
Using RAIC for Dependable On-line Upgrading of Distributed Systems

Chang Liu Debra J. Richardson
Information and Computer Science, University of California, Irvine

{liu, djr}@ics.uci.edu

Abstract

Redundant Arrays of Independent Components (RAIC)
is a technology that uses groups of similar or identical
distributed components to provide dependable services
[1,2,3]. RAIC allows components in the redundant array
to be added or removed dynamically during run-time. A
special case of RAIC can be used to perform dependable
on-line upgrading of distributed systems. This position
paper gives a brief overview of RAIC and discusses its
application in on-line upgrading of distributed systems. A
proof-of-concept example is given to illustrate how
problems occur during upgrading can be masked by
RAIC and would not affect smooth operations of the
system-under-upgrade.

1. Introduction

Several problems arise when performing on-line
upgrading of distributed component-based software
systems. First, how to keep the overall system functional
while individual components are being upgraded?
Second, if a newly upgraded component causes problems
in the system, how to detect the failures and revert to the
original component without disrupting system operation?
Third, if a newly upgraded component causes problems in
a part of the system, how to allow that part of the system
to revert to the original component while the rest of the
system uses the upgraded one?

While certain technologies such as late-binding,
server-side component lifetime management, and side-by-
side execution of different versions of the same
component make it possible to switch components or
perform on-line upgrading during run-time, significant
knowledge and preparation are required for systems and
applications to be enabled for on-line upgrading.
Redundant arrays of independent components (RAIC)
uses groups of similar or identical distributed components
to provide higher dependability, better performance, or
greater flexibility than what can possibly be achieved by
using any of those individual components. By putting
different versions of a component-under-upgrade in a
redundant array and routing all connections in the system
to that component via a RAIC controller, it is possible to
leverage on the RAIC technology and address the three
problems of on-line upgrading listed above without
complicating application or system logic.

In this position paper, RAIC is briefly explained with
emphasis on its aspects related to the on-line upgrading
problems. A proof-of-concept Light example is given to
illustrate the functions of RAIC controllers and how
failures in Light components are detected and masked
while the Light applications run smoothly.

2. RAIC Overview

A redundant component array (also referred to as
RAIC) is a group of similar or identical components. The
group uses the services from one or more of components
inside the group to provide services to applications.
Applications connect a RAIC and use it as a single
component. Applications typically do not have any
knowledge of the underlying individual components.

Depending on the types and relations of components in
a RAIC, it can be used for many different purposes under
different types of RAIC controllers. A RAIC controller
contains software code that coordinates individual
software components in a RAIC. Not all types of RAIC
controllers apply to all combinations of component types
and relations. It is essential to determine component types
and relations prior to configuring a RAIC.

Component Types. There are mainly two types of
components in terms of whether or not they maintain
internal states: stateless components, denoted by “()”,
and stateful components, denoted by “[]”.

In a stateful component, each public method can be
either state-preserving, state-changing, or state-defining.
The return value of a method can be either state-
dependent or state-independent.

A RAIC can be either static, denoted by “-”, or
dynamic, denoted by “~”. Components in a static RAIC
are explicitly assigned by mechanisms outside the RAIC,
whereas components in a dynamic RAIC may be
discovered and incorporated by the RAIC controller
during run-time. Dynamic RAIC controllers may use
directories such as UDDI to locate new components [4].
Either way, RAIC controllers allow addition or removal
of components during run-time and take care of
component state recovery when necessary as new stateful
components are added.

Component state recovery. Component types and
method properties help RAIC controllers to decide what
to do in the event of component state recovery. For
stateless components, no state recovery is necessary. A

newly created component can be used in place of another
component right away. For stateful components, their
states must be restored before they are used in lieu of
other components. There are primarily two ways to
perform state recovery: snapshot-based recovery and
call-history-based recovery. The snapshot-based
approach assumes that the state of a component is
represented by its snapshot, which is a copy of all of its
internal variables. The call-history-based approach
assumes that placing an exact same call sequence to
equivalent components results in the same component
state. Method properties help reduce the amount of call
histories that are need for state recovery purposes. For
example, all state-preserving calls can be trimmed off
because these calls do not change component states at all.

Just-in-time component testing. RAIC controllers
need to know when a component fails and when to trigger
component state recovery. Just-in-time component testing
does just this. Different from traditional software testing
and perpetual testing [5], as an integral part of RAIC
controllers, just-in-time testing tries to determine if a
component functions as intended during run-time without
using extensive test data [6].

