
1

Concurrent Exception Handling and ResolutionConcurrent Exception Handling and Resolution
in Distributed Object Systemsin Distributed Object Systems

Presented by Prof. Brian Randell

 J. Xu A. Romanovsky and B. Randell
University of Durham University of Newcastle upon Tyne

2

Outline

 System Model and Fault-Tolerant Components

 Principles of Exception Handling

 Exceptions in Concurrent and Distributed Systems

 Atomic Actions and Error Recovery

 Coordinated Atomic Actions

 Concurrent Exception Handling and Resolution

 A Case Study

3

System Model
SYSTEM SYSTEM ENVIRONMENT

interactions

component a

component c

component b

design
component p

component q

A software system consists of a number of components, which
cooperate under the control of a design to service the demands of
the system environment

The components and the system environment may be also viewed
as systems. The design can be considered as a special component
that defines the interactions between components and establishes
connections between components and the system environment

4

Failures, Errors and Faults

• A system failure occurs when the delivered service deviates
from what the system is aimed at (e.g. specification)

• An error is that part of the system state which is liable to lead
to subsequent failure

• A fault is the (hypothesized) cause of an error

• A fault can be a physical defect, imperfection, or flaw that
occurs within a hardware or software component

• In particular, a fault which occurs in the environment of a
system is called an environmental fault; it may cause an
error in the system

5

Exceptions

• There are different definitions of exceptions. For example, an
exception may be defined as an error or an event that occurs
unexpectedly or infrequently

• Traditionally, an exception does not necessarily imply the
occurrence of a fault; it can be used in normal processing to
supply extra information about results

• To avoid any ambiguity we define an exception as an abnormal
response from, or an abnormal event inside, a component that
indicates the detection of one or more errors in the component

• Exception handling is the immediate response and consequent
action taken to handle one or more exceptions

6

Error Recovery Techniques
• Forward error recovery: the system is returned to an error-free

state by applying corrections to the damaged state. Such an
approach demands some understanding of the errors

• Backward error recovery: the system is recovered to a previous
error-free state. No knowledge of the errors in the system state is
required

• Forward and backward error recovery techniques complement
one another

• Forward error recovery allows efficient handling of expected
exception conditions, and backward error recovery provides a
general strategy which will cope with faults a designer did not
(or chose not to) anticipate

7

Ideal Fault-Tolerant Component
Normal ActivityException HandlingServicerequestsNormalresponsesInterfaceexceptionsFailureexceptionsReturn to normalLocal exceptionsServicerequestsNormalresponsesInterfaceexceptionsFailureexceptions

A framework for fault tolerance can be provided by the notions of
exceptions, exception handling, and forward error recovery

It specifies the relationship between the normal and abnormal activity
and between the raising and signalling of exceptions (an exception is
raised within the component, but signalled between components)

8

Flow of Control and Handling Context
• The flow of control of a computation within a component should

change as the result of a raised exception

• Such an exceptional flow of control is distinguished from the
normal flow of control

• Within a program, exceptional flow of control is associated with
code fragments that called exception handlers

• Exceptions, software components, and exception handlers are
associated by a handling context

process A

context 2

context 1

enable<x1:h1> enable<x2:h2, x3:h3> disable<x2:h2, x3:h3> disable<x1:h1>

9

Example of Successful Forward Recovery

process A

context 1

enable<x1:h1> disable<x1:h1>

normal control flow

abnormal control flow
(or exceptional control flow)

suspended control flow resumed flow

exception handler h1

raised exception x1
return to normal
control flow

x1

10

Example of Returning an Abnormal Response

process A

context 1

normal control flow suspended control flow resumed flow

exception handler h2

raised exception x2

x2

enable<x1:h1> enable<x2:h2> disable<x2:h2> disable<x1:h1>

context 2

x1

return with signalled
exception x1

exception handler h1

11

Concurrent/Distributed Systems

• Exception handling and the provision of fault tolerance are more
difficult in concurrent/distributed systems than in sequential
programs, e.g. several exceptions may be raised concurrently in
multiple concurrent activities

• Exception propagation in concurrent programs may not simply go
through a chain of nested callers, e.g. an exception may need to be
propagated to the members of a cooperative process group

• Physical distribution of computation complicates further the
cooperation and coordination of multiple concurrent components

• Damage confinement and assessment become more difficult in
systems involving complex interactions among concurrent activities

12

Abstract System Model: Elements

 Objects:
An object is a named entity that combines a data structure (internal state) with its
associated operations that determines the externally visible behaviour of the object

