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Abstract

This position paper describes the Grumps approach to
the on-line upgrading of objects in a distributed system.
This is supported by three main, well-known ideas: core
code abstractions are defined in terms of Java interfaces
and not classes; as many decisions as possible are delayed
until run-time; and object containers are used to manage
groups of objects at run-time. The advantage of the first
idea is that it introduces a level of indirection in between
what an object does (in terms of its interface) and how that
is accomplished (in terms of its class). The advantage of the
second idea is that it does not force the programmer to make
decisions at compile-time that may be hard to change later;
they can change their mind and easily alter the system’s be-
haviour at run-time. The use of the third idea allows objects
to be grouped together and the container can act as a rep-
resentative for or abstraction over the contained objects.
The major Grumps abstractions are described, an example
object upgrade is presented and the advantages and disad-
vantages of this approach are discussed.

1. Introduction

The Grumps1 project [1] is developing techniques and
software to collect, manage and analyse large collections of
user actions automatically. The project has four interrelated
goals: to make it easier to organise investigations that ef-
ficiently and as unobtrusively as possible collect and store
traces of remote users’ actions; to make it easier to analyse
the stored data to test ideas about the users’ activities and
the facilities provided to support them; to discover whether
such an approach is effective in improving the quality of
distributed information systems; and to trial these issues in
application areas such as education and bioinformatics.

The requirements for the distributed execution architec-
ture are that: it can scale to the level of the Internet; it is
able to work via firewalls, proxy servers, systems using net-
work address translators (NATs) and dynamically-assigned

1This paper discusses a snapshot of work in progress. See
http://grumps.dcs.gla.ac.uk/ for up-to-date information.

IP addresses; the topology can be changed at run-time; and
all deployed objects (and their implementations) can be up-
dated during system execution. The first two requirements
are described in [6]. This paper focuses on the third require-
ment.

The rest of this paper is organized as follows: section 3
introduces the main Grumps abstractions; section 4 shows
how object-upgrade is performed; section 5 discusses the
pros and cons of this approach; section 6 briefly outlines the
constraints on evolution following this approach; section 7
discusses Grumps evolution in a distributed system; section
8 briefly details how code can be ported to the Grumps sys-
tem and section 9 summarises the paper.

2. Motivation

This section describes why the Grumps approach has
chosen to work from scratch, rather than base the imple-
mentation around some other technology, e.g., Enterprise
JavaBeans [3], or some standard Java technology, such as
classloaders.

2.1. Support for Evolution in Java

Java is an object-oriented language that is statically com-
piled from source code into bytecode. This bytecode is
then interpreted by a virtual machine which may, option-
ally, compile the bytecode into native machine code to in-
crease application performance. The Java language is quite
rigid in its support for dynamic on-line object update and,
in particular, no part of the language explicitly addresses the
problem. The standard object-oriented concepts of encap-
sulation, polymorphism and dynamic dispatch can help sup-
port on-line object update, but they are not directly aimed at
providing an object update protocol.

Part of the problem is that the Java language does not
define a powerful reflection mechanism. The standard Java
reflective capabilities allow a programmer to discover infor-
mation representing the current state of a program, but they
do not allow them to interact with the ongoing computation
in a more powerful way, e.g., by dynamically changing the



meaning of a method call. To address this problem, other re-
searchers have created Java meta-object protocols that work
by manipulating the bytecode, e.g., [8]. Others have worked
on support within the virtual machine to allow for more ex-
ploratory forms of Java development, e.g., [2]. However,
these solutions are not part of the standard Java language.

