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Abstract- Technology presented in the paper [1] allows 
validation of software architecture before component upgrades. 
This paper presents a case study of applying this method to the 
upgrade of a wireless monitoring system. The converged 
network of voice and data introduces reliability-critical 
applications to conventional IP networks. Examples of such 
applications include voice-over-IP (VoIP), messaging, call 
centers, etc. Voice networks traditionally operate with an 
availability of 99.999%. Software upgrade must be done on-line 
to maintain such a high availability. Our wireless mobile 
monitoring (WMM) system includes clients and five server 
components: WAP Gateway (WG), Push Proxy Gateway (PPG), 
Push Initiator (PI), Content Server (CS) and Fault Monitor 
(FM). Our experimental results validate the system’s feasibility 
for on-line upgrade and show that our method is effective in 
providing round-the-clock wireless network activities while 
upgrading the network types or the application software. 

I. INTRODUCTION 

The explosive growth of varieties of internet and intranet 
applications has driven technology development rapidly. New 
release and new version of software are typically rolled out 
every six months. Some very large and complex systems, 
such as telecom systems, must and typically do exhibit 
exceptional dependability. These systems are seldom totally 
replaced with a new system because of the increased 
likelihood of a lapse in service. Rather, systems are upgraded 
incrementally while operational, albeit this often involves 
large-scale software changes. It is especially important then 
to ensure that new or replacement components are ready for 
on-line installation before they are incorporated into an 
operational system. The method presented in [1] includes two 
major steps: model derivation and model validation.  Our case 
study uses both steps. 

Wireless Network Monitoring system monitors the wired 
network faults and reports them to wireless devices. Such 
system informs network managers of network failures and 
their corresponding network status data disregard the time 
and their location. It releases network managers from sitting 
in their office for long hours. Based on this general idea, we 
then started with a set of behavioral flows that we wanted to 
implement. The first scenario is that the network manager 
should be notified of any network failures at anywhere and 
anytime. The second scenario is that the manager should be 
given access to other network information after he receives 
the failure notifications.  

After analyzing the flows, we came up with an architectural 
design of the software system. Later on, a first version of the 
system was implemented and the functional flows are 
demonstrated. Afterwards, when we were reviewing the 
system, the question of whether we can improve the 

development process rises. We decided to apply the method 
in [] to the development of the second version of the wireless 
monitoring system and compare their results.  

 
II.  MODEL CONSTRUCTION 

First, we put the two flows into an ArchFlow [1] table as 
shown in Table 1 (a) and (b). “Step” indicates the sequence of 
the flow. “Entities” includes the components involved in the 
flow step. “Action” describes the flow step. The first flow 
describes the fault notification process. A Failure Detector 
monitors the network and detects failures. It then invokes a 
Push Initiator. Push Initiator in turn generates a Service 
Indication for Push Proxy Gateway to send to mobile devices. 
The second flow describes network manager fetching 
additional information from the monitored network. Once the 
manager enters the fetching command, WAP Gateway will 
response by propagating the request to WML Content 
Generator, which further relays the request to the Failure 
Detector.  Failure Detector runs automatic network diagnosis 
and sends back more failure information. 

 
Step Entities Action 
1) Failure Detector (FD), 

Wired Network 
FD monitors the network 
and detects a failure. 

2) Push Initiator (PI) Invoked when a failure is 
detected. 

3) PI Generates a Service 
Indication (SI) with a URL 
included. 

4) Push Proxy Gateway  
(PPG) 

PPG pushes SI to mobile 
devices 

5) Mobile Device Sound alarm and display 
alert message 

(a) The First Flow Table 
 

Step  Entities Actions 
1) Network manager Notice the alert message 
2) Network Manager Click on “URL fetching” 
3) WAP Gateway 

(WG) 
Receives the URL and sends 
request to fetch data content, 
more network information. 

4) WML Content 
Generator (WCG) 

Receives fetch request. 

5) WCG Sends request to FD to get more 
detailed data. 



6) FD Response to WCG. 
7) WCG Send new information to WCG. 
8) WCG, WG WCG sends the content to WG. 
9) WG Gives the data content back to 

the mobile devices. 
(b) The Second Flow Table 

Initially, we drew a partial architectural diagram. Based on 
the original idea of using wireless device for network fault 
monitoring, we knew that we needed to draw two networks, 
wireless and wired ones, the gateway between them, and a 
network-fault monitoring component. A partial architectural 
diagram is given in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We ran the model constructor to add the flows and their 
corresponding entities to the architecture model. The tool first 
checks the flows against the partial architecture and adds the 
required components to the architecture. It then complete the 
specification for each component based on the information 
given in the flow descriptions. We obtained the following 
software architecture diagram of the system, Figure 2. Note 
that several additional entities are shown in the wired 
network. The actual tool-generated architecture model is 
given in an SDL-like syntax and semantics. A more formal 
architecture of the wireless monitoring system is given in 
Figure 3. Due to space constraint, the messages on each 
channel and the process symbols are not shown in SDL. 

