
Dynamically Evolvable Distributed Systems

Raju Pandey Scott Malabarba Tim Stapko
Brant Hashii

Department of Computer Sciences
University of California, Davis CA 95616

{pandey, malabarb, stapko, hashii}@cs.ucdavis.edu

1 Introduction

Software systems must change over time. Changing
business practices, the relentless advance of technology,
and the demands of end users drive this evolution. The
functionality required of applications inevitably changes
in response to these factors. Consequently, in order to
remain viable, applications must evolve to meet new re-
quirements. Software component evolution is a major
focus of effort in software engineering [6, 13].

The vast majority of commercial software is written
in a few imperative languages, such as C++ or Java [1].
For these languages, software evolution is generally a
slow, static process. Since any update requires stop-
ping a program and overwriting all or part of it, incre-
mental updates are often impractical, and major updates
problematic. For a large class of critical applications,
such as business transaction systems, telephone switch-
ing systems and emergency response systems, the inter-
ruption poses an unacceptable loss of availability. What
is needed, then, is more support for applications that
evolve during execution. Dynamic evolution provides
a number of benefits in addition to easing upgrades to
critical software.

The Evolvable Systems Project (ESP) is developing
techniques for safely and securely evolve distributed
Java applications. Our current research involves (i) de-
sign and implementation of a type-safe model for dy-
namically modifying Java programs on a single host, (ii)
application of the model for developing an adaptive se-
curity model, and (iii) extension of the single host model
to a distributed environment. We briefly describe them
below.

2 Type safe dynamic evolution of Java
Programs

We have developed a model [8] for dynamic evolu-
tion of Java programs, which preserves the syntax and

semantics of Java. Doing so ensures compatibility with
existing code, and provides greater ease of use as devel-
opers do not need to learn new language constructs. This
constraint requires that we preserve the type safety char-
acteristics of a program throughout its execution. Type
safety encourages the development of safer, more dis-
ciplined code. In a dynamic system, type safety can
restrict wild, unsound changes, alleviating the dangers
inherent in changing code. Further, many of Java’s se-
curity mechanisms, e.g., separation of user and system
name spaces and protection of private data, depend on
the type-safety properties of Java programs. Therefore,
we impose the restriction that all changes in a program
preserve the type safety properties of the program.

In order to provide a convenient, backward-
compatible interface, and to support changes in any Java
class, we extended the Java class loader [7]. This new,
dynamic class loader allows a program to define a class
multiple times. The dynamic class loader implements
changes in a class and any resulting changes in its in-
stances in an executing program.

Java is increasingly being used to support distributed
programming through code mobility [14]. Although ap-
pealing in terms of system design and extensibility [2],
systems that support mobility are vulnerable to mali-
cious mobile code. The Java programming environment
provides several security mechanisms [3, 4] for protect-
ing hosts from malicious applets. Support for dynamic
evolution, however, raises additional security issues, as
malicious applets may use the dynamic class mecha-
nism to modify the classes that enforce specific security
policies of a host. Therefore, the dynamic class loader
implements a security model that ensures that Java pro-
grams can dynamically modify only those resources to
which they are authorized. We enforce this policy using
name space separation and resource access control.

We implemented support for dynamic classes by
modifying Sun’s Java virtual machine (JDK 1.2). Dy-
namic classes can be implemented in several ways: by

1



changing the language, through library-based support,
or by modifying the virtual machine. As stated above,
we did not wish to change the language. Library-based
support proved to be too awkward and inefficient for our
requirements. Thus, we chose to directly modify the
virtual machine. We performed several experiments to
measure the performance characteristics of our imple-
mentation. The experiments show that dynamic classes
add about 6-10% of overhead to Sun’s JVM. Further, the
cost of updating classes is moderate.

3 Dynamically adaptive security

We have developed [5] a security infrastructure that
supports dynamic policies. The infrastructure uses
a declarative policy language to specify access con-
straints. It enforces these constraints by performing bi-
nary editing on programs and resources [12]. In addi-
tion, the infrastructure provides a runtime meta-interface
by representing access control policies as first class ob-
jects. The user can inspect, add, delete, and modify se-
curity policies at runtime. This mechanism supports dy-
namic security environments that adapt to unanticipated
operating condition changes and system evolution. For
example, the meta-interface is useful in large distributed
systems, where the local policies in individual clusters
must be discovered in order to construct and enforce
global policies, and to verify consistency among the dif-
ferent local policies.