 Threads:
Threads are the agents of computation (in a concurrent system). A thread is an active
entity that is responsible for executing a sequence of operations on objects

 Actions:
An action is a programming abstraction that allows the application programmer to
group a set of operations on objects into a logical execution unit

 Physical Distribution:

node 1

OS

node 2 node n

Communication Network

OS OS

13

• When an exception is handled, in general, damage confinement and
error recovery will follow

• An important dynamic structuring concept which assists in these
activities is that of an atomic action

• The activity of a group of components constitutes an atomic action if
there are no interactions between that group and the rest of the system
for the duration of the activity

• Transactions and conversations are two different instances of the
notion of an atomic action

• Ideally, if the system is known to be in an error-free state upon entry to
an atomic action, and an exception is raised during its execution, then
only those components which have participated in the atomic action
need to be recovered

Atomic Actions

14

• In a concurrent/distributed system, the problems of error recovery vary
very greatly depending on what design assumptions can be justified

• if one disallows (i.e. ignores) the possibility of undetected invalid
inputs or outputs, backward error recovery suffices

• if users and hence their activities are independent, and merely
competing, e.g. to use a database, then conventional transaction
processing techniques can provide such recovery

• But the activities in a concurrent/distributed system will on occasion at
least be attempting to cooperate, in pursuit of some common goal

• Moreover, these activities involve other entities (e.g. devices and
humans) that cannot simply go backwards when an error is detected

• Thus forward rather than backward recovery will have to be used, and
complex issues of cooperation and competition must be addressed

Error Recovery: Assumptions and Complications

15

• If interactions are not controlled, and appropriately coordinated with
checkpoint management, rollback of one thread can result in a cascade
of rollbacks

• However, the possibility of the domino effect could be ignored if it could
safely be assumed that data was fully validated before it was output, i.e.
transmitted from one thread to another

• Similarly, the effect would not occur if inputs could be validated completely

Thread 1

Thread 2

Thread 3

recovery point

interaction

X

Backward Recovery: The Domino Effect

16

• The data validation assumption underlies simple transaction-based
systems - outputs are allowed only after a transaction has been
committed

• In such systems the notion of commitment is regarded as absolute

• Nested transactions can be used to limit the amount of activity that
has to be abandoned when backward recovery is invoked

• Typically, it is still assumed that there are absolute outermost
transactions, and that outputs to the world outside the database
system, take place after such outermost transactions end - and are
presumed to be valid

• Conversations provide a means of coordinating the recovery
provisions of interacting threads so as to avoid the domino effect,
without making assumptions regarding output or input validation

Transactions and Conversations

17

Inter-thread communication is only
between threads that are participating
in a conversation together

• on entry to a conversation a thread
establishes a checkpoint

• if an error is detected by any thread
then all the participating threads
must restore their checkpoints

• after restoration all threads then
attempt to make further progress

• all threads leave the conversation
together

inter-thread communication checkpoint

T1

T2

T3

conversation boundary acceptance test

Nested Conversations

18

Transactions, Conversations, and Error Recovery

• Transactions, which can be nested and multi-threaded, provide
concurrency control and backward recovery for competing activities that
are sharing external resources

• Conversations provide coordination and backward recovery for
cooperating activities, but do not support use of shared external
resources

• A Generalised Conversation allows for exceptions - when an
exception occurs, every thread in the conversation has to switch to an
appropriate handler, so that forward error recovery is performed

• A Coordinated Atomic Action (CA Action) can be regarded as a
generalised conversation that also provides controlled access to shared
external resources. Equally, it can be regarded as a nested multi-
threaded transaction with disciplined exception handling

19

Coordinated Atomic Actions (CA Actions)

• A CA action is a generalized form of the basic atomic action
structure

• Multi-Threaded Enclosure and Coordination - CA actions
provide a mechanism for enclosing and coordinating interactions
among threads, and must ensure consistent access to objects in
the presence of complex concurrency and potential faults

• Fault Tolerance - If an exception is raised inside a CA action,
appropriate forward and/or backward recovery measures will be
invoked cooperatively in order to reach some mutually
consistent conclusion

• Multiple Outcomes - CA actions combine exception handling
with the nested action structure to allow multiple outcomes, e.g.
a normal outcome or some possible exceptional outcomes

20

Illustration of CA Actions (Recursive View)