 
III. UPGRADE VALIDATION 
The most commonly change part of Figure 2 is the 

type of the mobile network, 2G, 2.5G or 3G, and the Fault 
Monitor that has new releases every six months. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: A Formal Architecture Model 
After obtaining the architecture, we can use it to simulate 

and analyze the architecture with every upgraded FM. The 
architecture is modeled as a CEFSM system. Each 
component is modeled as an EFSM with the addition of 
behaviors from flows and execution activation signals. On the 
system level, the effect of flows can be seen in the addition of 
new channels that carry flow steps activation signals. In our 
example, we do not have broadcasting or non-FIFO type of 
signal communication. 

The CEFSM model is represented in SDL. The high level 
SDL specification includes a set of Extended Finite State 
Machine (EFSM) communicating through channels. There 
are two types of channels: delaying channels and non-
delaying channels. The flow step activation signals are sent 
through non-delaying channels unless the architecture 
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Figure 2: An Architecture Accommodating Both Flows 
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document states that there is a delay between two steps. The 
rest of the signals are sent through delaying channels because 
it is assumed that each EFSM resides at a different physical 
location. Such physical delay is non-negligible on this 
architecture abstraction level. Each component is specified in 
one SDL-Process. The input and output signal sets of an 
SDL-Process include both the original message 
communicating between the components and the flow step 
activation signals.  

The behavior of each component and the attributes of each 
component, such as throughput, failure rate, availability, and 
price, are given as additional information in the architecture 
document. They are used to generate automatically 
environment and attribute simulators. The execution is based 
on an SDL engine.  

We first employ a coverage-based model-checking 
approach that uses a dynamic slicing technique to guide a 
subsequent simulation. A conventional model checker 
verifies all the possible system states. Our method includes 
four steps: 

Step 1: We first identify the “impacted model”, i.e. FM, 
WCG and PI. 

Step 2: We used a slicing technique to discover the most 
critical part of the impacted model to validate based on its 
contribution to overall simulation coverage. The transition in 
FM with the highest count is the critical point of the model. 

Step 3: We manually generate simulation test cases to 
cover the critical parts of the model. 

Step 4: After each simulation, the overall achieved test 
coverage percentage for the model was updated. 

Next, we investigate an operational-profile-based approach 
for predicting overall system properties. Again, we use the 
specification-level dynamic slicing technique that relies on 
the execution of the specification to obtain simulation traces 
for the specification. Traces record the coverage repetition of 
basic transitions, i.e., how many times the same basic 
transition has been simulated. From this basic transition 
coverage, we can deduce the following five kinds of 
coverage: 1) basic transition coverage itself, 2) symbolic state 
coverage, 3) decision coverage, 4) component coverage, and 
5) variable value coverage.  

The operational profile provides us with data on the 
realistic usage of the target system. They can be used to guide 
the simulation of the model to determine the relative 
frequency of use for the various components or channels 
during typical operations. These usage frequencies indicate 
the relative contributions to certain system properties.  

Lastly, we validate the behavior of the upgraded system. In 
the underlying operational system, each EFSM has one Input-
Port that contains a FIFO queue of signals. The delay on 
channels is nondeterministic. They can be modeled as a 
queue where the departure of an element from a queue occurs 
at a random time. This queue is stored in the Path processor 
of the underlying SDL machine. 

 

When the simulator receives a copy of the same input as 
the target system, it stamps the current time onto the input 
signal, and then gives it to the System processor. The System 
will decide whether to deliver it to the Path or the Input-Port. 
Signals will eventually be delivered to the destination SDL-
Process. When an SDL-Process encounters nondeterminism, 
it will inform the System to duplicate a similar copy of itself 
carrying different behavioral belief. When the System 
Processor of ASDLM notices that there is no active SDL-
Process at a certain moment, it checks through all the Input-
Ports of the SDL-Processes. It picks up a signal with a 
smallest stamped time, sends it to the SDL-Process for 
processing, and updates the global timer to the time carried 
on the signal time stamp. Note that the signals in Input-Ports 
are arranged in descending sequence according to their time 
stamps.  

Experiments were carried out using the simulator derived 
to assess behavior of the software architectural design. The 
experimental result shows that the information generated by 
the simulator can be used to validate the behavior and the 
attributes of an upgraded system solely based on its 
architecture documents. 

 
VI. CONCLUSIONS 

This paper presents a case study of applying the method in 
[1] to the validation of system dependability with component 
upgrade. Although the example application is an wireless 
network software, the projected results would be suitable for 
software systems in general, especially real-time systems 
requiring high availability.  

In our experiments, we find the tools developed by [1] 
being useful. It helped to generate formal models to decide 
quickly whether a candidate component is a suitable upgrade. 
In all, these tools reduce the cost of component-based 
software modifications, because a go/no-go decision at the 
design stage may avoid the high cost associated with 
installing unsuitable components. 

For the on-line upgrading activity, the experiments were 
carried out under normal network conditions. One possible 
future work is to test the method on more extreme conditions 
such as multiple simultaneous voice calls. For mobile 
notification, WMM monitoring system will be able to allow 
network managers to make direct calls using WTA to the 
technicians who are available in the geographical area that 
fault occurs and with the best-suited skills. WMM will 
benefit from the deployment of high-speed packet data 
networks. It will further reduce the time and the cost related 
to network repair and make WMM a more valuable 
technology to network managers. 
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