
 UNCLASSIFIED

 Page 1 of 5
 UNCLASSIFIED

Systems of Systems and Coordinated Atomic Actions

Robert Schaefer
BAE SYSTEMS

robert.p.schaefer@baesystems.com

ABSTRACT

 System of systems (SoS) is an emerging field in the design
and development of complex systems that are built from
large scale component systems. A SoS has the following
attributes: operational and managerial independence of
components, a geographic extent that limits control
mechanisms to information exchange, an evolutionary
nature, and emergent behavior. The subsystems that
comprise the SoS often are built by different organizations
with conflicting goals, designed under different
assumptions and built to different quality standards.
These factors impact fault detection, fault isolation, and
fault tolerance and can result in systems that cannot easily
be debugged, integrated, or maintained. When fault
detection and fault tolerance are deficient, the system may
behave in a fragile or brittle manner, randomly and
repeatedly crashing. Crashes prevent automated
diagnosis algorithms from being executed and can prevent
manual root cause analysis by erasing system state.
Fragility during system integration can prevent achieving
schedule milestones and deadlines. Deficient fault
detection and fault isolation also impacts end users and
system maintainers.
(Think <insert name of infamous project here>).

From the system architect's point of view, designing a
system that can detect all possible fault conditions across
all components can be an extremely difficult, if not
impossible challenge. Can any system be trusted to
diagnose or repair itself when it has been corrupted by
faults? How do you prevent local faults from growing into
global failures? The end users may have unreasonable
expectations about how the system should behave when
components within the SoS behave abnormally or fail.
They may expect better behavior than the typical PC. The
system maintainers may expect a coherent systems view of
failures to isolate faulted components and to provide an
orderly and safe shutdown or recovery.
(Think power grid blackouts, Telecomm failures, etc.)

The most beneficial way to achieve fault tolerance is to
design in fault detection and fault reporting such that

defined boundaries such as subsystems serve as natural
firewalls for fault containment. Although partitioning the
system into subsystems for fault containment is well known
and practiced, the end result as experienced at the time of
system integration is rarely a success. COTS middleware,
intended to aid distributed design often becomes in effect a
step backwards by providing fertile ground for faults and
failures that breach fault containment boundaries.
(Think <insert name of OS or middleware vendor here>)

 What can be done to improve this situation? This paper
addresses the system architectural partitioning concept of
the Coordinated Atomic Actions (CAA). CAA promotes a
different manner of organizing software architecture that
improves fault containment across potentially faulty
components. CAA was first invented by members of Brian
Randell’s research group at the University of Newcastle at
Tyne in the mid 1990’s. CAA promotes the concept of the
“transaction” which has been traditionally identified with
database applications. When you access your bank
account via ATM, you are exercising database
transactions within your bank’s financial SoS. CAA
applies transactions to cooperating concurrent distributed
processes, which are the basis for most large complex
computing systems.

INTRODUCTION

The grand motivation for this paper is simply to try to get
my hands around the concept of balancing complexity,
software architecture, distributed processes, hardware and
software faults, budget and schedule, quality. Why settle
for the easy problems? The specific itch for this paper
comes from having participated in the systems integration
of four large difficult software intensive projects and then
wondering if we could do better by thinking differently,
not just by doing more of the same. In tying this together,
I would like to address the relationship between Systems
of Systems, systems integration, and fault tolerant design
as a way of introduction to the concept of Coordinated
Atomic Actions (CAA). CAA appears to map well to these
challenges, and may even solve some of them. The
references at the end of this paper should provide a starting

 UNCLASSIFIED

 Page 2 of 5
 UNCLASSIFIED

point for further investigation. I will be up front and tell
you that as a working software engineer I am not in the
practice of writing papers for publication, and am quite
astonished at having this, my first, published. Some
caveats: I do use the spell checker, but actively ignore the
suggestions from the dancing paperclip, and I caution my
readers that this paper contains my opinions only, and that
in no manner, shape or form, should these opinions ever be
considered those of my employer. In any case, if you do
follow along, I hope to make the information presented
useful and perhaps even provide an "A-ha!" moment to
those of you who support systems integration for large
software intensive projects.