We have implemented the infrastructure by generat-
ing binary code for each security policy on the fly, and
integrating this code directly into the protected resource.
We support dynamic evolution of security policies by us-
ing dynamic classes, which allow the system to generate
new interposition code and add it to previously instru-
mented classes.

4 Dynamic evolution of distributed appli-
cations

We are extending our single host dynamic evolu-
tion model for distributed applications. Clearly, These
programming paradigms are not mutually independent.
Distributed systems that support dynamic evolution are
rare. The difficulty is clear: the problems involved in
dynamic evolution are aggravated by network latency,
packet loss, and the discontinuity between the names-
pace models implemented by runtime systems on single
hosts and those used to link applications over a network.

In addition, our current implementation is based on a
Java virtual machine that runs on a single host, in a sin-
gle process. The techniques we use to discover depen-
dencies between classes and update objects in memory

simply do not scale to multiple VMs. It is much more
difficult to discover and handle dependencies between
code and objects on a network; the same is true for dif-
ferent versions of a class.

A distributed programming model must specify the
semantics of naming and moving components between
hosts. Most models accomplish this by adding a sec-
ondary programming layer: programmers code to a
specification, such as an IDL, that is external to the lan-
guage they work in. They define the semantics in terms
of abstractions, such as services or resources, that are the
units of distribution. Programmers access them by inter-
faces; the implementation, defined in terms of language
constructs such as objects or hardware access, is hidden.
This technique is well motivated. Often, it is precisely
the abstraction of “services” that programmers are con-
cerned with. The secondary programming layer hides
language and implementation details. For applications
that require cooperation between multiple language plat-
forms, or where the programmer wishes to hide class and
object details, this approach is optimal.

Unfortunately, the extra programming layer reduces
transparency in distributed programming. Language-
level constructs cannot serve as units of distribution, ap-
plications require extra code and design work to be prop-
erly distributed, and the programmer must learn addi-
tional mechanisms. Dynamic evolution models that act
on abstract components, as in dynamic component ar-
chitectures, may integrate well with abstract distributed
programming models –if designed to do so. However,
if more fundamental constructs, such as classes, can
change, the advantage is lost.

Consider, for instance, a simple code distribution
mechanism. A server contains the most current versions
of a group of classes, which may change at any time.
A number of clients use these classes in perpetually run-
ning applications. Upon any class change, the server no-
tifies its clients, which immediately download and acti-
vate the new version. In this case, the simplest specifica-
tion for client behavior is “get classC from hostH”. Any
secondary namespace system is unnecessary complex-
ity for the programmer, who is concerned with actual
Java class names and not abstractions. The discontinuity
between language-level and secondary namespace mod-
els becomes an impediment when dealing with dynamic
evolution at the language level. We have extended Java’s
class namespace model to permit binding across hosts,
or even different namespaces on the same host; Gener-
ally, Java’s class loader binds class names to their im-
plementations automatically: upon encountering a sym-
bolic reference to a class, it attempts to load the class file
and create a class object. The symbolic reference is then
resolved to point to the newly created class object. User-

2



defined class loaders can fine-tune this process, for in-
stance by loading class files from the network instead of
the local disk. Our model allows users to explicitly bind
class names in one namespace to class definitions previ-
ously loaded in another namespace. Further, the model
allows class loader hierarchies to span a network. The
mechanism is secure: users can restrict inter-namespace
binding as desired, and all communication is authenti-
cated.