CA Action a

Thread i

Thread j

Thread k

External
Objects

CA Action d

Local
Objects

CA Action b CA Action c

start transaction commit transaction

21

Thread 1

Thread 2

Time

CA action

e

raised exception e
exception handler H1

abnormal control flow

suspended control flow

primary attempt

primary attempt
return to normal

exit with success

entry points exit points

accesses repairs

exception handler H2

abnormal control flow

suspended control flow
return to normal

External Objects

start transaction commit transaction

CA Actions - Internal Exceptions

exception handling context

22

Exception Classification and Declaration
CA Action

Thread 1

Thread 2

External objects act upon

Thread n

e = {e1, e2, e3, ...} to signal
ε = {ε1, ε2, ε3,...}

e = {e1, e2, e3, ...}
Exceptions inside the CA action must be declared with the
action definition and handled within the action

ε = {ε1, ε2, ε3,...}
Exceptions to be signalled from the action to its
environment (e.g. the enclosing action) must be specified
in the CA action interface

Recursive relation: εnested is a subset of eenclosing

23

Exception Handling and Propagation

e

T1

T2

T3

T4

raise inform

inform

signal

enclosing CA action

nested CA action

handle

24

Concurrent Exceptions

• In a concurrent/distributed system, different processing nodes
may raise different exceptions and the exceptions may be raised
simultaneously

• Concurrent exceptions must be handled in a coordinated manner
Example: If just the left (or right) engine of a twin-engine aircraft fails,
the controls can be adjusted appropriately to compensate for the loss of
the left (right) engine. However, if both the right and left engine fail at the
same time, handling both engine-loss exceptions separately and in
some order can lead to catastrophic consequences

• There are a variety of reasons why several exceptions may be
raised concurrently. For example, it is often difficult to interrupt
the normal operations of the other nodes immediately after an
exception has been raised

25

Concurrent Exception Resolution

Universal Exception e4

Emergency Engine Loss Exception e3

Left Engine
Exception e1

Right Engine
Exception e2

An exception graph approach is developed in order to find the
exception that “covers” all the exceptions raised concurrently

e1
e1 e2 e3

universal exception

e1 ∧ e2 ∧ e3

e1 ∧ e2 e1 ∧ e3 e2 ∧ e3

level 0

level 3

level 2

level 1

26

Dealing with Concurrent Exceptions

E1

E2
E= Res(E1, E3)

handle E

handle E

handle E

T1

T2

T3

Normal
Computation

Passing
Exceptions

Exception
Resolution

Exception
Handling

T4 handle E

Aborting
NestedActions

(Abortion
handler
signals E3)

External
objects

27

Performance-Related Evaluation

0
T (seconds)

Total Execution Time (seconds)

1.0 2.0 3.0

varying T(communication)

varying T(abortion)

varying T(E-resolution)
200

100

300

The cost of message passing is of the major concern, while concurrent
exception handling does not introduce a high run-time overhead

28

A Case Study

• The FZI (Forschungszentrum Informatik, Germany) have specified and
provided a simulator for the Fault-Tolerant Production Cell

• This represents a manufacturing process involving six devices: two
conveyor belts (a feed belt and a deposit belt), an elevating rotary table,
two presses and a rotary robot that has two orthogonal extendible arms

• The task of the cell is to get metal blanks from its “environment” via the
feed belt, transform them into forged plates by using one of the presses,
and then return them to the environment via the deposit belt

• The challenge posed by FZI - to design a control system that maintains
specified safety and liveness properties even in the presence of a large
number and variety of device and sensor failures, and which will continue
to operate even if one of the presses is non-operational

• Our aim - to show how concurrent exception handling and CA Actions
aid both the design and validation of this control system

29

The FZI “Fault-Tolerant” Production Cell
!deposit belttraffic light for deposittraffic light for insertionrobotarm_1arm_2system clockalarm signalfeed beltelevatingrotarytablepress_1press_2sensorblankenvironment

30

Failure Definition and Analysis

• For a given device, we classify possible failures into: i) sensor failures, ii)
actuator failures, and iii) lost or stuck blanks

• A failure may be detected by sensors, actuators, stop watches, singly or
in combination

• We discuss failure detection only, because in many cases certain
different types of failure cannot be distinguished using just the on-line
information available; subsequent off-line diagnosis is often needed

Example: For a press, failures of the position sensors and failures of the
press actuator can be detected by assertion statements in the control
program. Such failures must be reported to the user through an alarm,
but normal operations can be maintained using a single press

• A device or sensor failure should not affect normal operations of other
devices. CA actions help confine damage and failures, and minimize the
impact of any component failure on the entire cell

31

Design of a Control System

• Our design for the Fault-Tolerant Production Cell uses 12 main CA
actions; each action controls one step of the blank processing and
typically involves passing a blank between two devices

• We have implemented this design for a control program using a
Java implementation of a distributed CA action support scheme
(this scheme makes use of the nested multi-threaded transaction
facilities provided by the Arjuna transaction support system)