SYSTEMS OF SYSTEMS

For those who are not yet aware of or involved in
developing Systems of Systems, these kinds of systems
have the following attributes:

1. Independence of components in design, management,
and operation

2. A geographic extent that limits control to messages
over a network

3. Evolutionary nature
4. Emergent behavior

These attributes will be addressed not from the point of
view of the systems architect, but from the point of view of
the systems integrator. The systems architect works with
the SoS as a concept, but the systems integrator works
with the actual system as implemented. That is, the
architect works with his (or her) head in the clouds, but the
integrator works in the mud of the real world. Now,
concerning the first attribute, independence of components
in design may lead to independence of components in
development. For the systems integrators, this can mean
the responsibility to correct problems that weren't their
own doing, which in turn, will entail negotiation of
changes across multiple corporations' design teams.
Negotiation takes time; something there is not much of
during systems integration. The implication of the second
attribute is that the systems integrator may need to walk
outside or make a phone call to another human in order to
reset a system or subsystem. Note that after delivery to the
customer, walking outside or making a phone call may no
longer be possible, especially when a component is under
the ocean or in outer space. Reliability becomes more
noticed with components of this sort. The third attribute
has the implication, that for systems that take years to
develop, the rationales that may have existed at the start of
design may no longer be true at the start of systems

integration. Some of the truths contained in the early
documents can become suspect. There may be
requirements and design whose utility, in metaphor, has
become identical to that of the human appendix. It's there,
but no one knows what it really does, and it shouldn't be
removed until it becomes project-life-threatening. The
fourth attribute, emergent behavior, is behavior that is not
explicitly defined in any specification, and as a result,
leaves the systems integrator with the oft asked question,
"Is it a bug, or a feature?" New requirements and design
may be needed to cope with unwanted emergent
properties; again, something for there is not much time.

SYSTEMS INTEGRATION

Systems, and systems of systems need to be integrated,
and systems integration is, perhaps, the most challenging
part of project development. This claim can be made for
the principal reason that there is no time or budget to
correct large problems that have slipped through the
previous phases of the development process. The basic
assumption at the start of systems integration is that there
are no remaining large problems, but whether this
assumption is correct or not, there will be some number of
faults remaining. Each fault may prevent subsystems from
being integrated. Each fault needs to be isolated and
analyzed in a prioritized manner so that the most critical
faults will be addressed first. How many small faults
equal one large problem? And how did all those faults get
into the system in the first place? How can individual
subsystems be made more reliable prior to systems
integration?

The short answer is that faults can be prevented to some
degree through both proper construction and fault tolerant
design. Fault prevention by construction is done by
adhering to the engineering development processes, but
human beings being the fallible creatures that they are,
faults will always remain to be discovered at integration.
Over the past decade, effort in improving the software
development process has been getting most of the attention
and beneficially has resulted in tremendous bang for the
buck. Fault tolerance by design has been seen as primarily
a hardware issue, which is very well understood, if
sometimes poorly implemented. The hardware reliability
of individual components can be predicted using models
and calculations based on the expected environment and
the failure rates of the individual components. Fault
tolerance is provided by proper choice of parts and by
design redundancy. In contrast, there is no easy way to
predict software reliability by apriori model or calculation.
One can make an initial prediction of so many faults per

 UNCLASSIFIED

 Page 3 of 5
 UNCLASSIFIED

thousand lines of code based on statistics from previous
projects. This prediction will suffer due to the ever unique
project context and the variability of the human element.
Having a better software process will get you into systems
integration in better shape, but no matter how good the
software process is, you really won't know how many bugs
a system has at the start of integration. Nor will you be
able to predict your rate of finding and fixing them, nor
how reliable a system may eventually become, nor the
time will it take to get there. Standard metrics such as
mean time between failures (MTBF) only make sense after
systems integration, because before systems integration the
system as a system only exists as a concept, that is, the
system is an aggregation of software and hardware
components with faults sprinkled throughout. The
dreadful fact of having to live with poor software fault
metrics is kept hidden, much like the mad aunt kept in the
attic that no one wants to talk about.

