

A Structured Approach to Handling On-Line Interface Upgrades

Cliff Jones, Alexander Romanovsky, Ian Welch

Department of Computing Science
University of Newcastle upon Tyne, UK

{cliff.jones, alexander.romanovsky, i.s.welch}@newcastle.ac.uk

Abstract

The Integration of complex systems out of existing systems
is an active area of research and development. There are
many practical situations in which the interfaces of the
component systems, for example belonging to separate
organisations, are changed dynamically and without
notification. In this paper we propose an approach to
handling such upgrades in a structured and disciplined
fashion. All interface changes are viewed as abnormal
events and general fault tolerance mechanisms (exception
handling, in particular) are applied to dealing with them.
The paper outlines general ways of detecting such
interface upgrades and recovering after them. An Internet
Travel Agency is used as a case study.

1. Introduction

A “System of Systems” (SoS) is built by interfacing to
systems which might be under the control of organisations
totally separate from that commissioning the overall SoS.
(We will refer to the existing (separate) systems as
“components” although this must not confuse the question
of their separate ownership.) In this situation, it is
unrealistic to assume that all changes to the interfaces of
such components will be notified. In fact, in many
interesting cases, the organisation responsible for the
components may not be aware of (all of) the systems
using its component. One of the most challenging
problems faced by researchers and developers
constructing dependable systems of systems (DSoSs) is,
therefore, dealing with on-line (or unanticipated) upgrades
of component systems in a way which does not interrupt
the availability of the overall SoS.

It is useful to contrast evolutionary (unanticipated)
upgrades with the case where changes are programmed
(anticipated). In the spirit of other work on dependable
systems, the approach taken here is to catch as many
changes as possible with exception handling mechanisms.

Dependable systems of systems are made up of loosely
coupled, autonomous component systems whose owners
may not be aware of the fact that their system is involved
in a bigger system. The components can change without
giving any warning (in some application areas, e.g. web
services, this is a normal situation). The drivers for on-
line software upgrading are well known: correcting bugs,
improving (non-) functionality (e.g. improving
performance, replacing an algorithm with a faster one),
adding new features, and reacting to changes in the
environment.

This paper focuses on evolutionary changes that are
typical in complex web applications which are built out of
existing web services; we aim to propose a generally
applicable approach. As a concrete example, we consider
an Internet Travel Agency (TA) [PD01] case study (see
Figure 1). The goal of the case study is to build a travel
service that allows a client to book whole journeys
without having to use multiple web services each of
which only allows the client to book some component of a
trip (e.g. a hotel room, a car, a flight). To achieve this we
are developing fault tolerance techniques that can be used
to build such emergent services that provide a service
which none of its component systems are capable of
delivering individually. Of course, the multiplicity of
airlines, hotel chains etc. provides redundancy which
makes it possible for a well-designed error-recovery
mechanism to survive temporary or permanent
interruptions of connection but the interest here is on
surviving unanticipated interface changes. As not all the
systems in our system of systems are owned by the same

organisation, it is inevitable that they will change during
the lifetime of the system and there is no guarantee that
existing clients of those systems will be notified of the

change.
Figure 1 UML Component diagram showing the component systems
that make up the Internet Travel Agency (TA). The grey areas
indicate the fact that the component systems are under the control of
different organisations. A user is shown interacting with the Travel
Agency Front-End (TAFE). The TAFE is composed of multiple
Intermediate Interfacing Subsystems (IIS). Each IIS provides an
abstract service interface for a particular service type, for example
the Flight Systems IIS provides an abstract service interface for
booking flights with systems such as AirNZ and KLM even though
each of these systems has different webservice interfaces.

When a component is upgraded without correct
reconfiguration or upgrading of the enclosing system,
problems similar to ones caused by faults occur, for
example: loss of money, TA service failures, deterioration
of the quality of TA service, misuse of component
systems. Changes to components can occur at both the
structural and semantic level. For example changes of a
component system can result in a revision of the units in
which parameters are measured (e.g. from Francs to
Euro), in the number of parameters expected by an
operation (e.g. when an airline introduces a new type of
service), in the sequence of information to be exchanged
between the TA and a component system (e.g. after
upgrading a hotel booking server requires that a credit
card number is introduced before the booking starts). In

the extreme, components might cease to exist and new
components must be accommodated.

Although some on-line upgrading schemes assume
that interfaces of components always stay unchanged (e.g.
[TT02]), we believe that in many application areas it is
very likely that component interfaces will change and that
this will happen without information being sent to all the
users/clients. This is the nature of the Internet as well as
the nature of many complex systems of systems in which
components have different owners and belong to different
organizations as shown in Figure 1. In some cases of
course, there might be an internal notification of system
changes but the semantics of the notification system might
not be externally understood.