Component relations. There are many aspects of
relations between components. Nearly universally
applicable are aspects such as interfaces, functionalities,
domains, and snapshots. Not applicable to all
components, but important nonetheless, are aspects such
as security, invocation price, performance, and others.
Relations of multiple components can be derived from
binary relations among components.

As an example, interfaces of two components can have
the following relations: identical (≡), equivalent (=),
similar (≈), inclusionary (≤), or incomparable (≠).

While it is possible to programmatically determine
interface relations by analyzing interface specifications,
other relations, such as functionality relations, sometimes
can only be manually determined.

Component relations are the basis of integration
strategies that decide how the components are used
together. For example, RAIC controllers can partition
components inside a RAIC into equivalent classes and use
only components inside the same class to replace each
other until they run out.

RAIC levels. Most of these RAIC strategies and
policies are configurable. RAIC levels describe the level
and the purpose of integration among components in a
redundant array:

 RAIC-1: Exact mirror redundancy
 RAIC-2: Approximate mirror redundancy
 RAIC-3: Shifting lopsided redundancy
 RAIC-4: Fixed lopsided redundancy
 RAIC-0: No redundancy

Invocation models. RAIC controllers can also use
different invocation models, including:

 RAIC-a: Sequential Invocation
 RAIC-b: Synchronous Invocation
 RAIC-c: Asynchronous Invocation

RAIC can be used for purposes such as fault-tolerance,
result refinement, and performance enhancement, to name
just a few, where it is desirable to put components with
incomparable interfaces or exclusionary domains in the
same RAIC. When used for dependable on-line
upgrading, however, it is likely that all components in a
RAIC have identical interface relations, identical domain
relations, and non-incomparable functionalities.
Otherwise, the upgraded components are certain to break
existing applications if no RAIC controller is present to
serve as bridges.

Therefore, on-line upgrading of distributed
component-based systems concerns mostly “RAIC-2a[≡i,
≡d]”, a special case of RAIC.

3. The Light Example

There is a Light component that provides a simple
software light service, which simulates an adjustable light
[7]. The light can be turned on and turned off. The
intensity of the light can be adjusted through another
method call. The following is a skeleton code in C# that
defines the Light component [8]. The MethodProperty
attributes specify that all three methods are state-defining,
meaning that they change the state of the component to a
specific state regardless of which state the component was
in prior to the method call.
public interface ILight
{ [MethodProperty(MthdProperty.StateDefining)]
 int TurnOn();
 [MethodProperty(MthdProperty.StateDefining)]
 int SetIntensity(int intensity);
 [MethodProperty(MthdProperty.StateDefining)]
 int TurnOff();
}
public class Light: MarshalByRefObject, ILight
{ // ...
}

The first version of the Light component allows
arbitrary method calls. An upgrade to the Light
component, however, requires TurnOn() to be called
before SetIntensity() or TurnOff() can be called. Similarly,
TurnOff() cannot be called if the light is already off. An
exception would be thrown if these requirements are not
met.

There are also two applications that use the Light
component. The first application, LightApp1, simply calls
TurnOn(), SetIntensity(), and TurnOff() repeatedly.
public class LightApp1
{ public static void Main(string[] args)
 { int pause_in_seconds = 3;
 Light light = new Light();
 for (int i=1; i<=100; i++)
 { light.TurnOn();
 Thread.Sleep(pause_in_seconds * 1000);
 light.SetIntensity(50);
 Thread.Sleep(pause_in_seconds * 1000);
 light.TurnOff();

 Thread.Sleep(pause_in_seconds * 1000);
 }
 }
}

The second application, LightApp2, is similar to
LightApp1. The difference is that LightApp2 does not call
TurnOn() at all.
public class LightApp2
{ public static void Main(string[] args)
 { int pause_in_seconds = 3;
 Light light = new Light();
 for (int i=1; i<=100; i++)
 { light.SetIntensity(50);
 Thread.Sleep(pause_in_seconds * 1000);
 light.TurnOff();
 Thread.Sleep(pause_in_seconds * 1000);
 }
 }
}

Apparently, both Light applications work well with the
first version of the Light component. The upgrade of the
Light component would break LightApp2 but would not
affect LightApp1.