Added to the challenge in estimating faults is the challenge
of isolating any one particular fault. The larger, the more
distributed, and more complex the system, the more
difficult fault isolation will be. Because of design, cost,
and test philosophy tradeoffs, system software intended for
hardware fault isolation (built-in test) will be limited. In
practice, built-In test rarely covers better than 90% of the
digital portion of any subsystem, rarely covers better than
90% of the subsystem interfaces, and may be non-existent
for subsystem analog paths or components. From the
software perspective fault handling routines are often
lightly tested and may themselves have faults. Difficulties
in fault isolation are compounded by the physical, logical,
and temporal distance between the visible error the fault
produces and the fault itself. Any perceived error can be
the last link in a causal chain of faults, where fixing the
visible effect simply exposes the next in the chain.
Manual fault isolation is a frustrating, time consuming
effort. There will be transient faults, where repeating the
known fault conditions will not repeat the error. There
will be Byzantine faults, where a system mimics a working
system, but really is not. There will be Heisenbugs, where
the effect of adding code to unmask a fault causes the fault
behavior to disappear or mutate. In a large system the
systems integrator performs manual fault isolation by
monitoring the various subsystems internal status, and
state as the system progresses from event to event. The
various status and state elements can be ordered into a
sequence of what happened (or didn't happen) in response
to specific stimuli. If a visible error does not leave a trace
in status pointing back to a fault, then the subsystem
software will need to be modified to provide additional
status. When software modification is needed across more

than one subsystem, coordination and negotiation is
needed across the various subsystem stakeholders. The
negotiation can take more time than actually changing the
software. And once the fault is isolated, negotiation and
coordination may again be needed for the correction to be
made. Design cleanliness may be sacrificed to political
expediency.

The subsystems of a system must be up and stable before
the system can be debugged. For large systems there can
be an interval on the order of tens of minutes from the
individual subsystems power on to when system is ready.
Critical faults that occur during this interval will require
another power down - power up cycle. When integration
is underway, the system may not stay up very long;
perhaps on the order of several minutes. The disheartening
result can be that in any given day, more time is spent
waiting for the system to be ready than in debugging.
Something to consider, managerially speaking, is that
while integration progress is measured by proving
functionality (or "threads of control") across subsystems,
perhaps, given the nature of the system, the effort would
be better served if redirected towards increasing reliability.
Hold this thought.

SOFTWARE TOOLS

Working backwards from the integration phase to the
design phase one can try to identify better tools and
techniques to serve the integration of the next system.
Improved computer languages alone will not solve the
problem. Many computer languages already provide
features to support fault handling, but language alone
cannot recover from faults when used in a non-redundant
distributed system, when a distributed processor runs
away, or when the operating system handling the fault
crashes. Something is needed outside the computer
language. Better debugging tools alone are not enough.
If the system crashes, the debugger on the same system
will also crash. At present the available tools for systems
integration do not yet fill the needs for debugging large
systems. The challenge can be viewed as one of needing
to unravel design encapsulation from the highest systems
level all the way down through the subsystems to the
individual processors and processes within. The
complexity of the heterogeneity, distribution, and
communication in the small scale all combine to prevent
just about any mechanism for coordination on fault
detection and recovery in the large scale. When faults
occur, there is the need filter and work the causal chain to
determine to who faulted first and to determine correlation
across multiple concurrent perhaps independent faults

 UNCLASSIFIED

 Page 4 of 5
 UNCLASSIFIED

across subsystems. Language and tools are not enough.
Improving the development process is not enough. Can
there be a systems architecture that, by design, properly
supports large systems integration?