IIS for Flight SystemsIIS for Hotel Systems

Hilton AirNZ KLM

Webservice
Interface

Webservice
Interface

Webservice
Interface

Travel Agency Front-End

Abstract Service
Interface

Abstract Service
Interface

Although there are several existing partial approaches
to these problems, they are not generally applicable in our
context. For example, some solutions deal only with
programmed change where all possible ways of upgrading
are hard-wired into the design and information about
upgrading is always passed between components. This
does not work in our context in which we deal with pre-
existing component systems but still want to be able to
deal with interface upgrading in a safe and reasonable
fashion. Other approaches that attempt to deal with
unanticipated or evolutionary change in a way that makes
dynamic reconfiguration transparent to the TA
integrators1 may be found in the AI field. However, our
intention is not to hide changes from the application level.
Our aim is to provide a solution that is application-
specific and reliant on general approaches to dealing with
abnormal situations. In particular, we will be building on
existing research in fault tolerance and exception handling
which offer disciplined and structured ways of dealing
with errors of any types [C95] at the application level.

Our overall aim is to propose structured multi-level
mechanisms that assist developers in protecting the
integrated DSoSs from interface changes and, if possible,
in letting these DSoSs continue providing the required
services.

2. System Model

Integrators compose a DSoS from existing components
(systems) that are connected by interfaces, glue code and
additional (newly-developed) components where
necessary. An interface is a set of named operations that
can be invoked by clients [S97]. We assume that the
integrators know the component interfaces. Knowledge of
the interfaces can be derived from several sources:

1 We use terms TA integrators and TA developers interchangeably.

interfaces can be either published or discovered (there are
many new techniques emerging in this area),
programmer’s guides, interfaces are first-class entities in a
number of environments such as interpreters, component
technologies (CORBA, EJB), languages (Java).

Besides integrators there are other roles played by
humans involved in the composed system at runtime, for
example: clients of the composed system, other clients of
the components, etc.

We assume that component upgrade is out of our
control: components are upgraded somehow (e.g. off-line)
and if necessary their states are consistently transferred
from the old version to the new version.

3. The Framework
3.1. Structured Fault Tolerance

We propose to use fault tolerance as the paradigm for
dealing with interface changes: specific changes are
clearly abnormal situations (even if the developers accept
their occurrence is inevitable), and we view them as errors
of the integrated DSoS in the terminology accepted in the
dependability community [L95]. In the following we
focus on error detection and error recovery as two main
phases in tolerating faults.

Error detection aims at earlier detection of interface
changes to assist in protecting the whole system from the
failures which they can cause. For example, it is possible
that, because of an undetected change in the interface, an
input parameter is misinterpreted (a year is interpreted as
a number of days the client is intending to stay in a hotel)
causing serious harm. Error recovery follows error
detection and can consist of a number of levels: in the best
case dynamically reconfiguring the component/system
and in the worst with a safe failure notification and off-
line recovery.

Our structured approach to dealing with interface
changes relies on multilevel exception handling which
should be incorporated into a DSoS. It is our intention to
“promote” multilevel structuring of complex applications
to make it easier for developers to deal with a number of
problems, but our main focus here is structured handling
of interface changes. The general idea is straightforward
[C95]: during DSoS design or integration, the developer
identifies errors that can be detected at each level and
develops handlers for them; if handling is not possible at
this level, an exception is propagated to the higher level
and responsibility for recovery is passed to this level. In
addition to this general scheme, study of some examples
suggests classifications of changes which can be used as
check lists.

3.2. Error Detection

In nearly all cases, there is a need for meta-information to
detect interface changes. Such meta-information is a non-
functional description of the interfaces (and possibly of
their upgrades), which may capture both structural and
semantic information. Some languages and most
middleware maintain structural meta-information, for
example Java allows structural introspection and CORBA
supports interface discovery via specialised repositories.
However, at present there is little work on handling
changes to semantic meta-information.

Meta-information for a component includes
descriptions of:

• call points (interfaces), including input
parameters (types, allowable defaults), output parameters
(types, allowable defaults), pre- and post-conditions,
exceptions to be propagated

• protocols: the sequences of calls to be executed
to perform specific activities (e.g. cancel a flight, rent a
car). A high-level scripting language can be used for this.

Interface changes can be detected either by comparing
meta-description of old and new interfaces or if a
component supports some mechanism to notify clients of
changes. Another, less general, and as such less reliable,
way of detecting such changes is by using general error
detection features (some reasonable run-time type
checking; pre- and post-conditions, or assertions of other
types of checking parameters in the call points; protective
component wrappers, etc.).

