client upgrades.
Clients provide input acceptable to versionv+1, but not
acceptable to versionv, only after the upgrade algorithm
terminates.

Furthermore, we assume that code for the new software ver-
sion has been deployed to all the system nodes. The code can
be started and its runtime instance can become a replica of the
server after joining the server group.

3 The Upgrade Algorithm

In this section, we present a software upgrade algorithm
whose purpose is to exchange the code of a running actively
replicated server with a new version of the software. The al-
gorithm is designed to avoid single points of failure and it is
implementable under the assumptions in Section 2.

The algorithm is based on the following idea: to upgrade
an actively replicated object it is enough to upgrade each of
its replicas in a sequence of individual upgrades. However,
the algorithm may also be used to upgrade multiple replicas
simultaneously. The number of replicas that can be upgraded
in parallel depends on the availability requirements, i.e., the
minimum replication level allowed.

Let R denote the set of server replicas that is to be up-
graded. Below we sketch the steps of the algorithm infor-
mally: (1) Reliably multicast an upgrade request to replicas
in R. (2) Select a candidate replica,r ∈ R, to be upgraded
next. (3) Check whether replicar can be upgraded. (3a) If
so, replicar is then stopped and replaced with its new soft-
ware version. Otherwise, the replica may process client re-
quests and its upgrade is postponed until it is possible. At
the same time, the rest of the replicas are available to pro-
cess client requests. (3b) After upgrading a replica, the state
of the new replica, replacingr, must be initialized with the
state of the running replicas. (4) The upgraded replica,r, is
removed fromR. (5) Repeat steps 2-4 until all replicas have
been upgraded.

3.1 Algorithm Description

The algorithm is designed to have distributed control, that is
there is no global coordinator. All the server replicas perform
the same algorithm and are symmetric in this sense. Figure 1
illustrates a state-oriented representation of the algorithm, us-
ing SDL notation. The algorithm is described from the view
point of a single replica, and it is referred to asthis replica.

process Upgrade_Process 1(1)

idle upgrading processing

triggered 
:= false

upgrReq repl_started done

join_group triggered 
:= true

leave_group

idle idle_upgrade

upgrade_enabled triggered

clientReq start_replica idle_upgrade idle

processing upgrading

true false

Figure 1. The upgrade algorithm from the view-
point of a replica.

After initializing the replica (triggered flag is false) and
joining the server group (join group ), the replica enters its
idle state, in which it is neither processing a client re-
quest nor being upgraded. Upon receiving a client request
(clientReq ), it enters theprocessing state and once process-
ing the request is completed, i.e., thedone condition is satis-
fied, it returns to theidle state. Upon receiving an upgrade
request (upgrReq ), the upgrade process is initiated by set-
ting thetriggered flag and entering theidle upgrade state.
While in this state, the replica awaits its turn to be upgraded,
however it may also enter theprocessing state whenever a
clientReq is received. Once theupgrade enabled condition
is satisfied, a new replica starts and this replica enters the
upgrading state.

The upgrade enabled condition is a conjunction of two
basic tests: (a) Is it this replica’s turn to start the actual up-
grade? (b) Can this replica be upgraded at this moment? The
former test can be realized by ordering all the replicas in the
server group and checking whether the replica is the small-
est/greatest in this group. An example of such an order is an
order relation defined on replica identities within the group.
The second test is realized through checking whether the cur-
rent replication level is greater thanl, were l > 1 must be
satisfied to perform an upgrade. The enabling condition is
evaluated periodically and once satisfied, the replica contin-
ues with the upgrade procedure.

The replica creates another process, whose task is to
start a new replica to replace this one, and then enters the
upgrading state, awaiting the success of the operation. The
start replica operation is designed so that it always suc-
cessfully starts a replica in bounded time, even in the presence
of transient failures. To achieve this property, the operation
uses the recovery mechanism, who is responsible for main-
taining a given replication level. The upgrade process finally

2



terminates and a new replica is successfully started and joins
the group. The GCS takes care of transferring the current state
of the server group to the new replica, while this replica leaves
the group and terminates. Considering the assumptions on in-
put conformance and state transfer from Section 2, the new
replica (versionv + 1) enters a state in which can produce
output identical to that of replica versionv, given the same
input.