SYSTEMS ARCHITECTURE

The subsystems may each behave properly individually,
but when connected together system faults can still occur,
irrespective of good architecture and design and practices.
In the typical systems architecture, the physical subsystem
interface is the firewall that is intended to prevent fault
propagation across subsystems. In practice, the subsystem
firewall is easily breached by the communications
software that connects the subsystems. Middleware is
both a breach in the firewall that can propagate faults and a
critical weak link when the middleware software itself
fails. Other sources of faults that propagate across
subsystems include global names, subsystem
configuration, and coordination and timing of sequences of
commands. In some instances portions of subsystem
interfaces can remain untested until systems integration.
For any given pair of subsystems that have a common
interface there is the possibility that each has not been
tested exactly the same way on its side of the common
interface. Subsystem testing, no matter how extensive
cannot replace the testing provided by systems integration.

One of the greatest challenges in integrating large systems
occurs when concurrent processes distributed across
subsystems raise concurrent exceptions. There are few
tools for modeling distributed processes or for modeling
fault propagation across distributed processes. Without
these models there will be challenges in improving our
predictive knowledge of large system behavior. Very
simple models for fault tolerant software components do
exist. A model of an idealized fault tolerant component
has two features, the first is to perform system services,
and the second is to provide a fault handling. The fault
handler, on fault detection, recovers or propagates status
back to the caller. A system built out of components (fault
tolerant or not) will only be as reliable as its weakest serial
component, that is, the component with the poorest fault
handling capabilities. For an immature application, the
weakest link is the application. For a mature application,
the weakest link is the software infrastructure, that is, the
COTS, the operating system, the middleware. How does
the generic large system behave in the presence of faults?
Faults that are expected are detected, logged and status is
propagated to the user. Faults that are not expected are not
detected and can cause immediate failure or can remain to
build up in the system like a trail of closely spaced

dominoes waiting for a triggering push. Some systems are
regularly intentionally rebooted to preempt the triggering
of accumulated faults; your PC, for example. Preemptive
rebooting is one way that humans can cope with systems
that are too complex to be made reliable. But preemptive
rebooting is admitting defeat. Someone, somewhere, has
given up, with the rationale that it is just not cost effective
to isolate and remove any more software bugs.

COORDINATED ATOMIC ACTIONS

Is there anything that be done to improve the status quo?
One concept that appears promising for systems
architecture is Coordinated Atomic Actions (CAA). CAA
is a concept that organizes software to provide more
effective fault containment across distributed systems.
CAA was first invented by members of Brian Randell’s
research group at the University of Newcastle at Tyne in
the mid 1990’s. The concept is simple, but the
terminology used in CAA requires some explanation.
- An Action is an abstraction that allows the systems
application programmer to group a set of operations into a
single logical execution unit.
- A Multiparty Action in an action where several processes
(parties) cooperate to produce an intermediate combined
state, exercise some activity, and then leave this interaction
and then continue execution independently.
- An Atomic Action is a Multiparty Action that allows for
exception handling for cooperative error recovery.
- A Coordinated Atomic Action (CAA) is a Multiparty
Atomic Action that also provides for controlled access to
shared external (transactional) resources. In CAA,
transactions are applied to actions just as database
transactions are commonly applied to data.

The steps to implement CAA are simple:
1. Synchronize the participant processes upon entrance

and validate the input parameters.
2. Perform the intended functions in order. Handle

exceptional conditions locally.
3. Wait for the whole interaction to finish or timeout.
4. Assert post conditions on output parameters.
5. Resynchronize. If something has gone wrong locally,

let all participants know success or failure.
6. Complete transactions on external objects. Prevent

intermediate results from being passed. If a fault
could not be handled at a lower level, handle now.