The intention should be to associate a rich set of
exceptions with structural and semantic interface changes
(changing the type of a parameter, new parameters,
additional call points, changing call points, changing
protocols, etc.); this would allow the system developers to
handle them effectively.

3.3. Error Recovery

Error recovery can be supported through the use of:
• different handlers (at the same level) for different

exceptions related to different types of interface changes
• multilevel handling.

3.3.1. Different Handlers. System developers should try
and handle the following types of exception:

• changes of types of parameters, new parameter,
missing parameter, new call point

• changes of the protocols, re-ordering, splitting,
joining, adding, renaming and the removal of protocol
events

• change of the meta-description language itself (if
components provide us with such a meta-description of its
interface)

• raising of new exceptions, if the protocol
changes then new exceptions may also be raised during its
execution.

To provide some motivational examples, consider the
Travel Agent case study.

• A very simple interface change is where the
currency in which prices are quoted changes. In this case,
simple type information could show, for example, that the
TA system requires a price in Pounds Sterling and the Car
rental is being quoted in Norwegian Crowns. An
exception handler can ask for a price in Euros which
might be countered with an offer to quote in Dollars. Note
that this process is not the same as reducing everything to
a common unit (dollars?), finding agreement earlier can
result in real savings in conversions.

• A previously functioning communication from
the TA system to a hotel reservation system might raise an
exception if a previously un-experienced query comes
back as to whether the client wants a non-smoking room.
Either of two general strategies might help here: the query
could come marked with a default which will be applied if
no response is given (an exception handler could accept
this option) or the coded value might (on request from the
exception handler) translate into an ASCII string which
can be passed to the client for interpretation.

• Some of the most interesting changes and
incompatibilities are likely to be protocol changes. An
airline system might suddenly start putting its special
offers before any information dialogue can be performed;
the order in which information is exchanged between the
TA and its suppliers of cars, flights etc. might change.
Given enough meta-information, it is in principle,
possible to resolve such changes but this is far more
complex than laying out the order of fields in a record: it
is the actual order of query and response which can
evolve.

• In the extreme, the chosen meta-language might
change. Even here, a higher-level exception handler might
be able to recover if the meta-language is from a know
repertoire.

• When an airline ceases to respond (exist?) the
TA system must cope with the exception by offering a
reduced service from the remaining airlines.

• Communication with new systems might be
established if there is some agreement on meta-languages
which can be handled.

In all of the above cases, the attempt is to use
exception handling to keep the TA system running. Of
course, notification of such changes might well be sent to

developers; but the continuing function of the TA should
not await their availability.

3.3.2. Multilevel Handling. Exceptions are propagated to
a higher level if an exception is not explicitly handled or
an attempt to handle the exception fails. This leads to a
recursive system structuring with handlers being
associated with different levels of a system. Possible
handling strategies are:

• request a description of the new interface from
the upgraded component

• renegotiate the new protocol with the component
• use a default value of the new parameters
• pass the unrecognised parameters to the end

client (e.g. in ASCII)
• involve system operators into handling
• exclude the component from the operation
• execute safe stop of the whole system.
When designing handlers DSoS developers can apply

the concepts of backward recovery, forward recovery or
error compensation [L95]. Backward recovery restores the
system to its state before the error, for example the TA
abandons (aborts) a set of partial bookings making up an
itinerary if one of the components cannot satisfy a
particular booking. Forward recovery finds a new system
state from which the system can still operate correctly, for
example where DSoS developers decide to involve people
in handling interface changes: TA support/developers, TA
users/clients, component support. Error compensation
relies upon the system state containing enough
redundancy to allow the masking of the error. An example
of error compensation is the use of redundant
components. For example, in the TA case study if the
KLM server changes its interface and TA cannot deal
with this, it ignores it but continues using servers of BA
and AirFrance.

After the TA has been safely stopped or a component
has been excluded, the TA support and developers can
perform off-line analysis of the new interface of the
component (cf. fault diagnosis in [L95]).

4. Related Work

The distributed computing community has considered the
problems of maintaining meta-information for service
discovery within the context of loosely coupled
distributed systems such as DSoSs. Most middleware
systems implement some form of object trading service,
for example CORBA has an Object Trader Service, Jini
has a Lookup Service, and .NET uses services provided
by the Universal Discovery, Description and Integration
(UDDI) project. Object traders enable providers to

advertise services by registering offered interfaces with a
trading service. Clients locate a service by querying the
trader using descriptions based on the structure of an
interface and quantitative constraints [S97]. As with our
proposed solution, object traders provide the ability to
associate some meta-information with services. However,
there is an assumption that once a client has found a
service that uses a particular interface then that interface
will remain static. Another difference is that we plan to
maintain a richer set of meta-information with services
that capture both structural and semantic information
about interfaces such as versioning information, protocols
etc.