In a distributed system where LightApp1 and
LightApp2 run side-by-side, if an on-line upgrading of the
Light component is attempted, LightApp2 will
undoubtedly be interrupted. An attempt to revert the Light
component to its original version would fix LightApp2,
but would deny LightApp1’s access to upgraded features
of the Light component. By using RAIC, these problems
can be avoided. Here is what happens with RAIC:

First, instead of using the concrete Light component
directly, the light applications use a new component
LightRAIC, which has the same interface ILight as Light.
public class LightRAIC
 : MarshalByRefObject, IRAIC, ILight
{ //...
}

LightRAIC light = new LightRAIC();
for (int i=1; i<=100; i++)
{ //...
 light.SetIntensity(50);
 //...
}

Second, in a system-wide configuration, LightRAIC is
defined as “RAIC-2a[]”, which means it uses the
sequential invocation model and treats all components
inside as stateful. Its policy is set to “latest version first”.
Then, the first version of the Light component is added to
the RAIC as its only member component. After that, both
LightApp1 and LightApp2 can run smoothly using their
own instances of LightRAIC.

Third, during the on-line upgrading, the upgraded
version of the Light component is added to LightRAIC. In
LightApp1, the RAIC controller switches to the new
component because its policy asks it to always try to use
the component with the latest version. It first brings the
status of the new component up-to-date by placing all
calls in its trimmed call history to the new component.
Then it places the current call to the new component and
thus switches the application to the new component.

LightApp1 only experiences a brief delay during the
switch. The operation of LightApp1 continues without
any disruption. The length of the delay depends on the
number of items in the trimmed call history. In this case,
since all three method calls are state-defining, there is
only one item in the trimmed call history no matter how
long the call history is.

In LightApp2, the RAIC controller also tries to switch
to the new component because of the same “latest version
first” invocation policy. Its just-in-time component testing
mechanism detects an exception when the first
SetIntensity() method call is placed without a preceding
TurnOn() call. JIT testing treats the exception as a failure.
The RAIC controller then tries the next available
component in the RAIC, which is the original Light
component. Since the state of that component is already
up-to-date, the RAIC controller goes ahead and places the
current method call and returns the result to LightApp2.
During the on-line upgrading, LightApp2 does not
experiment any failure at all. The exception in the
upgraded component was masked by the RAIC controller.
LightApp2 notices only a brief delay, the length of which
is approximately one method call to the upgraded
component. After that, all subsequent calls go to the
original component without delay. To LightApp2, the on-
line upgrading never happened.

Note that in this scenario, there is no application-or
component-specific configuration definition that specifies
which application works with which component.

4. Limitations and Conclusions

Currently, both the just-in-time component testing
technique and the component state recovery technique
have significant limitations. For example, if a component
is connected to a persistent external storage such as a
database, neither snapshot-based nor call-history-based
state recovery technique may fully recover component
states [9]. While some limitations are fundamental to the
approach and cannot be removed by improving these two
techniques alone, we feel that both techniques work or
could work under broad enough circumstances that this
work could produce practical results. In addition, many
limitations may be lifted by adding better heuristics the
two techniques.

In summary, RAIC addresses the three problems listed
in the beginning of this position paper by: first, allowing
run-time addition or removal of components in RAIC and
automatically bringing the state of newly added
component up-to-date using component state recovery
techniques; second, using just-in-time component testing
to detect component failures and to fall back on the
original components when failures are detected in
upgraded components; and third, allowing different
instances of the same RAIC controller to select different
components.

5. References

[1] Chang Liu and Debra J. Richardson, “Redundant
Arrays of Independent Components,” Technical Report
2002-09, Information and Computer Science, University
of California, Irvine, March 2002.

[2] Chang Liu and Debra J. Richardson, "The RAIC
Architectural Style," Submitted to the 10th International
Symposium on the Foundations of Software Engineering
(FSE-10), March 2002.

[3] Chang Liu, "The RAIC Web Site,"
http://www.ics.uci.edu/~cliu1/RAIC.

[4] UDDI, “UDDI 2.0 Specification”, 2001.
(http://www.uddi.org/specification.html)

[5] L.J. Osterweil, L.A. Clarke, D.J. Richardson, and M.
Young. “Perpetual Testing,” Proceedings of the Ninth
International Software Quality Week, May 1996.

[6] Chang Liu, “Just-In-Time Component Testing and
Redundant Arrays of Independent Components”,
Doctoral Dissertation, Information and Computer
Science, University of California, Irvine (in progress).

[7] Craig H. Wittenberg, “Testing Component-Based
Software”, International Symposium on Software Testing
and Analysis (ISSTA'2000), Portland, Oregon, 22-25
August 2000.

[8] ECMA, “Standard ECMA-334: C# Language
Specification”, December 2001.
(http://www.ecma.ch/ecma1/STAND/ecma-334.htm)

[9] R. Barga and D.B. Lomet, “Phoenix: Making
Applications Robust” Proceedings of 1999 ACM
SIGMOD Conference, Philadelphia, PA (June 1999)
(562-564).