A software API for CAA could be implemented with a
function call for each of the six steps listed above:
 1. synchronizeBegin ()
 2. preCondition ()

 UNCLASSIFIED

 Page 5 of 5
 UNCLASSIFIED

 3. actionExecute ()
 4. postCondition ()
 5. synchronizeEnd ()
 6. externalUpdate ()

Any implementation would involve basic concepts known
to computer science majors: process monitors to
determine the liveness of the processes involved, inter-
process messages to synchronize and coordinate the
actions of the distributed processes, and semaphores for
synchronization and mutual exclusion. CAA designs
interface tests explicitly into the subsystem architecture by
the use of preconditions and postconditions. Systems
integration challenges such as ordering of command
sequences and message timing are made explicit and
encapsulated within the architecture within actionExecute.
As one person's system is another person's subsystem,
another advantage to CAA is that the architecture is
"nestable". The CAA technique can be hierarchically
applied to scale ever larger systems, and flowed down as
requirements to encapsulate subsystem suppliers.
Nestability permits CAA to encapsulate legacy systems
that do not support CAA and cannot be modified.

CONCLUSIONS

Systems of Systems have a disproportionate number
complex integration challenges. The holistic view of the
system is weakened as subsystems become more
independent. Providing an increasing number of controls
over the development process may not provide as cost
effective a return as improving system design architecture.
Advances in systems architecture hold promise in dealing
with complexity if the systems view can be maintained all
the way down through the abstraction and encapsulation.
Payback for improved systems architecture occurs during
systems integration. Systems integration is measured by
the accumulated integration milestones achieved per
successful thread-of-control tested. In traditional systems
design, there is little architectural support for debugging
faults that cross subsystem boundaries. Coordinated
Atomic Actions is an alternative architecture that logically
partitions large systems into fault tolerant threads-of-
control. With CAA the system boundary is moved from
the physical subsystem to the logical thread-of-control.
CAA scales with system hierarchy and provides debugging
hooks across subsystems. CAA provides a linking concept
between fault tolerant systems level architecture and the
current challenge of integrating a SoS. Now for the "A-
ha!" moment I promised at the start of this paper - The
CAA encapsulation of the thread-of-control is the very
same milestone used as the metric for systems integration

progress! The result and benefit of using CAA for the
systems integrator are threefold. One, that systems
understanding is increased within the architecture itself.
Two, that the debugging effort is decreased for the systems
integrator as more of the implicit is made explicit. And
three, the integration effort that is performed is the same as
the effort that is measured. Accepting anything less in a
system's architecture would simply be accepting more of
the same.

ACKNOWLEDGEMENTS

I would like to thank Paul Lee for his advice and support
shepherding this paper through the approval process. I
also would like to acknowledge the inspiration acquired
from working with Danielle Ericksen, Beth Finn, Barry
Furnival, Dave Giavonnelli, Craig Hanna, Bob Jones, John
Mackanic, Mike Narkis, and Rick Schulz on a difficult
systems integration; heroes one and all. And last, but not
least, Alexander Romanovsky at the University of
Newcastle, for providing key CAA papers that were
published out of my "electronic" reach.

REFERENCES

Very little attention has been paid to CAA in the US, most
likely due to the Not Invented Here (NIH) mind set.
Many papers on CAA, dependability and reliability can be
found on the IEEE website:
http://ieeexplore.ieee.org/Xplore/DynWel.jsp

“On Applying Coordinated Atomic Actions and
Dependable Software Architectures for Developing
Complex Systems” Beder, D.M., Randell, B.,
Romanovsky, A., Rubira, C.M.F., 4th IEEE International
Symposium on Object-Oriented Real-Time Distributed
Computing, Margeburg, Germany, May 2001, pp. 103-112

“High-Availability Computer Systems”, Jim Gray, Jim,
and Siewioreck, Daniel P., IEEE Computer, September
1991, pp. 39-48

“A Distributed Object-Oriented Framework for
Dependable Multiparty Interactions”, Zorzo, A.F. and
Stroud, R.J. In Proceedings of the 1999 ACM SIGPLAN
Conference on Object-Oriented Programming, (OOPSLA
‘99) Denver, Colorado, pp. 435-446

http://www.cs.ncl.ac.uk/people/home.php?name=alexande
r.romanovsky