Some decisions in Java virtual machines are hard-wired
into the virtual machine’s technology. For example, when a
class can be unloaded is not something that a programmer
has any access to. Typically, this is something that the vir-
tual machine does to free up memory without informing the
programmer via an API. A Java programmer can gain more
power at run-time by using their own classloader, although
they cannot force a class to be unloaded. However, using a
classloader can lead to other problems as Java defines run-
time type equivalence in terms of the fully-qualified name of
the class plus the identity of the classloader that loaded the
class. Classloaders are useful, e.g., Java applets use them
to load classes from a web site. However, writing a class-
loader can be difficult as the programmer has to be careful
to ensure classes loaded by one classloader are not used in
the context of classes loaded by a different classloader. If
they are, java.lang.ClassCastExceptions can be
unexpectedly thrown. Also, in a system where classes are
being updated at run-time, for the type system to consider
a class to be the same as a previous version, the instance
of the classloader that loaded it must be retained and the
instance much be capable of reloading the new class.

This situation is made worse because a Java library may
make use of its own classloader. If a reference to a class-
loader is not exposed (which typically it is not) and as Java
does not define a meta-level, it is not possible to affect how
this classloader behaves. This may not be a problem for
some applications where the classes used by one library
may not require evolution. However, in the general case,
using classloaders in Java to provide a form of class evolu-
tion is not possible.

2.2. Enterprise JavaBeans

The Enterprise JavaBeans (EJB) 2.0 specification [3] de-
scribes a component architecture for the development and
deployment of component-based distributed business appli-
cations. This version of the specification has integrated the
Java Message Service and has introduced an asynchronous,
message-driven bean invocation model as well as defining
a declarative syntax for defining query methods that can be
used to find persistent objects. In addition, improvements
have been made to the persistence model and the use of
home and local interfaces. Enterprise JavaBeans were not
used in the development of Grumps because it was not clear
how effective JavaBeans would be at supporting the model
described in the rest of this paper. By choosing to use EJB,

one particular event model would be forced upon the pro-
grammer. Also, EJB requires the programmer to use Java’s
Remote Method Invocation system (RMI) for remote com-
munication. One requirement for Grumps is to be able work
with the technology that is routinely deployed onto the pub-
lic Internet, e.g., firewalls and dynamically-assigned IP ad-
dresses. RMI does not negotiate firewalls very well; having
to use it as an underlying communication technology would
make programming the more Internet-related aspects of the
system quite difficult.

In addition to the above, by building a system from
scratch, greater control over the mechanisms for updating
a system at run-time can be retained. This is because no
other mechanisms have to be used, e.g., EJB, and worked
around should they not be amenable to update during sys-
tem execution.

3. Core Grumps Abstractions

The communication support system in Grumps is re-
ferred to as a GrumpsNet. A GrumpsNet consists of a graph
of communicating objects, executing over a number of com-
puting devices (e.g., host computers, PDAs) which are con-
nected together via a (possibly wireless) network. Each
device may be running a number of Java virtual machines
(JVMs) and each JVM will contain a part of the graph of
deployed objects.

In Grumps, objects communicate with each other in
terms of events which are sent through channels. Two main
kinds of object are defined, GrumpsContainers and Grumps
Units, and three kinds of channel. These abstractions and
how they are used are described below.

3.1 Input and Output Channels

Grumps events are communicated via input and output
channels. An input channel is defined to be the receiving
end of a communication line, which can be read to receive
events. An output channel is the sending side of the com-
munication line. Events that are written at the sending side
are read at the receiving side and one output channel is con-
nected to exactly one input channel. The sending side and
the receiving side can be either in the same process or in
different processes that are running on different machines.
Event channels are implemented using sockets, so the usual
amount of transient buffering is available to the Grumps
programmer. Grumps additionally defines a more reliable
kind of buffering in the form of a persistent event store-and-
forward object. In the current Grumps implementation, this
object writes events to disk and periodically checks to see if
it can send the persistent objects to a target object for even-
tual processing. In this way, Grumps provides some support
for disconnected event collection.

2



The distributed fault model for Grumps is the same as
that provided by the underlying communication facility of
sockets. Currently, Grumps does not define any other se-
mantics over and above those provided by the Java socket
implementation. This is straightforward and easy for the
user to understand. However, the consequences are that a
different number of distributed communication error kinds
are exposed to the programmer, some of which could be
abstracted over, e.g., at least once message delivery.

