
A Case Study of Dependable Software Upgrade with Distributed Components

Xueshan Shan and J. Jenny Li
Avaya Labs (formerly part of Bell Labs)

233 Mt. Airy Rd, Rm#2C07
Basking Ridge, NJ 07920-2336, USA
{xshan | jjli}@research.avayalabs.com

Abstract- Technology presented in the paper [1] allows
validation of software architecture before component upgrades.
This paper presents a case study of applying this method to the
upgrade of a wireless monitoring system. The converged
network of voice and data introduces reliability-critical
applications to conventional IP networks. Examples of such
applications include voice-over-IP (VoIP), messaging, call
centers, etc. Voice networks traditionally operate with an
availability of 99.999%. Software upgrade must be done on-line
to maintain such a high availability. Our wireless mobile
monitoring (WMM) system includes clients and five server
components: WAP Gateway (WG), Push Proxy Gateway (PPG),
Push Initiator (PI), Content Server (CS) and Fault Monitor
(FM). Our experimental results validate the system’s feasibility
for on-line upgrade and show that our method is effective in
providing round-the-clock wireless network activities while
upgrading the network types or the application software.

I. INTRODUCTION

The explosive growth of varieties of internet and intranet
applications has driven technology development rapidly. New
release and new version of software are typically rolled out
every six months. Some very large and complex systems,
such as telecom systems, must and typically do exhibit
exceptional dependability. These systems are seldom totally
replaced with a new system because of the increased
likelihood of a lapse in service. Rather, systems are upgraded
incrementally while operational, albeit this often involves
large-scale software changes. It is especially important then
to ensure that new or replacement components are ready for
on-line installation before they are incorporated into an
operational system. The method presented in [1] includes two
major steps: model derivation and model validation. Our case
study uses both steps.

Wireless Network Monitoring system monitors the wired
network faults and reports them to wireless devices. Such
system informs network managers of network failures and
their corresponding network status data disregard the time
and their location. It releases network managers from sitting
in their office for long hours. Based on this general idea, we
then started with a set of behavioral flows that we wanted to
implement. The first scenario is that the network manager
should be notified of any network failures at anywhere and
anytime. The second scenario is that the manager should be
given access to other network information after he receives
the failure notifications.

After analyzing the flows, we came up with an architectural
design of the software system. Later on, a first version of the
system was implemented and the functional flows are
demonstrated. Afterwards, when we were reviewing the
system, the question of whether we can improve the

development process rises. We decided to apply the method
in [] to the development of the second version of the wireless
monitoring system and compare their results.

II. MODEL CONSTRUCTION

First, we put the two flows into an ArchFlow [1] table as
shown in Table 1 (a) and (b). “Step” indicates the sequence of
the flow. “Entities” includes the components involved in the
flow step. “Action” describes the flow step. The first flow
describes the fault notification process. A Failure Detector
monitors the network and detects failures. It then invokes a
Push Initiator. Push Initiator in turn generates a Service
Indication for Push Proxy Gateway to send to mobile devices.
The second flow describes network manager fetching
additional information from the monitored network. Once the
manager enters the fetching command, WAP Gateway will
response by propagating the request to WML Content
Generator, which further relays the request to the Failure
Detector. Failure Detector runs automatic network diagnosis
and sends back more failure information.

Step Entities Action
1) Failure Detector (FD),

Wired Network
FD monitors the network
and detects a failure.

2) Push Initiator (PI) Invoked when a failure is
detected.

3) PI Generates a Service
Indication (SI) with a URL
included.

4) Push Proxy Gateway
(PPG)

PPG pushes SI to mobile
devices

5) Mobile Device Sound alarm and display
alert message

(a) The First Flow Table

Step Entities Actions
1) Network manager Notice the alert message
2) Network Manager Click on “URL fetching”
3) WAP Gateway

(WG)
Receives the URL and sends
request to fetch data content,
more network information.

4) WML Content
Generator (WCG)

Receives fetch request.

5) WCG Sends request to FD to get more
detailed data.

6) FD Response to WCG.
7) WCG Send new information to WCG.
8) WCG, WG WCG sends the content to WG.
9) WG Gives the data content back to

the mobile devices.
(b) The Second Flow Table

Initially, we drew a partial architectural diagram. Based on
the original idea of using wireless device for network fault
monitoring, we knew that we needed to draw two networks,
wireless and wired ones, the gateway between them, and a
network-fault monitoring component. A partial architectural
diagram is given in Figure 1.

We ran the model constructor to add the flows and their
corresponding entities to the architecture model. The tool first
checks the flows against the partial architecture and adds the
required components to the architecture. It then complete the
specification for each component based on the information
given in the flow descriptions. We obtained the following
software architecture diagram of the system, Figure 2. Note
that several additional entities are shown in the wired
network. The actual tool-generated architecture model is
given in an SDL-like syntax and semantics. A more formal
architecture of the wireless monitoring system is given in
Figure 3. Due to space constraint, the messages on each
channel and the process symbols are not shown in SDL.

III. UPGRADE VALIDATION
The most commonly change part of Figure 2 is the

type of the mobile network, 2G, 2.5G or 3G, and the Fault
Monitor that has new releases every six months.

Figure 3: A Formal Architecture Model
After obtaining the architecture, we can use it to simulate

and analyze the architecture with every upgraded FM. The
architecture is modeled as a CEFSM system. Each
component is modeled as an EFSM with the addition of
behaviors from flows and execution activation signals. On the
system level, the effect of flows can be seen in the addition of
new channels that carry flow steps activation signals. In our
example, we do not have broadcasting or non-FIFO type of
signal communication.