• Our system controls the FZI simulator. Overlaid on the screen are
rectangular outlines showing the scopes of these CA actions

• As the simulator is operated each of these outlines is gradually
shaded in each time the corresponding CA action is executed - the
colour of this shading is changed when the CA action is involved in
exception handling, in response to simulated faults

32

Production Cell with One CA Action

CA action LoadPress1

33

Example: CA Action LoadPress1

concurrent threads CA action LoadPress1

RobotSensor

Robot(Arm1)

Press1Sensor

Press1

External
object
Blank

move press 1
to the middle
position

extend arm 1 retract
arm 1

access

rotate robot

synchronizing drop blank

34

Example: CA Action LoadPress1 (Specification)
CAA LoadPress1;Interface UseMetalBlank; RolesRobot: blankType, robotActuator;Press1: blankType, press1Actuator;RobotSensor: arm1ExtensionSensor, robotAngleSensor;Press1Sensor: blankSensor, lowPositionSensor, midPositionSensor; ExceptionsPress1Failure, Arm1Failure1, ...; ;;exceptions to signalBody Use CAA ;;specify nested actionsRotateRobot, MovePress1toMid, ExtendArm1, RetractArm1; ObjectrobotPress1Channel: Channel; ;;shared local objects Exceptionspress1_failure, blank_sensor_failure, ...; ;;internal exceptions Handlerspress1_handler, blank_sensor_handler, ...; Resolutionpress1_failure -> press1_handler, ...; ;;exception resolution graph Role Robot(...); Role Press1(...); ...End LoadPress1;

35

Design Strategy

• The main characteristics of our design are the way it separates safety,

functionality, and efficiency concerns. In particular, the safety

requirements are satisfied at the level of CA actions, while the other

requirements are met by the device/sensor-controllers

• Each CA action encloses a set of devices that must interact. If two such

actions are shown as overlapping, this indicates that they must not be

performed in parallel because they both involve the same device (the CA

action semantics guarantee this)

• The CA actions were designed, and validated, independently of each

other, and of the set of device/sensor-controllers that dynamically

determine the order in which the CA actions are executed

36

Production Cell in Operation

37

Handling Concurrent Exceptions

rs_m_failure &
pr1_failure

other undefined
exceptions

universal exception

pr1_
failure

s7_
failure

arm1_
failure1

rs_m_
failure

cs_
failure

rt_
except

arm1_
failure2

as_m_
failure1

as_m_
failure2

as_m_failure &
s7_failure

cs_failure &
rt_except

exception to signal exceptional post-conditions

(robot’s rotary
sensor or motor
failure) & press1
failure

robot off
blank on arm 1
both arms retracted
press 1 off
no blank in press 1

In the cell concurrent failures can be
detected effectively but often cannot be
distinguished. In those cases, our
control program is designed simply to
bring the system to stop in a safe state

For each CA action, various
exceptions are defined based on
failure analysis, and an exception
graph for resolving concurrent
exceptions is constructed

38

Single faults and multiple concurrent faults, of many different types,
can be injected via this on-screen control panel

After faults are injected into the simulator, error detection measures
embedded in our control program will detect the errors caused by
the faults and raise one or more corresponding exceptions

The Fault Injection Panel

39

An Injected Fault

40

Effective Exception Handling

All injected device or
sensor failures were
caught successfully and
handled immediately by
our control program. A
previously unknown bug in
the FZI simulator was
detected by a CA action
and recovered
automatically by the action
using the retry operation

41

Summary

• An atomic action is an important dynamic structuring concept
that assists in damage confinement and error recovery; a
coordinated atomic action is a generalized form of the basic
atomic action structure with disciplined exception handling

• Exception handling in concurrent/distributed systems is more
difficult than in sequential programs; concurrent exceptions
must be handled in a coordinated manner

• The Fault-Tolerant Production Cell case study demonstrates
how CA actions can act as a structuring tool, supported by
exception handling and fault tolerance, and aid both the
design and validation of a dependable control system

42

In Conclusion

• We have introduced a systematic and model-driven
approach for building dependable software systems based on a
variety of exception handling techniques and fault tolerance
schemes (from basic concepts to systems designs, from
sequential programs to concurrent/distributed systems, and
from experimental analysis to realistic industrial applications)

• It was very pleasing to confirm from our experience that the
combination of advanced fault tolerance techniques and
powerful system structuring mechanisms (e.g. object-
oriented structuring methods and high-level control
abstractions) often offers a quite straightforward solution to
complex reliability and safety problems