3.2 Grumps Containers, Units and Events

A GrumpsContainer is an object that encapsulates a
number of Grumps Unit (GU) objects (figure 1). All
Grumps objects communicate with each other in terms of
events that are implemented as Java objects. GrumpsCon-
tainer and GU objects each define a single control event-
channel to which event objects can be sent. The event ob-
ject then operates over the target GrumpsContainer or GU
object.

Output
Channels

EventProcessingObject

GrumpsContainer

A group of threadsControl

Input
Channels

Channel A GU

An
An event queue

Figure 1. A Grumps Container

Control events are sent to this channel synchronously2

and this class of events carry Java code with them. Each
control event defines a method called apply that takes an
instance of GrumpsContainer or GU as a parameter and
which contains code to perform the actions of the event.
When a control event arrives at the GrumpsContainer3, a
reference to the GrumpsContainer is passed to this method.
The apply method then executes, calling methods on the
GrumpsContainer. In this way, a GrumpsContainer re-
sponds to an open-ended, evolvable set of events. This
is preferable to hard-wiring into the GrumpsContainer the
types of the event that it can respond to. A programmer
can create a new control event, supplied with new code, and
send it to a GrumpsContainer which will run the code on
itself.

Each GU object has a number of input and output chan-
nels and an object (called the EventProcessingObject) that
processes the events the GU object receives. Input and

2Communication is synchronous to the control channel as it is generally
useful to be able to get a result object back as a result of sending in a control
event.

3The actions performed at a GU are similar and are not discussed.

output channels communicate in terms of Grumps Events
which are sent asynchronously.

A Grumps event carries with it information on when the
event occurred, which object originally sent it and some
investigation-specific information. Each event arriving on
an input channel is placed into a FIFO queue, one queue per
channel. This queue is managed by the EventProcessingOb-
ject, which is responsible for reading the objects from the
queue, processing them in some way and (possibly) sending
them out on an output channel. GUs are typically combined
into graphs of GUs and it is the intention of the Grumps
project to be able to treat a particular local graph of GUs as
a single GU. This allows users of the system to reuse com-
ponents, in order to build sophisticated investigations from
a collection of GUs with well-known behaviour.

4. Installing and Updating Objects at Run-time

When a programmer starts a Grumps JVM, it only con-
tains the Grumps run-time system. The programmer then
populates it with GrumpsContainer and GU objects which
are given their EventProcessingObjects at run-time. Each
GU object is given a name by the programmer. This allows
the system to be able to distinguish between different GU
objects held in the same GrumpsContainer. When a GU ob-
ject needs to be updated, e.g., its EventProcessingObject is
to be replaced, a reference to the GU in question is first of all
retrieved by passing the name of the GU to the containing
GrumpsContainer. Section 4.1 discusses how a new GU ob-
ject is installed into a pre-existing GrumpsContainer object
and section 4.2 then discusses how the EventProcessingOb-
ject object in this newly installed GU object can be replaced.

4.1 Installing a New GU

In order to install a new GU in a GrumpsContainer, the
program has to first of all gain a reference to the Grump-
sContainer’s control channel. A ConnectionRequestCon-
trolEvent is then created. This object is provided by the
Grumps architecture and it handles installing the new GU
object (with its EventProcessingObject) in the GrumpsCon-
tainer. When the ConnectionRequestControlEvent arrives
at the remote GrumpsContainer, a reference to the Grump-
sContainer is passed to the event’s apply method. The
apply method then creates a new GU object, initialising it
with the EventProcessingObject carried in the control event.
This GU is added to the GrumpsContainer and the threads
for the GU and the EventProcessingObject are started (so
that they can process incoming events). The new GU has a
name associated with it. The name object contains a chan-
nel so that other objects may communicate with the GU.
This name object is passed back to the program that sent the
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ConnectionRequestControlEvent so that it can then com-
municate with the newly installed GU.