The CEFSM model is represented in SDL. The high level
SDL specification includes a set of Extended Finite State
Machine (EFSM) communicating through channels. There
are two types of channels: delaying channels and non-
delaying channels. The flow step activation signals are sent
through non-delaying channels unless the architecture

Internet/Intranet

 Base Station

 Mobile
 Network

Fault Monitor

WAP
Gateway

Push Proxy
Gateway

Content Server
(WML content
generator)

Push Initiator

Mobile Clients

Figure 1: An Initial Partial Architecture Diagram

Figure 2: An Architecture Accommodating Both Flows

Internet/Intranet

 Base Station

 Mobile
 Network

Failure Detector

Mobile Clients

Gateway

1

(Alarm)

OTA (SI)

WAP
(request/content
)

HTTP
(request/content
)

(request/data)

2

Push
Proxy
Gateway

PAP (SI)

3

4

5

6

Fault
Monito
r Push

Initiato
r

7

WML
Content
Generator

8
9

Mobile
Client

WAP
Gateway

System WirelessMonitor

document states that there is a delay between two steps. The
rest of the signals are sent through delaying channels because
it is assumed that each EFSM resides at a different physical
location. Such physical delay is non-negligible on this
architecture abstraction level. Each component is specified in
one SDL-Process. The input and output signal sets of an
SDL-Process include both the original message
communicating between the components and the flow step
activation signals.

The behavior of each component and the attributes of each
component, such as throughput, failure rate, availability, and
price, are given as additional information in the architecture
document. They are used to generate automatically
environment and attribute simulators. The execution is based
on an SDL engine.

We first employ a coverage-based model-checking
approach that uses a dynamic slicing technique to guide a
subsequent simulation. A conventional model checker
verifies all the possible system states. Our method includes
four steps:

Step 1: We first identify the “impacted model”, i.e. FM,
WCG and PI.

Step 2: We used a slicing technique to discover the most
critical part of the impacted model to validate based on its
contribution to overall simulation coverage. The transition in
FM with the highest count is the critical point of the model.

Step 3: We manually generate simulation test cases to
cover the critical parts of the model.

Step 4: After each simulation, the overall achieved test
coverage percentage for the model was updated.

Next, we investigate an operational-profile-based approach
for predicting overall system properties. Again, we use the
specification-level dynamic slicing technique that relies on
the execution of the specification to obtain simulation traces
for the specification. Traces record the coverage repetition of
basic transitions, i.e., how many times the same basic
transition has been simulated. From this basic transition
coverage, we can deduce the following five kinds of
coverage: 1) basic transition coverage itself, 2) symbolic state
coverage, 3) decision coverage, 4) component coverage, and
5) variable value coverage.

The operational profile provides us with data on the
realistic usage of the target system. They can be used to guide
the simulation of the model to determine the relative
frequency of use for the various components or channels
during typical operations. These usage frequencies indicate
the relative contributions to certain system properties.

Lastly, we validate the behavior of the upgraded system. In
the underlying operational system, each EFSM has one Input-
Port that contains a FIFO queue of signals. The delay on
channels is nondeterministic. They can be modeled as a
queue where the departure of an element from a queue occurs
at a random time. This queue is stored in the Path processor
of the underlying SDL machine.

When the simulator receives a copy of the same input as
the target system, it stamps the current time onto the input
signal, and then gives it to the System processor. The System
will decide whether to deliver it to the Path or the Input-Port.
Signals will eventually be delivered to the destination SDL-
Process. When an SDL-Process encounters nondeterminism,
it will inform the System to duplicate a similar copy of itself
carrying different behavioral belief. When the System
Processor of ASDLM notices that there is no active SDL-
Process at a certain moment, it checks through all the Input-
Ports of the SDL-Processes. It picks up a signal with a
smallest stamped time, sends it to the SDL-Process for
processing, and updates the global timer to the time carried
on the signal time stamp. Note that the signals in Input-Ports
are arranged in descending sequence according to their time
stamps.

Experiments were carried out using the simulator derived
to assess behavior of the software architectural design. The
experimental result shows that the information generated by
the simulator can be used to validate the behavior and the
attributes of an upgraded system solely based on its
architecture documents.

VI. CONCLUSIONS

This paper presents a case study of applying the method in
[1] to the validation of system dependability with component
upgrade. Although the example application is an wireless
network software, the projected results would be suitable for
software systems in general, especially real-time systems
requiring high availability.

In our experiments, we find the tools developed by [1]
being useful. It helped to generate formal models to decide
quickly whether a candidate component is a suitable upgrade.
In all, these tools reduce the cost of component-based
software modifications, because a go/no-go decision at the
design stage may avoid the high cost associated with
installing unsuitable components.

For the on-line upgrading activity, the experiments were
carried out under normal network conditions. One possible
future work is to test the method on more extreme conditions
such as multiple simultaneous voice calls. For mobile
notification, WMM monitoring system will be able to allow
network managers to make direct calls using WTA to the
technicians who are available in the geographical area that
fault occurs and with the best-suited skills. WMM will
benefit from the deployment of high-speed packet data
networks. It will further reduce the time and the cost related
to network repair and make WMM a more valuable
technology to network managers.

REFERENCES

[1] J. Jenny Li, Dennis Mulcare, and Eric Wong,
“Dependability of Complex Software Systems with
Component Upgrades”, IEEE COMPSAC, Taiwan, Nov.
2002.

