
Improving Service Availability via Low-Outage Upgrades

Chryssa Dislis
Systems Engineering, Motorola Ireland Ltd., Cork, Ireland

Chryssa.Dislis@motorola.com

Abstract
Service availability is of key importance to operations

and maintenance systems for mobile telephony networks.
This paper will describe some of the challenges in
providing continuous service and the impact of upgrade
related outages. Potential methods for low outage
upgrades will be discussed from an industrial perspective,
including practical and logistic considerations.

1. Introduction

This paper examines low outage upgrades from the
industry viewpoint. Reducing upgrade outage time as well
as overall upgrade time is important for both customers
and manufacturers, and has a significant impact on system
availability. High availability is becoming increasingly
important, and expected by end users. Although upgrades
are planned events, they cause a significant disruption to
operations and are a key driver to service availability.

Motorola Operational Support Systems Division
(OSSD) provides GSM and GPRS mobile phone network
management solutions to a significant number of
customers and markets worldwide. The customers of this
system constitute mobile service providers worldwide.

The product is an Operations and Maintenance System
(OMC) and manages typically very large mobile networks.
The OMC is used by the telecom operators to manage
their networks and facilitate fault management,
configuration management, performance management and
load management. The product is of high complexity and
makes extensive use of large databases. In spite of the fact
that the mobile phone network can operate in the absence
of a functional OMC, system availability is still important
as the OMC is providing the operator with a view into the
network.

BTS

GSN
Packet Data

Other Networks
Circuit Data

Voice

OMC

BSC BSC

RXCDR

MSC

Radio Subsystem

Figure 1. GSM Architecture

Figure 1 shows a typical GSM architecture for a
mobile phone network, consisting of the Operations and
Maintenance Centre (OMC) and a number of network
elements (NEs).

The Base Transceiver Stations (BTS) provide the radio
frequency interface for the mobile phones on the network.
The BTSs are controlled by Base Station Controllers
(BSCs). From the Base Station Controllers, digital voice
channels are directed via a transcoder (RXCDR) to the
Mobile Switching Center (MSC) and then to the national
circuit switched voice networks.

The GSN, is a General Packet Radio Support Node,
part of the General Packet Switched Radio System
(GPRS). In the GPRS part of the system, packet switched
data is directed via GSNs to packet data networks. Control
data from all the network elements is directed to the
Operations and Maintenance Center (OMC) subsystems.
The OMC-R is the Operations and Maintenance Center for
the GSM system, while the OMC-G fulfills this function
for the GPRS system.



1.1. Availability definition

Availability is related to both the frequency of
outages/service interruptions and the time to recover from
such events. Outage frequency is expressed on terms of
MTBF, or Mean Time Between Failures, which is
calculated as follows:

Recovery time in expressed in terms of Mean Time To
Repair (MTTR)

Availability is calculated as

MTTR is generally related to support and logistic
issues, which affect the recovery time. Time for an
engineer to travel to a site generally outweighs the repair
time itself. MTBF is related to product issues and defect
prevention, i.e. preventing outages from happening in the
first place, or having seamless recovery mechanisms in
place so that outages self recover without affecting
service.

Note the difference between Availability and
Reliability. Reliability relates to the probability that a
system will work during a defined time interval. As such,
reliability is related to the frequency of outages, while
availability is related to both outage frequency and time to
repair. Designing a system for high reliability without
considering recovery time in the event of failure is
unlikely to result in a highly available implementation.

Availability is often expressed as a number of nines
(NN). Thus 4NN equates to 99.99% availability. In terms
of annual downtime, 4NN equates to 52.5 minutes of
downtime per year. 5NN availability equates to a system
working 99.999% of the time. If the time interval we
consider is one year, the 5NN system would be out of
service for no more that 5 minutes and 15 seconds. Strictly
speaking, this time would include any scheduled
maintenance.

5NN is generally the level of availability expected for
critical systems. It is unlikely that 5NN would be
achievable without some level of redundancy both at the
hardware and the software level.

1.2. Impact of upgrades

Upgrades are often ignored in system availability
discussions, as they can be planned in advance to
minimise operational impact. On a like for like basis, it is
true that a long upgrade is preferable to a long unplanned
outage. However this is a predictable and regular
occurrence; upgrades happen at regular intervals and
create disruption to operations. They may be scheduled,
but they result in a system that for a period of time is not
available for service. Upgrade time and the ensuing
disruption to operations are always important to customers
and have to be addressed as an availability issue.