3.2 Brief Analysis

The upgrade algorithm has the following features:

• The algorithm requires that there be a minimum allowed
replication levell > 1, before a replica is replaced. Fur-
thermore, if a replica cannot be upgraded it will continue
to provide service using the old version. Thus, continu-
ous availability is provided as there are replicas capable
of processing client requests at any moment during the
upgrade process.

• System consistency is maintained through the state
transfer service provided by the GCS. This is invoked
for each upgraded replica. Note that we assume that state
transfer can be achieved across different versions of the
replica, as stated in Section 2.

• The algorithm is fault-tolerant in that the algorithm coor-
dination is decentralized and it tolerates replica crashes.
As there is no single entity that controls the progress of
the algorithm, the upgrade continues even in presence
of crashes of the replicas being upgraded. The recov-
ery mechanism provided by the GCS allows recovery
from replica crashes, by instantiating a new copy of the
replica.

• At any time during the upgrade only one additional
replica is added to the group, thus we keep the number
of replicas in the system to a minimum.

Note that our algorithm by itself does not guarantee main-
taining the replication level. To maintain a given replication
level for the group, also outside the upgrade phase, we need to
apply additional supervising mechanisms such as those pro-
vided by the Autonomous Replication Management (ARM)
framework [2].

4 Related Work

The topic of upgrading software entities at runtime has been
appearing in the literature from many perspectives [1, 4]. The
unit of upgrade considered in this research ranges from a
single operation to functions, programs and even distributed
subsystems. The previous work differs from our algorithm,
mainly in that they focus on upgrading non-replicated soft-
ware entities. In our approach, the unit of upgrade is a
replicated object and we focus on the availability character-
istics and dependability aspects of the upgrade process. Eter-
nal Evolution manager [5] supports live upgrades of actively

replicated objects using an approach similar to ours. The tar-
get of an upgrade may comprise a set of CORBA objects, both
clients and servers. The upgrade proceeds by replacing sin-
gle replicas in two phases, while the object group as a whole
remains operational for the duration of the upgrade. The first
phase involves an intermediate version, used to allow addi-
tional flexibility in the permitted changes. This, in contrast to
our one-phase upgrade algorithm, is achieved through addi-
tional complexity.

5 Conclusions

The presented algorithm supports upgrading an actively repli-
cated server so that it remains operational during the upgrade
process. The upgrade process is transparent to the rest of
the system and does not need human interaction as it is de-
pendable. The algorithm makes use of an underlying GCS, in
particular the group membership service and a reliable total-
order multicast, to ensure dependable upgrade.

Given the assumptions in Section 2, our upgrade algorithm
allows a client to seamlessly communicate with the replicated
server group, even during an upgrade. However, the assump-
tions also limit the algorithms applicability, since the same
output must be provided, when given the same input to both
version. Thus, if the output is incorrect, we cannot fix it with-
out also replacing the client with a new version that makes
use of a different method.

We are currently implementing the algorithm using the
Jgroup [3] GCS in conjunction with a framework for Au-
tonomous Replication Management (ARM) [2].

References

[1] J. Kramer and J. Magee. The Evolving Philosophers
Problem: Dynamic Change Management.IEEE Transac-
tions on Software Engineering, 16(11):1293–1306, Nov.
1990.

[2] H. Meling and B. E. Helvik. ARM: Autonomous Replica-
tion Management in Jgroup. InProc. of the 4th European
Research Seminar on Advances in Distributed Systems,
Bertinoro, Italy, May 2001.

[3] A. Montresor. System Support for Programming Object-
Oriented Dependable Applications in Partitionable Sys-
tems. PhD thesis, Dept. of Computer Science, University
of Bologna, Feb. 2000.

[4] M. Segal and O. Frieder. On-the-fly Program Modifica-
tion: Systems for Dynamic Updating.IEEE Software,
pages 53–65, Mar. 1993.

[5] L. A. Tewksbury, L. E. Moser, and P. M. Melliar-Smith.
Live Upgrade Techniques for CORBA Applications. In
Proc. of the 3rd Int’l Working Conference on Distributed
Applications and Interoperable Systems, Krakow, Poland,
Sept. 2001.

3