On the other hand, the object oriented database
community have explicitly considered system evolution.
They have developed schemes for schema evolution,
schema versioning and class versioning. For example, in
[AF00] schemata of multiple DBs are expressed in XML.
In this approach the user's queries are written using a
domain standard, that identifies the various entities and
relationships, and for each data-source/base there is a
mapping from that source entities to the domain standard.
So, that a rewriting of the user's query to the various
source formats can be done automatically. Our work
differs in that in addition to structural changes we
consider semantic changes such as protocol mismatches
that occur when evolution takes place. Also the solutions
proposed by this community tend to assume the existence
of a centralised authority for enforcing control whereas
we are working in the context of decentralised authority.

There has been some work on resolving protocol
mismatches in the area of component based development.
In [W02] the concept of a component adaptor is
introduced. It describes adaptations of the external
behaviour independently of a specific API. When the
adapter is applied to a composition of components the
required adaptations can be automatically inserted. This is
achieved through the application of algorithms that are
based on finite automata theory. Our work differs in that
we consider dynamic rather than build-time changes to
protocols and we consider more wide ranging adaptation
than just the renaming or addition of protocol events.

When implementing our proposed solution we intend
to exploit this related work and some other features
provided by modern component-oriented technologies and
Internet technologies. Other useful features that can be
used are language support for runtime reflection [IW02],
interface repositories and type libraries, and services such
as CORBA’s Meta-Object Facility that defines standard
interfaces for defining and manipulating meta-models.

5. Conclusions
This paper has not proposed a totally general or efficient
solution; our interest is in providing a pragmatic approach
that explicitly uses a fault tolerance framework. Our work
is motivated by real problems encountered when
considering a case study where mismatches due to
evolution must be dealt with at runtime. Although there
are some existing approaches to this problem we do not
try to hide evolution from the application developer but
provide a framework for dealing with it dynamically.

Acknowledgements. Our thanks go to Panos Periorellis
and Christos Kloukinas for their helpful comments. This
work is partially supported by European IST DSoS
Project (IST-1999-11585) and by Dependability
Interdisciplinary Collaboration funded by EPSRC/UK. Ian
Welch is supported by European IST MAFTIA Project
(IST-1999-11583).

References
[AF00] B. Amann, I. Fundulaki, and M.Scholl. Integrating
ontologies and thesauri for RDF schema creation and metadata
querying. International Journal of Digital Libraries, 3, 3, pp.
221–236, 2000.
[C95] F. Cristian. Exception Handling and Tolerance of
Software Faults. In Lyu, M.R. (ed.): Software Fault Tolerance.
Wiley, 1995, pp. 81-107.
[IW02] I. Welch. A Reflective Security Architecture for
Applications. PhD Thesis. Department of Computing, University
of Newcastle upon Tyne (in preparation).
[L95] J.-C. Laprie. “Dependable Computing: Concepts, Limits,
Challenges”. Proc. of the 25th Int. Symposium On Fault-
Tolerant Computing. IEEE CS Press. Pasadena, CA. 1995. pp.
42-54
[PD01] P. Periorellis, J.E. Dobson. Case Study Problem
Analysis. The Travel Agency Problem. Technical Deliverable.
Dependable Systems of Systems Project (IST-1999-11585).
University of Newcastle upon Tyne. UK. 2001. 37 p.
www.newcastle.research.ec.org/dsos/
[S97] C. Szyperski. Component Software. ACM Press. 1997.
[V02] W. Vanderperren. A Pattern Based Approach to Separate
Tangled Concerns in Component Based Development.
Proceedings of the First AOSD Workshop on Aspects,
Components, and Patterns for Infrastucture Software, held in
conjunction with the First International Conference on Aspect-
Oriented Software Development (AOSD 2002). pp. 71-75. 2002.
[TT02] A.T. Tai, K.S. Tso, L. Alkalai, S.N. Chau, W.H.
Sanders. Low-Cost Error Containment and Recovery for
Onboard Guarded Software Upgrading and Beyond. IEEE TC-
51, 2, pp. 121-137. 2002.

http://www.newcastle.research.ec.org/dsos/

	A Structured Approach to Handling On-Line Interface Upgrades
	1. Introduction
	2. System Model
	3. The Framework
	3.1. Structured Fault Tolerance
	3.2. Error Detection
	3.3. Error Recovery

	4. Related Work
	5. Conclusions
	References