As an example, assume that a system has an
availability of 5NN for unplanned outage events. This
means an average downtime of no more than 5.25 minutes
per year. The software in upgraded annually, resulting in
an outage of 1 hour duration. The true availability of the
system is less than 4NN. This is relatively good, but not in
the 5NN league and too low for critical applications.
Keeping a system at 5NN necessitates no-outage of very
low outage upgrades, bearing in mind that a 5 minute
outage uses up most of the downtime ‘budget’ of a 5NN
system.

2. Upgrades – the customer viewpoint

Several aspects of upgrades are important to the
customer. A primary issue is of course the added
functionality that the upgraded software will provide. This
has to be balanced against possible disruption to
operations and the possibility of new defects. Mature
software is generally stable, as any defects will have been
identified and fixed. This disruption to operations means
that it is possible for a customer to choose not to take a
particular version, if they consider that the disruption
outweighs the benefits. For example, software
development organisations often do not take up every
single new version of an operating system. The possible
disruption to the stability of the software has to be
balanced against the advantages of the new version.

The disruption to operations has two aspects. One is
the outage time, the core time during which the system
will be unavailable for service. A superset of that time is
the overall upgrade time, including preparation and
cleanup. Although this is not strictly outage time, it can be

FailuresofNumber

TimeupTotal
MTBF =

failuresofNumber

timedownTotal
MTTR =

MTTRMTBF

MTBF
tyAvailabili

+
=



argued that is still impacts the availability of the system
for practical use. The challenge is to minimise both the
core outage time and the overall upgrade time of the
system and associated sub-systems.

Upgrades are generally undertaken during a
maintenance window outside working hours, or during
light loading of the system. It is very important to the
customer that the upgrade is successfully completed within
that window. A failed upgrade, a roll-back and then
another upgrade at a later time are extremely disruptive. It
is preferable to have a longer maintenance window than to
schedule another upgrade. In other words, the stability and
predictability of upgrade duration are often more
important than absolute upgrade outage time.

Customers generally prefer the flexibility of scheduling
upgrades in their own time and using their own staff,
although specially trained engineers are sometimes
preferred for complex upgrades.

Finally, there is a cost to the customer associated with
upgrades, in terms of personnel being present outside
working hours, additional support required and lost
operations during the upgrade.

3. Upgrades – the engineering viewpoint

In planning upgrades, the engineering/company
priorities are not entirely the same as the customers’.
While there is a key requirement to limit the upgrade
duration, there are additional requirements from the
engineering perspective.

The first of these requirements is to control
engineering development costs. There is significant
engineering time in planning the upgrade, writing upgrade
procedures and testing them to ensure that upgrades will
work.

Stability and repeatability of upgrades (even by non-
expert upgraders) are also key requirements and influence
the amount of engineering effort required. A high degree
of automation (scripting) is often required, making
upgrade planning an engineering-intensive operation.

Upgrade procedures need to be thoroughly tested,
especially as they will have to cope with the possibility of
non-standard configurations on customer systems. It is
worth noting that test costs escalate differently to
development costs. For example, an upgrade may be
developed for two slightly different platforms, with
minimal additional development time. However, the test
times would double, as the procedures would have to be
tested on two, rather than one platform Therefore the
standardisation of upgrade procedures and system
platforms results in development and test savings.

It is clear from the above that any significant changes
to the methodology of upgrades incur additional costs.
This in turn can create a conservative approach to
software changes, which has to be weighed against the
possible advantages to the customer and the company.

If more than one aspect of the software is being
changed (platform, operating system, applications)
incremental upgrades are less risky but generally these are
bundled in the same upgrade procedure to minimize
disruption. Roll back in these situations can be much more
challenging than in a single application upgrade.

Contingency plans in case of the need to roll back to a
previous release are a key part of upgrade planning. In
addition, changes to the upgrade process are easier and
cheaper in engineering terms than changes to the core
software.

4. Reducing upgrade duration

Some methods of reducing both the overall duration of
upgrades and the outage duration are described below.
These rely on changes to the upgrade process without
changing the core application software. Core software
architecture changes may be a method of reducing upgrade
time but are expensive in terms of engineering and test
time, and are likely to introduce additional defects into
otherwise stable code.

4.1. Preparation

Good preparation for the upgrade is very important.
Ensuring that the system is free of unnecessary files and
data and that a backup has been taken reduces the risk of
problems with the upgrades, and facilitates roll-back in
case of problems. This pre-upgrade clean-up can be
automated or made a strict pre-requisite for continuing
with the upgrade.