4.2 Performing an On-line Update

In order to perform an on-line object update of an
EventProcessingObject within a GU object, the program-
mer gains a reference to the control-channel of the
GrumpsContainer that contains the GU of interest. An
UpdateEPOControlEvent is created which carries
with it the name of the GU that is to have its EventPro-
cessingObject changed and the new EventProcessingObject
instance. The GrumpsContainer interface defines a method
getConnection which takes the name object as a pa-
rameter. This method returns a reference to the GU object
which has its setProcessingObject method called
to replace the current EventProcessingObject with the new
one. As we have installed a new EventProcessingObject
object, its thread has to be started and null is written
back to the process that sent this control event to inform
it that the object has been successfully updated. Currently,
the programmer has to deal with the case of managing the
shutting-down of the currently executing EventProcessin-
gObject and starting the thread for the new EventProcessin-
gObject. In addition, no way of indicating the failure to
install the new EventProcessingObject is provided. Dealing
with these cases is an area for future work.

5. Discussion and Related Work

As GrumpsContainers and GU objects respond to an
open-ended, evolvable set of events that carry their code
with them, decisions about how to process a deployed ob-
ject can be made at run-time. If the programmer (or a user,
via a tool) wants to process a deployed object in a different
way, a new event is written that encapsulates the new code.
This event is sent to the deployed object and the new code
is executed over that object.

However, this level of flexibility does leave the architec-
ture open to attack. Currently, no checks are performed on
the events that are received. It would be possible to add se-
curity features to an event, and, although this is not a major
focus for the Grumps project, some support may be pro-
vided in the future.

In a distributed system, it is possible for a deployed GU
object to be updated by an event before new event code can
operate over that GU. This kind of issue has to be taken
care of at run-time by ensuring that the ordering of events
arriving at a GU will cause its state to be changed in a way
that is compatible with the rest of the distributed system.
This can be hard to code and future versions of Grumps
should provide tool support to address this issue.

In the Grumps implementation the majority4 of the ab-
stractions are expressed using interfaces and not classes.
This makes the support for object and implementation up-
date as simple as object assignment. After the update has
been performed, the old object may be garbage collected
and, in certain circumstances, the class of the replaced ob-
ject may be unloaded by the virtual machine. After this
update, if another new implementation is required, a new
object can be assigned, that implements the same (or an ex-
tended) interface, but does so with a different class.

An alternative implementation technique would be to
build the core Grumps abstractions in terms of classes.
However, in this case, we can only provide new implemen-
tation updates in terms of a sub-class of the class specified in
the code. This means that implementation update can only
be defined in terms of extensions to pre-existing super-types
that must be retained in the run-time VM. It is possible to
address some of these problems by using a Java classloader,
however, this brings its own problems; Java defines type
equivalence in terms of the fully-qualified class name and
the identity of the classloader that loaded that object’s class.
In a system that needs to support implementation replace-
ment, this can be too inflexible as the classloader instance
has to be retained to ensure type-compatibility.

However, the flexibility of the object-assignment ap-
proach does come at a price: if any state needs to be copied
between the old and new objects, the programmer has to
write code to manage this; the programmer has to be care-
ful about updating objects that use threads and synchroniza-
tion; and operations may have to be performed on the old
object before it can be safely replaced. Providing solutions
for these problems within the context of an object-upgrade
protocol is an area for future work.

Software architectures for distributed systems (e.g., C2
and the ArchStudio framework [7]) are related to the
Grumps work described here. These kinds of architectures
are typically built from components which are connected
together using pipes down which messages travel. Such
systems are integrated together through guidance from a
human, using a composition language or a GUI tool. Al-
though this approach allows some degree of change at run-
time (e.g., components can be removed and pipes recon-
nected), these systems tend to only allow complex objects,
such as components, to be replaced. The Grumps project is
focussed at the individual object-level as the basic unit of
replacement.

Tool support for the programmer is an area for future
work as Grumps programmers will need to be able to vi-
sualize the running system and express to it how objects
should be replaced.