We accomplish this using a variant of publish-and-
subscribe [11]. In actuality, each host has its own copy
of the class definition. Hosts can publish classes they de-
fine, and subscribe to classes published by other hosts.
Any update of a published class is automatically pushed
to subscribers. Hence, the definitions on publisher and
subscriber are always identical; the class name in the
subscriber’s namespace is effectively bound to the def-
inition in the publisher’s namespace. We use Java Re-
mote Method Invocation (RMI) [10] for the commu-
nications infrastructure. The programming model pre-
sented to the user has several additional characteristics.
Class changes in any given namespace are safe, due to
the dynamic class mechanism; users can change classes
freely. Further, these changes can propagate over the
network as desired, and affect both active and inactive
classes. The model supports simple distributed class
namespaces, such as the client/server system described
above, as well as more complex hierarchical, branch-
ing structures. Extensions to Java’s standard model are
slight; the API is very small and easy to use. Finally, us-
ing Java public key verification [9] with signed objects,
we guarantee the integrity of class data passed over the
network.

Our implementation as it currently stands has certain
drawbacks. The workgroups that namespaces are orga-
nized into are static, due to the RMI API and the dif-
ficulty of ensuring integrity in initial public key trans-
fer. More importantly, our distributed namespaces apply
only to classes; mobile objects are not explicitly sup-
ported. Nothing prevents the programmer from using
them, but incoming objects are not checked for class ver-
sion conflicts. Further, the user is not entirely insulated
from class dependency issues. Thus, the user bears some
responsibility for preventing conflicts.

We are currently developing techniques for address-
ing many of these issues.

References

[1] K. Arnold and J. Gosling.The Java Programming Lan-
guage. Addison Wesley, 1996.

[2] D. Chess, C. Harrison, and A. Kershenbaum. Mo-
bile agents: Are they a good idea? In Jan Vitek
and Christian Tschudin, editors,Mobile Object Sys-
tems. Towards the Programmable Internet. Second In-
ternational Workshop, MOS ’96, number 1222 in Lec-
ture Notes in Computer Science, pages 25–47, Linz,
Austria, July 1997. Springer-Verlag. Also available at
http://www.research.ibm.com/massdist/mobag.ps.

[3] J.S. Fritzinger and M. Mueller. Java Se-
curity. JavaSoft White Paper, 1996.
http://www.javasoft.com/security/whitepaper.ps.

[4] L. Gong, M. Mueller, H. Prafullchandra, and
R. Schemers. Going beyond the sandbox: An overview
of the new security architecture in the Java Development
Kit 1.2. In Proceedings of the USENIX Symposium
on Internet Technologies and Systems, Monterey,
California, December 1997.

[5] B. Hashii, S. Malabarba, R. Pandey, and M. Bishop. Ex-
tensible security policies for mobile java programs. In
The proceedings of the 9th International World Wide Web
Conference, pages 77–94, Amsterdam, May 2000. Else-
vier.

[6] Robert Laddaga and James Veitch. Dynamic object
technology.Communications of the ACM, 40(5):36–38,
March 1997.

[7] S. Liang and G. Bracha. Dynamic class loading in the
Java Virtual Machine. Draft. JavaSoft, Sun Microsys-
tems, April 1998.

[8] S. Malabarba, R. Pandey, J. Gragg, E. Barr, and J. F.
Barnes. Runtime support for type-safe dynamic java
classes. InIn the Proceedings of the European Confer-
ence on Object-Oriented Programming., 2000.

[9] Sun Microsystems. Java Secu-
rity Articles. Sun Microsystems.
http://developer.java.sun.com/developer/technicalArticles/Security/index.html.

[10] Sun Microsystems. Java remote method invoca-
tion – distributed computing for Java. Techni-
cal report, Sun Microsystems, Inc., November 1999.
http://java.sun.com/marketing/collateral/javarmi.html.

[11] Brian Oki, Manfred Pfluegl, Alex Siegel, and Dale
Skeen. The Information Bus – an architecture for extensi-
ble distributed systems.ACM Operating Systems Review,
27(5):58–68, December 1993.

[12] R. Pandey and B. Hashii. Providing fine-grained access
control for Java programs. In13th Conference on Object-
Oriented Programming. ECOOP’99, Lecture Notes in
Computer Science. Springer-Verlag, June 1999.

[13] Mark E. Segal and Ophir Frieder. On-the-fly program
modification: Systems for a dynamic updating.IEEE
Software, 10(2):53–65, 1993.

[14] T. Thorn. Programming languages for mobile code.ACM
Computing Surveys, 29(3):213–239, September 1997.

3


