
An Upgrade Mechanism Based on Publish/Subscribe Interaction1

1 This research is supported by the ITEA Project Robocop.

M.R.V. Chaudron a
aEindhoven University of Technology

The Netherlands
m.r.v.chaudron@tue.nl

F. van de Laar a, b
bPhilips Research Laboratories

The Netherlands

Abstract

We advocate the use of publish/subscribe as an
interaction style for upgradeable component-based
systems. We present a software architecture based on
this style. We describe some key design issues and their
rationale.

1. Introduction

The world around us is constantly changing, and we

want software systems to be as dynamical as the real
world. Therefore, it is important that software systems
can be changed easily. A major contribution in the
development of changeable systems is component-based
engineering of software [4]. Topic of our research is to
investigate how components can be upgraded
dynamically.

A well accepted design principle of component-
based design is to minimize coupling between
components. The emphasis/focus of this principle is
often on the functionality of components. However, to
facilitate upgrading of components in systems that are in
operation, the coupling between non-functional aspects
of components should also be minimized [1].

The dominant interaction style in current component
models is request-response, e.g. (remote) procedure call.
However, the publish/subscribe style (see [2] for an
overview) induces less coupling than request-response
by providing a decoupling in space (interacting
components do not have to know each other) and time
(publishers and subscribers do not have to interact
simultaneously).

In this paper we describe a software architecture that
is based on publish/subscribe as interaction style
between components and investigate the issues that arise
in replacing components in systems based on this
model.

First, we present an overview of the system
architecture. Next, we define our goals. After that we

describe some key design issues and illustrate some of
the upgrading-scenarios.

2. Goals

The aim of our research is to develop a software

architecture that has the following properties:
- Transparent replaceability of parts of the system:

upgrading of parts of the system should be
transparent to other parts of the system

- Robustness of the system

3. System architecture

We define a system as a set of components together

with a shared infrastructure. O ur infrastructure consists
of one configuration manager (CM) and zero or more
brokers (see Figure 1). The key idea is that the
components have a dependency on the infrastructure,
but not on each other.

%URNHU
$

&RQILJXUDWLRQ�0DQDJHU

%URNHU
&

%URNHU
%

&RPSRQHQW��

$%

&

&RPSRQHQW��
&

$

&RPSRQHQW��

&

%

$

'DWD

&RQWURO

Figure 1: Example system

A component (see Figure 2) consists of some core
code that implements the actual functionality of the
component, a set of publish-ports and subscribe-ports, a
heartbeat (HB) interface (explained below) and a
configuration interface. The core code uses the

publishers and subscribers to interact with other
components. The configuration and heartbeat interface
are used for interaction with the configuration manager.

A broker is responsible for relaying messages
received from publishers to subscribers, i.e. the
components interact with each other via brokers.

The CM handles all issues regarding the
configuration: starting and stopping of the system and
the replacing of components and brokers. Furthermore,
it plays a role in the robustness mechanism for the
system (explained below).

&RPSRQHQW

6

6

6

&RUH�FRGH

&RQI� +%

3 3

Figure 2: Example component

4. Design Issues

This section discusses key design issues. The main

focus is on the binding method. The consequences for
robustness and the way that brokers can be instantiated
or replaced are discussed as an outcome of the binding
choice.

4.1 Robustness

By robustness we mean that if one component or

broker crashes or is removed from the system, the rest
of the system keeps on running. O ur architecture
provides two mechanisms to achieve this. Firstly, we
allow multiple brokers. These can be used to relay
different types of data. This reduces the impact of
replacing a broker to components that use this type.
Secondly, the CM periodically checks all components
and brokers if they are still alive (using the heartbeat
interface). If a component or broker is down, the CM
reinstantiates the crashed component or broker.

4.2 Brokers

We identified two possibilities for the moment in

time when a broker is created. Firstly, whenever a
publisher or subscriber is started. This means that a
broker is always started. Secondly, a broker could be
started when there are both subscribers and publishers.
In this case the broker is only started if it is actually

useful. E.g. if there are no publishers available, a broker
is useless.

4.3 Binding

The only binding that we focus on in our system is

the binding between components and brokers. This can
be done in two ways. First, using first-party binding, in
which the component itself takes the responsibility for
binding to brokers. Second, using third-party binding, in
which the CM takes care of binding the components to
the brokers

4.3.1 First-party binding. If first-party binding is used,
the coupling between the components and the brokers is
strict. This could hinder the replacement of brokers by
the CM. O n the other hand, it relieves the CM of the
broker creation task. It also means that the components
should take care of crashing brokers themselves.