4GrumpsContainer is currently a class. This shall be made an interface
in a later version of the Grumps software.
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6. Constraints on Evolution

It is currently assumed that the interfaces for the Grump-
sContainers and the GUs do not change. However, in fu-
ture work it is hoped the container model will support the
ability to change interfaces at run-time. In the current sys-
tem, a programmer may use the GU type within a Grump-
sContainer. This is expressed in the code as methods on
the GrumpsContainer interface take GU types as parameters
and pass them back as results. Thus, the GrumpsContainer
may be seen as a scoping mechanism for the use of the GU
type. If an updated GU type had to be used, that could not
be represented as a subtype of the original GU, a new kind
of GrumpsContainer could be provided that made use of it.
In this way, a number of different versions of GrumpsCon-
tainer and GU would be defined, with the outer instance
acting as a boundary for changes to the type of the inner in-
stance. This approach could be generalised and applied to
the GrumpsContainer and the object that contains it. Pursu-
ing this possibility is an area of future work currently being
considered as part of the object-update protocol.

7. Evolution in a Distributed System

So far, the discussion of on-line object update has only
involved changes to one instance. In a distributed system,
several objects that are in different address spaces may need
to be updated concurrently and consistently. Although sup-
port for this kind of evolution is an area for future work in
Grumps we briefly outline our current thinking on this topic.

In order to perform the kind of investigation briefly dis-
cussed in the Introduction, it is assumed that the user will
first of all design their investigation using the Grumps ap-
proach, its software and tools. In order to manage this ac-
tivity, the Grumps team intends to provide a database in
which the user’s current view of the investigation will be
stored. This database and its associated tools will be used
to design the investigation, to deploy it and to manipulate
it at run-time. To support evolution in a distributed sys-
tem, the database will contain a data repository and an anal-
ysis repository. The data repository will contain the data
model and schema for the current investigation. This will
contain information on the network of data-collection and
processing entities that should be deployed to perform the
investigation, together with details of how they should be
inter-connected. This network will be generated by process-
ing stored source-code repositories within the context of the
data model and schema. The analysis repository will allow
the investigator to store and perform queries over the current
(possibly executing) investigation. This will allow them to,
amongst other things, query the run-time system to see if
answers that help them meet their investigation goal can be
found. In order to update objects in the distributed system

in a consistent way, the investigator will first of all query the
database and running system. The answers to these queries
will be then be used by the investigators to update objects
in the distributed system via the database and the Grumps
tools. It is assumed that the tools will use the information in
the database and the running system in order to perform the
updates to the distributed system using some form of a dis-
tributed transaction. System downtime will be minimised
and the work on DRASTIC [4, 5] will inform the solution
for updating the system in the face of currently executing
events.

One important issue that is still outstanding is how to
track which measurements were collected before an evolu-
tion and which were collected after an evolution. This is an
area for future work.

8. Porting Code to Grumps

In order to port non-Grumps code to the Grumps sys-
tem a programmer has to first of all place their application-
level code in a class that implements the GU interface. In
order for the application-level code to communicate with
other objects, Grumps communication primitives should be
used. This is to ensure that any object-upgrade technology
provided in the future will be accessible to this code. The
programmer must, therefore, identify a set of GrumpsEv-
ents that their code responds to and a set of events that it
will generate. Once this GU implementing class has been
defined, the class has to be instantiated and installed into a
GrumpsContainer as described in section 4. From this point
on, the code has been ported to the Grumps system and it
will act as any other GrumpsContainer and GU instance.

9. Summary

The approach to on-line object upgrade in the Java-based
Grumps system has been described. The contribution of this
paper is the demonstration that by combining three well-
known ideas — that of building abstractions in terms of in-
terfaces, delaying as many decisions as possible until run-
time, and containing groups of objects inside another — a
system can be implemented in which run-time object up-
grade can be more easily performed. There are two areas of
future work to be considered: dealing with malicious events
and defining an object-upgrade protocol.
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