Attention to detail at the early stages can save a lot of
time later. If a specialist engineer is not present, the
customer should also insure that the engineer undertaking
the upgrade has sufficient experience and that expert
support is available should things go wrong.

4.2. Minimisation of operations

For the upgrade itself, minimizing interaction with the
user is a good method of minimizing upgrade time. This
removes the potential for error, and speeds up any input.
Generally it necessitates using scripts to replace the human
interaction. These scripts can get very complex, as they
have to account for different system configurations, initial



cleanup, and the ability to recognize when something has
gone wrong and initiate roll-back.

In the absence of these scripts, even a simple action
such as pre-typing the required commands into a file,
checking them for spelling, and then pasting them to the
command line during an upgrade, creates significant time
savings.

4.3. Use of Mirrored disks

A widely used method is to make use of mirrored
disks. Many systems use mirrored disk configurations as a
method of improving availability. If a disk fails, its mirror
is used to ensure continuous service.

Using mirrored disks in an upgrade means temporarily
breaking the link, leaving the core system to operate from
one disk set only (set 1). The other set of disks (set 2) is
used to load the upgraded software. The system is then
restarted from disk set 2, and the mirror configuration
restored. This arrangement has the advantage that a quick
roll back to set 1 is possible should there be a problem.

The advantages are clear: outage time is minimized,
ideally to the restart time from set 2 (some synchronization
of data may still be necessary). It also incurs no additional
hardware costs, as it merely makes use of the existing
configuration.

However, the reduction in outage time can only be
realised if the core system can continue operation while
the upgrade takes place. This assumption is not true for all
systems and depends on the software architecture.
However, the advantages of a good rollback mechanism
remain, making this a good solution for mirrored disk
systems.

Disadvantages are the engineering effort in creating,
debugging, testing and executing a more complex
procedure. There is a small risk that a disk failure will
occur during the upgrade, when no mirroring is available.
The overall upgrade time may also be longer due to the
breaking and recreating the mirrored configuration.

4.4. Additional disk set

A related method is to introduce an additional disk set,
used only during upgrades. The new version is loaded
onto this set (set 3). The system is them restarted from set
3, and if the system uses disk mirroring, this is set up with
either of the other disk sets. This leaves one disk set with
the old version (which can be used for roll back if
necessary). This spare disk set will them be used for the
next upgrade.

In terms of planning the upgrade, this is slightly
simpler than the method above, and results in a small
reduction in the overall upgrade time. The outage time is
reduced as above. There is an additional cost of the extra
disk set. This solution is suitable where a large number of
applications are upgraded at once, or where it is necessary
to keep the old version on the system.

4.5. Clustered systems

Both the above methods make use of redundancy in the
system. In fact, redundancy is the key to improved
availability. At the system level, critical systems can be
run in a clustered configuration. This can be a standby
system, which is a complete duplicate of the live system
and can take over if the main system fails, with minimal
loss of service. Clustered configurations can also be used
for load sharing, which increases complexity but makes
use of the added capacity to increase performance.

A clustered system is easily utilized for a low outage
upgrade. The upgrade can take place on one side of the
cluster. This then becomes the live system Once a stable
upgraded system has been achieved, the cluster
configuration is re-created. Loss of service in this case is
limited to the fail-over time of the cluster. Roll back is
significantly simplified; the upgraded system can be
checked to ensure that all is in order before it goes into
service.

The main disadvantage of this method is the additional
cost of the redundant system. This can be reduced if the
cluster is used for load sharing, or in a N+1 configuration,
but these are more expensive from a development and
systems administration perspective.

4.6. Domain systems

Some servers can be set up in a number of different
domains. Each domain is in effect a separate machine
which can run independent applications. From an upgrade
perspective, setting up two domains with identical system
configurations would be the first step. The upgrade takes
place on one domain while system operation continues on
the other. The upgraded domain then becomes the live
system.

Whether the two domains are maintained during
normal operation depends on the system load, applications
and availability requirements. It is possible to recombine
the two domains into one for enhanced performance
during normal operation.



5. Conclusions

Upgrade time is a significant contributor to reduced
availability and general disruption of normal operations.
Although not as damaging as an outage resulting from a
software or hardware failure, upgrade outages are
important to the end customers. Therefore, upgrade outage
time minimisation needs to be designed for in both the
hardware and the software architecture and taken into
account at the system requirements stage.

Different methods of minimising upgrade time were
examined from the customer and industry viewpoint.
Generally these methods make use of hardware
redundancy to minimise upgrade time. Architectural
changes to the software were not examined in this paper,
although they may be a good solution for particular
systems.