4.3.2 Third-party binding. If third-party binding is
used, the CM binds the components to the brokers. This
decreases the dependencies between the components
and the brokers, hence simplifying the replacing
procedure for the CM.

Third-party binding makes it possible for the CM to
postpone the creation of the brokers until they are
actually needed. If a new component is instantiated, the
CM checks on what topics it wants to subscribe to and
on what topics it will start publishing. O n the basis of
this information, the CM can decide whether or not a
broker is needed: if there are subscribers but no
publishers, no broker is needed. The CM could inform
the components about this, so that they can anticipate on
it.

4.3.3 Choice. We chose for third-party binding, because
it provides more flexibility, especially when replacing a
running broker. In addition, third-party binding makes it
easier for the CM to replace crashed components and
brokers.

5. Upgrading

Upgrading boils down to replacing a component or
broker with another one. We only look at replacing
components and brokers, not the CM.

We will discuss two examples: replacing a running
component and replacing a running broker. First, we
explain the replacement of a running component (see
Figure 3). When the CM wishes to replace a component,
it first creates a new component. Then it sends the
UnSetBroker command (for every broker used by that
component) to the to-be-replaced component. That

component then takes care of unsubscribing all of its
subscribers (by issuing a UnSubscribe command to the
broker) and unsetting all the brokers with its publishers.
After that, the CM informs the new component about
the presence of a broker with the SetBroker method (for
all needed brokers).

&0 &� &� %

&UHDWH�&��
8QVHW%URNHU�%�

8QVXEVFULEH��

6HW%URNHU�%�

6XEVFULEH��

6WRS��

Figure 3: Replacing a component

The second example shows the replacement of a

running broker (see Figure 4). First, the CM sends the
UnSetBroker command to all components using that
broker. The components themselves take care of
unsubscribing their subscribers as well as stopping their
publishers from publishing to that broker. Then the CM
stops the broker. After that, the CM creates the new
broker and binds all components that wish to use that
broker to it (through the SetBroker command).

Note that there are two choices when replacing a
broker or component. The new broker or component
can be created before or after the replacing of the old
broker or component is stopped. E.g. if there is a
resource restriction, one can choose to create the new
broker after the old one is deleted.

&0 &� &� % %

8QVHW%URNHU�%�

8QVHW%URNHU�%�

6HW%URNHU�%
�

6HW%URNHU�%
�

8Q6XEVFULEH��

8Q6XEVFULEH��
6WRS��

&UHDWH%URNHU�%
�

6XEVFULEH��

6XEVFULEH��

Figure 4: Replacing a broker

6. Concluding remarks and future work

We investigated publish/subscribe as an architectural
style for component interaction. Conceptual
considerations suggest that its looser coupling facilitates
dynamic replaceability.

Currently, we are developing a prototype. Initial
experiments using this prototype show the principal
feasibility.

We did not consider scenarios involving components
that have state and have to transfer that state to their
replacement. Also, we do not consider a crashing CM.
Both of these are future work.

Based on other experience described in [3] we will
look in more detail into performance issues. The
potential trade-off between performance and
upgradability is subject of ongoing research.

In section 3 we defined the goals we wanted to
achieve: transparent replacing of parts of the system
(components and brokers) and robustness of the system.
The latter is achieved by using the heartbeat interface to
detect component and broker failure and by using
multiple brokers. The transparency of replacement of
components is established by using the decoupling
provided by the brokers: a component does not notice
the replacement of another component, other than it
might observe that the publishing of data discontinues
for a moment in time (if the component can notice this
at all).

The replacing of a broker is less transparent: the
involved components are notified that a broker is
removed and added again (although they can not
determine the difference between a broker being
replaced or a broker that has crashed).

References

[1] M.R.V. Chaudron and E. de Jong, “Components are from
Mars”, Workshop on Parallel and Distributed Real Time
Systems 2000, LNCS 1800

[2] P. Th. Eugster, P. Felber, R. Gerraoui, A.-M. Kermarrec,
“The Many Faces of Publish/Subscribe”, Technical Report
MSR-TR-2001-104, Microsoft Research Laboratories,
Cambridge, UK, Jan 2001

[3] R. Rajkumar, M. Gagliardi, L. Sha, “The Real-Time
Publisher/Subscriber Inter-Process Communication Model for
Distributed Real-Time Systems: Design and Implementation”,
IEEE Proceedings of the Real-Time Technology and
Applications Symposium, 1995

[4] C. Szyperski, Component Software: Beyond Object-
Oriented Programming, ACM Press and Addison-Wesley,
New-York, 1998

